
Benchmarking Estimators of
Harvestable Energy on a Low-Power

System
Semester Thesis

Francisco Andrés Dumont Duvauchelle

fdumontd@ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Stefan Draskovic
Reto Da Forno

Prof. Dr. Lothar Thiele

July 11, 2020

mailto:Francisco Andr\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 e\egroup \spacefactor \accent@spacefactor s Dumont Duvauchelle<fdumontd@ethz.ch>

Acknowledgements

I am very thankful to my supervisors, Stefan Draskovic and Reto Da Forno. They
helped me a lot into organizing things despite the situation with the corona virus.
Part of the hardware needed to be set correctly in order to work from home and
they helped me a lot with this issue. Both of them also gave feedback every
time possible and the success of this semester project is certainly thanks to their
active involvement.

At one point of the project I encountered difficulties in setting the RocketLogger
properly. Stefan Draskovic contacted Lukas Sigrist, whom is no longer studying
nor working in ETH but was willing to help me out, because he was the one
involved in the RocketLogger development. My thanks to Lukas Sigrist for his
help.

I also want to thank the ETH computer and electric engineering department.
They provided all things needed for me to work. This includes a laptop, because
I did not have one myself.

i

Abstract

The report is a about the construction of a benchmark to evaluate different al-
gorithms used to predict the availability of energy in the near future. These
algorithms are meant to be used on microcontrollers, in this specific case the
DPP DevBoard with the microcontroller MSP432P401R.

The report goes though different chapters explaining in general terms the bench-
mark implementation. It starts with some context for the project motivation,
followed by a design overview of the setup and algorithms. Then the differ-
ent implementation levels are described, more specific information can be found
in the annexes. There is also an evaluation chapter, which goes through the
functionality results of each one of the algorithms and also makes a comparison
between them. Lastly, missing things and possible improvement in the project
are mentioned.

At the end there are annexes, but the purpose of them is to explain in details
about the installation, preparation and implementation. It is highly recom-
mended to read them if you are going to use or intent to expand the functionally
of this tool.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Context and background . 1

1.2 Goal of the project . 1

1.3 Mathematical frame and algorithms 2

1.4 Remarks . 2

2 Design overview 3

2.1 Hardware . 3

2.2 Energy harvesting prediction algorithms 5

2.2.1 Exponentially Weighted Moving-Average (EWMA) 5

2.2.2 Weather-Conditioned moving Average (WCMA) 5

2.2.3 Pro-Energy . 6

3 Implementation 8

3.1 High-level implementation . 8

3.1.1 User actions . 9

3.1.2 Automated process . 9

3.2 Low-level implementation . 10

3.2.1 File structure . 10

3.2.2 Control flow . 11

4 Evaluation 12

4.1 Algorithm individual performance 12

4.1.1 EWMA . 13

4.1.2 WCMA . 18

iii

Contents iv

4.1.3 ProEnergy active update 22

4.1.4 ProEnergy no active update 27

4.2 Algorithms comparisons . 31

5 Missing points and future improvements 33

5.1 Coding errors . 33

5.2 Available data . 33

5.3 Algorithm unknown behavior . 34

5.4 User interface . 34

6 Conclusion 35

A Additional remarks for the Annexes 1

B Necessary installations and how to use 2

B.1 Python . 2

B.2 Texas Instrument: Code Composer Studio 2

B.3 RocketLogger . 5

B.4 Gitlab . 5

B.5 Setup . 6

C High-level implementation 10

C.1 Data acquisition . 10

C.1.1 General functionality . 10

C.1.2 Data directories . 10

C.2 Algorithm coding structure . 12

C.3 Communication with DPP DevBoard and its measurements . . . 13

C.3.1 Initialization . 14

C.3.2 File preparation and flashing for DPP DevBoard 15

C.3.3 RocketLogger . 15

C.3.4 Control flow . 16

C.4 Comments and user inputs for python scripts 18

C.4.1 Script: DPP simulation 18

C.4.2 Script: simulate.py . 19

Contents v

C.4.3 Script: evaluation.py . 21

C.4.4 Script: comparison evaluation.py 21

D Low-level implementation 22

D.1 Structure composition . 22

D.2 Important variables . 23

D.2.1 Common configuration . 23

D.2.2 Algorithm specific . 24

D.3 Processing flow . 25

D.4 Include new algorithm . 27

D.4.1 Common files . 28

D.4.2 Algorithm specific files . 28

Chapter 1

Introduction

1.1 Context and background

In this day and age, embedded systems are everywhere. All our electronics have
them and we find new ways to use them in order to solve problems. Though
regardless of the implementation, they all use energy to function. Some get their
energy from batteries or are connected directly to the grid. But since energy
harvesting of unconventional sources has experienced a lot of research, there is
a growing interest in using them as well. Among the unconventional sources
solar, wind and vibrations can be highlighted. The problem with these sources
is how variable and unreliable they are.It can be said, all days are created equally
important, but some have more wind or sunlight than others.

This feature of unconventional energy sources presents a trade off. If you want to
be sure the system will have always energy available to perform its functionality,
you could have a huge battery or a large solar panel connected. This solution
despite possible is not practical in many cases. Thus when there is not a big
harvester present in the system, it is advantageous to have an energy harvesting
prediction algorithm helping in the scheduling decisions of the embedded system.

To start any approach to the problem at hand, we need to look into some of the
theoretical available solutions. Several papers have been written about possible
algorithms for estimators. But regardless of how good the calculations on paper
are, at some point they have to be tested and evaluated in the real world. And
here is where this project attempts to make your live easier by developing a
useful tool.

1.2 Goal of the project

The goal of this project is the development of a benchmark and later test it by
evaluating different energy harvesting prediction algorithms for low power sys-
tems. This benchmark includes a functional evaluation of high-level simulation

1

1. Introduction 2

in the computer (python) and a low-level implementation for the microcontroller
TI MSP432P401R. Ultimately, by using this tool, the reader will be able to
implement his own algorithms.

1.3 Mathematical frame and algorithms

Three algorithms were implemented in this project, to test the benchmark. All
the algorithms are well known in the state of art solutions and are described in
the following chapters. Many of these definitions are later used in the coding of
the implementation.

1.4 Remarks

Throughout the report and annexes many aspects are mentioned and due to
the different implementation levels, it is easy to lose track of what is being
discussed. In order to facilitate the understanding, the report uses different
colors to highlight different aspects.

Only some colors appear first in the report and others are added in the annexes.
In the annex A these additional colors are introduced. The colors being used in
the report are the following:

• color violet relates to anything to do with the low-level implementation.
For the report, the evaluation section 4 uses this color for variable names
in the low-level implementation code.

• color blue is for database files or directories

• color cyan highlights things to keep in mind. For example a value, software
names or command lines.

Chapter 2

Design overview

2.1 Hardware

Our setup uses several components, and they are described in this chapter. The
general design can be seen in the figure 2.1, which is explained below. The algo-
rithms are implemented in two different parts.

First, a low-level implementation of the prediction algorithm is to be imple-
mented on an embedded system, in this case the DPP DevBoard [1]. The DPP
DevBoard here receives data by a UART port, executes the algorithm and sends
the prediction back through the same channel.

On the other hand, the high-level implementation is done in a general purpose
computer. Here the user inputs both a high-level and a low-level implementation
of the estimation algorithm, and gives the measured harvested energy data set.
Then the benchmark does several steps automatically. The chronological steps
are the following:

• Prepare the different resources (compilation / activation)

• Sending data to or receiving data form DPP DevBoard

• Start / Stop the power measurement device (RocketLogger) [2]

• Simulate the algorithm on the computer

• Saves the data for future analysis

All of these processes are addressed in more detail in the chapter 3 and
annex C. Here, general information about some of the specific hardware being
used is given.

3

2. Design overview 4

Figure 2.1: setup overview

RocketLogger: The RocketLogger is a device developed at the Computer
Engineering Group at ETH Zurich to measure voltage and current with high
precision [3]. It is important that the RocketLogger is connected to the local
network, because that way the device can be controlled through a command line
interface and results can be retrieved via SSH.

DPP DevBoard: The DPP DevBoard is a hardware device developed at the
Computer Engineering and Networks Laboratory (TIK) of ETH with a micro-
controller MSP432P401R [1]. Among the most important features being used
are the UART communication port and two logical outputs for the RocketLog-
ger measurements. In order to flash the MSP432P401R, the debugger hardware
Segger J-Link EDU Mini [4] is used.

Computer: The computer used is Linux Ubuntu 20.04. Most of the high-
level implementation is done in Python 3, Python 3.6.9 to be specific. Also the
corresponding .C files for the microcontroller MSP432P401R are compiled into
one BIN file the Code Composer Studio 9.3.0 software.

2. Design overview 5

2.2 Energy harvesting prediction algorithms

2.2.1 Exponentially Weighted Moving-Average (EWMA)

The algorithm EWMA is discussed in the paper ”Power Management in Energy
Harvesting Sensor Networks” [5]. The core principle is to exponentially average
the incoming measurement with a historical saved value. The algorithm can be
described in the following way:

α ∈ [0, 1]

i ∈ N, i ∈ [1, slots]

xh(i) historical value from slot i

x(i) measurement from slot i

xh(i) = α× xh(i− 1) + (1− α)× x(i)

2.2.2 Weather-Conditioned moving Average (WCMA)

WCMA was published in the paper ”Prediction and Management in Energy
Harvested Wireless Sensor Nodes” [6]. In this case, the prediction involves more
parameters than the previous algorithm. The parameter included in this case is
called GAPk, which measures the energy conditions of the present day relative
to the previous days. Some definitions are needed before describing the GAPk

factor.

Matrix E of size DxN is used to save the recollected energy measurements of
the last D days, where we have:

D number of days saved, N day slots

E(j, i) energy stored of slot j form day i

j ∈ N, j ∈ [1, N]

i ∈ N, i ∈ [1, D]

Vector MD is the average of the last D days for each slot:

MD(d, n) =

∑d−D
l=d−1E(l, n)

D

Vectors V and P have K elements each. On one hand, the elements of the vector
V represent the quotient between a sample and the mean of previous D days in

2. Design overview 6

that slot. On the other hand, in vector P the elements will be weighted values.
With these concepts in mind, the GAPK can be declared.

V = [v1, v2, v3, ...vK]

with k ∈ [1,K] and vk =
E(d, n−K + k − 1)

MD(d, n−K + k − 1)

P = [p1, p2, p3, ...pK]

with k ∈ [1,K] and pk =
k

K

GAPk =
V × P∑

P

The final prediction with all the parameters is the following:

E(d, n+ 1) = α× E(d, n) + (1− α)×GAP ×MD(d, n+ 1)

2.2.3 Pro-Energy

In the paper ”Pro-Energy: a novel energy prediction model for solar and wind
energy-harvesting wireless sensor network” [7] the algorithm Pro-Energy was in-
troduced. The paper described multiple options, but in this semester project
only two variants are implemented.

Pro-Energy is an algorithm, which saves energy profiles and combines this infor-
mation with the incoming measurement to make a prediction. These profiles are
saved in a E matrix of size NxD, which represent D different profiles. Among
these profiles one is selected and combined with the parameter α:

D days profiles saved, N day slots

Ed
i energy stored in slot i for profile d

j ∈ N, j ∈ [1, N]

i ∈ N, i ∈ [1, D]

K number of previous observations in profile to be considered

Ci measurement in slot i of the current day

Ed = min
Ed∈E

t∑
i=t−K

|Ci − Ed
i |

K

Êt+1 = α× Ct + (1− α)× Ed
t+1

2. Design overview 7

Profiles can be updated in order to have the most recent data available to make
predictions. This feature can be inactive or active. In case of inactivity, the
profiles have to be calculated and defined in advanced, the criteria used for this
will depend on the developer. On the other hand, if the feature is active the
profiles are updated according to two options.

The first option is to replace the profile that is older than A days of the current
day. The second option needs to calculate the mean absolute error (MAE) value
of each saved profile with the current day’s profile. Once the MAE is calculated,
the one with the lowest (MAE) is compared to a threshold. If that threshold is
passed, that selected profile is replaced with the current day.

Chapter 3

Implementation

3.1 High-level implementation

As mentioned before, the high-level implementation is ran in a computer and
does several processes. In this chapter the implementation will be discussed in
general terms, but a detailed information about them can be found in the Annex
C. It is recommended to look the Annex, because that information allows the
user to be able to adapt the code and include new desired algorithms.

The high-level implementation can be broadly separated into two different stages.
The first stage involves what the user has to give as inputs before running the
scripts and the second stage is the automated process coded in the different
scripts.

Figure 3.1: general high-level implementation

8

3. Implementation 9

3.1.1 User actions

There is no user interface, thus the has to write the inputs for the benchmark in
the scripts themselves. The inputs written in the scripts are related to four mayor
aspects: algorithms parameters, database selection, RocketLogger configuration
and number of days to simulate. The annex in section C.4 has full descriptions
about each one of the inputs. Once the inputs are given, the script just has to
be ran.

3.1.2 Automated process

The automated process starts when the user runs the scripts. Detailed infor-
mation can be found in the Annex C, but for the purpose of this section the
processes will be generalised. The figure 3.1 highlights four process and the
comments will be done on them.

Initialization

This first step of the processes is setting the all the hardware and software
correctly. Here below is a list of the most important settings that need to be
done.

• Database selection: a database for sunlight and another for wind measure-
ments can be selected.

• Algorithm and its parameters selection: choose between EWMA, WCMA
and ProEnergy. If a new algorithms is implemented, several changes need
to be made in order for the benchmark to do the process automatically.
Otherwise changes in the files need to be done manually.

• Edit and compile files of low-level implementation: the files for the low-level
implementation are also edited in this phase, but again if the algorithm is
not included in the high-level implementation, the user needs to change
everything manually.

• Flash the DPP DevBoard: tools from SEGGER are used for this purpose.

• Set RocketLogger parameters: as the RocketLogger is connected to the
local network, the setup is able to set the device correctly for the measure-
ment on the DPP DevBoard.

• Send to DPP DevBoard the initial array / matrix values: the DPP De-
vBaord needs the initial historical values and the high-level implementation
provides them through the UART Channel.

3. Implementation 10

Low-level implementation execution

At this point the prediction calculation of low-level implementation can take
place. First, the high-level implementation sends a start command to the Rock-
etLogger. Immediately after that data is send to the DPP DevBoard and the
computer waits for the prediction value. This will go on until the last day of the
simulation is finished. At that point the RocketLogger is stopped by another
command and the process can continue with the next step.

High-Level implementation simulation

The high-level simulation is ran. In this case only the computer is involved, thus
no coordination with external hardware is needed.

Save data

This is the last step of the processes. The data from the high-level simulation,
low-level prediction and RocketLogger measurements are saved in a predefined
folder for further analysis.

3.2 Low-level implementation

The target of the low-level implementation is the DPP DevBoard. It was already
mentioned that the editing of the files happens in the high-level implementation
process, unless the algorithm is not among the ones recognized by the benchmark.
In this section two aspects will be commented: the file structure and the control
flow on the DPP DevBoard. Further information can be found in the Annex D,
it is highly recommended to take a look at it.

3.2.1 File structure

The low-level implementation is separated in two types of files. The first of
them are the common files, which have general variables and the control flow
of the implementation. These files are used by every algorithm and call the
respective functions from the specific algorithm files depending on the stage of
the control flow. The second group of files are algorithm specific, thus their
activation depends on the user inputs at the high-level implementation.

3. Implementation 11

3.2.2 Control flow

Two different processes can be identified in the control flow. The figure 3.2
represents these two generalised decisions to choose from.

The process starts by always waiting for data to be received from the computer.
Once something has been received the DPP DevBoard decides what process to
perform. If the DPP DevBoard has just recently being flashed, it has no historical
values in the memory array. So the first action taken is copying the data received
via UART to the memory. Once this is done, the DPP DevBoard performs the
second action, which is making a prediction with the received data. The DPP
DevBoard stays in this configuration even after the last day of the simulation is
through.

Figure 3.2: general control flow for low-level implementation

Chapter 4

Evaluation

The benchmark makes it easy to plot graphs describing the performance of any
algorithm under test, which can help in their development and understanding.

There are some python scripts and code that output the following graphs. Three
different aspects are shown by these representations. The first one enables the
user to compare the high-level and low-level implementation as an easy check
on the low-level functionality. The next one is information about about the
DPP DevBoard predictions and measurements of the RocketLogger. Lastly, a
comparison between all the current algorithms is done.

The user is encouraged to look into the code of the graphs if he wants to add his
own representations.

4.1 Algorithm individual performance

In this section four graphs are shown for every algorithm. The parameters used
for each one of this predictions are given, but as the graphs are pretty much the
same, some explanations are given on each of them. It is important to note that
the sections shown in the figures are selected from a 30 day simulation (usually
among the best examples).

The first graph (figures 4.1, 4.5, 4.9 and 4.13) shows a comparison between the
high-level simulation prediction, DPP DevBoard prediction and the actual mea-
surement from the database. Below it, the percentage and absolute error between
the predictions and the measurement are displayed.

The following graphs (figures 4.2, 4.6, 4.10 and 4.14) presents three things. The
x axis is the time measured by the machine computer or the RocketLogger. In
the upper part the DPP DevBoard prediction values and the time they arrive
at the computer are plotted. Right below it, is a sub-graph that plots the time
execution for the prediction calculation in the DPP DevBoard and the time mea-
sured by the RocketLogger. Finally the lowest one is the power consumption of

12

4. Evaluation 13

the DPP DevBoard through time. It is important to note that the time mea-
surements of the computer and the RocketLogger might have a shift, that is
the reason for using the PORT 5 PIN 1 as an indicator of where exactly does
the whole prediction process starts and ends. More information about the ports
used in the DPP DevBoard can be found in the Annex D.3

The third graph (figures 4.3, 4.7, 4.11 and 4.15) considers more data than the
previous two. As said before these results are from a 30 day simulation, what
these figures consider are those 30 days results. The upper and middle graph
have the same y-axis (number of prediction executions in the DPP DevBoard),
but the x-axis is different. One is the time used for a prediction execution in
the DPP DevBoard and the other is the energy consumption in the time interval
of the prediction execution in the DPP DevBoard. The graph in the lower part
combines the energy consumed and time execution of the prediction calculation,
the expected thing is to see the points on a common line.

Finally the last figure (figure 4.4, 4.8, 4.12 and 4.16) puts the prediction calcu-
lation with its execution time / energy consumption, instance by instance.

4.1.1 EWMA

The only parameter set in this example was ALPHA, with a value of 0.5. Some
comments can be made. From figure 4.1 there is a clear shift between the pre-
dictions and measurements, and that is due to the fact that the prediction is
made with the previous historical measurement and the current received mea-
surements. In the figure 4.2 and 4.4 it can be seen how the execution time
and power consumption is greater during sunlight hours, because the calculation
involves more than only zeros.

4. Evaluation 14

Figure 4.1: EWMA comparison between DPP DevBoard and simulation

4. Evaluation 15

Figure 4.2: EWMA execution time and power consumption of during prediction

4. Evaluation 16

Figure 4.3: EWMA execution time and energy consumption occurrences

4. Evaluation 17

Figure 4.4: EWMA prediction compared to energy consumption or execution
time

4. Evaluation 18

4.1.2 WCMA

These are the settings for the WCMA used in this case: ALPHA = 0.7, K = 6 and
D = 5. In this case it can also be observed the shift as in the EWMA algorithm.
Regarding the execution time and the energy consumption, the last time slot of
the day is the greatest. The reason for it is simple, on the last slot of the day
the algorithm has to shift and update the saved measurements in the E matrix.

Figure 4.5: WCMA comparison between DPP DevBoard and simulation

4. Evaluation 19

Figure 4.6: WCMA execution time and power consumption of during prediction

4. Evaluation 20

Figure 4.7: WCMA execution time and energy consumption occurrences

4. Evaluation 21

Figure 4.8: WCMA prediction compared to energy consumption or execution
time

4. Evaluation 22

4.1.3 ProEnergy active update

The active update means that the saved profiles are updated under certain con-
ditions and that is why all the parameters of the algorithm are considered. The
setting of them is: ALPHA = 0.6, K = 7, D = 10, A = 20 and MAE THRESHOLD =
500.

In the case of the ProEnergy algorithm, there is no shift present as in the WCMA
and EWMA due to what the prediction considers, in this case the profile value
of the next slot together with received data. In this cases the greatest energy
consumption and time execution is at the end of the day, because it has to up-
date the profiles. Though there is something interesting to point out, which can
be seen in the figure 4.12 clearly. The energy consumption and execution time
increases till the 8th slot of the day, the explanation for this is the following. In
the calculation prediction the last K (7 in this case) slots are considered. But
before the 8th slot the algorithm can’t consider slots of other profiles, thus less
than K slots will be considered, making the prediction calculation less resource
intensive.

4. Evaluation 23

Figure 4.9: ProEnergy active update comparison between DPP DevBoard and
simulation

4. Evaluation 24

Figure 4.10: ProEnergy execution time and power consumption of during pre-
diction

4. Evaluation 25

Figure 4.11: ProEnergy active execution time and energy consumption occur-
rences

4. Evaluation 26

Figure 4.12: ProEnergy active prediction compared to energy consumption or
execution time

4. Evaluation 27

4.1.4 ProEnergy no active update

This variant of the ProEnergy doesn’t update the profiles, instead it takes one
full year, selects certain days and creates D amount of fix profiles. All other
parameter are the same, but many of them won’t be considered, like A and the
MAE THRESHOLD.

At first sight similar conclusions as in the active case can be made, with the
exception that this time at the end of the day no big execution time and energy
consumption is used.

Figure 4.13: ProEnergy no active update comparison between DPP DevBoard
and simulation

4. Evaluation 28

Figure 4.14: ProEnergy no active update execution time and power consumption
of during prediction

4. Evaluation 29

Figure 4.15: ProEnergy no active update execution time and energy consump-
tion occurrences

4. Evaluation 30

Figure 4.16: ProEnergy no active update prediction compared to energy con-
sumption or execution time

4. Evaluation 31

4.2 Algorithms comparisons

This is an attempt to compare these different algorithms by using these 30 day
measurements, thus please do not draw definitive conclusions for the algorithm
performances, there are many variables that can be changed and are open for
analysis. Despite that, some general comments can be made.

The energy consumption and execution time is higher for the ProEnergy algo-
rithm than the other two. EWMA and WCMA are not that far apart when it
comes to resource usage.

When is comes to the predictions errors, the absolute difference is similar be-
tween algorithms and simulation, but the ProEnergy in the computer has a
significant better performance than in the DPP DevBoard implementation. On
the percentage error these differences can be better appreciated. The high-level
simulations performed better than the DPP DevBoard implementation, specially
the ProEnergy active update.

Figure 4.17: algorithm comparison: execution time and energy consumption

4. Evaluation 32

Figure 4.18: algorithm comparison: DPP DevBoard prediction absolute and
percentage error

Figure 4.19: algorithm comparison: simulation prediction absolute and per-
centage error

Chapter 5

Missing points and future
improvements

Due to the time constrictions of the project and human nature, there are for
sure some errors and improvements that can be made. This is just a short list
of personal appreciations.

5.1 Coding errors

The code has been reviewed and the implementation works, but there is a pos-
sibility that some chucks of code are unnecessary or can be written in a more
efficient way.

5.2 Available data

There are two possible improvements regarding the database. The whole project
used only two files (solar data.xls and wind data.xls) as database and its
column structure in the DataFrame is simplified to ["Year", "Month","Day",

"Hour", "<country abbreviation>"]. Thus one restriction is how the data is
loaded and changed in order to satisfy the previously mentioned columns.

On the other hand the setup has no easy way to select certain specific days to
simulate. For example, if the database has data in a interval between january
and december, you can’t currently choose to simulate july. The only way to do
it right now is to simulate all the way till the end of july and later select the
specific interval. The other method would be to eliminate all the data of the
database before the starting of the wanted interval, that is not practical.

33

5. Missing points and future improvements 34

5.3 Algorithm unknown behavior

In some cases the simulation performs way better than the DPP DevBoard pre-
diction, ProEnergy for instance. The exact reason of why this happens is un-
known. Here are some ideas, but a more precise analysis is needed to have a
definitive conclusion.

Assuming that the all the coding was done right, it is possible that the precision
of some more digits make a significant difference in ProEnegry algorithm when
it comes to select the profile for the prediction.

The other option is a bug in the low-level implementation code and annoyingly
messes up the calculation under certain conditions.

5.4 User interface

In order to make changes or insert new features / algorithms, the user has to do
all that manually. It would be a very comfortable thing to have some kind of
user interface for at least editing the manual inputs and run the whole process.

Chapter 6

Conclusion

In its current state this benchmark is good enough to do quick appreciations of a
energy harvesting estimator algorithm destined for microcontrollers and it allows
further analysis, because after the simulation is done the data is saved in several
CSV files. The results from these three algorithms show that it is functional and
it has potential to do more extensive analysis.

The high-level implementation in the computer manages and coordinates the
whole process which includes the DPP DevBoard and the RocketLogger. Ad-
ditionally it executes a simulation, which is more accurate and also serves as a
good comparison for the DPP DevBoard’s functionality.

The low-level implementation is divided in two structures. One that is common
to everyone and another specific for the chosen algorithm. This was done in
this manner so that a future algorithms could be implemented without having
to change many things.

There is clearly room for improvement and expansion of features for this tool.
I personally hope that this can facilitate the work of other fellow engineers and
possibly some scientists too.

35

Appendix A

Additional remarks for the
Annexes

In previous section 1.4 some of the colors were introduced. As the annexes go
into more details, more colors are used to identify levels of the implementation.
Here is a remainder of old colors and a statement about the new ones.

• color red is used to point out things related with python implementation

• color orange highlights BASH scripts or files

• color violet relates to anything to do with the low-level implementation
on the DPP DevBoard

• color blue is for database files or directories

• color cyan highlights things to keep in mind. For example a value, software
names or command lines

1

Appendix B

Necessary installations and
how to use

B.1 Python

The python version used is Python 3.6.9 and here is a list of libraries that need
to be installed:

• pandas. Terminal command: pip install pandas

• numpy. Terminal command: pip install numpy

• matplotlib. Terminal command: pip install matplotlib

• os. Terminal command: pip install os

• re. Terminal command: pip install re

• math. Terminal command: pip install math

• serial. Terminal command: pip install serial

• binascii. Terminal command: pip install binascii

• datetime. Terminal command: pip install datetime

• struct. Terminal command: pip install struct

• time. Terminal command: pip install time

B.2 Texas Instrument: Code Composer Studio

The version of CCS used is 9.3.0 and the installation has to consider the inclu-
sion of the Segger Debugger and MSP432 files.

2

B. Necessary installations and how to use 3

Depending on the computer’s operating system, the eclipse file installed by the
CCS will by a little different. This file is used in the script BuildAndFlash.sh,
line 17. The command is written for a Linux machine, if another operating sys-
tem is used please look up this reference [8].

Below here are some screen shoots of how the project properties are set (those
are important to set the generation of the bin file for example):

Figure B.1: CCS properties, build

B. Necessary installations and how to use 4

Figure B.2: CCS properties, linked resources

Figure B.3: CCS properties, resources include options

B. Necessary installations and how to use 5

Figure B.4: CCS properties, file search path

B.3 RocketLogger

Most likely the user will be given a functioning RocketLogger, but if that isn’t
the case instructions about how to configure the hardware can be found here [2].
In the script RocketLoggerProcess.sh the commands ssh use two parameters
that will be quickly comment here.

The first of them is the IP of the RocketLogger in the local network. There
are multiple ways to get the IP, but this command in terminal will help
you too: sudo nmap -v 192.168.1.1-255 or for i in {1..255}; do host

192.168.1.$i;done.

The second parameter is the path to the rsa key of the RocketLogger. The de-
fault path for the Linux operating system is /.ssh/RocketLogger.default rsa

(RocketLogger.default rsa is the default file after the RocketLogger’s configura-
tion)

B.4 Gitlab

The pull of the protect is done the same way as any other, but here it is
highlighted the use of Git Large File Storage (lfs). The database files are
huge and in order to save space in the archive lfs is used. A list of commands
are presented below:

• git lfs install: install the resource.

B. Necessary installations and how to use 6

• git lfs track "*.xls": find the database used.

• git lfs track "*.xls" --lockable: see the lock files

• git lfs lock <complete file path>: to lock the file

• git lfs unlock <complete file path>: ro unlock the file

B.5 Setup

This is a step by step on how to connect the all the hardware, photos below.

1. RocketLogger local connection: connect the LAN cable to the local
router. Keep in mind that the cable mus not have a ground connection.

Figure B.5: setup, connect RocketLogger to the local net

2. Connect SEGGER Mini EDU and mini USB: the mini USB is own made,
most likely you will have to do your own. The GND connection is cut and
connected in this way.

B. Necessary installations and how to use 7

Figure B.6: setup, connect SEGGER EDU Mini and mini USB

3. Connect logic pins: The logic inputs ID 1 and ID 2 muss be connected
with extension header’s pins 2 and 4 respectively. These pins can be change
if the user decides to.

Figure B.7: setup, connect logic inputs with outputs

B. Necessary installations and how to use 8

Figure B.8: setup, zoom into logic output’s connection with the RocketLogger

4. Voltage measurement connection: the voltage connection is done in
with the jumper 3V of the header connector VCC

Figure B.9: setup, voltage measurement’s connection

5. Current measurement connection: the current is connected as described
in the low side measure option, more detail in the RocketLogger Wiki
[2]. In this case the LO is black and the HI is red.

B. Necessary installations and how to use 9

Figure B.10: setup, current measurement’s connection

6. Connect the USB connectors to the computer:

Figure B.11: setup, whole functioning connection

Appendix C

High-level implementation

This annex is meant to do a more in dept understanding of the high-level imple-
mentation and to state exactly what the user inputs for each script are.

C.1 Data acquisition

C.1.1 General functionality

The data acquisition script is called data acquisition.py. In the script four
objects are written to read data form specific directories. The four classes are
Solar, Wind, RocketLogger and SimulationAndDPP.

The first two classes read data from the files solar data.xls and
wind data.xls. Those databases include several locations, but the DataFrame is
filtered to contain only one. The initial columns of this DataFrame are ["Year",
"Month","Day", "Hour", "<country abbreviation>"].

After a simulation is performed, data from the RocketLogger is saved in
the [custom path]/workspace/data/RocketLogger directory and the class
RocketLogger reads it and the fills missing time values for the DataFrame. It
is important to note that the RocketLogger doesn’t write all the timestamps of
its measurements, only the first one. Obviously the measurement rate is also
needed and that is given in the RocketLogger’s measurement file.

Lastly SimulationAndDPP reads the output files of a certain simulation and
stores the information on two DataFrames, self.DPP data and self.Sim data.
These variables are later used for evaluation purposes.

C.1.2 Data directories

All of these directories can be found in the path [custom

path]/workspace/data and have different data on them.

10

C. High-level implementation 11

Figure C.1: classes defined in data acquisition.py

FilteredData : the data saved here comes form the script evaluation.py and
has information about the interval where the prediction was done in the DPP
DevBoard. The first two columns start index and stop index help to find
the exact row in the database been used. Then it has a column time, which
indicates the time of the execution in the DPP DevBoard in seconds, followed
by a column energy that gives the energy consumed by the DPP DevBoard in
that same interval. The other columns are just the percentage and absolute error
of the predictions of the DPP DevBoard and the simulation.

SimulationAndDPP : the script simulate.py at the end saves the data from
the DPP DevBoard predictions and Simulation predictions in two different files,
one with the prefix DPP and another with the prefix simulation . The DPP
DevBoard files have two extra columns indicating the time at which the data was
sent to the DPP DevBoard and at which time the DPP DevBoard’s prediction
was received.

RocketLogger : the RocketLogger’s measurement data is saved in this direc-
tory. There is only one file that is important to keep, deepSleep.csv. That file
is the measurement of the DPP DevBoard on deep sleep. With that informa-
tion it is possible to isolate the consumption of the MSP432P401R during the
prediction calculation.

solar-data and wind-data : here the databases for the simulations are
placed. If another file is used, keep in mind that significant changes need to
be done in the script data acquisition.py.

C. High-level implementation 12

C.2 Algorithm coding structure

As stated before, in the project there is a high-level implementation for the
algorithms too. The specific code for each one of them is in the predictors.py

script. Each class defined there (with their corresponding methods) emulates
one of the algorithms, thus the names EWMA, WCMA and ProEnergy were given.
The structure of these classes is quite similar, but of course the code on each one
of them is different. Many variables’ names on these classes were taken from the
papers [7], [5] and [6] respectively.

The general structure of these classes consists in three substructures. The first
one is getting parameter’s value and calculate the initial matrix / vector. The
second substructure consists on methods that perform the prediction and updates
other elements. The third substructure focus on the simulation of the algorithm
itself, which means in a loop it goes through the rows of the DataFrame with the
actual measurements and uses the second substructure to get the predictions and
save them. In this last subsection the relative and absolute error also calculated
and saved. The general overview of this script is shown in figure C.2, which has
the three substructures and the methods for each predictor.

If a new algorithm is going to be introduced to the benchmark, it is recommended
to write the high-level implementation of it in this script, predictors.py.

C. High-level implementation 13

Figure C.2: structure of predictors.py

C.3 Communication with DPP DevBoard and its
measurements

The machine used to run this setup has to edit and load the corresponding files
of the DPP DevBoard. Then communication has to happen in order to give the
measurements to the DPP DevBoard and receive the predictions made by it.
Additionally to this, the RocketLogger has to be set correctly and started before
the DPP DevBoard begins with its predictions. As soon as the DPP DevBoard
predictions are done, the simulation on the high-level implementation has to
start and later all the data has to be saved. This whole process is mainly coded
in the scripts DPP simulation.py and simulate.py, but uses other scripts for
purposes that will be explain in the following subsections.

The two scripts mentioned before have the following roles to fulfill. On one
hand the script DPP simulation.py has a class defined where the processes
for the high-level implementation and the DPP DevBoard are coded. On the
other hand simulate.py is used to define the different initial inputs for the
DPP simulation.py’s class, organize the general process and the launch of the

C. High-level implementation 14

setup.

C.3.1 Initialization

The class defined in the DPP simulation.py is called SimulationAndDPP (same
as the one in data acquisition.py). The method init () receives parame-
ters, paths and directory names in the form of dictionaries that are used to per-
form the simulation. All of these dictionaries are filled in the script simulate.py.
This method is also in charge of reading the data from the database, the initial-
ization of the selected algorithm and the preparation of the DPP DevBoard.

Initialization in DPP simulation.py :
The method init () uses also other method from class SimulationAndDPP,
these are ReadData(), InitializeSimulation() and PreparationDPP().

The first, ReadData(), uses features of the script data acquisition.py to read
the data from the solar or wind database. Following the order, the method
InitializeSimulation() selects the algorithm to be used in the high-level im-
plementation with the corresponding parameters given by the initial input. And
finally, the third method used, PreparationDPP(), runs several things with the
objective to edit the files for the DPP DevBoard correspondingly, build the BIN

file and flash it to the DPP DevBoard. This will be looked at with some more
detail in the subsection C.3.2.

Initialization configuration in simulate.py :
In this script the corresponding inputs for the class SimulationAndDPP and for
the RocketLogger are defined.

In regard to the SimulationAndDPP’s input, they are divided into 3 dictionaries:
ccs dict, algorithm dict and data dict. The first,ccs dict , of them
describes paths the CCS project directories and the BIN file generated after the
project is build. The dictionary algorithm dict has the algorithm selection
and its parameters. This values will be used for the setting of the high-level
simulation and DPP DevBoard files. Lastly, the third dictionary, data dict,
defines the path to the database and the country selected to filtered. After the
definition of these dictionaries, the amount of days to be simulated are also
coded.

The settings of the RocketLogger are coded in the dictionary
RocketLogger dict. Among those inputs the most important (or at least
the most likely to be changed) are the path to the rsa key for the ssh
connection and the IP given to the RocketLogger. There is also a variable
called use RocketLogger with the purpose to activate or disregard use of the
RocketLogger, of course if deactivated the voltage and current measurement

C. High-level implementation 15

will be missing.

The specifics about the elements of the dictionary is described in the section
C.4. It is highly recommended to look at it so that user knows how to set the
benchmark correctly.

C.3.2 File preparation and flashing for DPP DevBoard

This aspect is coded in the method PreparationDPP in the class
SimulationAndDPP. The first thing done in this method is the popper editing of
the DPP DevBoard files, those are: config.h, config.h, ewma.h, wcma.h and
proenergy.h. It is important to note that last three files only are edited if a
particular algorithm is selected.

Following that the file commands.jlink is edited to have the appropriated BIN

file path written on it. This file is used by the utility J-Link Commander [9]
later. At the end of this method the bash script BuildAndFlash.sh is ran. This
script receives the CCS directories, builds the CCS project, generates BIN file
and flashes it to the DPP DevBoard with the utility J-Link Commander. It
is important to note that the physical connection between the board and the
computer for the flashing is done through the hardware J-Link EDU Mini.

C.3.3 RocketLogger

The RocketLogger has to be started before the predictions are made. Once fin-
ished, this hardware is stopped and the data saved to the corresponding direc-
tory [custom path]/workspace/data/RocketLogger. All this can be controlled
thanks to the available SSH commands of the RocketLogger. They are used by
the scripts RocketLoggerProcess.sh and RocketLogger function.py.

The script rocketlogggerProcess.sh has all the SSH commands, but just some
of them will be used depending on the given parameters when the script is called.
This commands can be summarized as:

• Stetting parameters

• Start measurement

• Stop measurement

• Copy data from measurement

On the other hand RocketLogger function.py defines a class
RocketLoggerFunctions with methods that represent the same ideas de-
scribed in the paragraph above, but it gives the correct parameters to the
RocketLoggerProcess.sh’s execution

C. High-level implementation 16

As mentioned before, the script simulate.py structures the whole process with
the corresponding input, thus it uses the methods from RocketLoggerFunctions

to set the RocketLogger, start / stop its measurement at the correct time and
get the data.

C.3.4 Control flow

Many parts of the process are described above separately, but none of them de-
scribes the control flow of the whole execution in computer. Thus this part gives
that overview which is depicted in the figure C.3. The main structure of the
control flow can be seen in the script simulate.py, though as seen before this
script will use methods from others scripts to performed the needed tasks.

First, the user has to set some parameters into the file simulate.py. All of
those parameters are organized in dictionaries, which are given to the class
SimualtionAndDPP.

Then the script has to be executed and the first step is the reading of the
database, the initialization of the algorithm in the high-level implementation
and the correct flashing of the DPP DevBoard. In this step there are a lot of
things involved as seen in sections before, but some of them will be mentioned
again. In the initialization of the algorithm the class SimulationAndDPP form
the script DPP simulation.py is used. The algorithm is selected and the initial
memories’ values of the vector or matrix are calculated, this values are sent to
the DPP DevBoard in a later step. Right after that, the .C files for the DPP
DevBoard are edited according to the manually given inputs. Then the bash
script BuildAndFlash.sh is used to create the BIN file and flash it to the DPP
DevBoard.

If the RocketLogger is going to be used (the most likely case), their parameters
have to be set and that is done via a SSH connection. Among these parameters
are the sampling rate, the activation of certain channels and the format in which
the data has to be saved.

After that, the first communication between the DPP DevBoard and the com-
puter through UART takes place in order to send the initial values of the memory
vector or matrix. From the editing of the .C files for the DPP DevBoard, the chip
already knows the order and amount of data that will be sent for the memory
vector or matrix. Thus the machine sends a value through UART to the DPP
DevBoard and waits till an acknowledgement is received. Once all the values
have been sent and acknowledged, this step is considered finished.

Before starting with the prediction calculations of the DPP DevBoard, the Rock-
etLogger measurements needs to be started. For that the method start form
the class RocketLoggerFunctinos is used. It is basically a SSH command sent
to the RocketLogger in order to start measuring.

C. High-level implementation 17

Figure C.3: computer control flow

At this point the data can be sent to the DPP DevBoard in order to do their
predictions. The data is taken form the selected database from before. In the
database each row represents a time slot for a certain day and they are ordered

C. High-level implementation 18

in chronological order. Thus a loop that goes through each row is used and it
will stop once the days left to simulate become zero. On each row the following
information will be sent through UART to the DPP DevBoard: the number of
the slot and the harvested energy value. The computer will wait for a response
from the DPP DevBoard, which contains the prediction value. Each time one
prediction is received the absolute and the relative error are calculated, once this
is finished the loop continues with the next row of the database.

When the days to simulate are finished, the RocketLogger is stopped and the
data saved to the computer by the methods stop and save respectively.

At this point the execution of the simulation by the computer is performed. The
method used for this is ExecuteSimulation from the class SimulationAndDPP.
The simulation is a similar loop through rows in the database, but of course
there is no interaction between DPP DevBoard and the computer.

The last step is saving the prediction’s data of the DPP DevBoard and simulation
into CSV files in the respective directories. The method SaveData from the class
SimulationAndDPP is used for this purpose.

C.4 Comments and user inputs for python scripts

C.4.1 Script: DPP simulation

There are two comments to be made here about the format in which data is
been sent to the DDP DevBoard and the editing of the .C files.

The format used to send the data is in three Bytes. The first Byte determines
the slot number of the data. If this is the last data to be sent (because this is
the last slot of the last simulation day) the last bit of the Byte is set to 1. The
other two bytes are the data from the database. The data from the database
is multiplied by a factor of 10000 before putting it into the Bytes. It is done
this way to just send an integer number, the factor might need to be changed
depending on other databases.

Regarding the editing of the .C files, obviously this needs to be adapted if
new algorithms want to be tested. First it reads the file, saving it into an array.
Then in loop it finds the line with the declaration of the variable and writes the
value of that variable. Once all of the variables have been modified, the array of
the file is used to rewrite the file. By doing the editing this way, the lines of the
variables do not have to specified nor remembered.

C. High-level implementation 19

C.4.2 Script: simulate.py

This script organizes the whole high-level implementation and at the end gener-
ates some additional graphs comparing the high-level with the low-level imple-
mentation.

Below are the default inputs and how they can be changed, though some of them
don’t need any alteration.

ccs dict

• "bin file path": path to bin file generated by CCS, no need to be
changed

• "eclipse path": this is the complete path to the eclipse file. This needs
to be changed to the local computer of the user.

• "workspace": no need to change this.

• "project name": no need to change it.

algorithm dict Data not used by the algorithm is simply be disregarded.

• "algorithm": this is the selection of the algorithm. The possible values
are "EWMA", "WCMA" and "PROENERGY"

• "repetitions": this is the amount of times the prediction calculation will
be done before sending it to the computer. The boundaries for this variable
is [1, 255]

• "day slot": this is determined by the database been used. No need to be
changed if solar data.xls or wind data.xls is selected.

• "alpha": parameter for the algorithm. This depends on the user and the
value is in the interval [0, 1].

• "K": parameter describes the amount of previous slots to be considered in
the prediction. The maximal value it can take is the amount of slots in a
day.

• "D": parameter destines to determine how many days are saved in the
WCMA or ProEnergy E matrix. In the case of EMWA this value will
determine how many days are considered in the database to calculate the
initial historical values.

• "A": parameter of ProEnergy for active update. Determines the age the
profile must have to be replaced.

C. High-level implementation 20

• "mae threshold": this value is the MAE threshold in ProEnergy to update
profiles. Its interval is between [0, 65535]. Keep in mind, the value written
to the high-level implementation is a factor 0,0001 of what is given here.

• "active update": this value determines if active update is used or not in
ProEnergy algorithm. The values it can take are {"true", "false"}.

data dict

• "directory": selects the directory of the database to be used. Has two
values {"solar-data", "wind-data"}.

• "type": described the type of data. Currently not been used, but is has
two values Has two values {"solar", "wind"}.

• "location": this denotes the location to be used from the database. There
are many to chose from, the one has default is "AL".

RocketLogger params

• "format": format in which the measuring file is saved.

• "rate": rate of the measurements. Other options are described in [2]

• "channels": active channels. All the options can be found in [2]. Impor-
tant to consider that if these are changed, other parameters will need to
be changed as well in the evaluation part.

• "filename": the name given to the measurement. No need to change it.

• "ssh file": path to the rsa key file. The user will have to set this right
depending on the operating system been used.

• "ip": IP of the RocketLogger given by the local network.

simulation days : amount of days to be simulated. It just has to be an
integer.

use RocketLogger : determines if the RocketLogger is used or not. It can
take two values {True, False}.

If all of these parameters are set correctly then the script can be ran in a
terminal with the python command.

C. High-level implementation 21

C.4.3 Script: evaluation.py

As mentioned before this script takes the raw data and outputs graphs that gave
an individual evaluation of the algorithm. Here the inputs will be given and
explained.

filename : suffix of the file’s names to be considered in the directory [custom

path]/data/SimulationAndDPP. Just as a reminder, the whole name has the
prefix Simulation or DPP .

I ds : this is the name of channel used in the RocketLogger for the deep sleep’s
current measurement. The default file used is deepSleep.csv and needs to be
changed if another hardware than the DPP DevBoard is used.

V ds : this is the deep sleep’s voltage measurement channel in the file
deepSleep.csv. It need to be changes if another files is been used.

I : name of the channel measuring the current of the algorithm test. If channels
in the RocketLogger are modified, this setting as to be changed as well.

V : name of the channel measuring the voltage of the algorithm test. If channels
in the RocketLogger are modified, this setting as to be changed as well.

LogIn exe : this is the name of the RocketLogger’s logic input measuring the
calculation prediction’s execution time.

LogIn alg : this is the name of the RocketLogger’s logic input measuring the
whole interval in which calculations are been done by the DPP DevBoard. This
variable helps in correcting the time shift between the RocketLogger and com-
puter.

C.4.4 Script: comparison evaluation.py

The script combines the info from all other algorithms. It has to be men-
tioned that, before this script is ran, the script evaluation.py for each one
of the algorithms had to be ran. Otherwise the files in the directory [custom

path]/workspace/FilteredData will not be there. The only input the user has
to give is files, which is an array with strings denoting the names of the files
to be considered.

Appendix D

Low-level implementation

It has already being mentioned that the low-level implementation refers to
everything related to the implementation that will be flashed to the DPP
DevBoard. All of these files can be found in the CCS project directory
[custom path]/workspace/DPP files/PredictionAlgorithms. In this annex
the structure of the implementation, important aspects of it and the control flow
inside the DPP DevBoard is explained in more detail.

D.1 Structure composition

The first thing to mentioned here is that the Texas

Instrument’s driver library for the MSP432P401R is in-
cluded. All of those files can be found in the directory
[custom path]/workspace/DPP files/PredictionAlgorithms/driverlib.
In the implementation of course not all of the drivers are used, but we can
mention at least the most important ones: UART, CS, GPIO and INTERRUPT.

Now the specific implementation files for this tool can be discussed. These are
the files with their respective headers: config.c, config.h, main.c, main.h,
ewma.c, ewma.h, wcma.c, wcma.h, proenergy.c and proenergy.h.

The files with the names main and config are common for every algorithm. On
the other hand, the content of the rest of the files will only be included if that
particular algorithm was selected.

config files: The config.h header has some general global variables used
for every algorithms, those include clock frequencies, clock dividers, algorithm
selection (ALGORITHM (which will takes values EWMA, WCMA, PROENERGY or OTHER)),
amount of calculation repetition for each prediction and number of time slots
per day. The corresponding .C file config.c has four coded functions with the
following objectives: clock signal setting (clock init()), uart port configuration

22

D. Low-level implementation 23

(uart init()), gpio setting (gpio init()) and flash memory configuration for
the respective clock used (flash init()).

main files: In this header file the driver libraries for the implementa-
tion are included and some global variables, four of them are Boolean tokens
(Token calc, init values, Start prediction and End prediction), one is an
array of three bytes to save the data / prediction (comm data[3]) and the last
one helps in the receiving of data to select which of the three bytes is being
received (missing bytes). The file main.c has the control flow of how the pro-
cessing and events in the chip happen. More information about this will be given
in the subsection D.3.

algorithm files: The files referred here are ewma, wcma and proenergy.
Their headers and the structure are similar. The variable ALGORITHM in the file
config.h selects the respective file which their content will be considered by the
use of macro statements. The header has the specific global variables for each
algorithm, those are also mentioned in the subsection 2.2. The .C files have at
least three functions with he same name that serve the same objectives. Those
are initialization algorithm(), initialization values() and predict().
initialization algorithm() initializes the global variables / arrays from the
header file with some default values. The function initialization values()

writes down the initial values of vectors / matrix memory sent by the computer
in the correct order. And lastly predict() which is indented to do the actual
prediction once the real data is being sent by the computer.

D.2 Important variables

Some of theses variables were already mentioned, but more specific information
about them is needed.

D.2.1 Common configuration

ALGORITHM : This variable is coded as macro in the file config.h and its only
purpose is the activation of the code from the selected algorithm. The values it
can take are EWMA, WCMA, PROENERGY or OTHER (which have the values 1, 2, 3 and
4 respectively). This variable is changed by the editing process of files from the
high-level implementation (described in C.3.2)

REPETITIONS : Prediction calculations on the DPP DevBoard are too fast for
the RocketLogger to measure with accuracy. Thus in order to be able to do so,
each prediction calculation has to be repeated several times and this variable

D. Low-level implementation 24

specifies the amount of repetition times. This variable is defined in the file
config.h and can also be edited by the high-level implementation (described in
C.3.2).

DAY SLOTS : As mentioned before the day for the algorithms is divided into
time slots. In the case of this setup, due to how the database is structured,
the amount of slots per day is 24. Obviously, this can change depending on the
database being used. This variable, located in config.h, can also be edited by
the high-level implementation process (described in C.3.2)

Token calc : Once data has being received through the UART com-
munication channel, the MSP432P401R activates by an interrupt and this
Boolean global variable (Token calc) is set to True and the functions
initialization values() or predict() executes. Once that is finished the
variable is set to False again. The declaration of this variable is in main.h.

init values : This is also declared in the file main.h and its purpose is
to select which one of the functions (initialization values() or predict())
should be executed. It starts with a value True, which allows the function
initialization values() to execute if something has being received through
UART. Once all the initial values for the global arrays for that particular algo-
rithm have been set, the init values is set to False and the function predict()

executes next time something is received from the computer.

Start prediction and End prediction : The RocketLogger has some logi-
cal inputs that are used in this instance for identifying the execution time of each
prediction and the period in which calculations are done. To use that feature, the
MSP432P401R needs certain GPIO ports to be programmed accordingly. The
port and pin used for identifying the period of time in which the prediction’s
calculations are taking place is assigned to PORT 5, PIN 1. The two Boolean
variables Start prediction and End prediction are used to set this pin Low

or High depending on their values. The declaration of these variables are in the
file main.h.

D.2.2 Algorithm specific

In the mathematical frame subsection 2.2 many variables were mentioned for
each algorithm and those names will also be used in the coding.

EWMA algorithm : The algorithm uses only one specific parameter,
ALPHA, and an array containing the historical values of each time slot,

D. Low-level implementation 25

hist slot[DAY SLOTS]. Both of them are declared in the header file ewma.h.
The variable ALPHA can be edited by the high-level implementation.

WCMA algorithm : There are more variables involved and many of them use
the same name as described in the mathematical section. Here are the variables
and arrays presented: ALPHA, K, D, E[D+2][DAY SLOTS], slot mean[DAY SLOTS],
slot mean Shift[DAY SLOTS] and current day. All of them are declared in
the header file wcma.h, but only the first three can be directly edited in
the high-level editing process (subsection C.3.2). The purpose of many of
them is clear from the mathematical algorithm, with the exception of the
last three. slot mean[DAY SLOTS] has the mean values of the each time slot
from the last D days, without including the current day. In the same sense
slot mean Shift[DAY SLOTS] has the average value of the days between the
two days and D+1 days ago. And lastly the variable current day helps the
process of setting the initial values in the E matrix (done in the function
initialization values()).

PROENERGY algorithm : This last algorithm includes all of the following vari-
ables that will be declared in the file proenergy.h: ALPHA, K, D, ACTIVE UPDATE,
A, MAE THRESHOLD, E[D+1][DAY SLOTS], age profile[D+1], current age and
current day. The first six can be edited by the high-level process (subsection
C.3.2) and the explanation of the first seven can be found in the mathematical
subsection (2.2). The array age profile[D+1] saves the age of each saved pro-
file, the order in this array represents the order in which the profiles are saved in
the matrix E. And the last two variables current age and current day serve a
support role.

D.3 Processing flow

The processing flow of the DPP DevBoard is shown in the figure D.1 and with
the previous concepts in mind it should be easier to understand what is happen-
ing here.

It starts with the flashing and initialization of the several parameters. Once
this is done it goes directly to LPM0 and it stays there till something is received
through the UART that sets the microcontroller in run mode.

The function ReceiveData() is linked to the interrupt that is activated once
something has been received through UART. What it does is saving the bytes
into the array comm data[]. Two things happen when the three bytes are re-
ceived. It is checked if Start prediction is True, which would set to High the
PORT 5 PIN 1 indicating that the prediction calculations have started. The sec-
ond thing is setting the boolean variable Token calc to True, which allows to

D. Low-level implementation 26

enter some executions in the while infinite loop.

Now that Token calc is True, the while loop gets the measurement from the
array comm data[] and it checks if this is the last data sent for prediction cal-
culations. This is shown in the most significant bit of last byte of comm data[].

After that depending on the boolean variable init values, the microcontroller
saves the values to the memory array (initialization values()) or makes
a prediction calculation (predict()). In the first process, as said before, val-
ues are saved to the memory arrays and once all of them have been received,
init values will be set to False and Start predictions to True. On the other
hand, if init values was already False the microcontroller executes the predic-
tion calculation, but in the interval in which the calculation is taking place, the
PORT 5 PIN 0 is set to High (this is measured by the RocketLogger and allows
the calculation of the execution time). The prediction calculation is repeated
the amount of times described in the variable REPETITIONS, but only in the very
last one the prediction value is saved in comm data[].

Among the last things done in the while loop before going to LPM0 is the set-
ting to False of Token calc and the execution of the function SendData(). This
last function does two things, first checks if End prediction is True, in that case
PORT 5 PIN 1 it put to Low, and the data is sent to the computer via UART.

D. Low-level implementation 27

Figure D.1: DPP development board control flow

D.4 Include new algorithm

The following section explains what has to be taken into account in order to
include a new algorithm into the low-level implementation. Thus two parts
are discussed, changes in the common files and coding considerations for the
algorithm specific files.

D. Low-level implementation 28

D.4.1 Common files

In the shared files not much has to be changed, just some minor things muss be
included

Configuration files

The config.h needs to have a line with the name of the of the algorithm and
assign a number to it. For Example :

#define SUPERDUPERALG 5

Main files

There are some lines to be included in the header file main.h. Depending on the
value of ALGORITHM a header lib needs to be included. For example the lines of
be included:

//Algori thms
#i f ALGORITHM == EWMA
#include ”ewma . h”
#e l i f ALGORITHM == WCMA
#include ”wcma . h”
#e l i f ALGORITHM == PROENERGY
#include ” proenergy . h”
#e l i f ALGORITHM == SUPERDUPERALG
#include ”SUPERDUPERALG. h”
#endif

D.4.2 Algorithm specific files

It is important that the names, inputs and outputs format of the functions
initialization algorithm(), initialization values() and predict() are
maintained, because they are used in the file main.c.

initialization algorithm() : doesn’t receive any parameters and doesn’t
return any either.

initialization values() : return true or false depending if the all the
values of the memory arrays/ matrix have been received. The inputs are: the
number of the slot (idx) which is the first byte of the array comm data[]; the
measurement data (measurement) which is the combination of the second and
third bytes of the array comm data[]; and the address of comm data[].

D. Low-level implementation 29

predict() : does not return anything and it has 4 inputs. The first one is
the slot number (idx). The second is the data from the database (input). The
third one is the number of the repetition (rep). And lastly the address to the
array comm data[] (*communication data).

In the header file and the .C file of the new algorithm do not forget to include
the macro command:

#include ” c o n f i g . h”
#i f ALGORITHM == SUPERDUPERALG
. . .
// r e s t o f code
. . .

#endif

Otherwise in the compilation of the projects errors will arise due to multiple
declaration of the same functions and variables.

Bibliography

[1] ETH Zurich Computer Engineering Group. Gitlab DPP Wiki, 2020 (accessed
April 1, 2020). https://gitlab.ethz.ch/tec/public/dpp/-/wikis/home.

[2] ETH Zurich Computer Engineering Group. Gitlab Rockelogger Wiki,
2020 (accessed April 1, 2020). https://gitlab.ethz.ch/tec/public/

rocketlogger/-/wikis/home.

[3] ETH Zurich. Rockelogger ETH Zurich Page, 2020 (accessed April 1, 2020).
https://rocketlogger.ethz.ch/.

[4] SEGGER. Segger J-Link Mini EDU Debbuger, 2020 (accessed April
1, 2020). https://www.segger.com/products/debug-probes/j-link/

models/j-link-edu-mini/.

[5] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. Power
management in energy harvesting sensor networks. ACM Trans. Embed.
Comput. Syst., 6(4):32–es, September 2007. ISSN 1539-9087. doi: 10.1145/
1274858.1274870. URL https://doi.org/10.1145/1274858.1274870.

[6] J. Recas Piorno, C. Bergonzini, D. Atienza, and T. Simunic Rosing. Pre-
diction and management in energy harvested wireless sensor nodes. In 2009
1st International Conference on Wireless Communication, Vehicular Tech-
nology, Information Theory and Aerospace Electronic Systems Technology,
pages 6–10, 2009.

[7] A. Cammarano, C. Petrioli, and D. Spenza. Pro-energy: A novel energy pre-
diction model for solar and wind energy-harvesting wireless sensor networks.
In 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor
Systems (MASS 2012), pages 75–83, 2012.

[8] Texas Instrument. TI ecplise command line, 2020 (accessed April
1, 2020). http://software-dl.ti.com/ccs/esd/documents/ccs_

projects-command-line.html#working-with-ccs-linux.

[9] SEGGER. J-Link Commander, 2009 (accessed April 1, 2020).
https://www.segger.com/products/debug-probes/j-link/tools/

j-link-commander/.

30

https://gitlab.ethz.ch/tec/public/dpp/-/wikis/home
https://gitlab.ethz.ch/tec/public/rocketlogger/-/wikis/home
https://gitlab.ethz.ch/tec/public/rocketlogger/-/wikis/home
https://rocketlogger.ethz.ch/
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu-mini/
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu-mini/
https://doi.org/10.1145/1274858.1274870
http://software-dl.ti.com/ccs/esd/documents/ccs_projects-command-line.html#working-with-ccs-linux
http://software-dl.ti.com/ccs/esd/documents/ccs_projects-command-line.html#working-with-ccs-linux
https://www.segger.com/products/debug-probes/j-link/tools/j-link-commander/
https://www.segger.com/products/debug-probes/j-link/tools/j-link-commander/

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Context and background
	1.2 Goal of the project
	1.3 Mathematical frame and algorithms
	1.4 Remarks

	2 Design overview
	2.1 Hardware
	2.2 Energy harvesting prediction algorithms
	2.2.1 Exponentially Weighted Moving-Average (EWMA)
	2.2.2 Weather-Conditioned moving Average (WCMA)
	2.2.3 Pro-Energy

	3 Implementation
	3.1 High-level implementation
	3.1.1 User actions
	3.1.2 Automated process

	3.2 Low-level implementation
	3.2.1 File structure
	3.2.2 Control flow

	4 Evaluation
	4.1 Algorithm individual performance
	4.1.1 EWMA
	4.1.2 WCMA
	4.1.3 ProEnergy active update
	4.1.4 ProEnergy no active update

	4.2 Algorithms comparisons

	5 Missing points and future improvements
	5.1 Coding errors
	5.2 Available data
	5.3 Algorithm unknown behavior
	5.4 User interface

	6 Conclusion
	A Additional remarks for the Annexes
	B Necessary installations and how to use
	B.1 Python
	B.2 Texas Instrument: Code Composer Studio
	B.3 RocketLogger
	B.4 Gitlab
	B.5 Setup

	C High-level implementation
	C.1 Data acquisition
	C.1.1 General functionality
	C.1.2 Data directories

	C.2 Algorithm coding structure
	C.3 Communication with DPP DevBoard and its measurements
	C.3.1 Initialization
	C.3.2 File preparation and flashing for DPP DevBoard
	C.3.3 RocketLogger
	C.3.4 Control flow

	C.4 Comments and user inputs for python scripts
	C.4.1 Script: DPP_simulation
	C.4.2 Script: simulate.py
	C.4.3 Script: evaluation.py
	C.4.4 Script: comparison_evaluation.py

	D Low-level implementation
	D.1 Structure composition
	D.2 Important variables
	D.2.1 Common configuration
	D.2.2 Algorithm specific

	D.3 Processing flow
	D.4 Include new algorithm
	D.4.1 Common files
	D.4.2 Algorithm specific files

