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Abstract

For an energy harvesting embedded system, one possible implementation
for long-term operation involves a predictor and a scheduler. Such a system’s
performance is affected by the accuracy of prediction, but not every system
is equivalently affected, which means different systems are not equally robust
against prediction inaccuracy. For systems that are not robust, their perfor-
mances might drop drastically given less accurate prediction. To alleviate this
issue, conservativeness is applied to the prediction and is shown to improve the
performance of some systems. Furthermore, a typical wireless sensor node ap-
plication is implemented to demonstrate how system performance and system
behavior are related and how improved system performance is interpreted into
better system behavior.
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Chapter 1

Introduction

1.1 Motivation

Wireless sensor networks (WSN) are now broadly deployed in many areas.
Some of them are battery-powered and deployed in remote locations that are hard
to access for battery replacement [1, 2]. In this scenario, an energy harvesting
embedded system is often used to support the long-term operation. For an
application that requires a constant level of operation, designing the system with
an energy transducer, a battery, and an energy sink would enable the simplest,
and sometimes the most efficient implementation. However, for this system, to
make sure the energy required by the application can always be supplied, the
system should be over-dimensioned (e.g., for solar energy harvesting embedded
system, the solar panel area and battery size should be larger than actually
needed). Over-dimensioning the system yields extra wasted energy and a higher
budget. Furthermore, not every system demands a constant operation level.
For these systems, an energy predictor and a scheduler can be introduced to
schedule the system’s energy consumption in an adaptive manner. In this case,
the system does not have to be over-dimensioned and can thus be deployed in a
more economical way.

For an energy harvesting embedded system that involves a predictor and a
scheduler, the dimensioning is based on the assumption of the environment and
the expected system behavior. If the assumption reflects the reality, then the
scheduled energy consumption will meet the design-time expectation. However,
the assumption is never accurate, which means the performance of the system
may not meet the design-time expectation. For some systems [3–5], the assump-
tion and prediction are directly related, a more accurate assumption yields a
more accurate prediction. Some systems’ performances are not strongly affected
by the prediction accuracy and are thus considered robust, while others vary a
lot given predictions of different accuracies. In order to make the system perfor-
mance more resilient to inaccurate predictions, the concept of conservativeness
is introduced to tune the system robustness.
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1. Introduction 2

1.2 Organization

In chapter 2, we first briefly introduce solar energy harvesting embedded sys-
tems. Then, some prediction models and schedulers that are investigated in this
report are discussed. Finally, it will be shown that different systems are not
equally robust. In chapter 3, it is discussed how a scheduler’s performance is af-
fected by an inaccurate prediction. Furthermore, to alleviate the problem caused
by inaccurate prediction, an intuitional solution, namely introducing conserva-
tiveness, is proposed. In chapter 4, emulation results show how conservativeness
interplays with system performance. Lastly, in chapter 5, a real-world applica-
tion demonstrates how system performance and system behavior are related and
how improved system performance yields better system behavior.



Chapter 2

Solar Energy Harvesting
Embedded System

Figure 2.1 shows the energy harvesting embedded system investigated in
this report. It consists of five parts: harvested energy from the energy trans-
ducer (i.e., solar panel for this solar energy harvesting embedded system), a
harvestable energy predictor (i.e., energy prediction model) which predicts the
energy availability profile in future time slots, a scheduler which schedules the
energy consumption profile, a battery which stores energy from energy surplus
period so as to compensate for the energy consumption in energy deficit period,
and an energy sink where energy is consumed.

Figure 2.1: Investigated energy harvesting embedded system

This system is dimensioned based on the assumption on the environment
and expected system behavior. At the start of each time slot, the scheduler

3



2. Solar Energy Harvesting Embedded System 4

determines the energy consumption of that time slot. Then the energy sink
consumes energy accordingly in that time slot. Along this process, the battery
state of charge is updated based on the actual harvested energy, scheduled energy
consumption, and battery state of charge at the previous time.

The actual energy consumption Econs(t) supported by the system in time
slot t is bounded by three constraints. The first is energy consumption Esch(t)
scheduled by the scheduler based on the prediction of harvestable energy Epre(t)
in the time slot and some other information (e.g., battery state of charge). The
second is the energy consumption when the system runs at full duty cycle Emax.
The third is the maximum energy available in this time slot Eavai(t), which is
defined by the available energy in the battery at the start of this time slot B(t)
and the energy that could be harvested by the solar panel Ehar(t). Which means
the actual energy consumption for time slot t is

Econs(t) = Min{Esch(t), Emax, B(t) + Ehar(t)} (2.1)

The energy consumption level in a time slot reflects the workload completed
by the application (e.g., execution frequency, precision). A broad range of ap-
plication scenarios benefit from a minimum supported performance level that
can be sustained over time periods on the order of multiple years [3]. For these
applications, it is crucial to maintain the energy consumption level over a certain
threshold. Furthermore, it is desired that the system finishes more workload in
total [6], so the total energy consumption is also something that should be noted.

To better understand a system’s performance, it is indispensable to look into
the prediction model and scheduler.

2.1 Prediction Model

Many prediction models have been proposed so far for solar energy predic-
tion, such as an astronomical model, exponentially weighted moving average
(EWMA) [4], weather conditioned moving average (WCMA) [7], and machine
learning based predictors [8]. Two prediction models are investigated in the
report.

2.1.1 Astronomical Model

This model computes the hourly solar energy incident by considering sky
radiation and ground reflection based on the cloud-free atmospheric model. The
original model, as firstly proposed in [9], requires some parameters that are
difficult to quantify. To alleviate the parameter issue, the simplification model,
as proposed in [10] is applied by adopting the parameters as shown in [11].
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2.1.2 Exponentially Weighted Moving Average

This model assumes that the harvestable energy in a particular time slot
should be similar to the harvestable energy in the same time slot on previous
days. The prediction is generated based on the actual harvest energy in the
previous day and the historical summary of the energy generation profile. This
method could exploit the diurnal cycle in solar energy, and also adapts to seasonal
variations [4].

2.2 Scheduler

2.2.1 Finite Horizon Control

As proven in [5], given perfect knowledge of the harvestable energy to be
expected in the future (i.e., clairvoyant case), finite horizon control (FHC) is the
optimal power management scheduler. Given perfect prediction, this scheduler
never leads to failure state or wastes energy, besides the minimal used energy and
the total utility are maximized. When available energy is increasing, battery is
empty, since an empty battery marks the end of an energy deficit period. When
available energy is decreasing, battery is full, since a full battery marks the end
of a surplus period.

In order to achieve long-term minimum performance guarantees, it is reason-
able to choose the horizon of control to be T = 1year. By assuming a periodic
estimated harvested energy with P = 1year and equal battery state of charge
at the start and end of the period, offline periodic optimal control computes
periodic battery state of charge and periodic optimal use function. Due to the
inaccuracy of prediction, the battery state of charge may be different from what
was expected in offline periodic optimal control, then online finite horizon control
scheme will be performed to readjust the use function. If harvestable energy is
underestimated, the battery state of charge at the end of a time slot is higher
than expected, then the scheduler will arrange more energy consumption in the
descendent slots to adjust the battery state of charge curve along time back to
track. If harvested energy is overestimated, lower battery state of charge than
expectation will be encountered, and thus leads to less energy consumption in
the future, which sometimes leads to failure state.

2.2.2 Long-term Energy Neutral Operation

For long-term energy neutral operation (LT-ENO) [3], a target duty cycle
is set, and all other parameters such as battery size and solar panel area are
chosen based on the target duty cycle and the specific assumed environment
represented with an astronomical model. If all parameters are chosen carefully,
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the system will generate an energy consumption profile that fluctuates around
the target duty cycle. The deviation of the performing duty cycle (i.e., the actual
duty cycle executed) from the target duty cycle is determined by the prediction
error in the past. If parameters are chosen carefully, when past data indicate
overestimation, the algorithm will shrink the span of surplus period and extend
the span of deficit region, trying to improve the performing duty cycle as close to
the target duty cycle as possible; When past data indicate underestimation, the
algorithm tries to lower down the performing duty cycle as close to the target
duty cycle as possible.

2.2.3 Duty Cycle Adaptation

Duty cycle adaptation (DCA) [4] intends to use as much energy as could
be harvested in the day and aims for energy neutrality by always trying to
compensate for prediction errors in previous time slots. At the start of each day,
initial duty cycles for each time slot in this day are assigned, and then the target
duty cycles in future time slots will be adjusted based on prediction errors in
previous time slots at run time.

2.3 Robustness of Energy Harvesting Embedded Sys-
tems

There is no available rigorous definition of the robustness of the performance
of an energy harvesting embedded system in currently available publications.
From an ongoing study on robustness analysis in the group 1, if a system’s per-
formance metric remains unchanged or only slightly changes given predictions
with different accuracies, then the system is considered robust with respect to
this metric. The drastic change in the system performance given predictions of
different accuracies may not be wanted by some applications. For applications
requiring minimum energy consumption guarantee, a system with poor robust-
ness will bring too much uncertainty to its performance. In this case, a more
robust system may be preferred.

Three different systems are evaluated, these systems adopt FHC and as-
tronomical model, LT-ENO and astronomical model, DCA and EWMA as the
scheduler and prediction model, respectively. When considering minimal daily
energy consumption, LT-ENO is shown to be the most robust among these three,
and DCA tends to be robust in the low-error region but less robust in the high-
error region, while FHC is revealed to be the least robust system. When con-
sidering total utility, FHC and LT-ENO are both very robust, while DCA is

1By Naomi Stricker, https://tec.ee.ethz.ch/the-group/people/person-
detail.MTgxMjAw.TGlzdC8yMjM0LC03MTAxNDI4MDI=.html
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unrobust.

FHC is shown to have better minimal daily energy consumption and total
utility than the other two [5], which gives designers preference of this scheduler
over the other two at design time. However, if taking robustness into considera-
tion, designers might make a different choice.



Chapter 3

Conservativeness Analysis

For systems that are not robust, their performances may change drastically
towards unfavorable direction when prediction error is significant. Note that
prediction can be wrong in two ways: overestimation and underestimation. In
this chapter, it is going to be discussed how prediction error and the scheduler’s
performance are quantified. Furthermore, the issue caused by overestimation
will be discussed, and one possible solution to the issue, namely introducing the
concept of conservativeness, will be analyzed.

3.1 Analysis Metrics

3.1.1 Prediction Accuracy Metric

Many metrics can be used to quantify prediction accuracy, for example, av-
erage absolute error [12], mean absolute percentage of error [13] and median
of error [14]. In this report, median of error is chosen to be the metric. The
prediction error for each time slot is defined as

err(t) =
Epre(t)− Ehar(t)

Ehar(t)
(3.1)

where Epre(t) is the harvestable energy prediction for time slot t, and Ehar(t) is
the actual energy harvested in time slot i.

The median of error is defined as

Errmed = median(−→err) (3.2)

where −→err is a vector that contains the prediction errors for all time slots.

If the median of error is larger than zero, it means over half of the prediction
results are overestimations compared to reality. If the median of error is smaller
than zero, then over half of the prediction results are underestimations.

8
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3.1.2 Performance Metrics

As mentioned in chapter 2, a broad range of application scenarios benefit
from a minimal supported performance level that can be sustained over time
periods on the order of multiple years [3]. Hence an important metric for system
performance is the minimal daily energy consumption.

At the same time, total energy consumption is also a metric of interest.
However, directly define the metric as the sum of energy consumptions in all
time slots is problematic, because in this way the system that uses as much
energy as available would be optimal. Noting that the importance of additional
energy in case of low energy consumption outweighs the one in case of high
energy consumption [5], the metric that quantifies the total workloads finished
is defined as

U(t1, t2) =

t2−1∑
τ=t1

µ(u(τ)) (3.3)

where µ(u(t)) =
√
u(t) and u(t) denotes the energy consumption in time slot

t. The concave function applied to energy consumption enables this metric to
reflect the fact that additional energy in case of high energy consumption brings
less benefit compared to the case of low energy consumption.

3.2 Theoretical Analysis

Both overestimation and underestimation can cause meager energy consump-
tion. The meager energy consumption is sometimes related to the empty or
almost-empty battery caused by overestimation.

An intuitional method to alleviate the meager energy consumption caused by
overestimation is introducing conservativeness. Conservativeness can be applied
in different manners. One is to apply it to scheduling result, which corresponds
to generally use less energy than scheduled. Assume conservativeness is applied
to one time slot, by using less energy than scheduled, the battery state of charge
in this time slot is no less than when conservativeness is not applied. Another
method is to apply conservativeness to prediction so that the prediction becomes
more pessimistic. These two manners correspond to the direct reason for meager
energy consumption: an empty or almost-empty battery, and the fundamental
reason: overestimation, respectively.

In this report, to alleviate the problem caused by overestimation, conserva-
tiveness is applied in the following manner

−−→
Epre′ = C ∗

−−→
Epre (3.4)

where
−−→
Epre is the vector that contains original prediction for all time slots,

−−→
Epre′

is the scaled version of prediction, and C ∈ (0, 1] is the scaling factor.
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After applying conservativeness, underestimation will become stronger. As
for overestimation, depending on the extent of overestimation, it might be ren-
dered into underestimation or weaker overestimation.

For some systems under some environments, applying conservativeness should
be able to improve minimal energy consumption. In this case, stronger conser-
vativeness does not always yield better minimal energy consumption. When
conservativeness is so strong that the prediction in some time slots become too
underestimated, the scheduler will determine a low energy consumption due to
the pessimistic prediction. When aiming for maximal minimum energy con-
sumption, there is an optimal conservativeness factor Copt that leads to maximal
minimum energy consumption for each environment.



Chapter 4

Emulation Setup and Results

In this chapter, firstly, the emulation setup will be introduced, then it is going
to be investigated how conservativeness interplays with a system’s performance
with emulations on real-world data.

4.1 Emulation Setup

Figure 4.1: MSP432P401R

Due to the current special circumstance, conducting the entire experiment
on solar testbed is unrealistic. Given what is available under work-from-home
environment, emulations are conducted on a Texas Instrument MSP432P401R
launch pad (figure 4.1), where the energy input is defined based on the dataset

11
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and the battery state of charge is calculated instead of measured. The energy
sink is the tri-LED on the MSP board. By using the EnergyTraceTM technology
in code composer studio (CCS), the maximum power dissipation of the LED is
measured to be 81.16mW .

4.1.1 Input Data

The input data is acquired from National Solar Radiation Database (NSRD)1.
Hourly raw data from Ontario, Michigan and California are aggregated into daily
and weekly frames to serve as the inputs of the three schedulers. Note that the
first-year raw data is used to fit the parameters in the astronomical model, so
these data cannot be the input for the schedulers. The actual input data have a
time span of 10 years from Jan. 1999 to Dec. 2008.

4.1.2 Time Scaling

Since it is time inefficient to conduct the emulation in a real-time manner to
observe a system’s long-term performance, time can be compressed to speed up
the emulation process. One week is scaled to 17.92s. Accordingly, one day is
scaled to 2.56s. As for hourly data, however, considering that the computation
overhead for the algorithm that uses hourly frame, namely DCA, is around 0.1s,
it is safer to scale one hour to 0.16s. Note than when applying different scaling
factors, all related parameters should also be scaled proportionally to make sure
the system is dimensioned in the same way as the original one.

The parameters are all scaled proportionally in a linear manner, and the
schedulers all perform linear operations. By applying different scaling factors,
the energy consumption profiles should have the same trend, and the profiles
should be identical after being scaled back to real-world time. This has been
shown by emulation results. However, even though the emulation involves the
MSP board, it is still far from experiments on a solar testbed, not to mention
actual deployments. For example, different scaling factors correspond to different
battery sizes, yet batteries of different sizes may have different charging and
discharging inefficiencies [15]. Different inefficiencies will lead to different energy
consumption profiles. However, the difference in discharging inefficiencies can be
approximated by scaling the values in energy consumption profile [11]. If this
method could be applied to other inefficiencies, then the difference between the
inefficiencies of time-compressed system and actual system does not significantly
affect the trend of energy consumption profile.

1http://rredc.nrel.gov/solar/old˙data/nsrdb/
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4.1.3 Choice of Parameters

Three different systems are evaluated, these systems adopt FHC and as-
tronomical model, LT-ENO and astronomical model, DCA and EWMA as the
scheduler and prediction model, respectively.

A.General Parameters For an energy harvesting embedded system, it is rea-
sonable to assume that the hardware part remains unchanged if deployed at
different locations, because it would be a competitive feature of the system to
be deployed under different environments without changing hardware. For ex-
ample, users might expect to deploy the system in an open outdoor environment
or under the tree without changing the battery.

Three different systems are investigated under three different environments.
In these nine different scenarios, the systems are dimensioned in the same way,
including battery size.

In the following emulation, a solar panel with an area of 16.5cm2, conversion
efficiency of 5.65% and maximum power output of 87.6mW is assumed as the
transducer. The battery size for the time-compressed emulations is 3.0J for FHC
and LT-ENO, whereas 4.5J for DCA due to its computation overhead issue. In
an actual deployment, the battery size should be accordingly 33750 times larger,
which is 28.125Wh. Battery charging inefficiency is 90%. All other efficiencies
are ignored.

B.Scheduler-specific Parameters

Finite Horizon Control: Since the scheduler is designed for long-term opera-
tion, the period is set as P = 1year, horizon of control is set as T = P = 1year
and stopping criterion is set as ε = 10−4 (see section 4.2.1).

LT-ENO: For LT-ENO, the battery size should satisfy

Edeficit < B < Esurplus (4.1)

where Edeficit and Esurplus are determined by the target duty cycle and prediction
model [3]. The battery size determined for LT-ENO is also applied to other two
systems.

The concept of target duty cycle is directly used as a crucial parameter in LT-
ENO. Since battery size remains unchanged for different datasets, it is crucial for
this scheduler to choose a proper target duty cycle. If not chosen properly, the
condition (4.1) cannot be satisfied, and the scheduler may never enter the energy
surplus and deficit regions readjustment procedure, which makes it senseless to
use this scheduler. The target duty cycle is chosen based on the mean of energy
input prediction and tuned a bit so that when using different energy input traces
the battery size could remain unchanged without violating the condition (4.1).
The target duty cycles for the Ontario, Michigan and California datasets are
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C∗15.0%, C∗16.4% C∗20.7% respectively, where C denotes the conservativeness
factor.

The scheduler updates the prediction model at run time. The window size
is chosen to be Nw = 63 as suggested in [3]. The first year’s input data is not
incorporated in the emulation so it can be used to initialize the prediction model
scalar α.

Duty Cycle Adaptation: The paper [4] suggests performing the scheduling
process every half hour. However, due to the time frame of available raw data, the
scheduling can be performed at best in an hourly manner and thus set the window
size Nw = 24. The maximum and minimum duty cycles are Dmax = 1.0 and
Dmin = 0.1, respectively. Predictor is chosen to be EWMA and the weighting
factor is 0.5.

4.1.4 Power Dissipation Controlling

Algorithm 1: Power dissipation controlling

Input: Target power dissipation PC, minimum power dissipation Pmin
Output: The state of tri-color LED: designated power dissipation of

each LED PCr, PCg and PCb
1 if PC ≤ Pmin then
2 Failure state
3 else
4 if Pmin < PC ≤ Pmin + Pr then
5 PCr = PC − Pmin, PCg = 0, PCb = 0
6 else
7 if Pmin + Pr < PC ≤ Pmin + Pr + Pg then
8 PCr = PC − Pmin − Pg, PCg = Pg, PCb = 0
9 else

10 if Pmin + Pr + Pg < PC ≤ Pmin + Pr + Pg + Pb then
11 PCr = PC − Pmin − Pg − Pb, PCg = Pg, PCb = Pb
12 else
13 Infeasible

The MSP board has a minimum power dissipation Pmin = 1.866mW . This
is measured by turning off the energy sink(s) but keeping other peripherals (e.g.,
timer) working. The LED used as the energy sink is a tri-color Led. Red, green
and blue LEDs can be lit independently. The maximum power dissipations for
them are Pr = 31.966mW , Pg = 25.429mW and Pb = 21.895mW respectively.
The red color LED is mapped as the output of pulse width modulation, which
means the power dissipation of the red LED can be roughly controlled around
any level smaller than 31.966mW . The other two LEDs can only be turned on
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at maximum illumination or turned off. The actual power consumption PC of
the energy sink is defined as

PC =
Econs
L

(4.2)

where Econs is the scheduled energy consumption at some time slot, L is the
length of that time slot. When power dissipation is available, the state of each
LED in the tri-color LED can be determined by applying algorithm 1.

4.2 Emulation Results

4.2.1 Choice of Stopping Criterion for FHC

In emulation, an important consideration is the time cost. FHC determines
the explicit solutions to the optimal power management problem in an iterative
manner. The stopping criterion ε controls when the iteration stops. A smaller
stopping criterion yields better solution precision yet higher computation over-
head. At design time, the trade-off between precision and computation overhead
must be performed. By setting parameters in the way as shown in section 4.1.3
and emulating on CA dataset, the computation overheads for different stopping
criteria ε and different data types are listed in table 4.1 and table 4.2.

ε Time [s]

10−1 0.01
10−2 0.02
10−3 1
10−4 2
10−5 4
10−6 6
10−7 7
10−8 7
10−9 7
10−10 7
10−20 7
10−30 7
10−40 7

Table 4.1: Computation overhead when data type is float

As can be observed from the tables, using double as the data type yields
much higher computation overhead. Due to the higher precision of double type,
the computation overhead stops increasing with a much smaller stopping crite-
rion compared to using float as the data type. In real-world applications, the
computation overhead is small compared to the time span of one week, so the
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ε Time [s]

10−1 1.4
10−2 7
10−3 22
10−4 39
10−5 59
10−6 76
10−7 96
10−8 116
10−9 135
10−10 155
10−11 176
10−12 195
10−13 218
10−14 237
10−20 237
10−30 237

Table 4.2: Computation overhead when data type is double

computation overhead is negligible. To make sure the computation overhead
is still negligible in time-compressed version while maintaining an acceptable
emulation time cost, using double as the data type is ruled out.

With float as the data type, if using a stopping criterion smaller than 10−4,
the performance metric does not change too much, yet computation overhead
increases significantly. By performing the trade-off between precision and time
cost, the stopping criterion is chosen to be 10−4 with float as the data type.

4.2.2 Performance and Conservativeness Interplay

Three different conservativeness factors are applied to the original prediction.
A smaller conservativeness factor means stronger conservativeness. The scenarios
where C = 1.0 are the comparison baselines. How minimum energy consumption,
prediction error, and conservativeness factor interplay is shown in table 4.3. The
percentages in the parentheses represent the changes in metrics in proportion to
the baseline case.

Both overestimation and underestimation could contribute to the decrease
in energy consumption. By analyzing the emulation results on ON, MI and CA
datasets, it appears minimum energy consumption takes place in two different
patterns: one case is that minimum energy consumption is still in the trend
of the trace, as is shown in figure 4.2; the other is that minimum energy con-
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Minimum Daily Energy Consumption [J] (scaled back to actual time)
Scheduler Dataset Median of Error

C = 1.00 (baseline) C = 0.95 C = 0.90

ON 4.12% 606.04 689.19 (+13.72%) 957.51 (+57.99%)
MI 10.00% 475.84 509.37 (+7.05%) 717.77 (+50.84%)FHC
CA -3.61% 1033.35 1458.64 (+41.16%) 1424.03 (+37.81%)

ON 2.21% 194.00 194.00 (0.00%) 194.00 (0.00%)
MI 3.13% 202.68 202.68 (0.00%) 202.68 (0.00%)DPS
CA -8.64% 258.96 258.96 (0.00%) 258.96 (0.00%)

ON 0.00% 115.72 109.94 (-5.00%) 104.15 (-10.00)
MI 0.00% 182.17 173.06 (-5.00%) 163.95 (-10.00%)DCA
CA 0.00% 271.33 257.76 (-5.00%) 244.20 (-10.00%)

Table 4.3: Minimum daily energy consumption for different scenarios

Figure 4.2: Minimum energy consumption still in the trend

sumption apparently deviates from the trend, as is shown in figure 4.3, which is
often related to an unexpected empty or almost-empty battery state of charge
caused by overestimation at the start of current time slot. The minimum energy
consumption in the former case is not too low and can still support the basic
operation of the system in this shown example. However, the latter case is likely
to witness meager energy consumption that cannot even support the system’s
basic operation and, in turn, leads to the failure state.

For FHC, the medians of errors for ON and MI datasets are both positive,
which means over half of their predictions are overestimated. For these two
datasets, when a conservativeness factor of 0.95 is applied, their minimum energy
consumption all increase, and when a stronger conservativeness factor 0.9 is ap-
plied, their minimum energy consumptions improve even more. For CA dataset,
over half of the predictions are underestimated. Applying a conservativeness fac-
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Figure 4.3: Minimum energy consumption not in the trend

tor of 0.95 helps improve its minimum energy consumption, however, applying
a conservativeness factor of 0.9 yields a smaller minimum energy consumption
than when 0.95 is applied, but still, it is better than baseline. From these data,
it looks like there is an turning point (i.e., optimal conservativeness factor) after
which the performance of the system stops having more benefits from stronger
conservativeness. As mentioned in 3.2, this happens because if conservativeness
is too strong, then the scheduler will schedule the energy consumption based on
the over-pessimistic prediction and determine a rather low energy consumption.
By conducting a simulation, it is found that the optimal conservativeness factors
Copt for ON, MI and CA datasets are 0.915, 0.892 and 0.977 respectively. Note
that the prediction for MI dataset is the most overestimated and for CA the least
overestimated with median of error as the metric. From the results, it appears
that a more overestimated prediction requires a stronger conservativeness factor
to achieve optimal performance.

For DCA, it looks surprising that the median of errors for all the three
datasets are 0. Considering that this scheduler adopts hourly data as input,
nearly half of the time slots have zero actual harvested energy, having zero as
the median of prediction errors is reasonable. With conservativeness factor ap-
plied, the minimum energy consumption decreases, and stronger conservativeness
yields smaller minimum energy consumption.

LT-ENO has a built-in prediction scaling mechanism. Due to the predic-
tion scaling mechanism, conservativeness does not affect the scaled version of
prediction, which leads to unchanged system performances when different con-
servativeness factors are applied. But if we skip this mechanism and directly
apply conservativeness to the scaled version of prediction, we can still observe
an improvement in minimum energy consumption.
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Total Utility
Scheduler Dataset Median of Error

C = 1.00 (baseline) C = 0.95 C = 0.90

ON 4.12% 44927.25 44721.49 (-0.46%) 44373.02 (-1.23%)
MI 10.00% 46663.29 46646.05 (-0.04%) 46471.96 (-0.41%)FHC
CA -3.61% 54394.21 54048.52 (-0.64) 53407.16 (-1.82)

ON 2.21% 44429.59 44429.59 (0.00%) 44429.59 (0.00%)
MI 3.13% 46552.93 46552.93 (0.00%) 46552.93 (0.00%)DPS
CA -8.64% 54419.40 54419.40 (0.00%) 54419.40 (0.00%)

ON 0.00% 42557.50 42523.29 (-0.01%) 42520.87 (-0.01%)
MI 0.00% 45020.18 45006.14 (-0.00%) 45002.19 (-0.00%)DCA
CA 0.00% 53590.95 53589.52 (-0.00%) 53588.66 (-0.00%)

Table 4.4: Total utility for different scenarios

Dataset
Wasted Energy [J]

C = 1.0 (baseline) C = 0.95 C = 0.90

ON 33416.5 67372.91 121607.42

MI 0.00 992.55 29078.85

CA 2552.90 69625.07 195063.05

Table 4.5: Wasted energy for FHC

As can be observed from table 4.4, total utility is barely affected by conser-
vativeness.

There is an intuition explanation for the barely changed total utility. Total
utility is possibly affected by conservativeness in two ways: redistribution of
scheduled energy consumption and change in the amount of wasted energy. If the
energy consumption in one time slot is already high, then additional energy does
not significantly impact the utility of this time slot, if the energy consumption
is low, then additional energy would drastically improve utility in that time
slot. By applying conservativeness, the meager energy consumption in one time
slot is alleviated, which brings benefit to total utility. However, by applying
conservativeness, the battery state of charge is more likely to remain at a high
level, which may waste more energy due to full battery, as is shown in table 4.5.



Chapter 5

Environmental Data Sensing
Application

In this chapter, a real-world application will be implemented. The influence
of conservativeness on a system’s minimum energy consumption is translated
into the influence on system behavior.

5.1 Application Description

In this application, a mote in a sensor network collects environmental infor-
mation such as ambient temperature, ambient humidity, air pressure and illumi-
nation level. Data are stored in the flash after collection. At the end of a time
slot, the data are sent out.

5.2 Implementation Detail

Figure 5.1: MSP432P401R
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The sensing data are collected using the sensors on Texas Instrument
BOOSTXL-SENSORS BoosterPack plug-in module (figure 5.1). Due to the in-
accessibility of wireless transmission modules (e.g., bluetooth module), the data
sending part is realized with UART. The energy consumptions on data storage
and wired data sending are almost negligible, and in a real-world application
the energy consumption on the computation overhead of scheduler is also ne-
glected due to its low occurrence, so to roughly control the energy consumption
in one time slot, one only has to roughly control the energy consumed by data
measurement and storage. When the energy consumption of one execution of
measurement and storage operation, the number of executions taken in one time
slot can be determined, which can then be interpreted into the time interval
between two consecutive executions. In this way, the energy consumption can
be only controlled discretely, and a longer time slot makes more precise energy
consumption controlling possible. In the following emulation, FHC is used as
the scheduler, astronomical model as the predictor; one week is scaled to 60 sec-
onds; the battery size for the time-compressed emulations is increased to 6.0J ,
corresponding to a battery size of 16.8Wh in an actual deployment; the rest of
the parameters are the same as the FHC part in the previous chapter.

5.3 Emulation Results

5.3.1 Energy Consumption for One Execution

To control the energy consumption in each time slot, the energy consump-
tion for each execution of data measurement and storage operation should be
determined. By using EnergyTraceTM technology in CCS, it is measured when
there is only one execution in the 60-second time slot, the energy consump-
tion is 436.800mJ , when there are 360 executions, the energy consumption
is 880.140mJ . The energy consumption for each execution is calculated as
1.235mJ . The energy consumed by the system when there is no execution is
435.565mJ .

5.3.2 System Behavior Influenced by Conservativeness

How conservativeness influences system behavior is shown by emulating the
system on CA dataset. We can see three time slots in figure 5.2. There are
two bars between time slots: the lower one represents the data sending process,
and the higher one represents the computation overhead of FHC. Each pulse
represents one measurement and storage operation. The empty time slot in the
middle means there is no data collected. This happens because the available
energy in this time slot is insufficient to support the basic functionality of the
system. As mentioned in previous chapters, this energy insufficiency is caused
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by overestimation.

Figure 5.2: System behavior without conservativeness

Figure 5.3: System behavior with conservativeness factor C = 0.9

Conservativeness can alleviate overestimation and thus improve minimum en-
ergy consumption. As can be seen in figure 5.3, after applying a conservativeness
factor C = 0.9 to the prediction, there is no empty time slot.



Chapter 6

Conclusion

For some systems, applying conservativeness improves system’s minimum
energy consumption. But it does not mean stronger conservativeness guarantees
better minimum energy consumption. For these systems, there is an optimal
conservativeness factor for each environment. When conservativeness factor is
larger than the optimal factor, smaller conservativeness factor improves minimum
energy consumption. When conservativeness factor is smaller than this optimal
factor, smaller conservativeness factor hurts minimum energy consumption.

23



Bibliography

[1] Henry A Sodano, Gyuhae Park, and DJ Inman. Estimation of electric charge
output for piezoelectric energy harvesting. Strain, 40(2):49–58, 2004.

[2] Kamarul Zaman Panatik, Kamilia Kamardin, Sya Azmeela Shariff,
Siti Sophiayati Yuhaniz, Noor Azurati Ahmad, Othman Mohd Yusop, and
SaifulAdli Ismail. Energy harvesting in wireless sensor networks: A survey.
In 2016 IEEE 3rd international symposium on Telecommunication Tech-
nologies (ISTT), pages 53–58. IEEE, 2016.

[3] Bernhard Buchli, Felix Sutton, Jan Beutel, and Lothar Thiele. Dynamic
power management for long-term energy neutral operation of solar energy
harvesting systems. In Proceedings of the 12th ACM conference on embedded
network sensor systems, pages 31–45, 2014.

[4] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B Srivastava. Power
management in energy harvesting sensor networks. ACM Transactions on
Embedded Computing Systems (TECS), 6(4):32–es, 2007.

[5] Bernhard Buchli, Pratyush Kumar, and Lothar Thiele. Optimal power man-
agement with guaranteed minimum energy utilization for solar energy har-
vesting systems. In 2015 International Conference on Distributed Comput-
ing in Sensor Systems, pages 147–158. IEEE, 2015.
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