
Distributed

 Computing

Bitcoin On Tendermint
Semester Thesis

Michael Bachmann

michabac@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Tejaswi Nadahalli

Prof. Dr. Roger Wattenhofer

June 29, 2020

Acknowledgements

First I would like to thank my supervisor Tejaswi Nadahalli for his never-ending
help, support and patience in the weekly zoom meetings and in his fast and
elaborate replies to my e-mails despite the unusual coronavirus situation. Also I
would like to thank Prof. Dr. Roger Wattenhofer and the DISCO group for this
great opportunity in the first place.

i

Abstract

Bitcoin on Tendermint is an application that implements a similar cryptocur-
rency like Bitcoin and it is written in Python3. It is built such that it runs
on the application blockchain interface of the byzantine-fault tolerant consensus
software named Tendermint. It contains a transaction parser, transaction valida-
tion, signature verification, a utxo set database, a transaction journal database
and an application state to disc storage. This was a mainly hands-on project with
the goal to mimic normal Bitcoin transactions, currency generation and multi-sig
transactions. To test the entire system end to end a sample user is simulated
with an integration test script. The script creates a variety of valid and a vari-
ety of invalid transactions, broadcasts them to Tendermint and includes certain
assertions with the corresponding test conditions.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Background 2

2.1 Blockchains . 2

2.2 Bitcoin . 2

2.2.1 Bitcoin Consensus Mechanism Outline 2

2.2.2 Bitcoin Concept . 3

2.2.3 Bitcoin Software Structure 4

2.3 Tendermint . 4

2.3.1 Tendermint Structure . 4

2.3.2 Tendermint Validators . 4

2.3.3 Tendermint Consensus Mechanism Outline 5

2.3.4 Tendermint ABCI . 5

2.3.5 Reproduce Bitcoin Logic on Tendermint 6

3 Implementation 8

3.1 init_chain() . 8

3.2 check_tx() . 9

3.3 begin_block() . 9

3.4 deliver_tx() . 9

3.4.1 validate_content_and_update_app_state() 9

3.5 end_block() . 11

3.6 commit() . 11

3.7 info() . 11

iii

Contents iv

3.8 query() . 11

3.9 Integrity Check . 11

3.10 Consensus Based Applications . 12

3.11 Used Libraries . 12

3.12 Used Interface . 12

3.13 Used Tendermint Version . 12

Bibliography 13

A Signature A-1

A.1 Non-trivial Signature Preimage A-1

A.2 Challenges in the Signature Verification A-1

A.3 Difference to the actual Bitcoin Signature Verification A-1

B Conceptional Bitcoin Transaction Analogy B-1

Chapter 1

Introduction

The energy consumption of proof of work based cryptocurrencies worldwide has
risen to a non-negligible amount over the last years due to the cryptocurrency
boom. For one thing, as climate change is still a central issue in our society the
demand for energy efficient alternatives to proof of work consensus technology is
growing. For another, proof of work, like it says in the name, requires approxi-
mately 10 minutes of computational "work" every time before new information
can be added to the distributed database. This means there is a lot of speed up
potential. One approach to the energy problem is separating the business logic
from the energy costly proof of work consensus software. The implementation
of such an application on an already existing non proof of work consensus ma-
chine is a tiny but definitely interesting start to maybe one day contribute to an
improvement of these concepts.

1

Chapter 2

Background

2.1 Blockchains

A blockchain is a data structure where the data is divided into an arbitrary
amount of blocks such that if you merge the blocks back again, you get the entire
data. Inside each block the hash digest of the previous block is stored. That way
you always know which block was any block’s predecessor. So in case you know
the entire block set but do not know the block order you can in fact compute
their original order. The first block is called the genesis block.

2.2 Bitcoin

2.2.1 Bitcoin Consensus Mechanism Outline

Bitcoin’s [1] [2] consensus engine is based on blockchains. Although a blockchain
is a useful tool in consensus technology it does not naturally guarantee data in-
tegrity or consensus amongst oppositional parties. A malicious party for example
could easily modify the data in a certain block and recompute all the following
blocks included with the correct hash digests. Therefore Bitcoin added a nonce
field within the blockchain data such that one is able to influence or rather vary
the block hash digest by varying the nonce value. This way namely one could
agree that a party is only allowed to add a new block to the blockchain if the hash
digest of the corresponding block fulfils some predefined conditions. When then
a party wants to add a new block it can change the nonce value as many times as
required until the hash digest is valid. Due to the properties of a cryptographic
hash function the best approach to find a valid hash digest is brute forcing. These
requirements to the hash digest can be adjusted in such a way that the compu-
tational work until at least one entity attained such a valid hash digest will on
average take a desired amount of time. This way it’s practically impossible to
recompute all the following blocks after changing data in an intermediate block.
This concept is called proof of work and is the one used by Bitcoin. The entities

2

2. Background 3

that are trying to add new blocks are called miners.

2.2.2 Bitcoin Concept

Bitcoin is built and based on transactions. To understand the concept of Bitcoin
as a cryptocurrency one first needs to know what a Bitcoin transaction is.

Bitcoin Transaction

A Bitcoin transaction consists of three main parts namely the transaction id, a
set of transaction inputs and a set of transaction outputs. The transaction id
is nothing else than the transaction data hashed twice using the hash function
SHA256. The transaction id is unique to a transaction. A transaction input
consists of a previous transaction output and a signature script. The previous
transaction output is indicated by the transaction id and the transaction output
index. An normal Bitcoin transaction output consists of a Bitcoin address and
the amount you would like to send to that address.

Bitcoin as Currency

In Bitcoin to have money means to have one or multiple unspent transaction
outputs more precisely to possess the private key to the public key of the Bitcoin
address recorded within the unspent transaction output. The amount of currency
the person possesses is equal to the value recorded in the unspent transaction
output. When you want to spend the value in the unspent transaction output
you can do this by creating a new transaction. The new transaction has to specify
who the new owner is going to be by setting the correct receiver address in the
transaction output. It also has to be signed as proof that the person spending
the value in the unspent transaction output actually possessed it in the first
place. A really important thing to understand is that once a transaction output
is spent this specific transaction output will never be spendable again. I can’t
stress this enough. There will be no rest value that you can keep in this specific
transaction output. The total value that you would like to spend in a transaction
(all the indicated source transaction outputs as inputs), can however be split up
into multiple new unspent transaction outputs. More precisely in a transaction
a transaction input can be split into multiple transaction outputs. Also in a
transaction multiple transaction inputs can be merged into fewer transaction
outputs. With this whole concept you can return change to your own Bitcoin
address again. It will just be a different unspent transaction output but it will be
your money. If you want your transaction to officially be recorded and accepted
by everyone, you have to ask a miner to add your transaction to a new block where
it will be seen by everyone. To get a better intuition about this see Appendix B.

2. Background 4

Currency Generation in Bitcoin

In Bitcoin money gets created every time a miner adds a new block. They get
rewarded with an unspent transaction output that they are allowed to include
in the mined block. This unspent transaction output is wrapped inside a special
type of transaction called the coinbase transaction. This unspent transaction
output will have the value of a predefined miner reward plus the sum of all the
miner fees of the in the block included transactions. The miner fees are simply
the difference between all the transaction input values and the transaction output
values of all the transactions in the block included. The first amount of money
was created by the genesis block.

2.2.3 Bitcoin Software Structure

The Bitcoin software is composed of a consensus mechanism, a networking mech-
anism and and the business logic. They are extremely coupled such that they
are basically inseparable. This means you can hardly change one mechanism
without changing, affecting or having to change another. Thus, you can’t simply
use the Bitcoin software as consensus engine for any type of application logic
unfortunately. This would have been quite convenient.

2.3 Tendermint

2.3.1 Tendermint Structure

Tendermint [3] [4] consists of a consensus engine with a peer to peer network
and simply an application interface called ABCI. ABCI stands for application
blockchain interface. It is a clearly defined interface with a set of functions. Its
communication is binary and based on Protocol Buffers. As any programming
language can handle Protocol Buffers you can build an application on Tendermint
in any language. So if you need a consensus based application, with Tendermint’s
structure you have the luxury of disregarding the consensus mechanism and the
network and only focusing on the application itself. A thing to notice is that
Tendermint only knows the execution states of the consensus mechanism and the
network. The execution states of the application logic are only known to the
application.

2.3.2 Tendermint Validators

What a miner in Bitcoin is, is called a validator in Tendermint so if a Tendermint
node adds a new block it’s called a validator. From now on data that is supposed
to be added to the Tendermint blockchain will be referred to as a transaction.

2. Background 5

When Tendermint gets initialized after installation the validator set is hard-coded
into a file named genesis.json. This can however be changed as a part of the
execution. Adding a new block in Tendermint is called validating a new block.

2.3.3 Tendermint Consensus Mechanism Outline

Tendermint uses a proof of stake based consensus mechanism regarding the voting
power of all validators. The voting power of the validators is basically their stake.
The higher their voting power the more often they are allowed to validate a new
block. The voting power also is hard-coded into the genesis.json file and can also
be changed as a part of the execution just like the validator set. Tendermint
is byzantine-fault tolerant regarding the voting power of all validators as a new
block needs to be approved of two third of all the voting power before being
added to the blockchain.

2.3.4 Tendermint ABCI

init_chain()

This function gets called by Tendermint before the genesis block is created. It is
mainly used to initialize application state variables.

check_tx()

This function is one of the two main functions of the application. It gets called
whenever a transaction first arrives at the mempool. It decides if the transaction
should be marked as a proposal transaction or removed from the mempool. It
basically does the transaction parsing.

begin_block()

This function gets called every time before a new block gets validated. With
this function the application can get information about the validator and do
some computations and application state updates if required by the application
functionality.

deliver_tx()

This function is the second one of the two main functions of the application.
When a validator validates a new block and adds the proposal transactions to
the block this function gets called multiple times in a loop until the block is full.
It validates the content of the transaction by obeying the application logic. It

2. Background 6

determines if the transaction will be marked as valid or as invalid in the new
block. At this point it is important to mention that compared to Bitcoin where
the business logic is used to order transactions into new blocks in Tendermint
only check_tx() is used to filter transactions. All the transactions that pass the
parsing are ordered into the blockchain no matter if they pass the application logic
or not. They are merely tagged. This means in Bitcoin there will never be an
invalid transaction inside an approved block but in Tendermint there most likely
will. If this function gets called it will always be called in between begin_block()
and end_block(). It is also responsible to update the application state.

end_block()

This function gets called every time a block, that is about to be validated, is
full and ready to be committed. With this function the application can update
the validator set and the voting power of the validator set. It can also do some
computations and application state updates if required by the application func-
tionality.

commit()

This function always gets called after the end_block() function when a block
is about to be committed. It should return the merkle root hash digest of the
application state such that every application state can be associated with a merkle
root hash digest.

info()

This function returns information about the application state. It is used to
synchronize Tendermint with the application during a handshake that happens
on startup. [5]

query()

This function gets called whenever a user queries the application state. It is
supposed to return the implemented application state.

2.3.5 Reproduce Bitcoin Logic on Tendermint

First it needs to be said that thanks to Tendermint no consensus algorithm nei-
ther any network needed to be implemented. What the application contains is
transaction parsing, content validation, signature verification, merkle tree updat-
ing unspent transaction output set updating, ledger updating and data storage

2. Background 7

updating. It can handle currency generation, normal Bitcoin transactions and
multi-sig transactions. The currency generation transactions are quite different
from the actual Bitcoin coinbase transactions. The former are not coupled to
validators like coinbase transactions to miners but to a universal generation pri-
vate key instead. They do however only get marked as valid if they possess
no more than one input and one output just like a coinbase transaction. The
application disregards transaction fees which could be implemented in a future
improvement of the project. Except for multi-sig transactions it does not contain
any advanced scripting abilities which could also be added. At last timelocks and
SegWit transactions would pretty much make the application logic similar to the
one of Bitcoin.

Chapter 3

Implementation

3.1 init_chain()

The path and empty files of the additional data to disc storage get created.
They can be modified in the source code or the code could just be modified that
way such that the path can be passed to the application as an argument from
the terminal. Important to mention here is that the way the application stores
data to the disc is simply a single file storage that gets overwritten every time
additional data is stored. For one this is highly inefficient as the entire data has
to be rewritten every time. For another, this is risky as important data could
be lost in case the application crashed right before the data storage. In a future
implementation this should be replaced either by an in-process database where
the database is managed by an in the application included library that does this
efficiently and integrally or by a full fledged database with an own process where
your application connects to and receives replies.

In init_chain() also these application state variables are created:

• merkle tree (pymerkle MerkleTree)

• transaction counter (integer)

• latest block height (integer)

• merkle root of application state when latest block was committed (bytes
object)

• validator address (string)

• unspent transaction output set (dictionary)

And last the empty dictionaries from the unspent transaction output set and
the ledger are also already saved in the additional data storage.

8

3. Implementation 9

3.2 check_tx()

In this function the transaction gets parsed and checked for a zero output value
with a try/except block. The exception just returns code 1 to Tendermint which
means that the parsing failed and the transaction will be removed from the mem-
pool. The parsing is done using the btcpy library parser.

The check_tx() function could theoretically already validate the entire con-
tent of the transaction. This would however involve a loss in performance as the
content would necessarily have to be validated again in the deliver_tx() function
to ensure correct transaction validation. It probably depends on the application
type if the price for having less transactions marked as invalid in the blockchain
is worth the performance loss or not.

3.3 begin_block()

In this function the application reads out the validator address just in case that
in a future implementation this would be needed.

3.4 deliver_tx()

In this function the application calls exactly one function namely

3.4.1 validate_content_and_update_app_state()

It’s the main function of the business logic. It validates the content of the trans-
actions and updates the application state variables and the data storage. It has
a return value with an error code that gets caught in an if statement if the error
code is not zero.

Within this one function first the generation transaction logic gets separated
from the normal Bitcoin and multi-sig transaction logic with an if/else statement.
In those blocks the content is validated. After the if/else statement, in case the
transaction was accepted, the transaction is added to the ledger, the merkle tree
is updated, the transaction count is incremented by one and the function returns
code zero (valid) to deliver_tx().

Generation Transaction Logic

The transaction enters the generation transaction code block if at least one input
contains the transaction id of 64 zeros. That’s the tag of the fictional generation

3. Implementation 10

transaction output. Otherwise it enters the other block. Within the genera-
tion block the application asserts there is only one input and one output in the
transaction to make it mimic a Bitcoin coinbase transaction a bit more. This
is implemented with a try/except block. Then, the generation transaction sig-
nature gets verified also with a try/except block and all the transaction outputs
are added to the unspent transaction output set and to the data storage. The
exceptions just return the corresponding error code to deliver_tx().

Generation Transaction Signature Verification

In a generation transaction the application simply verifies the single signature
with the universal currency generation public key from the fictional transaction
output. This key pair was temporarily put into the folder btcpy_keypairs and
can be modified for advanced and future implementations. Some details about
the signing process and the signature verification can be found in Appendix A.

Normal Bitcoin and multi-sig Transaction Logic

In this block within three try/except blocks the signature gets verified, the trans-
action gets inspected for sufficient source funds and also inspected for double
spending of the source transaction outputs. The fund checking function also
computes and returns the transaction fee in case this would be needed for a
future implementation. The exceptions of this block just return the correspond-
ing error code to deliver_tx(). After the try/except blocks the new transaction
outputs are added to the unspent transaction output set and the spent source
transaction outputs are removed therefrom. The same is done with the data
storage of the unspent transaction output set.

Normal Bitcoin Transaction Signature Verification

In an normal Bitcoin transaction the application verifies the signature in each
transaction input with the public key of the corresponding source transaction
output.

Multi-sig Transaction Signature Verification

In a multi-sig transaction, for a single specific transaction input, the application
tries to verify each contained signature in the input with all the public keys from
the corresponding source transaction output. It also checks if the number of
contained signatures equals the required amount of signatures specified in the
source transaction output. For every signature the application has to find a
matching public key to not fail.

3. Implementation 11

add_tx_to_ledger_and_to_merkle_tree()

In this function the transaction is added to the ledger and the data storage of
the ledger. Also the merkle tree is updated with the transaction data. For
this the pymerkle function merkletree.encryptRecord() is used instead of merkle-
tree.update() as according to the documentation this is recommended and more
high-level. [6]

3.5 end_block()

In this function the application only increments the latest block height application
state variable.

3.6 commit()

In this function the application returns the current merkle root of the applica-
tion state. The merkletree.get_commitment() function returns the same as the
merkletree.rootHash attribute but when the tree is empty it returns None instead
of raising an exception. [7] The application only returns the merkle root if the
get_commitment() return value is not None otherwise the application returns no
argument.

3.7 info()

In this function the application returns the latest block height and the merkle root
from when the latest block was committed. This is only returned if init_chain()
had been called yet. Otherwise it simply returns zero and an empty bytes object.

3.8 query()

In this function the application simply returns the unspent transaction output
set dictionary json encoded as bytes object.

3.9 Integrity Check

The integrity check first creates a whole bunch of valid transactions and also
invalid ones with either incorrect transaction syntax or invalid transaction con-
tent. Then it broadcasts them to Tendermint in a specific order and queries the

3. Implementation 12

blockchain before and after this process. The queried data is used to assert that
either no block is added to the blockchain (failed check_tx()), a transaction is
added but marked as invalid (failed deliver_tx()) or a transaction is added and
marked as valid (successful deliver_tx()). It has to be mentioned that this in-
tegrity check will not work for a network with more than one validator node and
one user as despite of a transaction failing the check_tx() another validator could
still add another block. Also if another user sends transactions the hard-coded
block height used to query the blockchain could query the incorrect block. This
would have to be considered in a future improvement of the project.

3.10 Consensus Based Applications

Implementing consensus based software should always be very carefully thought
through before actually initiating the software. Because one needs to be aware
of the fact that once any data has been added to the blockchain it is impossible
to change consensus sensitive syntax of the protocol without taking the whole
system down. Shutting down the whole system can be impossible or with grave
consequences depending on the functionality the application is used for. So a bug
will possibly have to be carried over forever.

3.11 Used Libraries

• btcpy (transaction creation, transaction signing and transaction parsing) [8]

• ecdsa (manual signature verification of the transaction) [9]

• pymerkle (merkle tree creation and updating) [10]

• google.protobuf (read out validator information from the RequestBegin-
Block message) [11]

3.12 Used Interface

Dave Bryson’s Python3 interface for Tendermint v0.32.6 [12]

3.13 Used Tendermint Version

Tendermint v0.32.6 [13]

Bibliography

[1] “Bitcoin whitepaper,” https://bitcoin.org/bitcoin.pdf, accessed: 2020-06-28.

[2] “Bitcoin developer guide,” https://developer.bitcoin.org/devguide/, ac-
cessed: 2020-06-28.

[3] “Tendermint whitepaper,” https://tendermint.com/static/docs/tendermint.
pdf, accessed: 2020-06-28.

[4] “Tendermint explained on Tendermint homepage,” https://docs.tendermint.
com/master/introduction/what-is-tendermint.html, accessed: 2020-06-28.

[5] “Tendermint info() function,” https://docs.tendermint.com/master/spec/
abci/abci.html#info, accessed: 2020-06-24.

[6] “Pymerkle encryptrecord() function,” https://pymerkle.readthedocs.io/en/
latest/encryption.html#single-record-encryption, accessed: 2020-06-27.

[7] “Pymerkle get_commitment() function,” https://pymerkle.readthedocs.io/
en/latest/merkle-proofs.html, accessed: 2020-06-26.

[8] “Btcpy library,” https://github.com/chainside/btcpy, accessed: 2020-06-28.

[9] “Ecdsa library,” https://github.com/warner/python-ecdsa, accessed: 2020-
06-28.

[10] “Pymerkle library,” https://github.com/fmerg/pymerkle/blob/master/
docs/source/index.rst, accessed: 2020-06-28.

[11] “Protocol buffer library,” https://github.com/protocolbuffers/protobuf, ac-
cessed: 2020-06-28.

[12] “Python3 interface for tendermint,” https://github.com/davebryson/
py-abci, accessed: 2020-06-28.

[13] “Tendermint version v0.32.6,” https://github.com/tendermint/tendermint/
releases/tag/v0.32.6, accessed: 2020-06-28.

13

https://bitcoin.org/bitcoin.pdf
https://developer.bitcoin.org/devguide/
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://docs.tendermint.com/master/introduction/what-is-tendermint.html
https://docs.tendermint.com/master/introduction/what-is-tendermint.html
https://docs.tendermint.com/master/spec/abci/abci.html#info
https://docs.tendermint.com/master/spec/abci/abci.html#info
https://pymerkle.readthedocs.io/en/latest/encryption.html#single-record-encryption
https://pymerkle.readthedocs.io/en/latest/encryption.html#single-record-encryption
https://pymerkle.readthedocs.io/en/latest/merkle-proofs.html
https://pymerkle.readthedocs.io/en/latest/merkle-proofs.html
https://github.com/chainside/btcpy
https://github.com/warner/python-ecdsa
https://github.com/fmerg/pymerkle/blob/master/docs/source/index.rst
https://github.com/fmerg/pymerkle/blob/master/docs/source/index.rst
https://github.com/protocolbuffers/protobuf
https://github.com/davebryson/py-abci
https://github.com/davebryson/py-abci
https://github.com/tendermint/tendermint/releases/tag/v0.32.6
https://github.com/tendermint/tendermint/releases/tag/v0.32.6

Appendix A

Signature

A.1 Non-trivial Signature Preimage

To create the signature preimage of a transaction whose input is about to be
verified, the signature scripts of all inputs, except for that particular one, are
replaced by empty signature scripts. The one that was left out is replaced by the
public key script of the corresponding source transaction output. Even though in
the application the signature preimage to verify the signature is created by the
btcpy library, it could still be beneficial to know how it is actually done.

A.2 Challenges in the Signature Verification

One needs to know that the btcpy library and the ecdsa library are not naturally
compatible. Bitcoin encodes the signature stored in the transaction in the DER
format, not in the string format like the ecdsa library does. This needs to be
considered when verifying any signature. Also Bitcoin subtracts the ecdsa S
parameter from the ecdsa order parameter and uses this computed value as the
new ecdsa S parameter value when encoding it back into DER format. If this is
ignored the signature verification will fail every time.

A.3 Difference to the actual Bitcoin Signature Verifi-
cation

Compared to the application that uses two simple loops for signature verification
Bitcoin uses a rather complex low-level stack protocol for that. This is another
area where the application has some potential for improvement of efficiency.

A-1

Appendix B

Conceptional Bitcoin
Transaction Analogy

It is not so easy to get a good grasp of the intuition behind Bitcoin transactions
as a currency. Therefor one might want to think of a conceptional analogy of it.
This might sound rather funny or odd to some but may even be helpful to others.
Let’s start the analogy by picturing multiple bowls. Each bowl has an arbitrary
amount of gold coins inside. Each gold coin has an arbitrary mass and the value
of the gold coin equals its mass. Now there are going to be some rules to this
scenario. There are going to be rounds. Each round consists of two phases. In
each round the value of arbitrary many bowls can be redistributed as follows. In
phase one of each round a blacksmith melts any arbitrary set of gold coins of
all the bowls together. Then in phase two of each round the blacksmith forms
an arbitrary amount of new gold coins each with an arbitrary mass (using the
melted gold mass from phase one) and redistributes them arbitrarily into any
of the bowls he wishes. He also writes down the changes that he makes, really
detailed, in some sort of journal after any few rounds. For each round he writes
down the gold coins he took for melting and writes down where he added new
gold coins and the new gold coin’s masses. The blacksmith will steal a tiny bit
of the melted gold in every round for his trouble. Now think of the gold coins in
the bowls as only the unspent transaction outputs and think of their mass as the
value inside the corresponding unspent transaction output. Think of the rounds
as transactions. Think of the bowls as public keys (owners). Think of the journal
as the blockchain and think of the stolen bit in every round as the transaction
fee for the miners. You now have a similar concept to Bitcoin.

B-1

	Acknowledgements
	Abstract
	1 Introduction
	2 Background
	2.1 Blockchains
	2.2 Bitcoin
	2.2.1 Bitcoin Consensus Mechanism Outline
	2.2.2 Bitcoin Concept
	2.2.3 Bitcoin Software Structure

	2.3 Tendermint
	2.3.1 Tendermint Structure
	2.3.2 Tendermint Validators
	2.3.3 Tendermint Consensus Mechanism Outline
	2.3.4 Tendermint ABCI
	2.3.5 Reproduce Bitcoin Logic on Tendermint

	3 Implementation
	3.1 init_chain()
	3.2 check_tx()
	3.3 begin_block()
	3.4 deliver_tx()
	3.4.1 validate_content_and_update_app_state()

	3.5 end_block()
	3.6 commit()
	3.7 info()
	3.8 query()
	3.9 Integrity Check
	3.10 Consensus Based Applications
	3.11 Used Libraries
	3.12 Used Interface
	3.13 Used Tendermint Version

	Bibliography
	A Signature
	A.1 Non-trivial Signature Preimage
	A.2 Challenges in the Signature Verification
	A.3 Difference to the actual Bitcoin Signature Verification

	B Conceptional Bitcoin Transaction Analogy

