
Traffic-Aware Compilation

Semester Thesis

Author: Patrick Wintermeyer

Tutors: Maria Apostolaki, Alexander Dietmüller

Supervisor: Prof. Dr. Laurent Vanbever

March 2020 to June 2020

Disclaimer

To the best of my knowledge and in accordance with the Declaration of Originality, the following
specifies the main writing contributors to each Chapter in order of importance:

1 Abstract: Maria Apostolaki

2 Chapter 1: Maria Apostolaki, Laurent Vanbever, Patrick Wintermeyer

3 Chapter 2: Alexander Dietmüller, Patrick Wintermeyer, Maria Apostolaki

4 Chapter 3: Alexander Dietmüller, Maria Apostolaki

5 Chapter 4: Patrick Wintermeyer, Maria Apostolaki

6 Chapter 5: Patrick Wintermeyer, Maria Apostolaki

7 Chapter 6: Maria Apostolaki

8 Chapter 7: Patrick Wintermeyer

1

Abstract

Programmable devices allow the operator to specify the data-plane behavior of a network device
in a high-level language such as P4. The compiler then maps the P4 program to the hardware after
applying a set of optimizations to minimize resource utilization. Yet, the lack of context restricts
the compiler to conservatively account for all possible inputs – including unrealistic or infrequent
ones – leading to sub-optimal use of the resources or even compilation failures. To address this
inefficiency, we propose that the compiler leverages insights from actual traffic traces, effectively
unlocking a broader spectrum of possible optimizations.

We present a system working alongside the compiler that uses traffic-awareness to reduce the
allocated resources of a P4 program by: (i) removing dependencies that do not manifest; (ii)
adjusting table and register sizes to reduce the pipeline length; and (iii) offloading parts of the
program that are rarely used to the controller. Our prototype implementation on the Tofino switch
automatically profiles the P4 program, detects opportunities and performs optimizations to improve
the pipeline efficiency.

Our work showcases the potential benefit of applying profiling techniques used to compile
general-purpose languages to compiling P4 programs.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Profile-guided optimization on programmable data planes 1
1.3 Novelty . 2
1.4 Task and goals . 2
1.5 Overview . 3

2 Background and Related Work 4
2.1 Background . 4

2.1.1 P4 Language . 4
2.1.2 Architectural Constraints . 4

2.2 Related Work . 5
2.2.1 Profiling execution paths . 5
2.2.2 Optimizing code for programmable switches 5

3 Modus Operandi 6
3.1 Example P4 program . 6
3.2 Compiling the P4 program . 7

3.2.1 Mapping the program to hardware . 7
3.2.2 Compiler output . 7

3.3 Profile-guided optimization with P2GO . 8
3.3.1 Phase 1: Profiling . 8
3.3.2 Phase 2: Removing dependencies . 9
3.3.3 Phase 3: Reducing memory . 9
3.3.4 Phase 4: Offloading code to controller . 9

4 Design 11
4.1 Profiling P4 programs . 11

4.1.1 Instrumenting the program . 11
4.1.2 Building the profile . 11

4.2 Removing Dependencies . 11
4.2.1 Identifying unseen, yet restrictive dependencies 12
4.2.2 Removing dependencies . 12
4.2.3 Preserving the program’s behavior . 12

4.3 Reducing memory . 12
4.3.1 Identifying and optimizing savings . 13
4.3.2 Preserving the program’s behavior . 13

ii

CONTENTS iii

4.4 Offloading code to controller . 13
4.4.1 Identifying offloadable segments . 13
4.4.2 Optimal code segment . 14
4.4.3 Generating the controller code . 14
4.4.4 Preserving the program’s behavior . 14

5 Preliminary Evaluation 15
5.1 NAT & GRE . 15
5.2 Sourceguard . 15
5.3 Failure Detection . 16

6 Outlook 17
6.1 Dynamic compilation . 17
6.2 Multi-dimensional optimizations . 17
6.3 Network-wide compilation . 17

7 Summary 19

References 20

Chapter 1

Introduction

1.1 Motivation

Thanks to programmable data planes, network programmers can now define the forwarding behav-
ior of their switches using programming languages such as P4 [13]. To ensure portability across
platforms, these languages abstract away many hardware details and rely on a compiler to “map”
programs to the available hardware resources. Typical hardware resources include the number of
processing stages, the amount of memory available in each stage, as well as the number of opera-
tions available per packet. Compiling a P4 program so that “it fits” the particularly tight resource
budget of typical switches [23] is a challenging problem that existing P4 compilers approach with
various optimizations techniques [17].

While useful, existing compiler optimizations are also inherently limited in that they cannot
reason about runtime information, as they only have access to the source code. Among others, this
forces them to conservatively account for all possible inputs – including unrealistic and infrequent
ones – leading to sub-optimal use of the resources or even compilation failures. In particular,
the network traffic can be such that some parts of a P4 program might be seldom executed while
occupying a significant amount of the allocated resources. Clearly, knowing such an execution profile
would enable further compilation optimizations, e.g., allowing to save stages or to reduce memory
consumption. Such profile-guided optimizations are well-known in general-purpose programming
languages and are available in many production-grade compilers (e.g., PGO in Clang [4], BOLT [22],
Propeller [8]).

1.2 Profile-guided optimization on programmable data planes

We argue that profile-guided optimization should also be applied to programmable data planes and
introduce P2GO.

Using runtime information, P2GO automatically optimizes a P4 program so that it requires
less resources. More specifically, given a (representative) packet trace and a set of forwarding rules,
P2GO profiles the P4 program by observing the execution path taken by each packet. P2GO then
uses this profiling information to adapt the P4 program such that it uses strictly less hardware
resources after compilation.

Despite being intuitive, we believe profile-guided optimizations open up a rich research agenda
for our community. This agenda includes research questions such as: How to compute representative
execution profiles? Which optimization techniques bring the most benefits? How do we optimize
multiple resources simultaneously? Should we allow possibly unsafe optimizations that may change

1

CHAPTER 1. INTRODUCTION 2

the program’s semantics? How do we deal with changes in the profile?
We start to answer these questions by optimizing “only” one resource, albeit a fundamental and

often limiting one: the number of pipeline stages. We introduce three profile-guided optimizations
to reduce the number of stages, all of which go beyond the capabilities of available P4 compilers.
In particular, we first show that profiling can help uncover “fake dependencies”, i.e., dependencies
that are reported by static analysis but do not manifest in practice. We then show that profiling
can shed light on opportunities for memory optimizations by ensuring that they do not change the
overall behavior of the P4 program. We finally show that profiling can uncover code segments that
are barely used but consume a significant amount of resources. Such segments are good candidates
to be offloaded to software.

P2GO preserves the semantics of the original program when executed on the original trace.
Concretely, if the traffic trace is not representative, then the behavior of the program might diverge
from the original one. P2GO addresses this problem by directly involving the programmer in the
optimization process. Specifically, P2GO reports to the programmer the various adaptations it
made to the original program, together with the profile-based observations that allow them. The
programmer can then choose to selectively accept them or not based on her knowledge of the general
traffic. Exposing only those profile-based observations that guided the performed optimization
allows the programmer to worry less about how representative the initial traffic trace is.

1.3 Novelty

Existing P4 compilers assume that the P4 program is static and needs to be mapped to hardware
resources without any modifications. P5 [11] challenged this assumption by modifying the P4
program such that it leads to a more efficient allocation. In contrast to P2GO, P5 is not profile-
guided and instead requires high-level policies as input to the optimization stage. P5 is, therefore,
only applicable to use cases where such high-level policies exist. P5 is also limited in that it can only
adapt the P4 programs in a coarse-grained manner, deactivating entire code blocks. In contrast,
thanks to profiling, P2GO can discover high-level policies and implementation-level inefficiencies.

1.4 Task and goals

The task is to design a process P2GO that optimizes the number of pipeline stages through three
optimization techniques, while leveraging insights gained from its traffic profile:

1 Remove dependencies that do not manifest in the traffic profile

2 Optimize resource usage by resizing memory allocations

3 Offload rarely used code segments to other devices or to the controller

Furthermore, this process is to be illustrated and evaluated through a proof-of-concept implemen-
tation featuring the most important components of P2GO.

The goal is to show the potential benefits of applying traffic profiling techniques to compiling
P4 programs and open new research directions for future work.

CHAPTER 1. INTRODUCTION 3

1.5 Overview

Chapter 2 gives background information on constraints imposed by the architecture on the mapping
of a P4 program to the resources of a programmable switch and presents related works.
Chapter 3 describes P2GO’s modus operandi through the illustration of a concrete example and
how P2GO profiles and optimizes it.
Chapter 4 describes the design of P2GO and its proof-of-concept (PoC) implementation, while
Chapter 5 features a preliminary evaluation carried out using the PoC.
Chapter 6 outlines future work and research directions.
Chapter 7 compactly summarizes our work.

Chapter 2

Background and Related Work

2.1 Background

The following section will present the necessary background information necessary to understand
P2GO’s optimizations and when such opportunities arise.

2.1.1 P4 Language

P4 [13] is a language to program packet processing pipelines independently of specific hardware
targets. On a high level, a P4 pipeline consists of a programmable parser that translates incoming
bytes into packet headers defined by the programmer, followed by a series of match-action tables
that modify these headers. The ‘control flow’ of the P4 program defines the conditions for each
table to be applied, while each table defines which header fields are matched (and how), and which
actions may be executed. Actions may modify header fields and read or write stateful memory
such as counters, meters, and registers. Importantly, the P4 program only defines which types
of matches and actions are possible for each table. The actual mapping from particular header
values to concrete actions is not known at compile time, but only specified at runtime by installing
match-action rules.

2.1.2 Architectural Constraints

P4 programs can be compiled to a wide range of software and hardware targets, such as software
switches [3], eBPF [5], FPGA NICs, or ASIC switches with programmable data planes. In particular
hardware targets cannot support arbitrary packet processing pipelines. Typically, hardware targets
implement a multi-stage pipeline with memory allocated to each stage in the pipeline, i.e. the
memory is usually not shared between stages. Computational resources are similarly bound to
stages. Consequently, typical hardware constraints include the total number of available stages
(i.e. the longest possible path), and the amount of memory as well as computational resources per
individual stage.

Target-specific P4 compiler backends must optimize the mapping of logical tables to physical
stages to ensure that the program fits onto the hardware target. If the resulting mapping requires
too many physical stages, the program cannot be compiled to the target. Specifically, if a table
might require more resources than available in a single stage, the compiler must distribute the
table across multiple stages. On the other hand, tables which do not require many resources, can
be applied concurrently in the same stage, which allows packing them more densely on hardware.
Independent tables even allow reordering to use resources more efficiently. This is impossible if

4

CHAPTER 2. BACKGROUND AND RELATED WORK 5

tables depend on another, in which case they have to be placed in different stages.
Important dependencies between two tables A and B, or between a table A and a conditional control
statement C are:

• Match Dependency: An action of A modifies a header field that either B matches on, or which
is used in C. B/C can only be applied/evaluated in a stage after A.

• Action Dependency: An action of A modifies a header field that an action of B reads or
modifies. B can only be applied in a stage after A.

• Reverse Read: An action of A reads a field that B modifies.
• Table Predication: Whether B matches depends on whether A has matched.
• Control Flow: Independent.
• Conditional Execution Dependency: Whether A is applied depends on the result of C. A can

only be placed in a stage where C can be evaluated.

From the above, it is clear that dependency optimization opportunities arise especially between
match- and action-dependencies, as they specifically do not allow placement of tables in the same
stage.

2.2 Related Work

In this section we present previous work associated with P2GO and group them into two categories
that P2GO combined: profiling execution paths and optimizing code for programmable switches.

2.2.1 Profiling execution paths

Previous work has explored tracking packets in the data plane’s control logic to provide visibility to
the programmer. P4DB [25] uses match-action tables and packet digests to report a packet’s path
to a debugging platform. Another approach [20] has explored online tracking of packets in the data
plane through a variation of the Ball-Larus encoding, which tracks all possible execution paths. In
this case, per-packet information is stored in metadata during execution. While simpler, P2GO’s
offline profiling approach is adequate to guide our optimizations. Future work could pair powerful
online profiling with P2GO’s optimization phases to allow real-time optimizations (see §6.1).

2.2.2 Optimizing code for programmable switches

There exist numerous approaches to optimizing the placement of SDN policies through virtualiza-
tion and network abstraction [18, 19, 24]. These works optimize rules needed to enforce endpoint
and routing policies by using a global view of the network. Similarly, [21] focuses on rules, applied
to both hypervisors and switches. SNAP [12] implemented a new high-level programming language
to efficiently distribute state, processing, and routing amongst devices of a network, by translat-
ing SNAP code to low-level switch code (NetASM). Unlike previous works, P2GO operates on a
per-device level and on the RMT architecture [14]. Particularly, P2GO directly optimizes P4 code,
which is more expressive. Also, special considerations need to be taken for stateful memory and
metadata, on top of the actual packet processing, which is entirely customizable. P5 [11] also opti-
mizes P4 code by removing dependencies between high-level features if they do not manifest in the
high-level provided by the programmer. On the contrary, P2GO relies on information produced
by profiling, which is more fine-grained. Moreover, P2GO achieves more general optimizations.
Concretely, P2GO optimizes dependencies on the level of individual actions and tables, opposed
to features, and also considers target-specific memory optimizations and offloading code segments.

Chapter 3

Modus Operandi

In this section we walk through the compilation of an example P4 code 1. We first describe the
functionality of the P4 code §3.1, before we explain how the compiler maps it to hardware §3.2.

Example 1 P4 program with multiple functions. The percentages show the hit rate for each table
determined by profiling.

1: control hit rate
2: if valid(ipv4) then
3: apply(IPv4) 100%
4: if valid(udp) then
5: apply(ACL UDP) 8%
6: if valid(dhcp) then
7: apply(ACL DHCP) 14%

8: if valid(dns) then
9: apply(Sketch 1) 2%

10: apply(Sketch 2) 2%
11: apply(Sketch Min) 2%
12: if sketch count >= 128 then
13: apply(DNS Drop) 1%

14: end control

3.1 Example P4 program

A network operator has programmed a device to support IP forwarding, simple UDP-based access
control list (ACL), DHCP and DNS server protection [9] (Ex. 1). First, the program takes care of
IPv4 forwarding (Table IPv4): It sets the egress port or drops packets with unknown destinations.
Next, the network operator applies two ACL tables: one filtering UDP packets in general and one
targeting DHCP packets in particular. The former (table ACL UDP) can drop packets for specific
UDP ports, while the latter (table ACL DHCP) can drop DHCP packets based on the offered IP
address of DHCP replies. Finally, the program keeps track of the number of packets per DNS flow
using a Count-Min Sketch (CMS)[16] with two hashes. The hash functions require two separate
registers (the tables Sketch 1 and Sketch 2 match on the respective hash values and query/update
the registers). The sketch output (sketch count, stored in packet metadata) is the minimum of

6

CHAPTER 3. MODUS OPERANDI 7

IPv4

ACL UDP

ACL DHCP

Sketch 1 Sketch 2

Sketch Min

sketch count >= 128

DNS Drop

Figure 3.1: Dependency graph for the example program (Alg. 1). Round nodes are tables, square
nodes are conditional control statements. Solid black arrows are conditional execution dependencies,
dashed blue arrows are match dependencies, and dash dotted violet lines are action dependencies.

all hashes (table Sketch Min) If the output exceeds a threshold, packets from the flow are dropped
(table DNS Drop).

3.2 Compiling the P4 program

Next, the programmer submits her P4 code for compilation to a target-specific P4 compiler. The
compiler is responsible for mapping the P4 tables to the hardware target, namely an ingress and an
egress pipeline each composed of a series of fixed-order stages. We will first describe the compilation
process and then the output of the compiler.

3.2.1 Mapping the program to hardware

In doing so, the compiler tries to minimize the stages used to make the pipeline more efficient.
Two main factors prevent the compiler from putting tables in the same stage: (i) dependencies
among tables; and (ii) the limited amount of memory available to each stage. First, two tables
are dependent if the execution of one depends –and thus must succeed– the other’s execution. In
our example DNS Drop will only be executed under a condition (packet’s flow has sent more than
128 packets already), which can only be evaluated after the execution of Sketch Min. Thus, tables
DNS Drop and Sketch Min need to be put in different stages. Second, each stage contains a limited
amount of memory that can be used by the tables mapped in the stage1. In our example Sketch 1

and Sketch 2 use stateful memory, namely a register array. Yet, the sum of the size of the arrays
they use exceeds the memory of a single stage. Thus, Sketch 1 and Sketch 2, need to be put in
different stages.

3.2.2 Compiler output

The compiler produces the binary to run in the target. Moreover the programmer can retrieve: (i)
the final allocation seen in Table 3.2 (ii) the dependency graph containing all dependencies among

1this is highly simplified due to NDA

CHAPTER 3. MODUS OPERANDI 8

P2GO

P
h
a
se

1
P

ro
fi

li
n

g

§4.1 Phase 2
Removing Dependencies

§4.2

Phase 3
Reducing Memory

§4.3

Phase 4
Offloading Code

§4.4

Input

p4
program

cfg
runtime
config

pcap
traffic
trace

Output

p4

optimized
program with
observations

Observation:
ACL UDP, ACL DHCP

are not dependent.
Optimization:

Remove dependency.

Programmer

verify observations

(optional)
constrain optimization

Compiler

Figure 3.2: P2GO works alongside the compiler, performs a series of profile-guided optimizations
to produce an optimized program which requires less resources. P2GO returns the profile-based
observations which guided the optimizations and which the operator needs to verify.

tables seen in Fig. 3.1; and (iii) the control graph containing all possible execution paths packets
may take throughout the program.

3.3 Profile-guided optimization with P2GO

P2GO aims to optimize P4 programs by leveraging profiling techniques (Fig. 3.2). Aside from the
program, the programmer needs to provide two inputs to bootstrap P2GO: the initial runtime
configuration of the program (i.e., the match-action rules installed in the tables) and a trace of
incoming traffic. For individual devices, these inputs can be recorded with relative ease assuming
that the network programmer has access to the device of interest.2 P2GO works alongside the
compiler; it iteratively modifies and re-compiles the P4 program, and analyzes the compiler output.
P2GO returns an optimized P4 program – which has the same behavior as the original program
for the given traffic trace – together with a summary of profile-based observations that guided each
modification of the original program. For example, P2GO might return the observation that the
memory of a table can be reduced without impacting the program’s behavior. If the programmer
agrees with these observations, she can use the optimized program or even re-submit it to P2GO
to optimize it further. Otherwise, she can re-run P2GO with one or more optimizations disabled.

P2GO operates in four phases. In the first phase, it profiles the behavior of the program. In
the following three phases, it optimizes the program guided by the profile.

3.3.1 Phase 1: Profiling

Using the traffic trace and runtime configuration, P2GO observes the execution path of each packet
to create the program profile. The profile provides two main insights: (i) the hit rate of each table,

2In practice, some match-action rules may be added by a central controller managing multiple interdependent
devices. This case requires network-die optimization. We discuss this in §6

CHAPTER 3. MODUS OPERANDI 9

Sets of non-exclusive actions

{IPv4, ACL UDP}
{IPv4, ACL DHCP}
{IPv4, Sketch 1, Sketch 2, Sketch Min}
{IPv4, Sketch 1, Sketch 2, Sketch Min, DNS Drop}

Table 3.1: During profiling, P2GO observes whether sets of actions are non-exclusive, i.e., are
applied to the same packet(s). Each item represents a specific action of the table; the action names
are omitted for brevity.

which is the percentage of packets the table matched; and (ii) the sets of non-exclusive actions that
are applied to the same packet(s). The annotation of Ex. 1 and Table 3.1 give an example profile
for our program.

3.3.2 Phase 2: Removing dependencies

In this phase, P2GO compares the dependency graph with the profile to detect dependencies
that do not manifest in practice. P2GO observes that while ACL DHCP depends on ACL UDP (see
Fig. 3.1), there is no set of non-exclusive actions that contains the dependent actions of both
tables (see Table 3.1). In other words, these actions are never applied to the same packet. P2GO
modifies the program to only apply ACL DHCP if ACL UDP misses, which allows the compiler to ignore
their dependency. For the modified program, the compiler places both tables in the same stage,
shortening the pipeline by a stage (see Table 3.2). Note that P5 would not be able to remove such
a dependency as an operator might need both ACLs.

3.3.3 Phase 3: Reducing memory

In this phase, P2GO searches for opportunities to shorten the pipeline without changing the pro-
gram’s behavior by slightly reducing the allocated memory. In our example, P2GO first finds that
reducing either the memory allocation for table Sketch 1 or table IPv4 also reduces the number
of required stages (see §4.3). Starting with Sketch 1, as it has a lower hit rate than IPv4, P2GO
profiles the reduced-memory program with the same runtime configuration and traffic trace and
discovers that the program behavior is changed: The hit rate of DNS Drop has increased. (The
memory reduction increases the false positive rate, causing DNS queries to be overcounted.) Thus,
P2GO discards this optimization of Sketch 1. Following, P2GO considers IPv4, finds that reduc-
ing its memory does not change the program behavior and applies this modification. The optimized
program occupies one stage less (see Table 3.2).

3.3.4 Phase 4: Offloading code to controller

In this phase, P2GO examines if parts of the program could be offloaded to the controller. P2GO
observes that DNS branch of Ex. 1 has low hit rates in the profile (2%), yet utilizes a significant
amount of resources. Thus, offloading the Sketch* and DNS Drop tables to the controller could
shorten the pipeline without overloading the controller (as the tables are rarely matched). To do
so, P2GO replaces the whole branch with a table that forwards DNS packets to the controller. As

CHAPTER 3. MODUS OPERANDI 10

Stage 1 2 3 4 5 6 7

Initial IP IP AU AD S1 S2 SM DD
Program

Removing IP IP AU AD S1 S2 SM DD -

Deps.

Reducing IP AU AD S1 S2 SM DD - -

Memory

Offloading IP AU AD C - - - - -

Code

Table 3.2: After each optimization phase, the program from Ex. 1 requires less stages. Each box

represents stage memory allocated to a table: IP IPv4, AU ACL UDP, AD ACL DHCP, S1 Sketch 1,

S2 Sketch 2, SM Sketch Min, DD DNS Drop, C To Ctl.

a result, the pipeline requires three stages less Table 3.2.3

P2GO reserves code offloading as the last phase to allow optimizing the data plane first. As an
intuition, if this was the first phase, P2GO might have offloaded both ACLs, originally requiring
two stages. Yet after removing dependencies, the tables require only one stage, and offloading them
has no benefits. Note that P5 would not remove this segment as it is used.

3Observe that removing any single one of those tables alone would not decrease the traffic moved to the controller.

Chapter 4

Design

Using the Tofino simulator and compiler (SDE 8.2) provided by Barefoot, P2GO optimizes pro-
grams written in P414.

1 We have implemented a PoC of P2GO in python using ∼300 LoC for
profiling and ∼1200 LoC for the optimization phases.

In the following, we elaborate on each phase of P2GO from a conceptual point of view.

4.1 Profiling P4 programs

The goal of profiling is to trace the execution paths that packets take through the P4 program.
To that end, P2GO first modifies the program such that each packet is marked with the sequence
of actions applied to it. Next, P2GO replays the traffic trace as input to the modified program
and collects the outgoing packets. From the marked packets, P2GO can infer which actions/tables
have been executed and which were applied on the same packet.Next, we elaborate on how P2GO
instruments the program and creates the profile.

4.1.1 Instrumenting the program

P2GO modifies the program to append a profiling header after the original headers of each packet.
The profiling header contains multiple fields, each corresponding to an action. Each field is set
when the corresponding action is executed. Note that these modifications have no impact on the
behavior of the actual program, as the instrumented program is only used during profiling.

4.1.2 Building the profile

P2GO loads the modified program in the Tofino simulator, installs the provided match-action rules,
and replays the traffic trace while collecting outgoing packets with profiling headers. By processing
the collected packets, P2GO infers a profile consisting of: (i) the fraction of packets that match each
table (hit rate); and (ii) the sets of actions that are applied to the same packet(s) (non-exclusive
actions).

4.2 Removing Dependencies

The goal of this phase is to find tables that are seemingly (i.e., according to static analysis) depen-
dent but practically mutually exclusive (i.e., according to profiling) and to remove their dependency.

1We refrained from using bmv2 [3] as our evaluation requires realistic resource allocation.

11

CHAPTER 4. DESIGN 12

In this case, P2GO modifies the program to explicitly express that the two tables can fit in the
same stage. Such opportunities are common: to make programs more reusable, programmers often
write the control pipelines of their programs as a sequence of apply statements, even though each
packet only matches a subset of them. In principle, it is possible for the programmer to use special
annotation (e.g., pragmas) or write the p4 control flow such that it explicitly expresses that certain
pairs of tables are mutually exclusive. In practice, though, considering all possible dependency
pairs can quickly overwhelm the programmer.

4.2.1 Identifying unseen, yet restrictive dependencies

P2GO considers as candidates for removal only dependencies (1.1) that are in the longest path of
the dependency graph, as only those have the potential to reduce the pipeline length. Among the
candidates, P2GO removes a dependency if it does not manifest in the profile, i.e., if the actions
in both tables that cause the dependency are not in any set of non-exclusive actions. To keep
changes to the program tractable for the programmer, P2GO removes only a single dependency,
even when multiple candidates exist. The programmer can re-run P2GO to successively remove
further dependencies.

4.2.2 Removing dependencies

P2GO automatically removes the unseen dependencies by modifying the program to indicate to
the compiler that two tables are mutually exclusive. Concretely, it adds a conditional statement
such that one of the dependent tables is only applied if the other misses.

4.2.3 Preserving the program’s behavior

While the optimization preserves the program behavior for the input trace, there may exist packets
in practice for which the dependency manifests, yet no such packet is part of the trace. To avoid
this, P2GO returns the pair of tables whose dependency is removed and the observation that no
packet can match both. Thus, the programmer can decide if such a packet exists, even though no
such packet is contained in the trace.

An alternative approach to deal with inaccurate observations without involving the programmer
would be to detect them at runtime. If the first table hits, we could apply a new table that matches
on the same fields as the second table and triggers a notification to the controller. This approach
only detects the problem; we leave mitigation for future work.

4.3 Reducing memory

The goal of this phase is to reduce inefficient resource allocations due to a lack of knowledge of
specificities of the underlying architecture, e.g., the available memory per stage. Often, independent
tables cannot fit in the same stage as the cumulative memory they require exceeds the available stage
memory. In this case, an additional stage will be allocated, which might be barely used, especially
if the tables narrowly exceed the available memory. To seize this opportunity, P2GO first probes
whether a large memory reduction shortens the pipeline. Next, it finds the minimum required
reduction to save a stage. Finally, it verifies that the reduction does not affect the program’s
behavior.

CHAPTER 4. DESIGN 13

4.3.1 Identifying and optimizing savings

For each table, P2GO initially halves the allocated memory and compiles the resulting program
to compare the number of required stages. If the new program requires at least one stage less, the
table is kept as a candidate. Among all candidates, P2GO selects the one with the lowest hit rate,
to minimize the risk of impacting the program’s behavior. Next, P2GO uses binary search to find
the minimum memory reduction that shortens the pipeline.

4.3.2 Preserving the program’s behavior

Intuitively, after this modification, new rules added by the operator might no longer fit into the
resized table, or there might not be enough register memory to store measurements. To avoid this,
P2GO: (i) verifies that the memory reduction does not change the behavior of the program on
the input trace and (ii) returns the change to the programmer. For the former, P2GO verifies
that the memory reduction does not change the program profile. For the latter, P2GO returns the
resized table or register and its new size. Thus, the programmer can determine whether the change
endangers the correctness of the program.

4.4 Offloading code to controller

The goal of this phase is to offload processing to the controller (or other devices), freeing up stages
for more useful operations. This opportunity arises when a certain type of traffic is rare or when a
feature is barely used. To that end, P2GO first identifies all possible combinations of tables (code
segments) that could be offloaded to the controller. Next, it selects the candidate that minimizes
the load on the controller.

4.4.1 Identifying offloadable segments

Not all parts of a P4 program can be offloaded. In particular, the offloaded code segment should be
self-contained such that packets forwarded to the controller: (i) need no additional state (e.g., meta-
data fields); and (ii) need not return to the data plane to complete processing after having been
processed in the control plane. Essentially, P2GO considers a code segment as candidate for mi-
gration if it does not have any dependency with the rest of the program that will remain in the
data plane.

Concretely, a given set of tables and registers S is called valid if and only if all of the following
are true:

(i) S is a set of closed directed acyclic subgraphs of the control graph

(ii) There does not exist an element e in the complement of S such that S depends on e or e
depends on S. An element e depends on S if and only if e depends on at least one element in
S. Similarly, a set S depends on an element e if and only if at least one element in S depends
on e. An element e2 depends on an element e1 if and only if e2 utilizes state/data modified
by e1.

(i) is important to avoid having to send packets from the control plane back to the data plane.
Instead, the control plane is responsible for forwarding incoming packets correctly. (ii) is crucial
to avoid split-brain scenarios between data and control planes.

CHAPTER 4. DESIGN 14

4.4.2 Optimal code segment

Among all candidates, P2GO selects the segment that causes the least traffic to be redirected to
the controller while saving at least one stage. P2GO finds this segment across all candidates using
dynamic programming. To compute the stage savings and the portion of packets redirected to the
controller P2GO compiles and profiles a modified program for each candidate. P2GO automatically
generates such a program for each candidate by replacing the corresponding segment with a table
that redirects traffic to the controller and by adding match-action rules equivalent to the superset
of match-action rules of the candidate segment. 2

4.4.3 Generating the controller code

Currently, P2GO informs the programmer of the removed tables that need to be implemented
elsewhere. Using a recently added compiler backend [6] compiling P4 to uBPFs [5], one could
automatically offload data plane sections to, for instance, Open vSwitch [7].

4.4.4 Preserving the program’s behavior

If more packets hit the removed segment in practice than during profiling, the load on the controller
increases. Thus, more packets will suffer increased delay. This might be especially undesired if the
selected code segment is triggered upon a detected anomaly. Indeed, if the trace does not contain
abnormal traffic, the corresponding code segment would seem unused. To avoid removing code
segments that might be extremely useful in very critical times for a network, P2GO returns to the
programmer the code segment that could be offloaded (in table names). The programmer can then
decide whether she needs the particular code segment in the data plane.

2P2GO’s PoC implements a simplified version: the superset of rules is not generated, instead the table’s default
action is to redirect packets to the controller. While this could forward possibly more packets than intended, it is
sufficient to illustrate the concept. All examples in 5 are not impacted by this problem.

Chapter 5

Preliminary Evaluation

Another important chapter is the evaluation which should clearly describe the experiments you
performed (setup, number of measurements, . . .), show the results you achieved in figures and/or
tables and discuss and compare the results.

In this section, we use three examples to show that our PoC implementation of P2GO is capable
of producing optimized P4 code when presented with traffic traces that allow it. Below, we briefly
explain each example and how P2GO optimizes it. P2GO can reduce the number of stages for each
example by applying one of its optimizations (Table 5.1). All example programs are written in P414
and run on a Tofino switch [2]. We generated traffic for each example using a traffic crafting library
[10]. Excluding compilation time, P2GO’s runtime is in the order of tens of seconds. Reducing
memory requires re-compilations for the binary search (§4.3), resulting in a total runtime of a few
minutes.

5.1 NAT & GRE

We use the features NAT and GRE (tunneling) from switch.p4. These features are dependent, as
tunneled packets might need IP address translation after reaching their destination. However, the
example traffic trace does not contain any packets making use of both features simultaneously.

By profiling, P2GO observes that the tables of both features are independent and removes the
dependency between NAT and GRE. This allows the compiler to place both features in the same
stage and effectively saves one stage (see Table 5.1).

5.2 Sourceguard

We implement the Sourceguard feature from switch.p4.1 Sourceguard ensures that clients only use
IPs that were assigned statically or by a DHCP server. Sourceguard checks if the ‘source address’
of a packet is contained in a DHCP snooping database. We have implemented this Database as a
Bloom Filter (BF) with two hash functions.2

P2GO observes that if we decrease the amount of memory assigned to the BF, we can gain a
stage. P2GO resizes a single register array by merely -8.4%, maximizing memory utilization while
saving a stage (see Table 5.1).

1We adapted the implementation to be standalone and to use stateful memory for the DHCP database.
2We cannot report the exact amount of memory used due to NDA.

15

CHAPTER 5. PRELIMINARY EVALUATION 16

Example Relevant Optimization Stages

Before After

NAT & GRE Removing Dependencies 4 3
Sourceguard Reducing Memory 5 4
Failure Detection Offloading Code 4 2

Table 5.1: P2GO reduces the pipeline of each example by at least one stage.

5.3 Failure Detection

This example aims at detecting link failures, inspired by Blink [1]. It notifies the controller if
prefixes experience more retransmissions than a predefined threshold. Our example includes a
BF to detect retransmitted packets, a CMS to count the retransmission per prefix, and a table
FailureAlarm to push notifications to the controller.

P2GO’s profiling shows that only a few packets use the CMS, and even fewer are matched by the
table notifying the controller. Indeed, only retransmitted packets use the CMS and FailureAlarm

matches as often as there are remote failures. P2GO offloads the CMS to the controller and hereby
frees two stages (see Table 5.1).

Chapter 6

Outlook

P2GO demonstrates that profiling can reveal ways to statically shorten the physical pipeline of
a P4 program at the device-level without changing its behavior. This is only the tip of the ice-
berg of potential optimization opportunities enabled by profiling techniques. Next, we discuss the
possibilities of dynamic, multi-dimensional, and network-wide optimizations.

6.1 Dynamic compilation

P2GO’s offline optimizations of a P4 program are beneficial for as long as the computed profile
remains representative. Yet, network traffic and device configurations can change over time, leaving
an initial profile outdated. A promising research direction to tackle this is online profiling in which
we would instrument the program with monitoring instructions that update the profile at run time
similarly to [20, 25]. Online profiling enables real-time adaptation of the running code by optimizing,
compiling, and loading programs at runtime. However, real-time monitoring is computationally
expensive, creating a trade-off between profiling accuracy and overhead. Additionally, frequently
compiling and reloading a new program to the device might lead to downtimes.

Research question: Where is the sweet spot for maximizing the benefits of online profiling, given
the cost of monitoring, compiling, and loading new programs?

6.2 Multi-dimensional optimizations

Programmable data planes tend to be limited across many resources (e.g., stages, buses, ALUs,
PHVs), all of which can cause the compilation of a program to fail. In this paper, we show
that profiling can be used to optimize the number of required stages. Yet, this approach can be
extended to all hardware resources, effectively broadening the optimization space. Navigating this
multi-dimensional optimization space is complex, as there might be many different combinations
of optimizations whose impact on the program is hard to statically predict.

Research question: How can profiling help the compiler find the modifications that optimize
the program while having minimum impact on its behavior?

6.3 Network-wide compilation

While our work shows the potential of profiling for a single network device, it also opens the door
for profile-guided optimizations in a network-wide context. Oftentimes, a network contains multiple

17

CHAPTER 6. OUTLOOK 18

devices managed by a centralized controller that dynamically installs match-action rules. Optimiz-
ing the code in each switch in isolation is (i) suboptimal as it prevents us from splitting functionality
across devices; and (ii) often infeasible as devices might be interdependent. With an appropriate
abstraction similar to the “one big switch” abstraction in software-defined networking [18], we
believe profiling could also guide network-level optimizations.

Research question: How can we design an abstraction that encapsulates all computational
resources and architectural restrictions of (a set of) RMT devices [15] to allow for network-wide
profile-guided optimizations?

Chapter 7

Summary

Our work P2GO showcases how static traffic profiling enables various optimization techniques used
for minimizing resource usage on programmable switches. We built a self-contained proof-of-concept
focusing on three optimization approaches tackling inefficiencies at different levels (architecture,
hardware, network) and carried out a preliminary evaluation in a controlled environment. While we
focused on statically reducing pipeline stages of one device, we acknowledge and propose promising
research directions facilitated through online traffic profiling and how it can fundamentally change
the workflow of network programmers.

19

Bibliography

[1] Blink: Fast connectivity recovery entirely in the data plane. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19) (Boston, MA, 2019), USENIX
Association.

[2] Barefoot tofino. https://barefootnetworks.com/products/brief-tofino/, accessed Jun
2020.

[3] Behavioral model version 2. https://github.com/p4lang/behavioral-model, accessed Jun
2020.

[4] Clang Compiler User’s Manual. https://clang.llvm.org/docs/UsersManual.html, ac-
cessed Jun 2020.

[5] Linux kernel documentation on berkeley packet filters. https://www.kernel.org/doc/

Documentation/networking/filter.txt, accessed Jun 2020.

[6] p4c-ubpf: a new back-end for the p4 compiler. https://p4.org/p4/p4c-ubpf.html, accessed
Jun 2020.

[7] P4rt-ovs: Programming protocol-independent, runtime extensions for open vswitch using p4.
https://github.com/Orange-OpenSource/p4rt-ovs, accessed Jun 2020.

[8] PROPELLER: Profile Guided Optimizing Large Scale LLVM-based Relinker. https:

//github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf, accessed Jun
2020.

[9] Protecting against rogue dhcp server attacks. https://www.juniper.net/documentation/

en_US/junos/topics/topic-map/example-configuring-port-limiting.html, accessed
Jun 2020.

[10] Scapy, packet crafting library. https://scapy.net, accessed Jun 2020.

[11] Abhashkumar, A., Lee, J., Tourrilhes, J., Banerjee, S., Wu, W., Kang, J.-M., and
Akella, A. P5: Policy-driven optimization of p4 pipeline. In Proceedings of the Symposium on
SDN Research (New York, NY, USA, 2017), SOSR ’17, Association for Computing Machinery,
p. 136–142.

[12] Arashloo, M., Koral, Y., Greenberg, M., Rexford, J., and Walker, D. Snap:
Stateful network-wide abstractions for packet processing. pp. 29–43.

[13] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,
Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. P4:

20

https://barefootnetworks.com/products/brief-tofino/
https://github.com/p4lang/behavioral-model
https://clang.llvm.org/docs/UsersManual.html
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://p4.org/p4/p4c-ubpf.html
https://github.com/Orange-OpenSource/p4rt-ovs
https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf
https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/example-configuring-port-limiting.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/example-configuring-port-limiting.html
https://scapy.net

BIBLIOGRAPHY 21

Programming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev.
44, 3 (July 2014), 87–95.

[14] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Izzard, M., Mu-
jica, F., and Horowitz, M. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn. ACM SIGCOMM Computer Communication Review 43, 4
(2013), 99–110.

[15] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Izzard, M., Mu-
jica, F., and Horowitz, M. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM (New York, NY, USA, 2013), SIGCOMM ’13, Association for Computing Ma-
chinery, p. 99–110.

[16] Cormode, G., and Muthukrishnan, S. An improved data stream summary: The count-
min sketch and its applications. In LATIN 2004: Theoretical Informatics, M. Farach-Colton,
Ed., Lecture Notes in Computer Science, Springer, pp. 29–38.

[17] Jose, L., Yan, L., Varghese, G., and McKeown, N. Compiling packet programs to
reconfigurable switches. In 12th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 15) (2015), pp. 103–115.

[18] Kang, N., Liu, Z., Rexford, J., and Walker, D. Optimizing the “one big switch”
abstraction in software-defined networks. In Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies (New York, NY, USA, 2013), CoNEXT
’13, Association for Computing Machinery, p. 13–24.

[19] Kanizo, Y., Hay, D., and Keslassy, I. Palette: Distributing tables in software-defined
networks. In 2013 Proceedings IEEE INFOCOM (2013), pp. 545–549.

[20] Kodeswaran, S., Arashloo, M. T., Tammana, P., and Rexford, J. Tracking p4
program execution in the data plane. In Proceedings of the Symposium on SDN Research
(New York, NY, USA, 2020), SOSR ’20, Association for Computing Machinery, p. 117–122.

[21] Moshref, M., Yu, M., Sharma, A., and Govindan, R. Vcrib: Virtualized rule manage-
ment in the cloud.

[22] Panchenko, M., Auler, R., Nell, B., and Ottoni, G. Bolt: a practical binary opti-
mizer for data centers and beyond. In 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO) (2019), IEEE, pp. 2–14.

[23] Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., and Rex-
ford, J. Heavy-hitter detection entirely in the data plane. In Proceedings of the Symposium
on SDN Research (2017), pp. 164–176.

[24] Yu, M., Rexford, J., Freedman, M. J., and Wang, J. Scalable flow-based networking
with difane. In Proceedings of the ACM SIGCOMM 2010 Conference (New York, NY, USA,
2010), SIGCOMM ’10, Association for Computing Machinery, p. 351–362.

[25] Zhang, C., Bi, J., Zhou, Y., Wu, J., Liu, B., Li, Z., Dogar, A. B., and Wang, Y.
P4db: On-the-fly debugging of the programmable data plane. In 2017 IEEE 25th International
Conference on Network Protocols (ICNP) (2017), pp. 1–10.

	Introduction
	Motivation
	Profile-guided optimization on programmable data planes
	Novelty
	Task and goals
	Overview

	Background and Related Work
	Background
	P4 Language
	Architectural Constraints

	Related Work
	Profiling execution paths
	Optimizing code for programmable switches

	Modus Operandi
	Example P4 program
	Compiling the P4 program
	Mapping the program to hardware
	Compiler output

	Profile-guided optimization with P2GO
	Phase 1: Profiling
	Phase 2: Removing dependencies
	Phase 3: Reducing memory
	Phase 4: Offloading code to controller

	Design
	Profiling P4 programs
	Instrumenting the program
	Building the profile

	Removing Dependencies
	Identifying unseen, yet restrictive dependencies
	Removing dependencies
	Preserving the program's behavior

	Reducing memory
	Identifying and optimizing savings
	Preserving the program's behavior

	Offloading code to controller
	Identifying offloadable segments
	Optimal code segment
	Generating the controller code
	Preserving the program's behavior

	Preliminary Evaluation
	NAT & GRE
	Sourceguard
	Failure Detection

	Outlook
	Dynamic compilation
	Multi-dimensional optimizations
	Network-wide compilation

	Summary
	References

