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Abstract

To navigate an agent through a physical environment, it has to process visual and
spoken instructions and clues in order to reach the goal destination. This often
implies that the given information is in no way complete and missing information
has to be read from context. Adding to this problem is, as almost always in any
machine learning task, the problem of not enough annotated data.

In this project we dive further into the already done work on Vision and
Language Navigation. The Speaker-Follower model as well as the environmental
dropout model are used in combination with the Room-for-Room (R4R) data
augmentation technique. By combining these approaches we hope to see an
improvement in generalization, i.e. a higher success rate on unseen environments.
Both models are trained and tested on Room-to-Room (R2R) as well as on R4R.

The best results were obtained by the environmental dropout model trained
on R4R data. A 32.1 % success rate in unseen environments has been achieved
which is a 3.5 % increase considering previous models on the R4R dataset. The
navigation error decreased from a previous best of 8.08 m to 7.58 m for our model
which is an improvement of 0.5 m.
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Chapter 1

Introduction

General Task

The task of vision and language navigation generally describes an agent (robot)
that moves in a physical environment receiving verbal instructions. The agent
has to combine the visual and textual input into an action a at any given time t
(at). A schematic overview of this process is given in Fig. 1.1.

A widely studied topic currently in Visual and Language Navigation is how
can one make sure that a given agent really follows the visual and the textual
commands it receives. The agent should be capable of following these commands
in a complex real world environment. An example of a textual command would
be: "Walk past the dining room table and the television. Make a sharp turn left
through the doorway and stop at the bottom of the stairs."

In the best case it is able to relate this language instruction perfectly to
the visual environment. To study whether the agent really follows these textual
instructions and how it follows them, the Room-to-Room (R2R) [1] simulator is
used. It uses real world images from the Matterport3D indoor environment [2].
With all this information, namely the complex environments and the human-
spoken instructions, the task that we face is composed of problems in vision,
language and robotics. The main question now is: How can we improve the
performance of the current models and how can we make sure that the agent
really follows the spoken instructions?

1



1. Introduction 2

Figure 1.1: General Schematic of the room-to-room task. The orange robot agent
receives a spoken instruction and a panoramic action space as input. With this
input it has to decide which action at time t (at) it will take. The decided
action is depicted by the red arrow. It starts from the start point (red star) and
tries to reach the end point (blue star). When the robot receives the spoken
instruction "stop" and is within a certain threshold distance of the goal location,
it successfully solved the task.

Possible Solutions

One of the main points to improve performance in the R2R paper [3] is to use
environmental dropout. This strategy is used to counteract the rather poor per-
formance of the R2R model in unseen environments. Speaking of poor perfor-
mance in unseen environments, the generalization ability of such an algorithm is
of course one of the main concerns when developing a navigational robot.



1. Introduction 3

The strategy that Tan et al. [3] used to combat the weak generalization abil-
ity was to mix imitation learning (IL) and reinforcement learning (RL). This is
combined with semi-supervised learning ,i.e. environmental dropout. The last
mentioned environmental dropout helps in generating more diverse seen envi-
ronments, which result in a much better performance of the agent in unseen
environments.

Another common problem with training a machine learning model is the
lack of training data. The same problem arises in this case where there are
not enough "seen" environments to train the agent. Environmental dropout
addresses that problem by generating new environments by using dropout of
certain visual features. With these new environments generated, a neural speaker
model generates new instructions and this data is finally used to train the model.
This is close to the approach that Fried et al. [4] used, albeit they did not have
environmental dropout as an additional tool.

The Speaker-Follower model from Fried et al.[4] incorporates the speaker at
training and at test time. The speaker synthesizes new routes which it learned
from human annotators. At training time, the speaker helps the follower (agent)
by synthesizing additional route-instruction pairs. With these labeled pairs, more
labeled data is available, which is always a good thing to have when training a
machine learning model.

Another major problem in R2R is that paths are mostly shortest paths to the
goal location. The metrics used to evaluate the model are also mostly based on
goal completion. This however means that the path does not match the spoken
instruction a lot of times. To address this the approach from Jain et al. [5]
is used. In this paper they proposed what they call the Room-for-Room (R4R)
approach. R4R is basically the concatenation of paths from R2R to create longer,
twistier paths and train the agent on these paths. In these longer, twistier paths
the importance of not always going directly to the goal becomes much clearer
compared the standard R2R task.

This R4R path conversion emphasizes the impact of language on the navi-
gational agent. As Thomason et al. (2019) [6] showed, withholding language
inputs from the action sampling agent noticeably reduces the performance in un-
seen environments. It has been shown that withdrawing language input results
in a performance decrease but what about withdrawing visual input. Hu et al.
[7] looked into this by training a state-of-the-art model without any visual input.
They found that models with visual features failed to learn generalizable visual
grounding. Even more surprising, they found that models trained without any
visual features performed as good as other models on unseen environments. This
led the authors to a "mixture-of-experts" approach where they trained the mod-
els separately. They train the model once with visual input and once without and
combine them afterwards. The resulting model gives them an increased success
rate in unseen environments.



Chapter 2

Related Work

There have been a lot of proposed approaches to solving the VLN task in the
previous years. All the work done up to this date can be separated into two main
groups:

Instruction-based Navigation

The first being the approach of following natural language navigational instruc-
tions in an environmental context (MacMahon et al., 2006 [8]; Vogel and Juraf-
sky, 2010 [9]; Chen and Mooney, 2011 [10]; Andreas and Klein, 2015 [11]; Mei
et al., 2016 [12]; Fried et al., 2018 [13]; Misra et al., 2018 [14]). In this task, an
agent is required to navigate through an environment given a textual instruction.
Among all this work Anderson et al. [1] tried something new and introduced a
photo-realistic dataset - Room-to-Room (R2R). All images are real images taken
by Matterport3D [2] including natural instruction. In these environments the
agents’ ability to combine the real world inputs becomes even more crucial as it
should be able to do it in the real world anyways. Some work has been done by
building on top of the work of Anderson et al. [1].

Ma et al. [15] proposed a self-monitoring agent consisting of two comple-
mentary modules namely visual textual co-grounding and a progress monitor to
regularize textual grounding. This progress monitor is also used to predict the
progress of the agent in the route and tells the agent which instructions already
has been completed. Ma et al. introduced a self-monitoring agent with two
complementary components: (1) a visual-textual co-grounding module to locate
the instruction completed in the past, the next instruction and the next moving
direction and (2) the progress monitor to ensure that the instruction fits to the
navigation of the agent.

4



2. Related Work 5

Fried et al. [4] introduced a Speaker-Follower model in order to synthesize
new instructions for data augmentation. The speaker model learns to generate
synthetic routes by training on human instructions. This generates more route-
instruction pairs, which also means more annotated data to train the model. This
same speaker also pragmatically ranks how the candidate action sequences fit to
the instruction.

Tan et al. [3] has environmental dropout as its main idea. Environmental
dropout means that features are dropped out of the environment in order to gen-
erate "different" environments to train on and therefore increasing the number
of training environments. Environmental dropout is applied to the back trans-
lation model, which will be explained in more detail in a later section. Back
translation [16] is a popular semi-supervised learning method which has been
well studied in the past (Hoang et al., 2018 [17]; Wang et al., 2018 [18]; Prab-
humoye et al., 2018 [19]). In back translation, the model learns two translators
- a forward one from source to target sentence and a backward one from target
to source sentence. With this backward translator, more source sentences are
generated from an external language corpus. The newly acquired pairs of source
and target sentences are then used to train the forward translator which results
in a performance boost of translation ability.

Embodied Vision-and-Language

The second group represents the work done on vision-based navigation tasks
(Mirowski et al., 2017 [20]; Zhu et al., 2017 [21]; Yang et al., 2019 [22]; Mirowski
et al., 2018 [23]).

Mirowski et al. [20] formulated the navigation task as a reinforcement learn-
ing problem. In particular they considered jointly learning the goal-driven re-
inforcement learning problem with auxiliary depth prediction and loop closure
classification tasks. With this approach they are able to navigate only using raw
sensory input even when the goal location changes frequently.

Zhu et al. [21] proposed an agent which can plan a sequence of actions ahead
to achieve it’s goal. In this approach the agent has to have knowledge about
objects and their features, as well as actions and their preconditions and effects.

Yu, Fried et al. [7] investigated into the role the vision has on the navigation
task. They showed that even when vision is withdrawn from the agent it can still
perform really well for several tasks including VLN.
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Other approaches

Yu et al. [24] tried a different approach considering path sampling. Almost all
research uses shortest-path sampling but Yu et al. tried Random Walk path
sampling to augment the data. By using this approach they managed to close
the generalization gap further and achieve better unseen performance in their
model.

In a more recent paper Hong et al. [25] introduced the notion of splitting
up the instructions into smaller chunks. They recognized that many agents only
gain little performance by having two streams of information instead of one.
Their solution is to provide a fine-grained matching between sub-instructions
and the agents visual perception. They propose what they call the Fine-grained
R2R dataset or FGR2R. One problem that arises from splitting up the instruc-
tions into small parts is that the agents now have problems converting a sub-
instruction which depends on a previous sub-instruction. This means when only
sub-instructions are used the agents are not capable of seeing connections over
the whole instruction.



Chapter 3

Method

3.1 Speaker-Follower Model

The standard model to use in Visual Language Navigation is the instruction-
follower model. In this model the agent follows a given instruction and tries
to successfully reach the goal. The instructions are human made which means
that the number of instructions is limited as it is the case for a lot of supervised
learning tasks. To address this problem of not enough labeled paths, Fried et al.
[4] proposed a Speaker-Follower Model in which they used a speaker model. The
speaker model learns to generate route descriptions following a human example.
It is first trained on the available ground truth navigation routes and instructions.
Before training the follower, the speaker is now able to generate new synthetic
routes to add to the already existing physical routes.
The speaker supports the follower both at training as well as at test time. During
testing the follower creates specific routes resulting from the input instructions.
The speaker then pragmatically ranks these routes. By ranking these routes they
have created a pragmatic follower model which means the follower only chooses
routes that provide a good explanation of the observed description. This creates
a larger amount of supervision data which results in higher generalization ability
of the agent when considering unseen environments.
A schematic overview of the model can be seen in Fig. 3.1.

7



3. Method 8

Figure 3.1: Schematic description of the Speaker-Follower model from Fried et
al.. The speaker is first trained with a combination of ground-truth routes and
human made instructions. As an output of the speaker we get a synthetically
generated instruction. These synthetic instructions combined with human made
instructions are then used to train the follower.

3.1.1 Data Augmentation

To solve the ever existing problem of generalization in machine learning, a lot of
data augmentation techniques are used. Fried et al. use the synthetic speaker
model as mentioned before to increase the number of navigation instructions and
route pairs. A human like instruction is generated for each original instruction
from the training set using the shortest-path approach. The synthetic data is
combined with the original training data and the follower is trained on this com-
bined data set. After the first training the follower is fine tuned with human
annotated data.
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3.1.2 Panoramic Action Space

The used sequence-to-sequence model in this project has access to a panoramic
action space. This means that the agent not just only receives frontal visual
sensory input but first builds a 360 degree view of its surrounding. The current
viewpoint is discretized into 12 headings of 30 degrees times 3 elevations with
30 degrees. This panoramic action space eliminates the step of first turning the
agent in a certain direction to find a feature in the room. The agent can find any
feature in its panoramic view in one step, whereas in earlier work [1] it only had
a 60 degree frontal window.

3.2 Environmental Dropout

Dropout in neural networks / machine learning applications usually implies that
single "neurons" or nodes are dropped out during the training phase. Tan et al.
[3] proposed a different approach in their paper. They introduced the notion of
environmental dropout, which means dropping out real world object from RGB
images. When dropping out objects from an RGB image one quickly runs into
the problem of being inconsistent over different viewpoints. Tan et al. solve this
problem by only dropping out the image feature while fixing the orientation fea-
ture which keeps connectivity of viewpoints intact.
The forward model in environmental dropout is a navigational agent whereas the
backward model is a speaker model similar to the one of the Speaker-Follower.
The speaker model used by Tan et al. is an enhanced version concretely being a
Long-Short-Term-Memory Recurrent-Neural-Network with attention flow. Back
translation will be explained in detail in Sec. 3.4.3. This combination of tech-
niques allows Tan et al. to generate more data as well as more environments
which both lead to a better generalization ability of the model.

Figure 3.2: Schematic description of the Environmental Dropout model from Tan
et al.. Objects as a whole get "deleted" from the indoor environments as depicted
by the red star shapes.
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3.3 Datasets: Difference between R2R and R4R

3.3.1 Room-to-Room (R2R)

In R2R, the environment is represented by a graph where the nodes represent a
position the agent can be in. Edges between the nodes indicate that a direct path
between two nodes exists. In each node, the agent has an egocentric panoramic
view with the images all being captured from indoor environments. The paths
paired with language instructions are composed by sequences of nodes in this
graph. A path taken in R2R is always the shortest path between two nodes
provided it is no shorter than 5m and contains between 4 and 6 edges. Each path
has 3 associated language instructions. The average length amount of words per
instruction is 29 and the vocabulary consists of 3.1k words in total.

As mentioned before R2R always chooses the shortest path. This however
poses a problem since the shortest path may not always correspond to the path
that should be taken according to the given instructions. The shortest path has
some constraints mentioned above but they cannot solve this problem. A possible
solution is given in the next section.

The data is partitioned into one training set, two validation sets and one
test set. Different strategies [4] [26] have been used to guide the agent and to
introduce intrinsic/extrinsic reward. Fried et al. [4] use a follower model which
is trained by the student forcing method. That means that the agent’s decisions
are supervised by the action which takes it closest to the goal. The follower also
generates paths which are then scored by the speaker model during inference.
The same speaker is used to create an augmented dataset which is used as a
training extension to the original R2R dataset.

Wang et al. [26] use policy gradients to train their agent. The agent gets a
positive reward if it gets closer to the goal and a negative feedback otherwise.

Anderson et al. [1] also showed weaknesses in the currently used metrics.
They proposed the Success weighted by Path Length (SPL) score which penalizes
agents for taking longer paths. This score of course falls apart when we use the
R4R data set as explained in the next section. We will also explain the SPL in
more detail in chapter 4.1.
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3.3.2 Room-for-Room (R4R)

The navigation simulator is based on the Room-to-Room (R2R) simulator [27].
The problem that arises due to the R2R reference paths is that all these paths are
shortest-to-goal paths. This in turn means that the agent doesn’t have to have a
high language conformity in order to obtain a high score. Adding to this is the
fact that the largest path in the R2R dataset has only 6 edges. This problem is
addressed by the R4R instruction set which generates paths by combining R2R
paths together. Existing paths are concatenated if the end node of one path is
within a threshold distance of the start node of another path. Figure 3.3 shows
a schematic drawing of the R4R path construction.

Each newly generated path will map to NA ∗ NB joined instructions, where
NA and NB are the number of annotations associated with paths A and B.

This approach could of course be taken even further. That means augmenting
the R4R data once again by using it as an input with the conversion script from
Jain et al. [5]. By concatenating the paths from R4R with itself again the
resulting paths are even longer and the file size increase considerably. We tried
to do it for the training data and ended up with a file exceeding 60 Gb in size.
Training on so much data was not possible considering the time available to this
project.

Figure 3.3: This figure shows the concatenation of two paths in a random graph
network. The orange path represents the shortest path and the green / blue paths
represent two arbitrary R2R paths. The two paths are concatenated to create
longer, twistier paths with the same start / end points as the shortest path. The
blue path’s end node has to be within a threshold distance of 3.0 m of the green
starting node in order for the two paths to be concatenated.
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3.4 Supervised Learning

3.4.1 Imitation Learning (IL)

When using imitation learning, the agent learns to imitate the behaviour of a
teacher. In navigation the teacher selects the next navigable viewpoint which is
on the shortest route from the current viewpoint. The agent tries to minimize
the negative log probability of the teacher’s action.

3.4.2 Reinforcement Learning (RL)

When given a route from IL, the route is the shortest path but that does not
mean that it follows the spoken instructions. To make sure that the path taken
also follows the textual instructions reinforcement learning is used. In RL the
agent learns with certain rewards, for example if the agent stops within a thresh-
old distance from the goal it receives a positive reward and a negative reward
otherwise. Tan et al. [3] used both IL and RL combined in order to benefit from
both learners.

3.4.3 Back-translation

Back translation [16] is a very popular semi-supervised learning method which
has been used many times in research up to this date. In the back-translation
method the model learns two translators in the first step. The model consists of
given source and target sentences and it learns a forward translator from source
to target and a backward translator in the other direction. Then it generates
more source sentences using the backward translator which generates more data
to train the model. Fried et al. [4] used this approach when implementing their
speaker model to generate a larger amount of synthetically generated language
instructions.



Chapter 4

Experimental Setup

4.1 Evaluation Metrics

Path Length (PL) is equal to the total length of the predicted path. It is of course
optimal when it’s equal to the length of the reference path.

Navigation Error (NE) measures the distance between the last predicted path
node and the last reference path node.

Success Rate (SR) shows how many times the last node of the predicted path is
within a certain threshold distance of the last reference path node.

Oracle Navigation Error (ONE) measures the smallest distance from any node
in the path to the reference goal node.

Oracle Success Rate (OSR) measures how often any node in the path is within
a certain threshold distance from the goal. The goal is represented by the last
node of the reference path.

Success weighted by Path Length (SPL) [1] takes into account both Success Rate
and path length. What it does not consider is the similarity between the in-
termediate nodes of the predicted path and the reference path. This poses the
problem that even though it displays a high score that predicted path did not
really follow the spoken instructions but only got the goal right.

The metrics used in this project are the Success Rate, Navigation Error, Path
Length and the Success weighted by Path Length.

13
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4.2 Training and Testing

Training and testing is done in a variety of combinations in order to find the one
where the overall score benefits the most. The combinations are as follows:

Speaker-Follower model

• Trained on R2R, tested on R2R

• Trained on R2R, tested on R4R

• Trained on R4R, tested on R2R

• Trained on R4R, tested on R4R

and done respectively for the Environmental Dropout model.

For the Environmental Dropout model the speaker as well as the agent are
trained for 80’000 iterations. Then the agent is finetuned for another 200’000
iterations starting from the previously achieved best value in unseen environ-
ments. When training the speaker and agent, features are dropped out as much
as possible. The model is trained with the combination of augmented data and
training data.

In the Speaker-Follower model the speaker is first trained with human in-
structions for a maximum of 20’000 iterations. After the speaker has learned
to generate instructions a script is run which actually generates the instructions
and stores them in a JSON file. The agent is then trained with this augmented
data for 50’000 iterations and fine tuned further for another 20’000 iterations on
a combination of original and synthetically generated speaker data.
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4.3 Dataset and Simulator

Both agents (Speaker-Follower and Environmental Dropout) are evaluated on the
Matterport3D Simulator [1]. The R2R vision-and-language navigation dataset
is used as a baseline. In this task the agent receives a spoken instruction which
describes the path the agent should follow. The agent then takes multiple discrete
actions like turning and moving until it reaches the - what it think is - the goal
location. At this location it executes a "stop" action and ends the task. From
this dataset the R4R dataset is generated according to the conversion approach
from [5].

4.3.1 Data on R2R and R4R

#samples PL(mean) SPD(mean)
Train 14039 9.91 9.91

R2R Val. seen 1021 10.2 10.2
Val. unseen 2249 9.50 9.50

Train 233532 20.6 10.5
R4R Val. seen 1035 20.4 11.1

Val. unseen 45234 20.2 10.1

Table 4.1: Data on the R4R path conversion. PL(mean) denotes the average
path lengths and SPD(mean) denotes the average length of the shortest to goal
paths.
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4.4 Agent

4.4.1 Base Agent Model

Speaker-Follower

The model follows the approach of [1]. It takes the output from the final convo-
lutional layer of a ResNet [28] trained on the ImageNet [29] classification dataset.
To increase the ability to generalize, GloVe embeddings [30] are used to initial-
ize the word-embedding vectors in the speaker and follower. The training of
the follower consists of student-forcing (sampling actions from the model during
training and supervising using the shortest-path to reach the goal). Standard
maximum likelihood training with a cross-entropy loss is used to train the base
speaker model.

Environmental Dropout

The agent used is based on the encoder-decoder model from Fried et al. 2018 [7].
The encoder is a bidirectional Long Short Term Memory (LSTM) - Recurrent
Neural network (RNN) with an embedding layer. The decoder of the agent is a
regular attentive LSTM-RNN.

The view feature observed in the new environment is calculated by an element-
wise multiplication of the original feature and the environmental dropout mask.
To maintain the spacial structure, i.e. maintain consistency across different view-
points, only the ResNet [28] image feature is dropped while the orientation feature
is fixed. For a more theoretical view on this please refer to the paper of Tan et
al. [3].

This approach leads to an improvement of 3 points of the BLEU-4 score [3].
To this model, the environmental dropout approach is added to complete the
model.

4.4.2 R4R Speaker

The speaker implemented generates longer instructions from given routes by using
the R4R construction of paths. That means paths are concatenated with each
other. This concatenation will result in a lower score considering the success rate
since it is inherently more difficult to follow a path the longer it gets.



Chapter 5

Results

As already mentioned before, the 2 models were trained on both datasets R2R
and R4R using all possible combinations.

• Environmental Dropout: The speaker of the Environmental Dropout
(EnvDrop / ED) model is trained for 80’000 iterations as a first step.
Then the agent is trained another 80’000 iterations using a mixture of hu-
man annotated data and speaker synthesized data. After this training the
agent is trained further during 200’000 iterations with added environmental
dropout.

• Speaker-Follower: The speaker of the Speaker-Follower (SF) model is
trained for 20’000 iterations until it learned to generated somewhat reason-
able instructions. After this the agent is trained again with a mixture of
human annotated data and synthetically generated speaker data. To finish
the training, the agent is fine-tuned on the original data for another 20’000
iterations. After the training process trajectory predictions with pragmatic
inference are obtained by using the rational follower script.

17
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5.1 R2R Training

5.1.1 R2R Evaluation

Validation Seen Validation Unseen
# Model PL NE↓ SR↑ SPL↑ PL NE↓ SR↑ SPL↑
0 Random [5] 10.4 9.82 5.00 3.70 9.32 9.32 5.20 4.00
1 ED Base [3] 11.0 3.99 62.1 59.0 10.7 5.22 52.2 48.0
2 EnvDrop 10.3 4.07 62.7 60.0 10.48 5.71 47.6 44.0
3 SF Base [4] - 3.08 70.1 - - 4.83 54.6 -
4 Speak.-Foll. 11.8 3.05 71.5 - 11.8 4.64 55.6 -

Table 5.1: Results on R2R Validation Seen and Validation Unseen sets using
R2R training data. The first column shows the used models. Success Rate (SR)
and Success weighted by Path Length (SPL) are reported in percentages, Path
Length (PL) and Navigation Error (NE) in meters. The up-arrow after SR and
SPL indicates higher is better, whereas the down-arrow after NE indicates that
lower is better. ED / EnvDrop stands for Environmental Dropout and SF stands
for Speaker-Follower. The best performance is highlighted bold for each metric
except the path length. Our models are highlighted bold for better visibility.

In Table 5.1 a comparison is made between the base performance of Tan et
al. [3] and Fried et al. [4] and our performance using the basic R2R training. As
can be seen the results match quite good with a certain range of uncertainty. The
ED base performance is chosen to be the "Single Run" performance since it is
the most general and highly correlated to the agent’s performance. The SF base
performance is using data augmentation from the speaker, pragmatic inference
and a panoramic action space. The Speaker-Follower model number 4 displays
a rather high success rate of 71.5 % which can be misleading though. As stated
in earlier research [5] the success rate on the R2R dataset does not really give a
value on how much the path conforms to the reference path. It only evaluates
if the agent reached the goal location within a certain threshold distance. The
same is true for the unseen best performance with 55.6 %. Both these scores
these scores have been achieved with the standard Speaker-Follower model which
is odd since the environmental dropout model is supposed to use an improved
speaker-model version.
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5.1.2 R4R Evaluation

It is interesting to see in Table 5.2 that the EnvDrop model performed a bit
better in seen environments than it’s R2R counterpart when evaluated on R4R
data. The success rate of the agent in seen environments increased from 62.7% to
63.5%. Although this performance increase is marginal, the expectation would be
to see a drop in success rate since it is inherently more difficult to follow a longer
path than it is to follow a shorter path. In unseen environments the performance
drops as expected from 52.2% success rate to 45.7%.

Validation Seen Validation Unseen
# Model PL NE↓ SR↑ SPL↑ PL NE↓ SR↑ SPL↑
0 Random [5] 21.8 11.4 13.1 2.00 23.6 10.4 13.8 2.20
1 R2R EnvDrop 10.3 4.07 62.7 60.0 10.48 5.71 47.6 44.0
2 EnvDrop 10.1 3.92 63.5 61.0 14.1 5.51 45.7 40.0
3 R2R SF 11.8 3.05 71.5 - 11.8 4.64 55.6 -
4 Speak.-Foll. 16.4 7.26 20.6 - 16.9 8.77 16.0 -

Table 5.2: Results on R4R Validation Seen and Validation Unseen sets. Success
Rate (SR) and Success weighted by Path Length (SPL) are reported in percent-
ages, Path Length (PL) and Navigation Error (NE) in meters. The random agent
number 0 is taken from Jain et al. [5] for comparison purposes. R2R EnvDrop
and R2R SF are the two models evaluated on R2R to enable a direct comparison
between the two datasets.

We can see in Tab. 5.2 that even though the Environmental Dropout model
was trained on R2R data, it reached a decent score both regarding the Navigation
Error as well as the Success Rate. The Speaker-Follower model however did not
do so well. The performance drops considerably when tested on R4R data as
can be seen in Table 5.2 number 4. The success rate in seen environments drops
from 71.5 % to 20.6 % and from 55.6 % to 16.0 % in unseen environments. The
navigation error increases by a factor of about 2 in both cases.
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5.2 R4R Training

5.2.1 R2R Evaluation

Validation Seen Validation Unseen
# Model PL NE↓ SR↑ SPL↑ PL NE↓ SR↑ SPL↑
0 Random [5] 10.4 9.82 5.00 3.70 9.32 9.32 5.20 4.00
1 R2R EnvDrop 10.3 4.07 62.7 60.0 10.5 5.71 47.6 44.0
2 EnvDrop 15.4 5.05 50.6 41.0 30.1 7.84 30.9 18.0
3 R2R SF 11.8 3.05 71.5 - 11.8 4.64 55.6 -
4 Speak.-Foll. 11.7 3.97 60.0 - 11.5 5.43 42.8 -

Table 5.3: Results on R2R Validation Seen and Validation Unseen sets. The first
column shows the used models. Success Rate (SR) and Success weighted by Path
Length (SPL) are reported in percentages, Path Length (PL) and Navigation
Error (NE) in meters. R2R EnvDrop and R2R SF are the two models evaluated
on R2R to enable a direct comparison between the two datasets.

In Table 5.3 we see that the average path length of the environmental dropout
model increased drastically when training on R4R data, whereas the path length
in the Speaker-Follower model stays more or less constant. The average path
length of the environmental dropout model increased from 10.48 m to 30.1 m
in unseen environments. This increase in average path length is to be expected
since R4R consists out of longer paths. Considering the success rate we see the
expected drop in performance for both models. The success rate of the EnvDrop
model drops from 47.6 % to 30.9 % and the Speaker-Follower model drops from
55.6 % to 42.8 % in unseen environments. The lowest navigation error is still
held by the standard R2R Speaker-Follower model with 3.05 m which makes
sense since longer paths are inherently more difficult to follow. The R4R trained
Speaker-Follower model comes close to this value with 3.97 m of navigation error.
The SPL score is of course expected to drop considerably when working with
R4R datasets since the paths get much longer. Our R4R trained environmental
dropout model reaches an SPL of 18.0 % in unseen environments.
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5.2.2 R4R Evaluation

Validation Seen Validation Unseen
# Model PL NE↓ SR↑ SPL↑ PL NE↓ SR↑ SPL↑
0 Random [5] 21.8 11.4 13.1 2.0 23.6 10.4 13.8 2.2
1 RCM GO [5] 24.5 5.11 55.5 32.3 32.5 8.45 28.6 10.2
2 RCM FO [5] 18.8 5.37 52.6 30.6 28.5 8.08 26.1 7.7
3 EnvDrop 23.8 4.34 55.9 38.8 32.8 7.58 32.1 15.3
4 SF [5] 15.4 5.35 51.9 37.3 19.9 8.47 23.8 12.2
5 Speak.-Foll. 8.94 5.89 49.6 - 6.79 6.68 24.5 -

Table 5.4: Results on R4R Validation Seen and Validation Unseen sets. The first
column shows the different combinations of models and datasets.Success Rate
(SR) and Success weighted by Path Length (SPL) are reported in percentages,
Path Length (PL) and Navigation Error (NE) in meters. Model number 1 is the
goal oriented Reinforced Cross Modal Matching agent evaluated by Jain et al. [5]
which was originally introduced by Wang et al. [26]. This agent is listed because
it reached the highest success rate on the R4R dataset in previous research.
Model number 2 is the fidelity oriented RCM agent evaluated by Jain et al. [5]
which reached the previously best navigation error on the R4R dataset. The
agent number 3 is the Speaker-Follower model evaluated on R4R from Jain et al.
[5].

In Table 5.4 it can again be seen that considering the average path length,
our Speaker-Follower model stands on its own. Even though the Speaker-Follower
model evaluated by Jain et al. [5] also did not reach the average path lengths of
the other models, our model’s average path lengths remains to be the shortest.
The path lengths are 8.94 m / 6.79 m for seen / unseen environments respectively.
These small average path lengths also explain the navigation error in unseen
environments for our Speaker-Follower model. The navigation error is 6.68 m
which represents the lowest value among all the models. This however has to be
taken with a grain of salt since if the model already operates on shorter paths it
is less difficult to reach the goal within a certain distance.
This poses the question of why these average distances are so much smaller than
for the other models. The success rate on the other hands is similar to the
performance Jain et al. received in both seen and unseen environments. It has to
be said though that it is not clear if Jain et al. used the same Speaker-Follower
model from Fried et al. [4] that we used to generate predictions.
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To finish up this results chapter we present our environmental dropout model
(number 3 in the list) which was trained on R4R data as well as evaluated on the
same dataset. In seen environments it performs better in every category than
any model listed by Jain et al. considering the R4R dataset. The navigation
error is 4.34 m which displays an improvement despite having to process longer
paths. The success rate reached 55.9 % which is only marginally better than the
already tested RCM model at 55.5 %.

In unseen environments the success rate of our environmental dropout model
reached a value of 32.1 % which is an increase of 3.5 % to the previous best model
on the R4R dataset. The navigation error decreases from a previous best of 8.08
m (model number 2) to 7.58 m for our environmental dropout model.
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5.3 Path Conformity in R4R

5.3.1 Positive Example

Figure 5.1: This figure shows an agent which conformed good to the given in-
structions. The black circle is the starting point and the green circle is the goal
location. The blue arrows represent the agent and the red arrows represent the
Reference path. The navigation error of the agent is 1.84 m. The agent took 10
steps in comparison to the 11 steps of the reference path. A path is labeled as
successful if the agent stops within 3 m of the goal location.

The case that the agent almost perfectly follows the instructions as can be
seen in Fig. 5.1 is rarely seen in R4R. This is the case because the instructions
are long and very difficult to follow. Although the agent does not conform to the
reference path in many cases, the amount of shortest-paths taken is reduced in
R4R.
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5.3.2 Negative Example

Figure 5.2: In this figure an agent which did not follow the instructions well is
shown. The black circle is the starting point and the green circle is the goal
location. The blue arrows represent the agent and the red arrows represent the
Reference path. The navigation error is 0 m but the agent lacks conformity. The
agent took 6 steps, whereas the reference path consists of 10 steps.

Fig. 5.2 displays the case where the agent did not follow the instructions
correctly. Even though the navigation error is 0 m, the agent just took the
shortest-path to the destination. The reference path is 4 steps longer than the
path of the agent. This discrepancy in number of steps could be an additional
metric in future research to determine the conformity level of any given agent.
This would represent a metric similar to the Coverage weighted by Length Score
used by Jain et al. [5]. They also take Path Coverage into account and combine
it with the Length Score.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Even though the increase in performance of our environmental dropout model
combined with the R4R data augmentation technique is not that great, it cer-
tainly points into a direction. The direction being to combine different data
augmentation techniques and different environmental augmentation techniques.
One example used in this project being the environmental dropout combined with
the R4R data augmentation. Some combinations also showed that they gain lit-
tle to no performance when combined. An example being the Speaker-Follower
model combined with the R4R data augmentation process.
Using paths from the R4R dataset certainly increases the fidelity of the agent
[5] to the path throughout the whole path and gets away from the shortest-path
oriented agent.

Our agent closes the generalization gap between seen and unseen environ-
ments by another 3.5 % compared to previous work. If this trend is continued
and more work is done on the R4R dataset the generalization gap can surely
be decreased over time. By reaching a good performance of the agent in unseen
environments, it is then able to tackle real world situations and by training it
on the R4R dataset we can make sure that it better conforms to the spoken in-
struction. In a real world environment it is of utmost importance that the robot
(agent) conforms to the given instructions. Otherwise the robot could walk into
unwanted areas and be damaged or be fully destroyed in the worst case.

Even with this improvement of success rate and navigation error there is still
plenty to achieve in the R2R / R4R navigation task, since the human navigation
error is only 1.61 m [1].

25
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6.2 Future Work

There are a lot of other different approaches that could have been done to solve
the task but the time constraint was a limiting factor in this semester-project.
One approach would be to further fine-tune the models on the two datasets
interchangeably. That means train a model on R2R which is already trained on
R4R and the other way around. This approach leads to the topic of multitask
learning where the models could be even be used together to get the best out of
each model. Multitask learning could be used in combination with a loss function
where the two model each have their own prefactor.

Loss = α ∗ LossR2R + β ∗ LossR4R

With alpha and beta as prefactors, one could tune the model exactly to increase
the performance.

There has also been work done on different path sampling techniques. Yu et
al. [24] proposed random walk path sampling which generated better performance
in unseen environments. It would be interesting to see how random walk path
sampling is able to close the generalization gap for the environmental dropout
model in combination with the longer R4R paths.

The newly proposed model of Hong et al. [25] could also be used in combi-
nation with the R4R dataset. This would increase the path conformity of the
agent even more since Hong et al. broke up the instructions into smaller sub-
instructions to increase the agent’s conformity. However it remains unknown
whether or not this will also increase the overall performance since this approach
is known to have problems with parts of the instructions which are connected
with other instruction parts.
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