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Abstract

Natural Language Generation requires models that are able to fully grasp all
connotations of the human language in order to generate new meaningful sen-
tences. Current models can effectively capture the grammatical structure and
basic content of texts. However, the current state-of-the -art-models are not
capable of understanding text specific attributes such as sentiments, politeness,
humour and inclinations. This thesis aims to determine whether the current Au-
toencoder models are suitable for capturing such text attributes. To that end, it
will review and compare the performance of current Autoencoder models in terms
of Text Style Transfer, the task of modifying a sentences attribute while preserv-
ing its content and fluency. We argue that the nature of content and sentiment
related information in a text are inherently different. The content relates to what
is said, whereas sentiment relates to how the message is conveyed, which implies
a multitude of potential nuances. Therefore, understanding and generating sen-
timent, which is required for Text Style Transfer, is a more complex and intricate
task. This thesis analyses the performance of four different Autoencoder models
on the task of Text Style Transfer, which is performed by three different adver-
sarial attacks on two datasets. The experiments showed, that all Autoencoder
models, except for the VAE model delivered useful results. The SWAE model
outperformed the others due to its ability to keep the perplexity low, while still
achieving a high Style Transfer Accuracy. We conclude that while Autoencoder
models, in general, are capable of capturing sentiments, the models differ in their
efficiency of transferring sentiment.
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Chapter 1

Introduction

Deep Learning has become one of the most important areas of Artificial Intelli-
gence and has brought forward impressive results in a multitude of fields. One of
these fields is Natural Language Generation where computer processed language
is produced on the basis of natural language models. This enables numerous prac-
tical applications such as chat bots on a vast variety of online platforms, which
respond to customer queries posed in an open chat format. As of now, these mod-
els’ capabilities are limited to extracting a given input’s content, without taking
other aspects such as sentiment or politeness into account. One next step in the
evolution of natural language models is to add an understanding of specific text
attributes relating to sentiments. In order to develop an understanding of text’s
attributes one commonly uses the method of text style transfer. Joining the field
of current efforts, this thesis compares different approaches to text style transfer
on multiple models and datasets. To this end, different methods of Text Attribute
Transfer and Autoencoders will be reviewed and their effectiveness analyzed.

1.1 Autoencoder Models

The first Autoencoder model (AE) was introduced in 1984 [1] by Rumelhart et.
al. This model is the eponym for an entire group of models that stem from it.
Autoencoders have the ability to capture complex dependencies and to extract a
concise, compressed representation. The models’ core capabilities are not limited
to extracting information. They also have the ability to reconstruct samples.
This ability is particularly useful for generating data in a controlled fashion.

1.1.1 General Functionality

Autoencoders encode the input into a condensed latent representation and de-
code this representation to reconstruct the input while retaining as much of the
original information as possible. They make use of two separate networks that are
connected by a low dimensional intermediate layer, which is sometimes referred
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1. Introduction 2

to as the "artificial bottleneck". The first network acts as an encoder transform-
ing the inputs into a low dimensional intermediate representation known as the
latent state. The second network, acting as a decoder, takes a vector from the
latent state space and re-transforms the information into the original form. The
network’s weights are then updated by calculating a model-specific loss, whose
error terms are propagated back through both networks. This aims to find a
condensed data representation in the model’s latent space.

1.1.2 Latent Space

The latent space is the representation space for the encoded information. It’s size
is chosen to be smaller than the input space in order to enforce extraction and
condensation of the information into the reduced format. This nudges the model
towards finding intricate dependencies which can be stored compactly while still
generalizing the information well. Notably, this sometimes leads to obscure de-
pendencies stored in the latent space that are not comprehensible to humans.
There are different variations of the Autoencoder model which vary in the way
they build and train the latent space. Some variants try to regularize the latent
space in order to achieve continuity and completeness. In this context, conti-
nuity means that points that are close to each other in the latent space return
similar content. Whereas completeness refers to assigning meaningful content to
all the points present. These two attributes are required to ensure meaningful
results when sampling from the latent representation and enable the models use
in a generative setting. The different variants of Autoencoder models differ in
their regularization term when building the latent space. As structures the cur-
rent models were developed and tuned to capture content only, examining the
compatibility of current latent space regularization techniques with extracting
sentiment would be the natural step forward.

1.2 Text Attribute Transfer

Text Attribute Transfer, also referred to as Text Style transfer, is the task of
changing the attribute of a given sentence. For example, one could think of
changing the sentiment of a positive sentence such as "The atmosphere in the
restaurant was very friendly and openly welcoming." to "The atmosphere in the
restaurant was proper and polite." The objective is to maintain fluency and to
preserve content while changing the sentiment. Solving this task successfully
has implications on a models capability of capturing sentiment and allows for
conclusions to be drawn.
Choosing from a plethora of existing approaches this thesis aims to perform Text
Style Transfer by modifying the representations in the latent space. This is done
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by applying adversarial attacks found in the field of model robustness from the
image domain. These attacks aim to fool a classifier, by producing new samples
that are similar in content to the original but produce a different label when
classified. These existing algorithms are leveraged to perturb the latent space
representations of our encoded sentences to match the original in content but
produce different labels when classified using a model trained for sentiment. The
adversarial attacks used are Deep Fool and Projected Gradient Descent.
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Related Work

Text Attribute Transfer has been studied extensively with a multitude of different
approaches. In general, one divides the related work into latent-representation-
based and phrase-based approaches. Phrase-based approaches focus on separat-
ing content and sentiment phrase by phrase. They directly replace certain phrase,
that are detected to convey sentiment and replace them by new phrases conveying
the opposite sentiment.[2] Most approaches try to disentangle the latent space
by favoring a separate representation of the content and the attribute informa-
tion. To then rejoin the content vector with a modified attribute vector before
decoding.[3][4][5] However, as the sentiment is not only transferred by adjectives,
but also by the choice of term for the content i.e. the dictator vs. the president,
disentangling is not native and results in sentences of sub-optimal quality.[6]

Unlike these approaches, this thesis follows the previous work conducted by
Wang et. al. in their 2019 paper on "Controllable unsupervised text attribute
transfer via editing entangled latent representation".[6] The latent space remains
entangled, meaning that there is no effort to enforce capturing independent as-
pects of the information at hand in the latent variables. Text attribute transfer
is achieved by perturbing the latent space vectors.

4



Chapter 3

Encoder and Decoder Cells

The Autoencoder structure is achieved by connecting different neuronal networks
in the Autoencoder specific fashion. The two most important neuronal nets are
put in the role of the encoder and decoder. These networks can be exchanged
without changing the nature of the model, hence they are referred to as cells. This
thesis considered two potential candidates for the encoder and decoder networks.

3.1 Transformer cells

The first candidate are transformer based cells as they are used to produce current
state of the art text attribute transfer results.[7] It is well known, that training
these cells requires a enormous amount of resources and computational capaci-
ties. We hypothesized, that using the most common transformer based models as
cells is likely to be computationally infeasible. In order to confirm this hypothesis
a side experiment was conducted. For more information in this side experiment
please see A.

3.2 LSTM cells

The second candidate are "Long Short- Term- Memory"(LSTM) networks. They
were introduced in 1997 by Hochreiter and Schmidhuber [8] and are based on
Recurrent Neuronal Networks (RNN). RNNs can be derived from nonlinear
ordinary differential delay equations (DDE) as can be seen in "Fundamentals
of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)
network"[9]. These equations are Partial Differential Equations (PDEs) that
solve for a variable given its derivative with respect to time. This means that
the current value depends on the values observed before. Applying this to text
can be done by interpreting text as a discrete time series. The standard RNN
cells are unstable when trained, as they suffer from the problem of vanishing
gradients. This problem is that, when back-propagating the information over

5



3. Encoder and Decoder Cells 6

long sequences the information contained in the loss is consumed and converges
to 0. LSTM cells address this problem, while still maintaining the same control
flow as RNNs. The interior structure of the LSTM-cells is more complex and
incorporates multiple mechanisms enabling the flow of gradients.

Figure 3.1: Scematic Overview of the LSTM cell

The Graphic 3.11 shows that the cell takes 2 inputs, namely a cell state clt−1
and a hidden state hlt−1. Another variable used is the previous hidden state hl−1t−1.
The cell state is modified via so called "gates" that are controlled by the hidden
state input. The gates are either using the sigmoid activation, meaning that
values get modified in the range from 0 (forgotten) to 1 (kept) or the tanh whose
output values in the range of [−1, 1].
The first gate is the "forget gate" which modifies the cell state by multiplying the
sigmoid output calculated by taking the previous cell state and the hidden state
input. The second gate is the "input gate" that adds the product of the sigmoid
and the tanh activations of the hidden input and the previous cell state. These
updates produce the new cell state. Lastly we have the "output gate" which is
used for calculating the next hidden state. This is done by multiplying the tanh
activation of the new cell state with the sigmoid output of the hidden state and
previous cell state. This produces the new hidden state.

This LSTM cells are used as encoder and decoder structures in the imple-
mentation of this thesis models.

1Image was taken from [10]



Chapter 4

Models

Autoencoder models have undergone a somewhat natural evolution. Each model’s
flaws were addressed by the introduction of the subsequent model. This section
aims to reenact these developments while giving detailed insight into each model.

4.1 Autoencoder

The term Autoencoder is ambigous as it refers to the first autoencoder model
aswell as to the general class of models.

4.1.1 Definition

The Autoencoder model sometimes referred to as Deterministic or Vanilla Au-
toencoder was introduced in 1984.[1] The general structure of the model as has
been outlined in 1.1.1 is defined by three different entities. We have two different
neural nets, one acting as an encoder and the other as an decoder. The third en-
tity is the latent space, which is defined to be smaller in dimension than the other
two, creating the artificial bottleneck. These three components are combined to
create an Autoencoder model. This model is purely discriminative, having an
unregulated latent space. This allows arbitrary distributions in the latent space
that are usually placed far from each other in order to optimize for reconstruction.
This however makes it impossible to generate sentences in a controlled manner.
The models latent space is built in a deterministic fashion.

4.1.2 Loss

First, we need to define CE as the Cross Entropy loss:

CE(xi, yi) = − log
expxi[yi]∑
j expxi[j]

(4.1)

7



4. Models 8

The inputs xi must be a logits vector1 and yi is the ground truth label.

Lrec =
∑

i

CE(logtd,i, wt,i) (4.2)

In this formula the reconstruction loss is defined by taking the cross entropy loss
of the decoders output logits (i.e. the probabilities for each word over the entire
vocabulary) and the true input.

Lcla =
∑

i

CE(lt,i, yi) (4.3)

This formula defines the classification loss as defined by taking the Cross Entropy
loss between the labels estimated by the classifier and the original labels.

We define a parameter β that is used to emphasise the classification loss when
training.

Ltot = Lrec + β Lcla (4.4)

The AE models’ reconstruction and classification losses are added to generate
the total loss used for backpropagation.

4.2 Variational Auto Encoders

Variational Auto Encoders (VAE) were introduced by Kingma and Welling in
2014.[11] The main idea behind VAEs is to model the Autoencoders latent space
as a continous probability distribution and to regularize it. This is done by
introducing a standard multivariate gaussian distribution as a prior. Then a term
known as the KL divergence is penalized, taken between the latent (posterior)
and the prior distribution. The use of a multivariate gaussian prior is particularly
useful, as calculating the KL divergence between two gaussian distributions can
be written in a closed form using only the mean vectors and covariance matricies.
This prior forces the model to encode the different means around zero and favors
non shrinking variances. These introduces non-determinism and allows us to
theoretically create infinitely many output sentences.

4.2.1 Definition

VAEs train a latent space that is entirely different from deterministic AEs. For
learning a latent distribution the models latent space is split into the latent mean
and the latent variance vector. These vectors are used to represent the latent dis-
tibution. In order to obtain concrete vectors, necessary for training the decoder

1The vector has a length of the number of classes. Each entry in the vector corresponds to
the probability that the current sample is of the corresponding class.
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samples are drawn. Sampling operations are not compatible with standard back
propagation techniques.

4.2.2 Re-parametrisation Trick

In order to train the models using backpropagation the "Re-parametrisation
trick" is applied. It is done by moving the stochasticity to a dedicated parameter
ε. This allows sampling of a latent vector with the following formula:

z = µ+ σ ∗ ε, where ε ∼ p(x) (4.5)

p(x) denotes our prior distribution. This trick allows for the use of back propa-
gation effectively enabling training of the hidden mean vector µ and the hidden
variance vector σ.

4.2.3 Loss

The VAE loss is an adapted version of the AE loss. Adapting the reconstruction
term to match the use of probability distributions and extending it by adding
the Kulback-Leibler (KL) divergence term results in the so called Evidence lower
bound (ELBO) objective.

LELBO = Eq(z|x)[−log p(x|z)] + γ DKL(q(z|x)‖p(z)) (4.6)

Where q(x) denotes the posterior distribution, i.e. the distribution used for
approximating our true data distribution. The first term is the reconstruction
loss, which is similar to the AE reconstruction term, except the E operator is
used as we are dealing with distributions. The second term is the KL divergence
term, which gets scaled by a gamma factor to favour disentanglement of our
latent features and is defined as follows.

DKL(P‖Q) =

∫

X
p(x) log

q(x)

p(x)
dx (4.7)

Our goal is to penalize a high distance between the assumed prior distribu-
tion and the learned latent distribution. The KL divergence provides a tool for
assessing the distance between the densities p and q. This is done by measuring
the divergence between the two densities point-wise and then summing over the
whole domain. This measure is not symmetric and performs poorly in some sce-
narios. Introducing the KL term to the loss nudges the model towards encoding
the data close to each other, providing us with a continuous latent space. This
however comes at the cost of a higher reconstruction loss, as small perturbations
can result in a change of object reconstructed. These two objective terms are
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found to be inherently conflicting with each other. Perfect reconstruction would
lead to a high KL divergence and a perfect KL divergence implies, that there
is no information captured in the posterior distribution leading to a high recon-
struction loss. As a consequence a phenomenon known as the posterior collapse
occurs.[12] This happens when the model obtains a minimum by minimizing the
KL objective to 0. When this happens no information is captured in the poste-
rior and the decoder will not gain any benefits from taking the latent vector into
account. It will resort to generating outputs based on the input only in order
to lower the reconstruction error, effectively rendering the architecture useless
and creating independent x and z distributions. Generating text from such a
degenerated latent space is meaningless as there is no information to be used for
targeted generation.[13]

Previous work studied the occurrences of posterior collapse and concluded,
that it is likely to happen if the decoder is strong enough to lower the recon-
struction error by itself or if the latent space does not provide information useful
enough. Different solutions have been suggested such as KL-annealing by reduc-
ing the encoders stochasticity, dropping the KL penalty or using Word dropout
in the decoder in order to weaken the decoders capailities. This as has been thor-
oughly discussed in the 2019 Paper "Lagging Inference Networks and Posterior
Collapse in Variational Autoencoders" by He et. al..[14]

4.3 Wasserstein Auto Encoders

Wasserstein Auto Encoders were introduced by Tolstikhin et. al. in their 2019
paper called "Wasserstein Auto-Encoders".[15] They present a new family of
regularized Autoencoders, that keep the good properties of VAEs, including the
latent space exhibiting continuity and completeness, as well as the nature of a
generative model. Their novelty lies in the regularizer used to build the latent
space.

4.3.1 Definition

The solution to posterior collapse was provided by introducing the Wasserstein
distance as a new way of regularizing the model. It is based on the Optimal
Transport equation. [16] This equation provides us with a measure of distances
between two distributions, with a topology that is much weaker than the one de-
fined by the class of f-divergences (of which the KL divergence is a part of). This
makes it easier to capture distances in low dimensional space without producing
gradients that have a tendency become too large.[15] This regularizer is different
from the one used for building the VAE, as it does not require the posterior to
be close to the prior in every input sentence x. Instead it imposes constraints on
the aggregated posterior of z.
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4.3.2 Loss

The Wasserstein loss approximated to train the WAE is defined as follows.

Ltot = inf
Q(Z|X)∈Q

EPX
EQ(Z|X)[c(X,G(Z))] + λ DZ(QZ , PZ) (4.8)

The variables are defined such that Q is any non-parametric set of probabilistic
encoders, PZ is the prior distribution, PX is unknown data distribution, PG
defines a latent variable model QZ is the distribution of encoded datapoints i.e.
QZ := EPX

[Q(Z|X)].[15] We take c as the the reconstruction cost defined in
the VAE loss as Eq(z|x)[−log p(x|z)]. The DZ objective of the WAE can be
based on two different divergence measures. We base our WAE on the maximum
mean discrepancy (MMD) which is known to perform well on high dimensional
standard normal distributions. It is based on a positive-definite reproducing
kernel k : Z × Z → R. We choose it to be the inverse multiquadratic kernel
commonly chosen for high dimensional Gaussians.[12]

k(x, y) =
C

C + ‖x− y‖22
(4.9)

D = ‖
∫

Z
k(z, .)dPZ(z) −

∫

Z
k(z, .)dQZ(z)‖Hk

(4.10)

Where Hk is defined as the reproducing kernel Hilbert space (RKHS), generated
by the kernel mentioned above. This Hilbert space is spanned by real-valued
functions mapping Z to R.
This provides a good solution to the posterior collapse problem as the loss trains
two non-conflicting objectives. Howewer, there is an issue known as stochasticity
collapse that can be observed when training WAEs. Namely, that if a distribution
with small variance is met with a large gradient coming from a single sample, the
Gaussian distribution may degenerate to a Dirac delta function.[12]

4.4 Stochastic Wasserstein Auto Encoder

Stochastic Wasserstein Auto Encoders (SWAE) have been proposed by Bahu-
leyan et. al in their 2019 conference paper "Stochastic Wasserstein Autoencoder
for Probabilistic Sentence Generation". [12]

4.4.1 Definition

They provide a solution for the problem of stochasticity collapse. The problem is
solved by adding a KL divergence term to each sample. This favors stochasticity,
by imposing local priors to each posterior distribution.
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4.4.2 Loss

The SWAE loss is defined by adding an extra stochasticity term to the WAE loss.

Ltot = LWAE + λKL
∑

n

KL(N (µ
(n)
post, diag(σ

(n)
post)

2)‖N(µ
(n)
post, I)) (4.11)

Interestingly the KL term is applied sample-wise favoring local stocasticity while
avoiding the posterior collapse and the stochasticity collapse.

Figure 4.1: Schematic Overview of the Latent Space Regularization

Figure 4.12 visualizes the different latent space distributions. The blue lines
show the distribution of the latent variable used to calculate the regularization.
The purple lines show the prior distribution. The model is set to regularise the
latent distributions by producing blue lines i.e. latent distributions that are close
to the fixed purple line i.e. the prior. The figure shows that the latent space
produced by the basic Autoencoder is not regularized. Therefore the distribution
produced is of arbitrary shape and cannot be used for generating new text. For
the VAE we can see that the regularization is calculated for each sample individ-
ually. This aims to draw all samples to the center ideally producing a continuous
and complete latent space. WAE and SWAE use an aggregated latent distribu-
tion. Small circles around the dots for SWAE show the regularization added by
the stochastic term.

2adapted from [4]



Chapter 5

Text Attribute Transfer

In the following a definition and the mathematical formulations for Text Attribute
Transfer will be provided. This thesis focuses on doing Text Sentiment transfer
by considering two distinct sentiments, positive and negative. Big annotated
datasets for other attributes are rare or do not exist. Current Text Sentiment
transfer tasks make use of review based data of which there is plenty to be found.

5.1 Definition

As introduced before, text attribute transfer is the task of changing an attribute
while maintaining content and linguistic fluency of a given input sentence. Each
sentence must be perturbed in such a way, that the new perturbed vector is
classified by a label different from the input label. The task can be viewed as
an optimisation problem, given by the following formulas. For a set of input
sentences X = {x1, ..., xn} and a set of labels Y = {y1, ..., yn} the optimization
problem is defined as:

z = arg min
z∗

‖z∗ − E(x)‖ s.t. C(z) = y′ (5.1)

D denotes the Decoder, E the Encoder, C the Classifier and z denotes the
latent vector. This formula can be interpreted as finding the smallest perturbed
vector z∗ in latent space such that it changes label.
In the following the methods to achieve this objective are discussed.

5.2 DeepFool

DeepFool is an adversarial attack algorithm that was introduced in 2016 by Fawzi
et. al.[17] It is used to find the minimal perturbation r that is needed to change

13
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a sample’s estimated label k̂(x).1

∆(x; k̂) := min
r
‖r‖2 s.t. k̂(x + r) 6= k̂(x) (5.2)

x denotes a sentence and k̂(x) the corresponding sentiment. Additionally
∆(x; k̂) denotes the robustness of k̂ at sample x.
The original paper proposes this attack for quantifying the robustness of deep
neural nets used for image classification.[17] In this thesis, we propose applying
DeepFool to text data, which is feasible because the perturbations are calculated
in a non image domain specific way.
The common principle can be observed when when looking at an affine binary
classifier f(x) = wTx + b.

r∗ := arg min ‖r‖2 subject to sign(f(x0 + r)) 6= sign(f(x0)) (5.3)

It is not obvious how to enforce the change of the sign.

f(x0 + r) = wT (x0 + r) + b = f(x0) + wT r (5.4)

This equation is used to interpret the change in sign for f(x0+r) in the following
way.

r∗ := arg min ‖r‖2 subject to f(x0) + wT r = 0 (5.5)

This can be interpreted as the orthogonal projection of x0 onto the separating
hyper-plane. As the classifier is not necessarily linear, these perturbations are
calculated by linearizing the classifier decision boundary locally for each sample
xi.

arg min
ri

= ‖ri‖2 subject to f(xi) +∇f(xi)T ri = 0 (5.6)

Where ri is the perturbation at iteration step i of the algorithm. This al-
gorithm moves the latent vector towards the decision boundary. This by itself
would in many cases not solve the problem as the algorithm is likely to produce
perturbations that are close to the decision boundary. These samples are unlikely
to exhibit strong sentiment attributes. We expect them to be rather neutral sen-
tences.

5.2.1 Overshoot

To solve this issue Fawzi’s Deep Fool paper [17] proposes rescaling the last per-
turbation vector in order to cross over the decision boundary, This is called the
overshoot method:

r̂over = (1 + η) ∗ r̂
1This is a paraphrased version of the minimization problem state above.
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5.2.2 Constant

Additionally, there is another method for crossing the decision boundary, which
we call the constant method.

r̂const = c ∗ r̂
‖r̂‖2

(5.7)

This allows us to control the distance that we move across the decision boundary
more explicitly than the overshoot method. This algorithm can be generalized
for multiclass problems by viewing them as multiple One vs. All Classification
problems. The generalisation towards nonlinear classifiers works by approximat-
ing the decision boundaries as locally linear. Different approaches were compared
in section 6.

5.3 Projected Gradient Descent

In addition to the DeepFool method there is the projected gradient descent
method as introduced in the 2019 paper titled "Towards Deep Learning Models
Resistant to Adversarial Attacks" authored by Aleksander Madry.[18] Projected
Gradient Descent (PGD) is an adversarial attack based on a initial saddle point
formulation:

min
θ
ρ(θ), where ρ(θ) = E

(x,y) ∼ D

[
max
δ∈S

L(θ, x+ δ, y)
]

Where D defines the underlying data distribution of samples x and corre-
sponding labels y. In our case the loss function L denotes the Cross Entropy
Loss. This lets us interpret the problem in the following way: the inner maxi-
mization problem is used to find samples that achieve a high classification loss
i.e. a change of label. The outer minimization problem is used to find model
parameters robust to the classification.
As our goal is text attribute transfer we lay our focus on the inner maximization
problem. This is solved by taking update steps, which are based on the Fast
Gradient Sign Methods steps:

x+ ε sgn(∇xL(θ, x, y))

Taking this step multiple times leads to the PGD attack:

xt+1 =
∏

x+S

(xt + αsgn(∇xL(θ, x, y)))

Where S denotes the number of maximum steps and α is used as a scaling factor.
We use this new vector to find the minimal perturbation vector z∗ as stated in5.1



Chapter 6

Experiments

For this thesis multiple experiments and side experiments were conducted in order
to gain further insight into this topic. They were conducted on the clusters of
TIK. [19]

6.1 Implementation

The implementation is based on PyTorch. [20] Multiple functions such as the
LSTM-cells for the encoder and decoder are implemented using this library.
When setting the parameters, we decided to choose parameters similar to [21],
[22] and [3] in order to achieve comparability. Our initial learning rate is set to
0.001 and we use Adam for optimization.[23] The hidden, latent and batch sizes
are set to 256.

6.1.1 Base Model

The different variants of Autoencoder models are similar in their structure and
are built using the same basic operations. These can be summarized to a base
model.

Preprocessing

The English language is estimated to entail about 1.000.000 words. Using all of
them for our models is not feasible, therefore the data is prepared by sorting the
words by frequency and selecting only the most common words. Fortunately the
usage of words vaguely follows Zipf’s law, stating the the "frequency of use" drops
drastically when moving down the ranks. The 9.200 and 58.000 most common
words were selected for the Yelp and the Amazon dataset respectively. From
the List of chosen words a vocabulary is built using the nltk[24] package, labeling
each word with a numbered token. This labeling assigns each word with a unique
key known as the word id. In the experiments use of the pretrained glove vectors

16
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[25] is made, as these are used to transfer the words into the 300 dimensional
embedding space producing the embedded word vectors. Then the sentence size
is fixed to 15 and 20 for the Yelp and Amazon dataset respecively.

Encoding

The embedded sample sentences xt are fed to the model’s encoder network, pro-
ducing a cell state cte and a hidden state hte. (See section 3.2 for detailed expla-
nation of this process.) The artificial bottleneck, which is crucial to Autoencoder
models is created by feeding hte to a linear layer that effectively reduces the di-
mensions by having a small output size. This layer returns a reduced hidden
state vector, which for the basic Autoencoder model translates directly into the
latent space vector lt. For the other models the model specific operations are
applied to obtain the latent space vector.

Classification

This thesis approach to Text Attribute Transfer is based on perturbing the latent
state vector to move across the decision boundary. Therefore a classifier network
is trained to estimate the labels of hidden vectors. This network was chosen as
a simple linear layer, returning the predicted probabilities of having a specific
label. This probabilities are referred to as classification logits ptc. Taking the
biggest of these logits returns the predicted label ŷ. These are used to train the
model for the classification objective and for the perturbation of the latent space
vectors.

Decoding

The decoder cell transformes x and htc to the decoders cell states ctd, the decoders
hidden states htd additionally producing the decoders output logits logtd. In
contrast to the classification logits, logtd’s entries correspond to the probability of
an entry being a word in the vocabulary. Therefore, the text can be reconstructed
by taking the argmax of logtd.

6.2 Datasets

One major issue when doing text style transfer is the lack of annotated datasets.
The standard procedure to solve this issue is to take data from different review
datasets consisting of text as well as a scoring system of stars. The reviews are
divided based on the stars given, into a positve and a negative set.



6. Experiments 18

6.2.1 Stanford Natural Language Inference corpus

We used the Stanford Natural Language Inference corpus (SNLI) dataset solely
for pretraining the models.[26] The SNLI dataset consists of 629.343 sentences.
This dataset was generated by crowd sourcing human workers in an image cap-
tioning task and contains short and simple sentences.

6.2.2 Yelp

We used the Yelp Service Reviews dataset which contains 444.101, 63.483, 126.670
samples for the train, validation and test set respectively.[27] The sentences were
sourced from yelp customer reviews collected in different large north American
cities. We set the maximum sentence length to 15 words. The size of the vocab-
ulary is set to 9.200.

6.2.3 Amazon

Further, we used the Amazon Product Reviews dataset which is larger. It con-
tains 555142, 2000, 2000 samples for train, test and validation set respectively.
We trained with a maximum sentence length of 20 words and a vocabulary size
of 58.000.

6.3 Training

The training phase is split into 2 separate phases, the pretraining and the training
phase. For measuring their results we used the following metrics.

6.3.1 Pretraining metrics

For evaluating the models performance two different metrics were calculated using
the reconstructed sentences.

BLEU Score

The BLEU [28] Score is a metric commonly used in the field of Natural Language
Generation. It is used to measure how well the content of a sentence is kept. It
does so by calculating a modification of the n-gram overlap between sentences.
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Perplexity

The Perplexity score is used to measure how fluent a generated sentence is. This
is calculated by feeding the generated sentences to a separately trained language
model. That model is then tasked with predicting the next word, for which it
returns some probabilities. Perplexity is calculated from the models confidence
and the number of potential candidates for each next word. From this we can
deduct that a low perplexity score is representative for concise sentences that are
similar to what the model knows. For calculating our perplexity scores we used
Open-Ai’s pretrained GPT-2 model. [29]

6.3.2 Pretraining

We started by pretraining our models on the SNLI dataset, while using a beta
of 0 in order to solely focus on lowering the reconstruction bias. This is meant
to teach the models the basic understanding of the language without taking the
classification into account.

Pretraining SNLI for Yelp
Models AE WAE SWAE VAE
Datasets test val test val test val test val
BLEU Score 1 96.86 96.66 97.33 97.29 73.27 73.35 12.36 12.28
BLEU Score 2 95.5 95.2 96.08 96.07 65.03 65.14 3.27 3.31
BLEU Score 3 94.57 94.2 95.19 95.19 59.89 60.03 1.43 1.47
BLEU Score 4 93.71 93.26 94.33 94.35 55.44 55.63 0.68 0.7
Perplexity 31.50 24.04 23.12 23.25 23.25 25.12 - -

The results were measured on the test and validation sets of the Yelp dataset.
When training the VAE model we observed what we believe to be the posterior
collapse.

The Amazon dataset is measured with an increased vocab size of 58000 and
an increased max length of 20 words. As the maximum number of words used in
SNLI, is smaller than 58.000 the vocab size defaults to 36.596.

This thesis aims to compare the performance of the different models and algo-
rithms (Deep Fool constant, Deep Fool overshoot, PGD) set out above. We there-
fore emphasised comparability over performance. This means that we trained all
models with the same set of parameters especially for the same amount of epochs.
We observed an insufficient performance on the VAE model, which is most likely
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Pretraining SNLI for Amazon
Models AE WAE SWAE VAE
Datasets test val test val test val test val
BLEU Score 1 93.93 94.07 93.34 94.49 71.08 71.16 25.56 25.62
BLEU Score 2 91.33 91.52 91.77 91.97 61.82 61.87 9.32 9.3
BLEU Score 3 89.61 89.8 89.96 90.19 56.23 56.25 4.17 4.1
BLEU Score 4 88.03 88.24 88.29 88.54 51.48 51.48 1.69 1.57

due to posterior collapse. This suggestion is supported by the fact, that the en-
coder and decoder structure are both based on LSTM cells, as discussed above in
4.3. We observed that the SWAE model training takes more epochs for reaching
the optimal performance. For comparability we only trained all models for 10
epochs. As a consequence, we estimate that the performance of the SWAE could
further be improved by training for more than 10 epochs. Further, it should be
noted that all models were trained with a beta of 0.5.

6.3.3 Training

We loaded the pretrained models and trained them on the Yelp dataset. The
maximum vocab size of the SNLI dataset is 36.569. The vocab size of the results
presented in [21] use a vocab size of 58.000. Loading a model with a smaller
vocab size leads to a parameter mismatch. Therefore it is impossible to achieve
comparability to the tests conducted for the Yelp dataset as well as to the results
presented in previous work[21]. We opted for achieving comparability with previ-
ous works and used the vocab size of 58.000. The training results obtained for the
Amazon dataset had to be produced by training the models without pretraining
them on SNLI.

Training Yelp
Models AE WAE SWAE

test val test val test val
BLEU Score 1 95.31 95.8 94.92 95.29 73.18 73.83
BLEU Score 2 93.66 94.26 92.83 93.34 65.85 66.65
BLEU Score 3 92.53 93.21 91.37 91.98 61.33 62.21
BLEU Score 4 91.3 92.05 89.83 90.52 57.22 58.16
Perplexity 31.27 30.50 33.15 30.56 42.65 42.68
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Training Amazon
Models AE WAE SWAE

test val test val test val
BLEU Score 1 81.47 81.91 85.82 86.14 40.45 40.29
BLEU Score 2 77.05 77.6 81.72 82.15 24.89 24.81
BLEU Score 3 74.65 75.26 79.33 79.83 17.74 17.69
BLEU Score 4 72.77 73.42 77.42 77.96 13.17 13.13

6.4 Text Attribute Transfer

6.4.1 Transfer Metrics

To the five different metrics implemented in "Disentangled Representation Learn-
ing for Non-Parallel Text Style Transfer" [21] 2 more were added. The metrics
are used to measure the quality of our attacks. When applying an attack to a
given input sentence we return a modified version of that sentence, to which we
refer as perturbed sentence.

Style Transfer Accuracy

We measured the quality of the algorithms by training a separate classifier that
achieves a test accuracy of 0.97637 and validation accuracy of 0.97793 on the
Yelp dataset and a test accuracy of 0.71722 and validation accuracy of 0.62499
on the Amazon dataset. We used this separate network to classify the newly
generated sentences, using the target labels as ground truth. This provided us
with a quantitative measure for evaluating the strength of the transfer. Our
model is a simple network consisting of an LSTM encoder and some stacked
linear layers using the relu and softmax activation functions.

Style Transfer Accuracy naive

We measured the quality of attacks by using the models interior classifier as a
naive approximation of the Style Transfer Accuracy score. This approximation
is biased by the model, and does not provide the same level of objectiveness as
an external network does.

Cosine Similarity

As we used the pretrained glove embeddings to build our embedding space, we can
safely assume that similar words are located in similar locations in the embedding
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space. Using this assumption we calculate the Cosine Similarity between the
perturbed and the original sentence to get an estimate of content preservation.

Word Overlap

As another measure for content preservation we implemented the Word Overlap
score. This score is calculated by taking the unigram word overlap between the
original sentence x and the perturbed sentence y as (WO = count(x∩y)

count(x∪y)).

Perplexity

We calculate the perplexity in the same way as mentioned in 6.3.1. The only dif-
ference being, that we take the mean and the median perplexity while measuring
the perplexity of the perturbed sentences.

Geometric Mean

We implemented this measure as proposed in "Disentangled Representation Learn-
ing for Non-Parallel Text Style Transfer". [21] It is a measure calculated by tak-
ing the geometric mean of the Style transfer accuracy, the Word Overlap and
1/Perplexity. This is implemented to generate an overall score of the attack,
measuring content preservation, transfer strength as well as fluency of the gener-
ated sentences in one value.
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6.4.2 Deep Fool constant

For these experiments we loaded the trained models and ran the attacks on the
dataset’s testset. In order to conserve space no legends and axis notations were
used. The x axis plots the different values for c as defined in 5.2.2. AE is show
in blue, WAE is shown in red and SWAE is shown in yellow. The experiment

Figure 6.1: Results from Deep Fool constant on Yelp

show promising results. Especially for the AE and SWAE model high Style
Transfer Accuracy scores are achieved, meaning that the adversarial attacks are
able to cross the decision boundary for almost all samples. For stronger attacks,
bigger values of Perplexity are observed, which is similar to what we expected.
Interestingly, one can see that for the SWAE model, the increase in Perplexity is
much smaller than for the AE model, meaning that its capabilities of transferring
fluency are superior. The Geometric Mean which is used to generate an overall
score for the attacks shows that the SWAE model outperforms the two other
models, and the AE observes a decrease in attack quality with increasing attacks.
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6.4.3 Deep Fool overshoot

For these experiments we loaded the trained models and ran the attacks on them
on the datasets testset. The x axis plots the different values for η as defined
in 5.2.1. AE is shown in blue, WAE is shown in red and SWAE is shown in
yellow.

Figure 6.2: Results from Deep Fool overshoot on Yelp

The results obtained show interesting results. Compared to the results from
Deep Fool const, we can see, that the WAE is also able to achieve Style Transfer
Accuracy results. The AE model performs worse than before, and the SWAE
model outperforms the other two. The average attack score as calculated by the
geometric mean shows that the overall score stays approximately constant for all
three attacks.
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6.4.4 PGD

For these experiments we loaded the trained models and ran the attacks on them
on the datasets testset. The x axis plots the different values for η as defined in
5.2.1. WAE is shown in red and SWAE is shown in yellow.

Figure 6.3: Results from Deep Fool overshoot on Yelp

Notably these Attacks achieve only a very small Style Transfer Accuracy of
up to 0.3. This result is labeled as insignificant, as these small perturbations can
not be utilized for doing Text Style Transfer effiently.
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6.5 Latent Space tests

In order to choose the optimal latent space size a side experiment was conducted
on the AE model using the Yelp dataset. The goal of this side experiment is
to verify our choice for the latent space size. As the thesis focus lies on text
attribute transfer, the models need to be able to have a low reconstruction bias
even when they are being trained for another objective. Therefore we trained
the models using a beta of 1. This emphasises the classification error over the
reconstruction error.

Latent Space tests
Latent Size 32 64 128 256
SNLI test val test val test val test val
BLEU Score 1 69.4 69.76 87.76 87.92 95.34 95.46 97.61 97.61
BLEU Score 2 62 62.4 83.9 84.08 93.65 93.81 96.61 96.59
BLEU Score 3 57.59 58.01 81.54 81.72 92.53 92.72 95.89 95.88
BLEU Score 4 53.74 54.19 81.54 79.62 91.49 91.7 95.2 95.18
Perplexity 41.71 40.64 34.93 35.11 26.62 26.62 23.38 24.40

Latent Space tests
Latent Size 32 64 128 256
Yelp test val test val test val test val
BLEU Score 1 56.6 57.08 79.92 80.49 92.65 93.07 95 95.35
BLEU Score 2 46.64 47.16 73.8 74.4 90.15 90.64 93.33 93.79
BLEU Score 3 41.08 41.58 70.14 70.82 88.51 89.06 92.18 92.7
BLEU Score 4 36.35 36.81 66.79 67.48 86.83 87.43 90.93 91.49
Perplexity 90.80 87.85 57.57 57.57 38.11 36.19 32.12 32.32

The latent space tests show, that the best BLEU Scores are achieved when
using a latent space of 256. Interestingly, we can see that the BLEU scores for
a latent space size of 128 are also above 90. These results are similar to what
we expected, as larger latent sizes increase the model’s capabilities to retain
information. Note that values beyond 256 do not make sense, as we embedd
the words into a 300 dimensional space. If a value bigger than or equal to 300
were chosen the "artifical bottleneck" that forces the model to extract information
would not be present. Interestingly, the scores for latent sizes down to 128 deliver
still quite acceptable results. This suggests that the model is able to detect
and extract a compressed representation and that complex dependencies can be
detected.
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Conclusion

In the following we set out the findings of the experiments conducted and draw
conclusions.

7.1 Pre-training and training

The high BLEU scores in the pre-training and training results show, that the
models are able to capture the sentences with a low reconstruction bias. The low
perplexity scores imply, that reconstructing the sentences is keeping the fluency
of the original texts. From this we can conclude that Autoencoders are Natural
Language Models that are proficiently able to capture natural language. This
paves the way for Text Attribute Transfer.

7.2 Text Attribute Transfer

We undertook the task of Text Attribute Transfer with Autoencoder structures
on the basis of 3 different algorithms on two datasets. We hypothesized, that
the current state of the art Autoencoder models are able to successfully transfer
sentiment. This implies that they are able to capture complex dependencies and
extract a meaningful representation of sentiment.

7.2.1 Results

The plots for the Style Transfer Accuracy, allow us to conclude, that the labels
are changed effectively when perfroming DeepFool. In particular, this holds true
for the AE and the SWAE model which achieve high scores in both variants of
the DeepFool attack.

As anticipated, we observed an increased perplexity, but the SWAE model
managed the growth of data properly. As we kept our latent space entangled
and do not differentiate between sentiment and content information, the drops
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in cosine similarity were also similar to what we expected. The measurement
that indicates the overall efficiency of a given attack is the geometric mean. We
observed that the geometric mean is approximately constant, which supports the
hypothesis that the attacks can be carried out effectively.

Finally, we deduct from the results obtained, that, in principle, the models
are capable of successfully performing Text Attribute Transfer. As the success of
the task is tied to the model‘s capability to capture sentiment, we can conclude
that our experiments confirm our hypothesis that the current state-of-the-art
Autoencoder models‘ structures can be used to capture sentiment. Moreover,
we can conclude from our experiments that the SWAE model performs the best
even under the circumstance of having a higher reconstruction bias than the other
models.

7.3 Latent Space

The Latent Space Experiments were conducted by measuring the performance of
the autoencoding task when using multiple latent sizes.

7.3.1 Results

The latent space test was conducted in order to determine the optimal latent
space size for conducting the text attribute transfer task. The results have shown
that a latent size of close to the embedding size produce the best results. This
is congruent with our expectations. Larger latent space sizes lead to an increase
in the model‘s capacities of transferring information. It is interesting to see, that
smaller latent space sizes of down to 128 achieve considerable BLEU scores. This
implies that the model is able to detect and extract meaningful information, that
can be represented in a condensed format. We hypothesized that text data ex-
hibits complex structures and dependencies, that can be extracted by the model.
This is backed by the results.
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Appendix A

Experiments

A.1 Amazon Attacks

The attacks on the amazon dataset were conducted in the same experimental
setting as the attacks on the yelp dataset. Running these attacks led to an CUDA
ERROR stating an overflow of memory in the GPUS. This made measuring the
perplexity scores of training, as well as generating data for the adversarial attacks
impossible. This issue was reproduced with down scaling the batch size from 256
to 128 and 64. As these experiments were very time consuming (training one
model on the amazon dataset takes up to 18 hours for batch size 64.) and the
training results for amazon are deemed unpromising, no further experiments were
conducted on that matter.

A side experiment as mentioned in 3.1 on our transformer based auto encoder
was conducted proving it computationally infeasible for our purpose.

A.2 Transformer cells

The model structure from the 2019 paper: Controllable Unsupervised Text At-
tribute Transfer via Editing Entangled Latent Representation [6] was reproduced
by using what we believe to be the most popular transformer based models as
cells. BERT[30] was used as an encoder network and GPT-2 [31] was used as
a decoder network. The result was found to be similar in style to the Optimus
model.[32]
Our experiments show, that this setup is computationally infeasible. When train-
ing, we observed that the model’s need for memory capacity exceeds the capacity
available on the Arton Clusters[19]. The batch size was lowered to 16 instead
of 256 which produced the same result. For further investigation the BERT
model was downscaled to use only: 6 hidden layers (default:12), 6 attention
heads(default: 12), 15 max position embeddings (default:512), 9.200 vocab size
(default: 30.522), 256 hidden size (default:768) producing the same result. The
GPT-2 network was downscaled in a similar fashion still exceeding memory ca-
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pacities. As a reference we show, the parameters used in [6] For encoder and
decoder they use two stacked layers of transformer cells, which use 1024 dimen-
sional Feed-Forward Networks, a hidden size of GRU of 128 and batch size 128.
They set their embedding size, latent size and dimension size to 256.

From this experiment we conclude that using BERT and GPT-2 is not com-
putationally feasible for doing Text Attribute Transfer when using our implemen-
tation of the base model and our training loop.


