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Abstract

The rise of cryptocurrencies like Bitcoin and Ethereum attracts a lot of attention,
also from attackers. In order to secure blockchain systems, one first needs to
understand their networks. And this is what we try to do in this thesis. We
compare degrees, clustering coefficients, shortest paths and closeness centrality
of simulated Bitcoin and Ethereum networks. Furthermore, we build a theoretical
model to calculate these properties in theory and compare them to the results of
simulations. We find that the centrality of a node is dependant on the time it
was added and that Ethereum-like networks have a linear construction process,
which leads to high clustering.
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Chapter 1

Introduction

1.1 Motivation

Bitcoin is considered to be one of the most valuable electronic currencies currently.
As of March 2021, the price of each bitcoin is as high as $50,000. Driven by
such interests, tens of thousands of people are incentivized to attack the Bitcoin
network every day, which has caused great concern for the security of the Bitcoin
network. Other blockchain systems also face the same security threat. Research
on blockchain has mainly focused on Layer 1 and Layer 2 technologies, i.e., on
designing consensus protocols and off-chain scaling solutions. However, for these
layers to work properly, the network layer (Layer 0) has to maintain certain
properties and guarantees, since all the data between the nodes of a blockchain
system are exchanged via peer-to-peer communication.

1.2 Related Work

We were able to build upon the work of [1], which provided a theoretical model for
the degree distribution of unbounded networks and the basis of the simulations.
A great overview on the topic of networks can be found in the work of Albert
et al. [2]. Marcus et al. described the Ethereum peer-to-peer network [3] and
demonstrated attacks on Ethereum which together with [4], [5], and [6] empha-
sized the importance of the topology of blockchain networks. The recursive paths
approach in [7] delivered analytical results for the shortest path distribution in
random graphs, which we adjust to specific node pairs in growing peer-to-peer
networks. Path lengths in configuration model networks were discussed in [8],
which showed not to be of use for this thesis, as it does not account for the
construction mechanism of a network.
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1. Introduction 2

1.3 Contribution

In this thesis, we want to understand what properties these networks have, what
mechanism constitute these properties and how they may affect the security and
fairness of a blockchain peer-to-peer network. We simulate Bitcoin and Ethereum
networks and compare their properties. Furthermore, we build a theoretical
model which allows us to compute the degree distribution, clustering coefficients,
shortest paths and closeness centrality of such networks. We show the conse-
quences of parameter choice on the network topology. Moreover, we exhibit that
the connectivity of nodes in Ethereum-like networks is strongly dependant on the
time when they were added.



Chapter 2

Background & Simulation Setup

In peer-to-peer networks, computers directly connect and communicate with each
other without the need of a central instance. This enables powerful technologies
like blockchains. An outgoing connection is a connection which a node initiates
itself, whereas an incoming connection was initiated by another node. The in-
bound and outbound distribution specifies the choice of bounds on the number
of incoming and outgoing connections. When the connection was successful, we
speak of peers or neighbours. We describe the default setting in the following.

2.1 Bitcoin’s connection strategy

A Bitcoin node tries to reach 8 outgoing connections, which it chooses from its
address table at random, and allows for a total of 125 connections, limiting the
incoming connections at 117 [1].

2.2 Ethereum’s connection strategy

An Ethereum node is allowed to have up to 13 outgoing connections and accepts
by default at most 17 incoming connections [9]. In Ethereum, the mechanism of
choosing which nodes to connect to, differs quite a bit from Bitcoin’s.

In a first step, an Ethereum node chooses 6 random addresses from all ad-
dresses known and additionally fills the lookup buffer with up to 16 addresses.

It then tries in a second step to connect iteratively to those 22 nodes until it
reaches a max of 13 outgoing connections. So the number of outgoing connections
a node can initiate is dependant first, on how many addresses it can put into
the lookup buffer, which we can safely assume is always 16 for a sufficient large
network, and second, how many of those nodes accept the connection.

If the lookup buffer is smaller than (13 - #outgoing connections), it starts a
new discovery task which fills up the lookup buffer with new addresses [3]. The
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2. Background & Simulation Setup 4

more strictly limited Ethereum nodes, in terms of connection bounds, leads to
many full nodes which can not accept any more connections. This makes it harder
for new nodes to find other nodes which still accept incoming connections. As
we will see later, this strongly affects the topology of the Ethereum network.

2.3 Simulation setup

In the following chapters, we refer to different models and simulations. First, we
run full simulations called full sim bitcoin and full sim ethereum.

The notions theoretical bitcoin and theoretical ethereum represent the respec-
tive theoretical models descriped in Chapter 4.

As the theoretical model does not suffice for the calculations of centrality, we
construct random networks called random bitcoin and random ethereum. In the
random networks, we iteratively add one node, choose 8, respectively 13 random
nodes from the network and connect them, if they do not already have 125,
respectively 25 connections.

The properties of those random networks are then compared with results from
the simulations lite sim bitcoin and lite sim ethereum. These lite simulations are
limited to the functionality of the initial connection establishing in order to deliver
comparable results. So nodes only have one chance to connect with peers, which
is at the time when they are added to the network.

All results are from networks of 3000 nodes. We run 10 simulations for each
strategy and show the average results. The code used in this thesis was taken
from [1] and modified and completed. The repository can be found here [10].



Chapter 3

Simulations

We thoroughly test the simulation of [1] and apply improvements and changes
where necessary. At each timestep in the simulation, some new nodes are added
and all nodes process their connection requests. The ids range from 1 to 3000,
where the node with id 1 is the oldest in the network.

Additionally, we have that some nodes go offline and online again. Biryukov
et. al. [11] showed that a node has a 15% chance to go offline after 4 hours.
To model this behaviour, a random amount of nodes between 0% and 3% of
the network disconnect and reconnect again with a 90% chance in the coming
timesteps. The result, as we will see later, is a more mixed up network, as nodes
do not connect to their previous peers after a loss of connection. This means that
Ethereum nodes have peers from the full range of ids. With this we account for
reboots of nodes in the real world networks due to updates or power outages. The
loss of a peer’s internet connection may also pose a cause of connection teardown.

The degree distribution, clustering coefficients per node, shortest paths be-
tween every node pair and closeness centrality per node of the simulated Bitcoin
and Ethereum networks are evaluated.

Note that a lower node id corresponds to an earlier introduction to the net-
work of said node. Hence most of the plots reveal also the dependency on time.
Outliers may exist, if a node gets dis- and reconnected towards the end of the
simulation and does not have enough time to fully connect again.

3.1 Degree distribution

Figure 3.1 shows the comparison of the degree distribution between fully simu-
lated Ethereum and Bitcoin networks. Bitcoins degree distribution mirrors one of
a scale-free network and shows a power law distribution, where the oldest nodes
get the most incoming connections [2]. On the contrary, Ethereum prohibits this
behaviour by having a rather small upper bound on the total amount of connec-
tions. Leading to a much smaller variance in the degree where the majority of
nodes reach a full degree of 25. The drop of degrees of the youngest nodes, i.e.,
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3. Simulations 6

Figure 3.1: Comparison of degree distribution

the nodes added last, is due to the lack of even younger nodes providing incoming
connections.

3.2 Clustering

The clustering coefficient measures how well connected the neighbours of a node
are with themselves. The local clustering coefficient for node i in an undirected,
unweighted graph is

ci =
2T (i)

deg(i)(deg(i)− 1)

where T (i) denotes the number of triangles through node i [12].

Figures 3.2 and 3.3 illustrate the the local clustering coefficient of fully sim-
ulated Ethereum and Bitcoin networks. One immediately detects that the clus-
tering coefficient of Ethereum nodes have a much higher average and variance
than Bitcoin nodes. We believe that this is due to the linear construction of the
network. Meaning that, if one thinks of the network on a plane, it would grow in
one direction, so to speak, as a new node can only connect to nodes which just
have been added to the network too, because older nodes are already full.

Furthermore we notice that there are Bitcoin nodes with a clustering coef-
ficient of zero. With 3000 nodes and an average degree of 16, it is expected to
have some nodes with non-connected neighbours.
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Figure 3.2: Clustering coefficient in
Bitcoin.

Figure 3.3: Clustering coefficient in
Ethereum.

3.3 Shortest paths

Figure 3.4 depicts the comparison of shortest paths between fully simulated
Ethereum and Bitcoin networks. The average shortest path in the Ethereum
network is shorter than in the Bitcoin network. We believe that this is due to
the higher average degree of Ethereum nodes. Both networks have almost no
shortest path with a length of 5 or longer, similar to "small-world networks"
in which according to [12], the average distance between any two nodes grows
logarithmically with the number of nodes.

Figure 3.4: Shortest path lengths. Figure 3.5: Closeness centrality.

3.4 Closeness

Closeness centrality gives us a measurement on how close a node is to all other
nodes on average. Formally, closeness centrality of a node i is the reciprocal of
the sum of the shortest path distances from i to all N − 1 other nodes. Since
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the sum of distances depends on the number of nodes in the graph, closeness is
normalized by multiplying with N − 1 [13, 14].

C(i) =
N − 1∑n−1
j=1 d(i, j)

where d(i, j) is the shortest-path distance between i and j. Note that higher
values of closeness indicate higher centrality.

Figure 3.5 demonstrates the comparison of closeness centrality between fully
simulated Ethereum and Bitcoin networks. One observes that the closeness cen-
trality of both Bitcoin and Ethereum look similar to their degree distribution,
having the same drop in time. We learn from this that the oldest nodes are more
central in the network than younger nodes, especially in Bitcoin. Also, Ethereum
has an overall higher average closeness, which we attribute to the higher average
degree. We believe this is due to the correlation between degree and closeness.
The correlation coefficient of degree and closeness is 0.4 according to [15].

3.5 Connection distribution

In order to get a picture of the connections in the networks, we use matrix plots.
Figure 3.6 beautifully shows every connection in the networks as a dot. The
corresponding x- and y-coordinates of a dot correspond to the node ids of the
connected peers. This clearly demonstrates that nodes in the Ethereum network
connect preferably with nodes which have been added shortly before or after
themselves.
Figure 3.6c is the result of an Ethereum simulation, but with the connection upper
bounds of Bitcoin, i.e., 8 for outgoing and 125 for total connections. We still can
observe a slight grouping of dots along the diagonal. This implies that not only
the connection bounds, but also the peer choosing mechanism of Ethereum is
responsible for this linear construction of the network.

In order to confirm this with a quantitative measurement, we compute the
average difference between a node’s id to the ids of its peers for all nodes in the
network. Figure 3.7 shows the results of typical Bitcoin and Ethereum networks
and of a network with Ethereum’s connection mechanism but with Bitcoin’s
connection bounds. The x-axis depicts each node’s id and the y-axis is the average
distance to the peer id’s. Indeed, not only the difference between Ethereum and
Bitcoin is significant, but also the difference between Bitcoin and Ethereum with
Bitcoin’s upper bounds.
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(a) Bitcoin. (b) Ethereum. (c) Ethereum 8/125.

Figure 3.6: Matrix plots.

Figure 3.7: Distances of id’s



Chapter 4

Theoretical Model

In this chapter, we build a theoretical model for Bitcoin- and Ethereum-like net-
works in an attempt to understand the outcomes of different bounds on incoming
and outgoing connections. When compared to the simulations, this model also
sheds light on the effects of both connection mechanisms.

The model abstracts the behaviour of nodes when choosing peers for outgoing
connections, but lack extended functionality like retrying to establish outgoing
connections to other nodes if some of the initially chosen nodes refuse the con-
nection.

We calculate the degrees, clustering coefficients, shortest paths and closeness
centrality of up to 3000 nodes in total and compare it to the results of the lite
simulations.

4.1 Preliminaries

The parameters of the model are m and C, which are set to 8 and 125 respec-
tively to 13 and 25 to model the upper bounds on outgoing and total number of
connections in Bitcoin and Ethereum.

The network initially has m fully connected nodes and grows by iteratively
adding one node at each time step. Node i is added at time i. After a node
is added to the network, it tries to establish m outgoing connections. We ab-
stract the process of choosing peers to connect to and treat it to be completely
at random. We further assume that a node has perfect information about all
other nodes, i.e., their IP-address, which it needs to know in order to establish a
connection.

A node is allowed to have up to C total connections. Hence, each node accepts
at least C−m incoming connections. N(t) = t− 1, denotes the amount of nodes
at time t when the node with id = t joins the network, while deg(i, t) is node i’s
degree at time t.

The function f(t) expresses the amount of full nodes at time t, i.e., the num-
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4. Theoretical Model 11

ber of nodes which do not accept anymore incoming connections. By the nature
of the construction process, we have that a node i will not accept new incom-
ing connections at time t if i ≤ f(t). As we will see, this only has an effect
with Ethereum parameters, as in a network of reasonable size with the Bitcoin
parameters, no node reaches the upper bound of allowed connections.

f(t) can be computed as follows.

f(t) =

t−1∑
i=1

Dt−1
i , where Dt−1

i =

{
1 if deg(i, t− 1) ≥ C

0 else

In the following we state everything explicitly for Ethereum, but plugging in
f(t) = 0 gives the results for Bitcoin.

4.2 Degree

In Ethereum, the probability that a random node is not full and hence accepts
a new incoming connection at time t is N(t)−f(t)

N(t) . Therefore, the number of con-

nections grows by mN(t)−f(t)
N(t) with each new node. These new connections are

distributed among all nodes in the network, which still accept incoming connec-
tions. Thus, the changing rate of the degree of a node i at time t is

∂deg(i, t)

∂t
=

mN(t)−f(t)
N(t)

N(t)− f(t)
=

m

N(t)

if it is not full yet.

∂deg(i, t)

∂t
=

m

N(t)
⇐⇒

∫
∂deg(i, t) =

∫
m

N(t)
∂t ⇐⇒ deg(i, t) = m ln(N(t))+A

Using deg(i, i) = mN(i)−f(i)
N(i) we get A = m

(
N(i)−f(i)

N(i) − ln(N(i))
)
and hence

deg(i, t) = m ln(N(t)) +m

(
N(i)− f(i)

N(i)

)
− ln(N(i))

= m

(
ln(N(t))− ln(N(i)) +

N(i)− f(i)

N(i)

)
= m

(
ln

(
N(t)

N(i)

)
+

N(i)− f(i)

N(i)

)
Adding that nodes do not accept more connections if they are full we get

deg(i, t) = min

{
m

(
ln

(
N(t)

N(i)

)
+

N(i)− f(i)

N(i)

)
, C

}
(4.1)



4. Theoretical Model 12

The plot of the degrees in the theoretical Bitcoin and Ethereum networks com-
pared with their lite simulations with 3000 nodes can be seen in Figure 4.1.

We see that no node is full in the Bitcoin network, whereas in the Ethereum
network about one third of all nodes get full.

Note that for a failing connection, we only considered if a node is already full
or not. But In reality, there are many more reasons for a connection to fail, e.g.,
different software versions, blacklists, etc.

The plot shows as expected, that the earlier a node is introduced to the
network, and hence the lower the id is, the higher the probability to reach a large
degree. The reason for this is that older nodes receive many connection requests
from younger nodes. The difference between the lite sim and theoretical bitcoin
at the beginning can be explained with the fact that we have DNS nodes in the
lite sim, which all other nodes try to connect to.

4.3 Clustering

In this section, we compute the expected local clustering coefficient for each node.
From Section 4.2 we already have the degrees. What remains is the expected value
of T (i), the number of triangles through node i. We use an indicator variable
Xi,j,k, which is 1 iff the nodes i, j, k form a triangle, and sum over all possible
constellations. Then E[T (i)] is

E[T (i)] = E

1≤j≤N∑
j 6=i

j<k≤N∑
k 6=i

Xi,j,k


=

1≤j≤N∑
j 6=i

j<k≤N∑
k 6=i

E[Xi,j,k] =

1≤j≤N∑
j 6=i

j<k≤N∑
k 6=i

Pr[Xi,j,k = 1]

from the linearity of expectation.
But what is Pr[Xi,j,k = 1]? Let’s say we have nodes i, j and k where i < j < k
w.l.o.g. Then Pr[Xi,j,k = 1] is the probability that node j chose to make an
outgoing connection to i and node k chose to make outgoing connections to both
i and j. Those two events are independent. Note that nodes are being iteratively
added to the network and initially choose m random peers they connect to. The
probability that node j makes an outgoing connection to i and succeeds is

m

N(j)
, if i > f(k), else 0

And similarly for k to make outgoing connections to i and j is

m(m− 1)

N(k)(N(k)− 1)
, if i, j > f(k), else 0
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In general, there are three cases: i < j < k, j < i < k and j < k < i. With this,
we get

E[T (i)] =
N∑

j=i+1

N∑
k=j+1

m

N(j)

m(m− 1)

N(k)(N(k)− 1)

+

i−1∑
j=1

N∑
k=i+1

m

N(i)

m(m− 1)

N(k)(N(k)− 1)

+

i−2∑
j=1

i−1∑
k=j+1

m

N(k)

m(m− 1)

N(i)(N(i)− 1)

Figure 4.2 shows a plot of the clustering coefficients of the theoretical Bitcoin and
Ethereum networks compared with their lite simulations with 3000 nodes. Both
theoretical and lite simulation Ethereum have very high clustering coefficients in
the beginning, whereas in Bitcoin, the first few nodes have only a slightly higher
clustering coefficient than younger nodes. This is due to the fact that those old
Bitcoin nodes still get many incoming connections from much younger nodes,
whereas the old Ethereum nodes can not accept anymore connections from an
early time on and we start with m initially connected nodes.

The difference between theoretical and lite sim Ethereum indicates that the
nodes in the latter do not have sufficient information about the network, i.e.,
nodes from the full range of ids. We believe the reason to be twofold. First,
the peer choosing mechanism has an influence on the topology and second, lite
sim Ethereum does not manage to mix up the network enough due to lacking
functionality.

Figure 4.1: Comparison of degree dis-
tribution

Figure 4.2: Clustering coefficient per
node.
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4.4 Centrality

In this chapter we develop a formula to compute the probability distribution of
shortest path length for each pair of nodes in the network. These results can then
be used to compute the closeness centrality for each node. Closeness centrality
measures the average distance to all other nodes in the network. Closeness is
significant for blockchain networks because a low closeness expresses the delay in
receiving information about transactions and new blocks which can be directly
translated to a loss of computation power and money.

4.4.1 Analytical shortest paths

Let us fix a node i and estimate the probability distribution of the shortest path
length from i to a random node j. Let P l

ij denote the event that a path from i

to j of length l exists. Note that P l
ij = P l

ji. From now on we assume that i < j
w.l.o.g.
For the path from i to j to be of length 1, i and j need to be neighbours.

Pr[P 1
ij ] =

{
m

N(j) , if i > f(j)

0 , else

If the shortest path is of length 2, then there exists a path of length 2 and also i
and j are not neighbours. By conditional probability we get

Pr[P 2
ij ∩ ¬P 1

ij ] = Pr[P 2
ij |¬P 1

ij ] ∗ Pr[¬P 1
ij ] (4.2)

We employ an indicator variable Xijk which is 1, iff k connects i and j given that
i and j are not neighbours. There are 3 different constellations:

1. i < j < k: k is the youngest node and connects to both i and j.

2. i < k < j: k connects to i whereas j connects to k.

3. k < i < j: both i and j connect to k.

Pr[Xijk = 1] =


m

N(k) ∗
m−1

N(k)−1 , case 1.
m

N(k) ∗
m

N(j)−1 , case 2.
m

N(i)−1 ∗
m

N(j)−1 , case 3.

If i, j < m, Xijk simply is 0, because we start the network with m fully connected
initial nodes.
We can reformulate equation 4.2 as
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Pr[P 2
ij ∩ ¬P 1

ij ] = (1−
∏
k 6=i,j

Pr[Xijk = 0]) ∗ (1− Pr[P 1
ij ])

Given m < i < j:

∏
k 6=i,j

Pr[Xijk = 0] =
N∏

k=j+1

1−
(

m

N(k)
∗ m− 1

N(k)− 1

)

∗
j−1∏

k=i+1

1−
(

m

N(k)
∗ m

N(j)− 1

)

∗
i−1∏
k=1

1−
(

m

N(i)− 1
∗ m

N(j)− 1

)

As the estimation of the probability distribution gets much more complicated
for longer paths, we take the recursive paths approach from [7] and adapt it for
our purposes.
Let the tail-distribution FN

ij (k) = Pr(dij > k) denote the probability that the
distance between nodes i and j in a network of size N is larger than k. For
any two nodes we have that FN

ij (0) = 1 and FN
ij (1) = qij = 1 − pij where

pij is the probability that nodes i and j are neighbours. This probability is
dependent on the size of the network at the time when the younger node was
added and whether the younger node still accepts incoming connections. We get
the probability distribution PN

ij (k) from FN
ij (k − 1)− FN

ij (k). The authors of [7]
formulated the following expression

FN
ij (k) = FN

ij (1)
k∏

l=2

PN
ij (dij > l|dij > l − 1) (4.3)

where we adapt the right hand side as follows to account for the connection
probabilities of specific node pairs.

PN
ij (dij > k|dij > k − 1) =

N∏
l 6=i,j

[
qil + pil ∗ P

N\i
lj (dlj > k − 1|dlj > k − 2)

]
(4.4)

We can close the recursive equation with PN ′
ij (dij > 1|dij > 0) = FN ′

ij (1) = qij .
Note that one step in the recursion leaves i out, as it would otherwise form a
loop in the path.
The algorithm to compute this has a time complexity of O(kN2+k) where k is the
maximum path length computed. To make it faster, we only consider a random
1% subset of node pairs. Comparisons show that the results are close to the ones
received from calculating over all pairs.
Furthermore, the probability for the path to be longer than dlog(N)e is small and
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such a path almost never appears in the simulations. Hence we only calculate
the paths up to a length of 4. Because of limited resources, we only compute
the shortest paths for a network of size 1000. The results can be seen in Figure
4.3. Note that the y-axis shows the percentage of all node pairs. E.g., 20% of
all node pairs in the theoretical Bitcoin network with 1000 nodes are separated
by a shortest path of length 2. This approach does not account for correlations
between shortest paths which share at least one edge. Whereas the results for
path lengths of 1 and 2 are similar to the results from equation 4.2, this approach
does not provide reasonable results for longer path lengths.

4.4.2 Numerical shortest paths

In order to get numbers for larger networks, we simulate networks with the same
outbound and inbound distributions but with a random choice of connections.
The results of this method are in agreement with the analytical results for the
degree distribution and clustering coefficients. We measure the shortest paths for
all pairs and use these results to compute the closeness centrality. The average
shortest paths of the random Bitcoin and Ethereum networks compared with the
lite simulations can be seen in Figure 4.4. We observe that the random and lite
simulation results of Bitcoin are in harmony.

But there is a large discrepancy between both random and lite simulation
Ethereum results. We attribute this to the same reasons described in Subsection
4.3

4.4.3 Closeness

We can plug in the results from Section 4.4.2 and get the results in Figure 4.5.
Axis x depicts the ids, while axis y illustrates the closeness centrality per node.

The results of both Bitcoin-like networks imply that nodes which have been
around for a while have an advantage. Higher closeness implies that nodes re-
ceive new information, e.g., on the blockchain state, earlier than others. This is
important in terms of fairness in the network.

Just like with clustering and shortest paths, we observe here again a difference
between both Ethereum-like networks. Furthermore, we see that the closeness
first rises and then slightly drops again. This implies that the network grows in
a linear manner, where the oldest and youngest nodes are far away from all other
nodes. This is due to the fact that new nodes only connect to nodes which just
have been added to the network too, because the older nodes are already full.

The large difference between the first few Bitcoin and Ethereum nodes can
be explained with the large difference regarding their degrees.
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Figure 4.3: Shortest paths with
1000 nodes calculated with theoretical
model.

Figure 4.4: Shortest path lengths.

Figure 4.5: Closeness per node.



Chapter 5

Discussion

5.1 Discussion

In networks which allow for high degrees, like in Bitcoin, we have seen that the
old nodes receive the most connection requests and hence, have a higher degree
than nodes which have been added at a later time. Furthermore, no node gets
full in a network with 3000 nodes. This leads to a more mixed up network which
results in overall low clustering coefficients. Bitcoin networks have a low average
of shortest paths. Because of their high degrees, old nodes have a higher closeness
centrality than their younger peers.

In Ethereum-like networks, due to the low upper bound on total connections,
many nodes reach a full degree of 25. Therefore, Ethereum achieves an even
degree distribution. Even with the mixing up mechanism in the full simula-
tions, Ethereum nodes evince a higher clustering coefficient than Bitcoin nodes.
Whereas the theoretical model shows longer shortest paths, the full Ethereum
simulation reaches low values for shortest paths and a rather even closeness dis-
tribution, with exception of the youngest nodes.

We attribute those findings to the linear construction of the Ethereum net-
work, which maintains even after many dis- and reconnections.

Questionable is the role of the virtual time steps in the simulations, which
affect the degree of dynamism and dictate the rate of dis- and reconnections in
the network.

5.2 Security and Fairness

What do the findings imply from a security and fairness perspective? Having a
high clustering coefficient, like in the Ethereum network, implies not having many
peers from other parts of the network. This translates, same as a low closeness
centrality, to a possible delay when it comes to receiving information about new
blocks or transactions. In Bitcoin, old nodes are given a lot of power, as they get

18
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connected to the most. This is also not what is best from a security and fairness
perspective. If shortest paths are long, it gives a higher chance of succeeding in a
front runner attack [4]. Ethereum-like networks should have a mechanism to mix
the network up. It is essential to have an upper bound on connections, especially
incoming ones, to mitigate eclipse attacks [5, 6]. A connection bound between
the ones of Bitcoin and Ethereum seems best.



Chapter 6

Conclusion & Future Work

6.1 Conclusion

In this thesis, we compared degrees, clustering coefficients, shortest paths, close-
ness centrality and the connection distribution of simulated Bitcoin and Ethereum
peer-to-peer networks. Furthermore, we built a theoretical model to calculate
those properties. Then, we compared them to the results of lite simulations,
which have been adapted to observe the effects of the different peer-choosing
mechanisms.

From our study, we find that the Ethereum network has a linear construction,
which leads to an even degree and closeness distribution and high clustering,
but still manages to have short average shortest paths. From a security and
fairness perspective, its better to have an even degree- and closeness-distribution
like Ethereum, low clustering coefficients like Bitcoin and short average shortest
paths, which is reached by both.

6.2 Future work

An interesting future direction would be extensions to the theoretical model to
account for connection dynamics, where nodes go offline, reconnect, and retry
to establish connections to other nodes upon failure, as well as shortest path
results for bigger networks. Interesting would be to apply analysis of more net-
work properties, considering, e.g., state and location of nodes, have single nodes
deviate from the protocol or even attack the network. How much the dynamics
in connections affect the topology poses the most important open question.

20
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