
Classifying Medical Text using
State-of-the-art Natural Language

Processing Techniques
Master’s Thesis

Sandro Luck

sluck@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Pascual Ortiz Damian

Prof. Dr. Roger Wattenhofer

November 12, 2020

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Pas-
cual Ortiz Damian, for his support, help, expertise, and the time he dedicated to
me. I thank Prof. Dr. Roger Wattenhofer, the head of the Distributed Comput-
ing Group at the Eidgenössische Technische Hochschule Zürich, for making this
project possible.

i

Abstract

Interactions of patients with medical personal produce various documents in text
form. The task of ICD coding is using the International Classification of Diseases
system(ICD) to assign a label to those medical documents. Currently, this process
is time-consuming, necessary, and needs to be performed by well educated medical
personal.
Utilizing machine-learning-based approaches to solve this task automatically has
shown great promise in recent years. This master thesis proposes a machine-
learning-based model for automatic ICD coding utilizing the recent improvements
in the natural language processing technique BERT. Additionally, we will utilize
modern neural network interpretability methods to ensure that a decision made
by our system is not just correct but also explainable, both to medical personal
and patients. We focus on the biggest publicly accessible benchmark dataset
Mimic3 to ensure the results are realistic and of high quality.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Work 4

2.1 Automatic ICD Coding . 4

2.2 Mimic3 . 5

2.3 Preprocessing . 8

2.4 Models for ICD Coding . 8

2.5 BERT . 9

2.6 Interpretability of Neural Networks 10

3 Overview 11

3.1 Embedder Overview . 11

3.2 Embedder Training . 12

3.3 Embedding Construction and Predictor 12

3.4 Evaluation . 13

4 Embedder 16

4.1 Data . 16

4.2 Huggingface . 17

4.2.1 Hyperparameters for comparison 17

4.3 Preprocessing . 18

4.3.1 Numbers . 18

4.4 Sequence Length . 19

4.5 Training Time and Hyperparameters 21

4.6 Training Direction . 22

iii

Contents iv

4.7 Paragraph Splitting . 23

4.8 Paragraph Embedder . 25

4.9 Rest Text . 28

4.10 Chunked Embedding . 28

4.11 Random Embedding . 29

4.12 Sentence Embedding . 30

4.13 Illness List Embedding . 31

4.14 Additional Variables . 32

5 Predictor 34

5.1 General Architecture . 34

5.2 Simple Dense Architecture . 34

5.3 Simple Dense Architecture, Force Through Smaller 35

5.4 Aggregating Techniques . 35

5.5 Transformer Encoders . 36

5.6 Best Model . 36

5.7 Other Notable Aspects . 37

5.7.1 Optimizers . 37

5.7.2 Early Stopping . 37

5.7.3 Batch Size . 38

5.7.4 Learning Rate . 38

5.7.5 Learning Rate Decay . 38

5.7.6 Weight Decay . 38

6 Evaluation & Interpretation 42

6.1 Data . 42

6.2 Sentence Style . 43

6.3 Dense Architecture . 43

6.4 Dense Architecture, Force Through Smaller 44

6.5 Aggregating Techniques . 44

6.6 Individual Embedding Performance 45

6.7 Comparison to Other Works . 45

6.8 Interpretation . 46

Contents v

6.8.1 Deep Lift . 47

6.8.2 Integrated Gradient . 47

6.8.3 Interpretation Designer 47

6.8.4 Aggregation of e . 48

6.8.5 Aggregation Over All Test Examples 48

6.9 Interpretation Results . 48

6.9.1 Paragraph Interpretation 49

7 Conclusion 53

7.1 Future Work . 54

Bibliography 55

A Summary of The Findings A-1

A.1 Embedder . A-1

A.2 Predictor . A-2

A.3 Interpretation . A-2

Chapter 1

Introduction

The demand for medical services has been increasing for several decades. Es-
pecially due to the COVID-19 pandemic, practitioners and hospitals worldwide
are challenged in 2020. The technologies and complexity of medical systems and
the possibility of treatment have also been expanding rapidly. The national and
international costs for health care have constantly been increasing. To save costs
and improve service quality, medical workers increasingly utilize automatic sys-
tems, both in treatment and administration, to improve quality and efficiency
and serve their patients better [1].
Automatic systems have in recent times increasingly been combined with ma-
chine learning and deep learning related techniques and thus allowed for new
applications. Deep learning related systems are especially promising in medical
domains where previous rule-based systems failed since they can learn these rules
directly from the data. Given the medical field’s complexity, different treatment
methods, and increasingly diverse options for treating diseases, machine-learning-
based systems could also potentially incorporate the newest findings faster.
The challenges of machine-learning-based systems are manifold. One of the most
challenging aspects is the amount of available data. Since machine-learning-based
systems learn from the data presented to them, they can usually deliver better re-
sults when trained on more data. The conventional idea is that more data beats
better algorithms. However, this poses a problem for the medical domain [2].
Since medical datasets are especially sensitive datasets, they usually are small
and contain between 1’000 and 100’000 samples [3, 4]. The amount of hospital
stays in the USA exceeded 35’000’000 in 2016 alone, and therefore there would
exist enough data points [5]. However, most of this data is not publicly available.
Outside the USA, such data is rarely available as a public dataset, the main rea-
son being that generating such datasets is time and resource consuming. If data
is available for public research, it is heavily anonymized, which is desirable but
poses additional challenges. This anonymization process is costly and has not
been clearly standardized, which again adds to the scarcity of datasets.
Another common problem for machine-learning-based approaches is data quality.
Data quality is essential for successful learning, and improving the data quality
can often help the system learn better, even when no architectural changes were

1

1. Introduction 2

made. In the medical domain working with data that has not directly been col-
lected for a specific purpose can also lead to quality issues [6].
One also has to consider that a dataset is often from one data source or closely
connected data sources where data is available. In other words, the treating doc-
tors are often from one hospital and the patients from one specific geographic
location. For example, the Mimic3 dataset, one of the biggest medical datasets,
contains only samples from the Beth Israel Deaconess Medical Center, Mas-
sachusetts.
The data format of medical data is also often specific and not commonly used
in other domains. We will mostly focus on the textual data, which has gotten
more attention in recent years due to NLP-based methods’ progress. The tex-
tual representation of medical data poses specific problems, as we will show in
more detail later. Problems include a domain-specific multilingual vocabulary,
illnesses, and body parts, may be mentioned in Latin, English, and potentially
local slang terms. Its vocabulary includes many abbreviations and measurements
specific to the medical domain and can only partially be transfer learned. The
modern state of the art NLP deep learning models relie on a lot of data, which
may only partially be available for the medical domain. For example, GPT-3,
a recent NLP model from OpenAI, has gained widespread attention by being
trained on almost 1 trillion words [7]. In general however, the medical literature
is still vast and can be used to transfer learn the medical vocabulary and context
without having massive datasets.
A decision made in the medical domain is sensitive; the decision can have a
long-lasting impact and may not always be easily reversible. This justifies build-
ing systems that evolve past optimizing a certain score and additionally explain
themselves to the user. Such an explanation may be given by highlighting what
data source the respective decision was most influenced by. For example, when
using gender-related information for a prediction, the model should indicate that
this was considered when making the prediction or decision. While such features
as age contain valuable information, it should be made clear to the using spe-
cialist that this information was considered. We may consider a patient with
an occupation like "security(-guard)" where night shifts are frequent and then
is labeled to have sleeping problems, but he has normal working hours and no
sleeping problems. While it may be beneficial for the model to assume that all
shift workers have sleeping problems, it is not always correct.
In the following work, we aim at developing an assistance system for clinical
practitioners that helps them in their administrative work and explains itself.
While our system would be more useful to help practitioners in the administra-
tive setting, the underlying interpretability usage could also be extended to the
predictive settings.
In the following thesis, we will first explain the broader field this work operates
in. We will then try to give an intuitive overview of the different systems that
we used and developed. It will be followed by explaining the components of the
two subsystems and the respective design choices made for their development.

1. Introduction 3

Later on, we will present the system’s evaluation and interpretation and explain
the mathematical foundation it is built upon. We will then conclude with a
discussion and possibilities for future work.

Chapter 2

Related Work

This work is mostly operating at the intersection of medicine and Natural Lan-
guage Processing(NLP). We will use medical text to predict so-called ICD codes.
The International Classification of Diseases (ICD) is a system for classifying dis-
eases [8]. The codes are alphanumeric, and there are several variations of this
system ranging from ICD-1 to ICD-10. In this work, we will be using ICD-9,
which has been used between 1979 and 1998 [8].
In total, ICD-9 has around 15’000 codes where the exact amount may change
depending on the source USA, World Health Organization(WHO), etc.[9]. This
is significantly less than the number of codes in the newer version ICD-10, which
contains over 140’000 codes. While this is a respectable difference, one can gener-
ally assume that only a small part of these illnesses are actually used in practice.
These ICD codes have different uses ranging from billing to predictive modeling
of patient states and aim at covering all illnesses and general conditions from
"Cholera, 001.9" to "Unemployment, V62.0".

2.1 Automatic ICD Coding

Automatic ICD Coding refers to automatically predicting the ICD codes from
the data available in the health facility’s data sources. The task of ICD Coding,
in general, is prevalent and extensively studied [10, 9, 11, 12, 13, 14, 15, 16, 17].
Today, this task is mostly conducted by hand, which takes a long time, is error-
prone, and has to be conducted by skilled medical personnel and is therefore
expensive. Therefore automatic ICD Coding has been studied since at least 1998
and would improve the healthcare system’s efficiency [10].
The main usage of ICD Coding is to describe to the health insurance companies
which services were conducted and how much the treating entity is paid. ICD
codes are also used to aggregate and create statistics on the health of citizens [18].
Most works in the field try to infer the codes exclusively from medical free-text,
which is also the main data source clinical practitioners use today to manually
conduct this task [11]. Doing so is challenging for 3 reasons 1) The labeling space
is very sparse 2) Medical text is complicated and contains many domain-specific

4

2. Related Work 5

languages and redundant information 3) The texts tend to be very long. In recent
years specifically, the Mimic3 dataset has become increasingly popular. We will
describe the specific challenges more closely in the section 2.2.
Additionally, the ICD codes and labels are not always applied thoroughly, mean-
ing that even though the information is present in the text, the respective label
is not set. Since ICD codes are hierarchical and ambiguous, one doctor may
label a specific headache as "Headache, from the neck" or "Headache, mixed,"
which leads to a certain ambiguity. This is more common in categories that are
relatively cheap to treat [18].

2.2 Mimic3

The Mimic3 dataset was released in 2016 [3]. Mimic3 is a large database of med-
ical data in various forms. The dataset has 53’423 distinct hospital admissions
and is anonymized. For this work, we focus on extracting the knowledge mainly
from the discharge summaries.
Discharge summaries are medical documents created by doctors at the end of a
stay in a medical facility. They summarize the diagnoses, diagnostic procedures
performed, therapy received while hospitalized, clinical course during hospitaliza-
tion, prognosis, and plan of action for the follow-up [19]. Discharge summaries are
a common choice for the task of ICD Coding in the Mimic3 dataset [9, 15, 16, 17].
Their main advantage is that they contain all information necessary to identify
all labels. In contrast, a nursing/radiologist note may only contain selective in-
formation on a patient’s state at a specific point in time.
One discharge summary refers to one stay in the hospital. Thus, one has to be
careful to split the dataset by patients and not simply by samples. We model
the task as a multilabel classification task since a sample/discharge summary can
simultaneously have multiple active illnesses. In fact, a discharge summary has
13.15 ICD labels on average associated with it.
In the Mimic3 dataset, only 8’921 of the around 15’000 ICD-9 codes appear. The
average amount of samples per ICD code in the dataset is 100.29, and the me-
dian is 6. We can see the distribution in the figure 2.1. We will mostly focus on
the 50 most frequent ICD codes in the Mimic3 dataset, due to sparseness. This
subtask is very common in the literature and covered in most prominent works
on ICD-Coding [9, 15, 16, 17].
When building a recommender system for clinical practitioners, it is also impor-
tant to get the most common codes right, and additionally, this makes interpretability-
related visualization easier. The distribution of the top 50 most frequent ICD-9
codes is also significantly more favorable for training neural networks since some
labels occur below 10 times otherwise. We can see the distribution of the top
50 codes in the figure 2.2. More specifically, the entire list and frequency can be
seen in the table 2.1.
We may notice this distribution has a very long tail and is heavily concentrated

2. Related Work 6

Figure 2.1: ICD-9 Code distribution in Mimic3

Figure 2.2: ICD-9 Code distribution in Mimic3, Top 50

in the 4 most frequent diseases, all of which are cardiovascular diseases. We will
only include samples that include at least one of the 50 most common ICD codes,
which happens in 49’091 of 52’726 samples, i.e. we discarded only 6.9% for the
runs with the bigger dataset. We kept the train, test, validation split at 90%,7%,
and 3% as Mullenbach et al. [9].

2. Related Work 7

ICD-9
Code

Present
in % of
samples

Description

4019 39.3% Hypertension NOS
4280 27.4% CHF NOS
42731 26.7% Atrial fibrillation
41401 24.5% Crnry athrscl natve vssl
2724 18.2% Hyperlipidemia NEC/NOS
5849 17.5% Acute kidney failure NOS
25000 16.6% DMII wo cmp nt st uncntr
51881 16.0% Acute respiratry failure
5990 13.9% Urin tract infection NOS
53081 11.4% Esophageal reflux
486 11.4% Pneumonia - organism NOS
2720 11.1% Pure hypercholesterolem
2859 10.7% Anemia NOS
2449 10.4% Hypothyroidism NOS
2762 9.74% Acidosis
5070 9.6% Food/vomit pneumonitis
2851 8.72% Ac posthemorrhag anemia
496 8.30% Chr airway obstruct NEC
V5861 8.24% Long-term use anticoagul
40390 7.77% Hy kid NOS w cr kid I-IV
0389 7.7% Septicemia NOS
V4581 7.63% Aortocoronary bypass
99592 7.29% Severe sepsis
4241 7.14% Aortic valve disorder
5859 6.74% Chronic kidney dis NOS
V1582 6.68% History of tobacco use
2875 6.61% Thrombocytopenia NOS
41071 6.61% Subendo infarct - initial
412 6.54% Old myocardial infarct
V4582 5.93% Status-post ptca
5119 5.79% Pleural effusion NOS
311 5.65% Depressive disorder NEC
3051 5.59% Tobacco use disorder
V290 5.59% NB obsrv suspct infect
V5867 5.52% Long-term use of insulin
78552 5.52% Septic shock
4240 5.52% Mitral valve disorder
49390 5.38% Asthma NOS
9971 4.9% Surg compl-heart
2761 4.84% Hyposmolality
40391 4.7% Hyp kid NOS w cr kid V
5845 4.63% Ac kidny fail - tubr necr
42789 4.43% Cardiac dysrhythmias NEC
5180 4.43% Pulmonary collapse
45829 4.29% Iatrogenc hypotnsion NEC
32723 4.29% Obstructive sleep apnea
4168 4.22% Chr pulmon heart dis NEC
7742 4.16% Neonat jaund preterm del
2767 4.16% Hyperpotassemia
2760 3.61% Hyperosmolality

Table 2.1: Top-50, ICD-9 Codes and distribution in Mimic3

2. Related Work 8

2.3 Preprocessing

The task of ICD Coding using Mimic3 discharge summaries has been extensively
studied [10, 9, 11, 12, 13, 14, 15, 16, 17], and many different preprocessing forms
have been used. When working with text in machine learning, it is often beneficial
to clean the text before processing it, also referred to as preprocessing. Most
newer works in the Mimic3 ICD Coding task use the preprocessing form proposed
by Mullenbach et al., which includes the most recent and state-of-the-art model
from Vu et al. [9, 17, 20, 16].

• Convert the text to lowercase

• Remove Numbers

• Removing words that occur infrequently

• Truncate the text

We use a modified version of this preprocessing form, we will discuss this variation
and justify it in more detail in section 4.3.

2.4 Models for ICD Coding

The task of ICD Coding using text has been tackled over the years using several
different techniques. Traditional machine learning methods have been used to
solve this task, [21, 22] but more recently, the focus has shifted towards more
deep learning related methods [9, 11, 12, 13, 14, 15, 16, 17].
The deep learning related methods often relied on convolution [9, 20], The most
recent and best works in the area, have been using LSTMs and labeling at-
tention to learn their embeddings [17]. Also, incorporating new text data for
diseases from the World Health Organization(WHO) is a common approach to
solve the problem of the label space’s sparsity [9]. The most recent successes in
the Mimic3 dataset have been achieved using convolution, LSTMS, and word em-
beddings [9, 11, 12, 13, 14, 15, 16, 17]. On a high level, their approach is to find
an embedding for each word. Each document/sample can then be represented
as a list of n word embeddings. Then they use various forms of recurrent layers
such as LSTMs, RNNs, and their bidirectional counterparts [9, 17, 16]. Here the
approaches diverge but for example, Vu et al. use the output of this information
to learn a vector representing the document for each label, i.e. they will then
have l label vectors representing a document. Attention is often stressed to play
an important role in handling the information coming from the embeddings and
making the final predictions [20, 17].
Traditional deep learning methods being better than BERT seems surprising

2. Related Work 9

since the BERT architecture has shown great promise in NLP tasks in the Bi-
ological and medical domain in recent years [23, 24, 25]. Specifically, however,
for the Mimic3 dataset, researchers have failed to achieve state-of-the-art per-
formance using BERT like architectures. In a very similar work to ours, Chen
et al. finetuned BERT on the Mimic3 dataset. They found that their model’s
biggest challenges were that the discharge summaries were too long [26]. While
they achieved a relatively good score, their performance falls short of beating
the state-of-the-art performance. While Zhang et al. recently showed that using
BERT in ICD Coding is beneficial, they pointed out that working on the Mimic3
dataset is especially difficult due to the low amount of data [27] and instead used
a total of 7.5 million notes from the Anonymous Institution EHR system. Their
dataset is not publicly available. They state that in their dataset "We found
that all BERT based models far outperform non-transformer based models"[27].
They additionally state that the amount of data in the Mimic3 dataset is small
and the content constrained to critical care units, which seems to be why they
did not compare their model’s performance to other models.

2.5 BERT

In recent years, transformer-based architectures [28] such as BERT [29] have
shown great promise in various NLP tasks. In NLP tasks, transformer-based
architectures were used successfully for summarization, translation, generation,
and classification [30]. The major improvement is the self-attention mechanism
that can be efficiently parallelized on modern GPUs [31].
Inspired by the usage and success across other domains, BERT architectures are
increasingly used in the medical domain. To recommend medication Shang et
al. used a BERT-like architecture via embedding learning for ICD codes [32].
Clinical BERT has been developed by training on the Mimic3 dataset, both the
discharge summaries and notes [25]. This BERT variation can then be used
for further downstream prediction tasks. BioBERT has been developed by pre-
training on biological articles and publications. Its goal is to be useful in tasks
related to biology [33]. It has also been successfully used for ICD annotation
on experiments with animals by Sänger et al. [34]. The most recent and most
related publicly available BERT architecture to the task of ICD Coding has been
proposed by Gu et al. from Microsoft [23]. This model has been trained on
abstracts from PubMed and full articles from PubMedCentral. Using this pro-
cedure, they achieved state-of-the-art performance on several medical NLP tasks
and are also state-of-the-art in the Biomedical Language Understanding and Rea-
soning Benchmark [23].
One of the main obstacles of using BERT related model is that they need big
amounts of training data and training time to perform competitively [7]. The
emergence of the excellent Huggingface environment [30] has made working with
BERT like architectures significantly easier. The pretraining phase can be skipped,

2. Related Work 10

and a comparison between flavors of BERT is simplified. It allows for the possi-
bility to download and use models that have been trained for several weeks for
various fields such as biology and medicine. We will show an evaluation of the
models available on Huggingface in the section 4.2 that were pretrained on med-
ical or biological data. All previously mentioned BERT variations are available
for comparison in section 4.2 with the exception of clinical BERT, which was
pretrained on Mimic3 and should therefore not be used for our task.

2.6 Interpretability of Neural Networks

Neural networks are complex models and combine a variety of different transfor-
mation layers and activation functions. While predicting with an already trained
network is fast, understand how this prediction was made by the model is hard.
Therefore neural networks are also often referred to as black-box models [35].
Interpretability is a need in settings where testing all possible input combina-
tions/risks is practically impossible. In situations like this, Interpretability can
help in the analysis of neural networks [36].
From a societal perspective, understanding how the predictions are made is essen-
tial to avoid generalization, which is not accurate. Further, the European Union
mandated that "Among other rights, the GDPR guarantees individuals the right
to have a decision based solely on automated processing (an algorithm) be made
or reviewed by a natural person instead of a computer" [37] which indicated that
interpretability would be necessary to explain neural networks that base their
decision on multiple 1’000s of variables[36].
In the medical field, interpretability is of special interest due to decisions having
far-reaching implications and often not being reversible.

Chapter 3

Overview

The task of predicting the 50 most common ICD codes in the Mimic3 dataset is
challenging. Due to limitations, we will mention in the section 4.4 we will work
for the most part with a two-model architecture. In the first step, we will convert
the discharge summaries to an embedding. Then we will use this embedding to
predict the final ICD codes.
An embedding in this work is a vector x ∈ Rn, which captures some part of the
information present in a document. This embedding is constructed such that it
represents the underlying discharge summary or a part of it. The final embedding
size varies by architecture, but we can think of the final embedding as containing
between 1’000 and 200’000 variables.
Once we constructed such an embedding, we used a second model to work on
top of it to extract the final prediction. We decided to use such an architecture
since it allows us to utilize more information and take a more global view of a
sample. Additionally, we can use combinations of the same model with different
transformation methods and then concatenate them into a new embedding. This
is necessary since if we would only use a normal BERT architecture, we would
only be able to see roughly 1

8 of the text due to reasons we will discuss in more
detail in the section 4.4.

3.1 Embedder Overview

To create an embedding, we choose the successful BERT architecture described
in more detail in chapter 4. We use the very convenient and optimized library
FastBert to train our Embedder since it allows for several useful hardware opti-
mizations such as halfprecision training, multi-GPU training, etc. [38]. Which
results in a more rapid development time. This is especially important to us
since our architecture is extremely time-consuming and takes a long time to
train, which is normal for BERT based architectures [30]. We will discuss the
hardware constraints later in the section 4.5.
The basic concept is that we finetune an already pretrained BERT version. This

11

3. Overview 12

pretraining was done on excessive amounts of data and over a long time span,
often over several weeks on several GPUs.
The process of finetuning a BERT model involves loading a pretrained BERT
and adding a layer between the last layer and the BERT-pooler. We then train
this new construct (Embedder) using the binary cross-entropy loss with logits to
predict the illnesses’ probability in the last layer. After training this Embedder,
we can generate an embedding for a sample by taking the last layer’s output after
the forward pass. This process is visualized in the figure 3.1. The white fields
are the Classifier we train (aka Embedder), the grey box is the embedding we
can generate using this Classifier. We differentiated here its two functions while
training it, it is a Classifier, and when we use it after training, it is an Embedder.
They are the same thing.
As illustrated in white, the Classifier is already a completely usable solution to
the ICD problem. We can gain additional insights by combining their results,
as we will show in the following chapters. As we can see, the Classifier is very
similar to a BERT architecture [29]. The 12 BERT-layers are identical. The
main difference is visible after the BertPooler, which is the last layer both have
in common. The last classification layer is basically a simple linear layer that is
"packed on top" of a BERT architecture and can use BERTs information for our
classification task.

3.2 Embedder Training

The final embedding is an input produced by one or several Embedders. Com-
bining the output of these Embedders will yield a new and more informative
embedding. An overview of how this process functions on a high level can be
seen in the figure 3.2.
As we can see, we take a document and transform it into several new variations
of the document, each containing a different "view" on the document. In one
variation, we may look at all lung related text, and in another, we may look at
all history related text.
Once this transformation has been conducted, we are left with a new dataset "A."
After finetuning now a BERT on this dataset, we are left with an Embedder "A."
To create the final embedding, we concatenate several of these embedding, which
we can see in the figure 3.3.

3.3 Embedding Construction and Predictor

The Predictors task is it to predict the 50 illness given the m embeddings. On
a high level, we create m embeddings given n <= m Embedders as described
previously. One Embedder may create several embeddings by been given different

3. Overview 13

Figure 3.1: Simplified Embedder.

inputs for one sample. We can see a visualization of this process in the figure 3.3.
As we can see, a sample is transformed using the m transformations. This results
in m distinct views on the sample. Using the Embedder specialized in working on
the specific transformation, we can now generatem embeddings. After generating
these m embedding, we now create new bigger, and more informative embedding.
The Predictor then gets this embedding to generate the final predictions.

3.4 Evaluation

Like most other works in the field, we will focus on the F1 scores. Since F1 is
the harmonic mean of the precision and recall, selecting model based on the F1
score is sensible. Given |L| classes, the F1 macro and micro score are given by,

3. Overview 14

Figure 3.2: Showing the process of creating the Embedder.

F1micro =
TP

TP+0.5∗(FP+FN)

F1macro =
1
|L|

∑|L|
l=1

TPl
TPl+0.5∗(FPl+FNl)

Where TP are the True Positives, FP are the False Positives, and FN are the
False Negatives and lower case l their respective value for class l. We particularly
focused on the micro F1 score. Focusing on the micro score as opposed to the
macro score was an early decision. Since a recommendation system is supposed to
assist the clinical practitioners, it is more important for their efficiency that the
most frequent codes are predicted correctly. Also, we found that the macro and
micro F1-score tend to move in the same direction in our implementation, and the

3. Overview 15

Figure 3.3: Showing how final Embedding is created.

micro F1 score is mentioned in all recent works [9, 11, 12, 13, 14, 15, 16, 17]. This
is why we will, in most illustrative plots, focus on the F1 micro score and provide
a more thorough investigation in the chapter 6, including the macro scores.

Chapter 4

Embedder

The Embedder is a function learned to transform the discharge summarie text
into a vector representing this text in a beneficial way for ICD Coding. We learn
these functions using a pretrained BERT architecture and adding a dense layer
on top. We then train the entire BERT to predict illnesses in the last layer with
all its layers again. This process will be called finetuning in the following sections.
In the following sections, we will discuss different ways to train such an Embed-
der. We will also discuss the important technologies and design decisions that
were involved.
On a high level, we download a pretrained model using Huggingface. This pre-
trained model is then finetuned using FastBert. The finetuning happens by using
transformed text. The transformation is the main difference between most Em-
bedders. Only two embeddings have been generated differently to this procedure
and will be described in sections 4.13 and 4.14.

4.1 Data

To train and evaluate the models in the sections of this chapter we used the
preprocessed discharge summaries of the Mimic3 dataset. The preprocessing
described in the section 4.3, if not stated otherwise, has been used to generate
the following evaluations. We focused on the 50 most common ICD codes, as
described in section 2.2. We only used discharge summaries, including at least
one of the 50 most frequent ICD codes. This results in a dataset with 49’091
samples. Of these, we used 44’175 for training, 1’468 for validation, and 3’448 for
the test set. We split the data in such a way that each patient (which may be in
several samples) can only be in one of the three sets. The following evaluations
have been conducted on the validation set. If a discharge summary was longer
than 1024 tokens, the length of the text was automatically truncated. For the
distribution-related plots, the training set has been used. To compare different
architectures, the validation set was used, the test set was used to evaluate the
Predictor as we will later describe in the chapter 6.

16

4. Embedder 17

4.2 Huggingface

The excellent library Huggingface [30] has several pretrained version of BERT
and various subversions such as ROBERTA available. Due to the medical nature
of Mimic3, we considered for this work mostly models pretrained on large datasets
of medical and or biological data. We also tested some other models that showed
promise in long texts but found that they performed largely inferior. We assume,
as also pointed out by Zhang et al., that the medical vocabulary is very different
from the ordinary English vocabulary and thus needs a specialized BERT [27]
Specifically, we tested these pretrained variations of BERT:

• biobert_v1.1_pubmed_squad_v2

• biobert_v1.1_pubmed_nli_sts

• biobert-nli

• oubiobert-base-uncased

• BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext

Each of these models has been pretrained for a long time on different medical or
biological datasets. We loaded each of these models into FastBert and trained
them using the preprocessed dataset we will describe in the section 4.3. Once
a model has been trained, we used our validation dataset to measure its perfor-
mance and decide which BERT model is the most useful for our purpose. As we
can see in the figure, 4.1 the recently release BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext from Microsoft [23] is clearly superior for our task. It
has been released very late into the thesis and was only used in the last 2 months
of the thesis, which is why we will later in the chapter 6 have a difference between
a big and a small dataset.

4.2.1 Hyperparameters for comparison

The evaluation for the model was based on the hyperparameters in the table. 4.1

Hyperparameter Value
Optimizer Lambda
Learning Rate 0.0005
Scheduler Warmup Cosine
Batch Size 8
Precision Full Precision

Table 4.1: Hyperparameters used for selection of pretrained BERT versions

4. Embedder 18

Figure 4.1: Comparison of the different BERT models, data as described in
section 4.1

4.3 Preprocessing

As already discussed in the section, 2.3 we used a variation of the preprocessing
form proposed by Mullenbach et al. [9]. While we theoretically have the same
task at hand, the differences in used technologies justify using preprocessing vari-
ations. We also converted the entire text to lower case since it was beneficial for
our training process.
Truncating the text was not explicitly done in our implementation, but it hap-
pened implicitly when training. Mullenbach et al. found that after 2500 words,
the gain is insignificant [9]. We were limited to 1024 tokens, which can be thought
of as roughly ∼ 600 words. The reason for this will be discussed in section 4.4.
We did not remove infrequent terms as Mullenbach et al., since it did not improve
our predictions. We assume that BERT’s use of the WordPiece algorithm, which
handles infrequent words by splitting them helped here. WordPiece splits them
in such a manner that the subwords again are known tokens for BERT [29].

4.3.1 Numbers

Especially numbers seem to be of great importance for the success of the training
process. We tested several different variations of preprocessing to discover the
most effective one. In particular, we tested the variants shown in the table 4.2.

4. Embedder 19

As we can see in the figure 4.2 the Mullebach variation is the most suitable for

Identifier Example Before Example After using
Preprocessing

No Editing
[[Dr. 7]] treated
patient with 25mg
and was given 7 pills.

[[Dr. 7]] treated
patient with 25mg.
and was given 7 pills.

Removing Numbers
Everywhere

[[Dr. 7]] treated
patient with 25mg.
and was given 7 pills.

[[Dr.]] treated
patient with mg.
and was given pills.

Removing Numbers and
Replacing the brackets

[[Dr. 7]] treated
patient with 25mg.
and was given 7 pills.

Dr. treated
patient with 25mg.
and was given 7 pills.

Removing Numbers,
except inside the brackets

[[Dr. 7]] treated
patient with 25mg.
and was given 7 pills.

[[Dr. 7]] treated
patient with mg.
and was given pills.

Mullenbach Variation
[[Dr. 7]] treated
patient with 25mg.
and was given 7 pills.

[[Dr. 7]] treated
patient with 25mg.
and was given pills.

Table 4.2: Examples of the different number processing forms.

our purposes. While the difference is not significant, we considered that using the
same preprocessing as other works would improve comparability [9, 17]. Therefore
from here on, we will mostly focus on this form of preprocessing.

Hyperparameters for comparison

We used the hyperparameters listed in the table 4.3 for this comparison.

Hyperparameter Value
Optimizer Lambda
Learning Rate 0.0001
Scheduler Warmup Cosine
Batch Size 16
Precision Half Precision

Table 4.3: Hyperparameters used for selection of preprocessing variation

4.4 Sequence Length

One of the most important hyperparameters in BERT models is the sequence
length. The sequence length describes how many tokens can be consumed by the

4. Embedder 20

Figure 4.2: Comparison of the different preprocessing methods, data as described
in section 4.1, preprocessing as described in section 4.3

BERT model. A token is one entry in a BERT vocabulary.
Tokenization describes the process of converting text to a list of tokens. This
process is done such that if a word exists exactly in the vocabulary, it will be
converted to one token covering the entire word. If the word is not present
in the vocabulary, the word is split into smaller pieces and converted to more
than one token. For example, assume that our vocabulary contains ["cardio,"
"vascular"], and the word cardiovascular will be represented as the combination
of the two tokens ["cardio," "##vascular"]. This process is powered by the
previously described algorithm called WordPiecing [29].
This particularity of the BERT model is especially important for us due to the
relatively long texts in the Mimic3 discharge summaries. In the figure 4.3, we
can see the distribution of word counts in our dataset. In the figure 4.4, we can
see the distribution of token counts in our dataset. In the table 4.4, we can see
the distribution of words and tokens per sample.
We compared the influence of the sequence length on the micro F1 score. In the

figure 4.5, we can clearly see that the performance increases as we increase the
sequence length. Ideally, the sequence length would be increased even further.
However, on GPUs available to us in Oct.2020, we can not train with bigger
sequence lengths than 1024. As we can see in the figure 4.5 the improvement
from 512 to 1024 is significant but not as huge as one might expect. We assume
the reason for this is, as also pointed out by Chen et al. [26] that a lot of

4. Embedder 21

Figure 4.3: Word count in mimic3 dis-
charge summaries.

Figure 4.4: Token count in mimic3 dis-
charge summaries.

Metric Word Distribution Token Distribution
[23]

mean 1519.50 2740.12
std 800.54 1492.80
min 21.00 78.00
Q1 957.00 1657.00
median 1394.00 2500.00
Q3 1948.00 3547.00
max 7980.00 18429.00

Table 4.4: Comparison of the word and token distribution in mimic3.

information is concentrated in the beginning.

4.5 Training Time and Hyperparameters

BERT architectures are known to be costly to train. While we found additional
training time to be beneficial, we often constrained ourselves to around 2 days
of training time. This allowed our model and process to be evaluated biweekly.
Our longest model was trained for roughly 8 days, and the training time mainly
depended on the amount of data.
While halfprecision decreased the epoch time significantly, it also decreased the
F1 score of the model’s in our experiments. We mostly used halfprecision training
for parameter tuning and prototyping.
Unless otherwise noted, the hyperparameters in the table 4.5 were used to train
our most competitive models. These hyperparameters were found using grid-
search but were only reevaluated seldomly, since testing one setting took 2 GPU
days.

4. Embedder 22

Figure 4.5: Illustration highlighting the impact of the sequence length on the F1
score, data as described in section 4.1

Hyperparameter Value
Optimizer Lambda
Learning Rate 0.0005
Scheduler Warmup Cosine
Batch Size 2
Precision Full Precision
Sequece Length 1024

Table 4.5: Hyperparameters used for all 1024 sequence length models.

4.6 Training Direction

Transforming the text such that BERT is trained from different views is desirable
if the text length exceeds the maximum possible length trainable with BERT.
The issue was discussed in the section 4.4, namely that we can only train with
1024 tokens.
Different directions in training yield good results as Sun et al. [39] already found,
we decided to evaluate them. The 3 basic different directions that we tried are
Front, Back, and Mixed. Assuming a sequence length of 1024, the Front is the
first 1024 Tokens. The Back is the last 1024 tokens. Mixed is the combination
of the first 512 Tokens and the Last 512 tokens of the text. We evaluated the

4. Embedder 23

differences in performance between the 3 versions. We can see the results in the
figure 4.6. As we can see, the mixed transformation is clearly superior to the

Figure 4.6: Comparison of the impact of training direction on the F1 score, data
as described in section 4.1, text split as described in section 4.6

other two transformation methods. The Front version is the default behavior of
most models and also the default used by Huggingface [30]. Surprisingly in our
case, Mixed would be a far better choice if one was limited to only one method.
We assume that especially since the addendum and the discharge medication
and steps are often documented in the end, having a certain amount of Back
information is valuable.

4.7 Paragraph Splitting

After observing the samples closely, we found that the discharge summaries ex-
pose paragraphs. We define paragraphs as pieces of texts that start at the be-
ginning of a new line and are a few words, followed by a ":". An example of
paragraphs may be telephone and fax in the following example.

Example:
telephone: daily dose of X increased.
fax: daily dose of Y reduced.

4. Embedder 24

We can see a complete list of the 200 most common paragraphs in the table
4.2, and the figure 4.7 shows their frequency. 100% Frequency means that the
paragraph exists in 100% of the samples. The reason for one paragraph oc-

Paragraph Occurs in % Paragraph Occurs in % Paragraph Occurs in % Paragraph Occurs in %
disp 188.5% physical examin 14.6% micro 4.0% lives with 2.5%

chest 13.6% conclusions 4.0% psych 2.5%
admission date 99.9% pulse 13.5% pulmonary 4.0% respiratory 2.5%
service 99.7% cardiac 13.2% sensation 3.9% pe 2.5%
history of pres 92.8% discharge diagn 13.0% ii 3.9% hpi 2.5%
past medical hi 90.7% condition on di 12.6% hematology 3.7% contraindicatio 2.4%
allergies 87.8% sig 10.4% xii 3.6% id 2.3%
date of birth 86.7% heart 9.9% care and recomm 3.6% language 2.3%
social history 81.9% medications 9.4% gi 3.6% discharge exam 2.2%
discharge medic 78.1% phone 9.4% height 3.6% physical examin 2.2%
discharge dispo 77.6% primary 9.1% viii 3.6% doppler 2.2%
medications on 76.1% admission labs 9.0% secondary diagn 3.5% admission exam 2.2%
discharge diagn 75.9% pulm 9.0% reflexes 3.5% gastrointestina 2.2%
family history 75.8% gu 8.7% psh 3.4% admission physi 2.1%
chief complaint 75.6% imaging 8.5% final diagnosis 3.4% rectal 2.1%
discharge condi 73.5% secondary 8.2% mitral valve 3.3% cardiologist 2.1%
physical exam 73.1% neurologic 8.2% aortic valve 3.3% back 2.1%
attending 72.3% on admission 7.7% tobacco 3.3% cards 2.1%
discharge instr 72.0% name 7.6% left ventricle 3.3% carotid bruit r 2.1%
brief hospital 71.1% indication 7.6% right ventricle 3.3% varicosities 2.0%
major surgical 70.9% reason 7.3% studies 3.3% labs on dischar 2.0%
pertinent resul 69.5% reason for this 7.3% dp right 3.3% the following c 2.0%
followup instru 68.9% cardiovascular 7.2% radial right 3.3% cc 2.0%
impression 66.5% follows 6.8% femoral right 3.3% unit no 2.0%
heent 56.4% review of syste 6.6% incision 3.2% primary pediatr 1.9%
facility 46.1% history 6.6% for days 3.2% vital signs 1.9%
neck 41.5% past surgical h 6.5% tricuspid valve 3.2% laboratories on 1.9%
completed on 39.2% resp 6.4% microbiology 3.2% name of primary 1.8%
neuro 39.0% discharge labs 6.1% disposition 3.2% appointment 1.8%
ext 36.5% discharge statu 6.1% aorta 3.1% primary diagnos 1.8%
cv 33.2% on discharge 5.9% infectious dise 3.1% echo 1.8%
lungs 32.8% motor 5.7% occupation 3.1% medication chan 1.8%
abd 30.8% laboratory data 5.6% labs on admissi 3.0% medications on 1.8%
general 30.7% location 5.3% secondary diagn 3.0% note 1.8%
abdomen 29.7% pmh 5.3% contrast 3.0% immunizations r 1.8%
gen 29.6% address 5.2% source 2.9% sex 1.8%
dictated by 27.7% primary diagnos 5.2% transitional is 2.9% discharge date 1.7%
provider 26.6% cxr 5.0% physical examin 2.8% psychosocial 1.7%
mental status 24.8% comparison 4.8% left atrium 2.8% recommendations 1.7%
skin 24.2% sensitivities 4.8% coordination 2.8% diagnosis 1.7%
extremities 22.9% ros 4.6% extr 2.7% specialty 1.6%
level of consci 19.6% etoh 4.6% sensory 2.7% neurological ex 1.6%
activity status 19.5% cranial nerves 4.5% pericardium 2.7% pt 1.6%
findings 19.1% left 4.3% addendum 2.7% cvs 1.6%
hospital course 17.5% ekg 4.2% approved 2.7% abdominal 1.6%
department 17.2% right 4.2% general comment 2.7% interpretation 1.6%
vs 16.6% nebulization si 4.1% comments 2.7% test type 1.6%
building 16.1% medications on 4.0% cor 2.6% we made the fol 1.6%
campus 16.1% other labs 4.0% orientation 2.6% medications at 1.6%
vitals 15.5% technique 4.0% surgeon 2.5% hospital course 1.6%

Table 4.6: List of the 200 most common paragraphs

curring in 180% is that it is a special paragraph. When it occurs in a text, it
usually occurs multiple times. The respective paragraph is called "disp." and is
a medical abbreviation describing medicines the patient is given, e.g., "disp. 30
pills X per month".
We split each text into these paragraphs. After this, we counted the frequency
of each paragraph type and ordered them by frequency. We decided to take the
200 most frequent paragraphs since, after this, they become very sparse.
As we notice, there is a big chunk of very common paragraphs that are also the
most influential factors, as we will later show. However, certain rare paragraphs
are still valuable since they are informative for less common diseases.

4. Embedder 25

Figure 4.7: Distribution of the paragraphs, data as described in section 4.1

To extract these paragraphs, we additionally had to preprocess the paragraphs.
The reason for this was that they are often not identical. For the more com-
mon paragraphs like "Sex" "History of present illness," the writing was often
identical, but this was rarely the case for the less common words. For example,
the paragraph "lung" occurred in several styles, e.g. ["lung," "lungs," "Lungs,"
"LUNGS," "Lung"]. To harmonize these styles, we had to process them by using
the steps.

• Casting to lower case

• Stemming (Snowball stemming)

• Removing stopping words (in case the paragraph is multiple words)

After using this procedure, we were left with 25’909 unique paragraphs. Out of
these, roughly 17’000 occur in this specific combination only once.

4.8 Paragraph Embedder

Using the paragraph splitting method, we discovered two different possible em-
beddings. We will call them Paragraph embedding and Rest Text embedding.

4. Embedder 26

These two are generated from the same transformation, but their respective train-
ing set is created differently.
The Paragraph Embedder is trained on the augmented paragraph dataset. The
augmented paragraph dataset is generated by applying the paragraph splitting
method described in the section 4.7. In detail, this works by applying this split-
ting/transformation method to each sample. This could theoretically generate
up to 200 new samples. In practice, most text samples have between 10 and 45
paragraphs, as shown in the figure 4.8. Our dataset for the bigger training set

Figure 4.8: Distribution of paragraphs found per sample, data as described in
section 4.1

with 44’175 samples in total will increase to 898’616, roughly by a factor of 20.
The numbers are similar for the validation and test set.
We consider the tuple (augmented sample, original labels) as a new training ex-
ample in paragraph dataset. The length of these new paragraphs is significantly
shorter than the original discharge summaries’ length, as we can see in the figure
4.9. The 75% Percentile is at 52, which indicates that the texts are overwhelm-
ingly concise. The reason for this is that many of the paragraphs that occur
frequently have concise texts. For example, the paragraph "physical exam" is in
over 70% of cases answered with a phrase like "OK."
We trained this system with a sequence length of 256. We did so since it im-
proved the score and only increased the training time. In general, however, 128
would have been enough to obtain most of the information.
Once we trained this system, we obtained the Paragraph Embedder. To produce
the embedding, we now converted each sample into the paragraphs it contained.

4. Embedder 27

Figure 4.9: Distribution of token length in the paragraph dataset, data as de-
scribed in 4.1

Of these paragraphs, all that was in the 200 most common paragraphs were em-
bedded using the Paragraph Embedder to obtain the vector xi ∈ R768.
If paragraph p does not occur in the sample, it is defined to be the zero vector.
The paragraph Embedding is now defined as the concatenation of the p = 200
paragraph embeddings.

ParagraphEmbedding = [x0, x1, ...xp]

xp =

{
ParagraphEmbedder(paragraph) if paragraph p in text
0768, if paragraph p not in text

This makes a total of 200 ∗ 768 = 153′600 variables, where a significant amount
of these variables is 0.

Relevant Details

Before we embedded the text using the ParagraphEmbedder, we add the para-
graph text in-front of it. We do so due to potential downsides the preprocessing
steps listed in the section 4.7 had. For example, if one text contained "allergie"
singular and the other "allergies" in the plural, then the model would still pro-
duce slightly different embeddings but be in the same position in the embedding

4. Embedder 28

vector.
In the special case that one paragraph is included multiple times in a sample,
we concatenate the texts. From our experience, this almost exclusively happens
with the "disp." paragraph. The concatenated texts are then embedded jointly
by Paragraph Embedder.

Example:
p:"disp.: 30pills X"
p:"disp.: 5mg. Y"
p0 :"disp.: 30pills X disp.: 5mg.Y"
embeddingdisp = ParagraphEmbedder("disp.:30 pills X disp.: 5mg.Y")

4.9 Rest Text

Only the 200 most common paragraphs are embedded. All other detected para-
graphs that are not in the 200 most common are concatenated and added to the
so-called Rest Text. We do so since paragraphs are very common, as we have
described in the section 4.7, but a significant amount of them can’t be categorized
into the 200 top-paragraphs. This Rest Text includes a significant portion of the
information that would be lost if not embedded here.

Example:
p:"telephone/fax 1: daily dose increased."
p:"telephone/fax 2: daily dose reduced."
prest :"telephone/fax 1: daily dose increased. telephone/fax 2: daily dose re-
duced."

The length of the rest text is significantly different from the paragraph embed-
ding. This justifies processing this paragraph collection separately. The distri-
bution of tokens can be seen observed in the figure 4.10. The 75% percentile is
at 923, which justifies training it with a sequence length of 1024 instead of 512.
We train the Rest Text Embedder with the same hyperparameters as the front,
mixed, and back as described in the table 4.5.

4.10 Chunked Embedding

A chunked dataset can be generated by taking discharge summaries and splitting
them into smaller chunks. One needs two hyperparameters the Word Count Per
Chunk(WPC) and the Chunk Count(cc). We generated a chunked dataset by

4. Embedder 29

Figure 4.10: Distribution of token length in the rest text dataset, data as de-
scribed in 4.1

splitting each sample of length X into as many sequential chunks/pieces of text
as possible. Such that the chunks are direct neighbors and have no overlap. The
Chunked Embedder was then trained on samples∗average_chunks_per_sample
samples, where each sample is trained with the original labels.
To generate a Chunked Embedding, we now split each text into its chunked parts,
embedd each part, and concatenate these embeddings into a cc ∗ 768 long em-
bedding. If the text is too short to do so, we fill the missing chunks by 0’s. We
tested this Embedding form and found that it unperformed in comparison with
Paragraph Embedding. We assume that the Paragraph Embedder outperforming
the Chunked Embedder is that the paragraphs are aligned while the chunks are
not. Since the chunked embedding did not improve the predictions, we did not
continue to explore it in this form.

4.11 Random Embedding

Similar to the Chunked Embedding, one can also find the chunks by splitting
them randomly. We found that this works better than the chunked embedding.
The main advantage is that using this way; we can sample theoretically a nearly
infinite amount. To generate a random dataset, one defines two hyperparameters.

4. Embedder 30

One is the number of random draws(r), and the other is the number of random
embeddings(b). Using a sequence length of 1024, we can now split a sample with
length l into r new samples. We do so by drawing r random points p ∈ [0, l−1024].
For each of these points p, we now add the text from token p until token p+1024
to the dataset for random embeddings.
We now train the Random Embedder on these texts. In total, there will be
newsamples <= b ∗ samples samples since some rare texts have less than 1024
tokens. The main advantage is here that one can augment the number of samples
in the dataset significantly. However, the resulting set is also less homogenous.
Once the Random Embedder has been trained, we can create an embedding by
drawing b samples. These samples are then embedded using the trained Random
Embedder. These outputs are then concatenated, which results in the Random
Embedding with 768 ∗ b variables. In case the text has less than 1024 tokens, the
sample will be 0 padded until 768 ∗ b.

4.12 Sentence Embedding

Sentence Embedding is a special form of embedding. To generate a Sentence
Embedding, we tried to gather more information about each illness. Our general
goal is to extract a list of k terms for each illness, with relative importance for
the specific illness compared to all other illnesses. This list is then used to sepa-
rate the sentences, which include the words in those lists from those that don’t.
The hope is that we can reduce the induced noise while training by being sure
that the respective sentence contains the respective label. If we trained on all
sentences with all labels, the training process would not work since a sentence
usually contains at most one ICD code.
To achieve this, we scan the document collection using term frequency–inverse
document frequency (TF-IDF). TF-IDF generates given our dataset, prepro-
cessed as described in the section 4.3, a matrixM ∈ Rd×w d is the d-th document
(discharge summaries), and w is the w-th word, excluding stop words. The entry
Mij can be interpreted as the relative importance of word j in document i. We
defined then for each illness, a vector using the following procedure.
To find the relative importance of a word, we generate for each illness x two
vectors. One is the mean of all documents d, which include the illness x. We call
this vector xis. The other one is the mean of all documents that do not include
the illness, named xisnot. To generate now a vector which includes at each posi-
tion the relative importance of word w, we define y = xis − xisnot, y ∈ Rw. The
top-k-words can now be generated by taking the k words with the highest value
in y. This is the list Li the list of predictive words for illness i.
To generate the training set Sentence, we now, for each sample, split the dis-
charge summary into its sentences. A sentence is defined by either ’.’ or a ’new
line.’ We now define the new sample’s labels as 1 for illness z if illness z is in
the sample labels, and any of the words contained in the sentence are in the list

4. Embedder 31

Lz. In practice, we chose k = 20 since the training set becomes too big and
includes too many sentences if chosen bigger. We can now define the training set
Sentence, which includes all sentences with the respective labels. We can now
train the Sentence Embedder on this Sentence dataset.
Once this Sentence Embedder has been generated, we have discovered two pos-
sibilities to define a sentence embedding for discharge summaries. In one, we
encode all sentences. In the other, we encode only the sentences with any of the
words in any of the lists Li in it.
We found that we can constrain the sentence embedding to 200 sentences, since
this is enough to encode most discharge summaries, and 50 for the case, we encode
only the sentences containing any of the words. For each of the 200 sentences,
we generate a sentence embedding a ∈ R768.
To generate the embedding for the discharge summaries, we now concatenate the
200 sentence embeddings. If a discharge summary has less than 200 sentences,
we append 0’s, such that a sentence embedding for one discharge summary is
now defined to be c, c ∈ R200 or c ∈ R50

4.13 Illness List Embedding

A beneficial method we used was the Illness List Embedding. The general idea
of this approach was that after we trained Paragraph Embedder, we could define
for each paragraph how predictive it was for specific illnesses. We would define
this by using the Paragraph Embedder directly for predicting the illnesses from
the respective paragraph.
The idea is now that once we know how predictive paragraph i is for illness j,
we could define a list of size k consisting of the most predictive paragraphs for
the illness. The average of the non-zero paragraphs that were both existing in
the sample and the list for illness i did then defined a new embedding called Ii.
Since we had 50 illnesses, this new embedding was of size I ∈ R50×768.
To defined the mentioned predictiveness of paragraph i for illness j we then pre-
dicted for each sample in the validation data, the illnesses and compared them
to the true labels. A prediction made by the Paragraph Embedder for an illness
was considered to be 1 if the probability threshold of 0.25 was surpassed, i.e.
ParagraphEmbedder(x)[i] > 0.25. We then filled a matrix Mij were each illness
i, and each paragraph j had a defined F1 score. We can see the resulting matrix
in the figure. 4.11 In practice, we calculate the entry Mij by using all samples
with both a paragraph j and an illness i.
We defined each illness list, which consisted of the 50 most predictive paragraphs
for this illness. We only considered combinations with an F1 score of above 0.25
since some illnesses have no predictive paragraphs. The addition embedding for
each illness is now the average of these non-zero paragraphs.

4. Embedder 32

Figure 4.11: Decision matrix for Illness List Embedding, data as described in
section 4.1,

4.14 Additional Variables

To the Embedding, we add variables to encode non-textual information. We
generate these variables directly from the text. Additional variables include,

• Gender

• Age

• Stay Time

• Error

We parsed these variables from the text by looking for indicators. The Error
column would be 1 if we did not manage to extract the other variables from the

4. Embedder 33

text. However, this was the case in only 7% of all discharge summaries. We
normalized each of these variables (except Error).

Chapter 5

Predictor

The Predictor operates on the output of the Embedder(s). Taking as an input
their last layer weights in the form of a vector. We tested this process on several
architectures we are going to describe in the following sections. In contrast to
the Embedder model, which was realized using Hugginface and FastBert, the
following architectures have been build using PyTorch Lightning [40].

5.1 General Architecture

We had several common aspects to all our Predictor models. The input was
always of the form x ∈ RN×e×768, N refers here to the batch size e to the number
of embeddings.
At the output level, we always had to produce a variable y ∈ RN×50. Each of
the 50 values can be interpreted as the probabilities that the respective illness is
present in the sample. As an activation function in the last layer, we always used
a sigmoid function.
We initially used a binary cross-entropy loss to train the neural networks. Later
on we switched to use the binary cross entropy loss with logits. This loss combines
the binary cross entropy loss with a sigmoid and makes it numerically more stable.
The loss is defined as,

`(x, y) = L = {l1, . . . , lN}>,
ln = −wn [yn · log σ(xn) + (1− yn) · log σ(xn))] [40]

Where N is the batch size.

5.2 Simple Dense Architecture

We tried several variations of this architecture. In general, when not tuning the
hyperparameters heavily, this architecture tends to be one of the best. When

34

5. Predictor 35

we refer to a simple dense architecture, we mean an architecture containing only
fully connected linear layers. We found that using the combination,

• Linear Layer

• Layer Normalization

• PRelu

• Dropout

To work best, thus we will refer to this combination as a linear layer from now
on. While we tried different normalization forms, we found layer-wise to work
best. We assume this is due to the input being somewhat normalized as they are
the output of a BERT model itself. We found using the popular PRelu beneficial,
which is a form of Relu or Leaky Relu, where the steepness of the leaky part of
the function itself is learned. We used at least one hidden layer but found using
two to work better. After this, increasing the number of linear layers seemed to
bring no benefit. We can see an overview of this architecture in the figure 5.1.

5.3 Simple Dense Architecture, Force Through Smaller

One of the clear issues with the simple dense architecture is that when we are
working with more than 200 embeddings, we have more than 150’000 variables.
This makes it hard for the neural network to learn the right variables to pay
attention to. To reduce this challenge, we tried to force each embedding of size
768 through a smaller layer, with a size o ∈ [5, 50]. This effectively reduces the
amount of parameter later on, from e*768 to e*o. An overview can be seen in
the figure 5.2. As we will later show in the section 6.4 this approach was mostly
costly and did not help.

5.4 Aggregating Techniques

Initially, we discovered that a faster process for aggregating embeddings exists.
One can trade-off F1 score for training time. This training time can then again
be traded for more F1 scores in the grid-search process. We tested in our imple-
mentation several variations of this process at several points in the architecture.
We found that especially aggregating the uncommon paragraphs was beneficial
and significantly reduced the Predictors’ training time. In general, we tried the
following aggregation techniques.

• Average

5. Predictor 36

• Median after weighting through Neural Network

• Sum

• Average after weighting through Neural Network

We used these aggregation techniques exclusively with the 200 paragraph embed-
dings and the 50 illness lists. As we showed in the table 4.6, the idea behind this
is that most paragraphs are 0 for most samples and therefore aggregating them is
sensible. We found that the median of the paragraphs yielded a good result. In
most cases, it’s performance was only slightly worse than the same architecture
without the averaging. This was extremely useful in reducing excessive training
time. The results achieved by averaging after weighing the vectors via neural
networks were almost as good as not aggregating. Since it was slightly beneficial
to weight the terms by a neural network, we did so.

5.5 Transformer Encoders

The transformer encoder layer is made up of self-attention and feed-forward net-
works. This encoder layer is based on the works of Vaswani et al. [28].
The main advantage of these layers is that they learn what parts of the input
sequence the decision needs to attend to, i.e. what "importance" weighting needs
to be assigned to each input embedding. In our implementation, we used it in
two different ways. Initially, we used it to input each of our embeddings as a
separate "token." This process worked very well but was trained for an exces-
sively long time and was hard to tune well. Later on, we used the transformer
architecture only for the paragraph part of the architecture to find the individ-
ual embeddings "importance" weighting. After the transform encoder, we then
aggregated the resulting embeddings. This process showed to work just as well
as the full transformer architecture but saved us roughly 70% of the training’s
time.

5.6 Best Model

Throughout all our experiments on the smaller dataset, the following architecture
has yielded the best results. In the section 6.6, we will show which embeddings
contributed how much to the final result. For this model, we used the embeddings,

• Front, Back and Mixed as described in section 4.6

• Paragraph Embedding as described in section 4.7

• Rest Text as described in 4.9

5. Predictor 37

• Illness List as described in 4.13

• Additional Information as described in 4.14

We got in total 200 ∗ 768 variables from the paragraph embedding. Another
3 ∗ 768 variables from the front, back, and mixed embedding. 1 ∗ 768 from the
rest embedding. 50 ∗ 768 variables from the illness list embedding. And 4 vari-
ables from the additional information embedding. This adds up to a sum of
(200 + 50 + 4) ∗ 768 + 4 = 195′076 input-variables in the Predictor step.
We realized that both the paragraph and illness list embedding have varying de-
grees of information depending on the individual sample. To deal with this, by
teaching the model to learn when to weight which information how much, we feed
these embeddings through a transformer encoder. For both, we later aggregate
the results into 768 variables each.
The other variables, namely the rest, front, back, mixed, and additional embed-
ding, are treated separately. We move them through a separate dense layer before
finally merging them in the last 2 linear layers. We found bigger is better here.
After these 3 separate aggregations, we again aggregate the resulting variables
through a dense layer. Finally, we predict the illnesses after applying a sigmoid
activation function. We can see this process visualized in the figure 5.3. We
generally found that this system works best with a large Li layer. The biggest
and best possible size was 2048. This is due to constraints on modern GPUs.
We found 1024 to work best for the second layer. We, in general, considered
[128,256,512,1024,2048]. Dropout was tested on both the first and the second
layers, in steps of 10%. We found that 10% worked best. The impact of the
machine precision in the layer normalization layer was marginal.

5.7 Other Notable Aspects

5.7.1 Optimizers

We tested several optimizers but found that the Lamb optimizer yielded the best
(and fastest) results. The performance of Adam optimizer and AdamW were
similar, but both took longer to compute the answer.

5.7.2 Early Stopping

We used early stopping to terminate the training process. Our early stopping
stopped the optimization process after 10 epochs of patience if it detected that
the evaluation loss did not decrease further.

5. Predictor 38

5.7.3 Batch Size

In the Predictor, we generally used the biggest possible batch size. We never
exceeded 256 since if we increased it further, there were too few batches for
the smaller dataset. The biggest possible batch size was not always identical,
depending on the GPU we used. It’s worth noting that the performance slightly
varied depending on the underlying GPU.

5.7.4 Learning Rate

To finetune the learning rate, we generally used the theoretical work of Smith et
al. [41] called cyclical learning rates. This feature was implemented in PyTorch
Lightning and helped to reduce the hyperparameter tuneing time significantly
[40]. We generally found that the found learning rate was too low by roughly a
factor of 10. So after finding the optimal learning rate using the cyclical learning
rates, we multiplied it by a factor of 10.

5.7.5 Learning Rate Decay

We tested the most common forms of learning rate decays. We specifically tested
exponential learning rate decay, epoch number based, and linear learning rate de-
cay. We found that a constant learning rate was better than epoch number based
and exponential learning rate decay. Using linear learning rate decay showed
the best results. We Generally found that decay = learningrate

Nr.EpochsThisRunEndedLastT ime
yielded the best results. This was then deducted after each epoch.

5.7.6 Weight Decay

As we added more parameters to the Predictor model, we discovered that weight
decay began being useful. Initially, it showed to be useless or even harmful to
the F1 score, but after around 170’000, we found weight decay to be useful. We
mostly used the the value 1e− 3.

5. Predictor 39

Figure 5.1: Simple Dense Architecture

5. Predictor 40

Figure 5.2: Simple Dense Architecture, Force Through Smaller

5. Predictor 41

Figure 5.3: Best Model Architecture

Chapter 6

Evaluation & Interpretation

After training our Embedders and predicting each illness’s final probabilities, we
calculated its scores by comparing the F1 and AUC score. For the F1 score, we
took the threshold at 0.25; e.g., when the model predicted Model(x)i >= 0.25
for an illness i, we considered it to be "true." The reason is that this threshold
works best and improves the F1 score.

6.1 Data

While we in total had 53’423 distinct samples, we only used a subset of those. We
used one subset in this Predictor evaluation and one for the Embedder selection.
We used the bigger dataset for the Embedder evaluation since we initially wanted
to explore the task with all the data. For this comparison section, however, we
use the smaller dataset to compare ourselves with other implementations of the 50
most common tasks. We will denote these datasets big and small in the following
evaluation. In general, we only used the samples that contained at least one of
the 50 most common ICD codes. For the predictions shown in comparison to
other works, we exclusively used the smaller dataset, including for training the
Embedder. For all tables/plots in this chapter, we will be using the test set. The
two datasets are described in the table 6.1.

Train Validation Test Total
Small 8’067 1’574 1’730 11’371
Big 44’175 1’468 3’448 49’091

Table 6.1: Comparison of the datasets used

42

6. Evaluation & Interpretation 43

6.2 Sentence Style

In this section, we will show the evaluation of the two variations of using the
sentence embedding. We described the sentence embedding in 4.12. The two
ways of generating the sentence embedding are either taking all sentences for each
sample or only the sentences, including a word included in the top-k-word lists.
We will call the way that includes all sentences "all" and the other "reduced." We
can see the results in the table 6.2. As we can see, the embedding version reduced

Version F1 -Micro F1-Macro AUC-Micro AUC-Macro
All 0.3197 0.1013 0.7358 0.6403
Reduced 0.3456 0.2062 0.7683 0.6821

Table 6.2: Comparison of sentence embedding on the small Mimic3 test set as
described in 6.1

performs better. While version all has more information to make its predictions,
the reduced version has fewer input variables. Another big difference here is that
we used 50 Sentences as an upper limit for the reduced task and 200 sentences for
the all task. The predictor architecture failed to make sense of the bigger context
and preferred having a smaller, more informative selection. Overall, these two
versions’ predictions seem to be significantly worse than the predictions made by
our other models. We did not conduct further experiments in this direction.

6.3 Dense Architecture

We will evaluate the difference between a simple flat architecture and a more
complicated architecture, our best-found architecture. As described in the section
5.2, a dense Predictor model is already competitive. We can see the comparison
of the results in the table 6.3. In comparison to our best model, as described in

Version F1 -Micro F1-Macro AUC-Micro AUC-Macro
Flatt 0.5860 0.4921 0.8896 0.8598
Best 0.6019 0.4879 0.9018 0.8713

Table 6.3: Comparison of architectures on the small Mimic3 test set as described
in 6.1

section 5.6. As we can see, the best model outperforms the flat, dense architecture
on the AUC, both macro and micro. However, we can also see that simple
architecture remains competitive on this level.

6. Evaluation & Interpretation 44

6.4 Dense Architecture, Force Through Smaller

We evaluated the performance losses of learning how to reduce the number of
variables. In particular, when forcing the embeddings who have a size of 768
through a smaller layer of size o, we would assume that the performance in-
creases since the model should have learned how to condense the information.
However, in practice, we could not find an architecture that would outperform
our best model by reducing the amount of information in the first layer, as al-
ready discussed in section 5.3. We can see the results in the table 6.4. As we can

Version F1 -Micro F1-Macro AUC-Micro AUC-Macro
Best 0.6019 0.4879 0.9018 0.8713
Layer-5 0.5083 0.4297 0.8474 0.8205
Layer-25 0.5501 0.4636 0.8643 0.8385
Layer-50 0.5508 0.4535 0.8680 0.8420

Table 6.4: Comparison of the force through smaller architecture on the small
Mimic3 test set as described in 6.1

see, the performance is better if we increase the number of nodes in each layer.
Our best model outperforms the other by a significant margin. As we can see,
25 and 50 are very similar and have almost identical values, indicating that the
performance decreases flattens. If we increase the parameter o further, we get
closer to the best and simple dense architecture while being more expensive to
train. Therefore this architecture is not desirable.

6.5 Aggregating Techniques

In this section, we evaluated the different aggregation techniques described in
section 5.4 we generally found aggregation methods to be beneficial. We tested
the different aggregation methods on the model described in the figure 5.3. We
can see the results in the table 6.5 As we can see, the sum aggregation is too

Version F1-Micro F1-Macro AUC-Micro AUC-Macro
Average after NN 0.6019 0.4879 0.9018 0.8713
Average 0.5945 0.4647 0.9006 0.8683
Median after NN 0.5893 0.4882 0.8939 0.8621
Sum 0.5325 0.3841 0.8834 0.8467

Table 6.5: Comparison of the aggregation methods on the small Mimic3 test set
as described in 6.1

simplistic and not beneficial. The median is relatively strong in this evaluation
and would potentially, in some cases, be better than the average, but we found, in

6. Evaluation & Interpretation 45

general, the average to work better. The simple averaging technique is relatively
strong but not as good as averaging the weighted embeddings through a neural
network.

6.6 Individual Embedding Performance

This section will look at the relative importance/performance of the input-features.
To keep this section brief, we will focus on the best architecture as shown in the
figure 5.3.
The performance of the individual embeddings can be compared in the table 6.6.
As we can see, the informative front, back and mixed (Long in table) embeddings
as described in the section 4.6 have the best comparative performance. Since these
embeddings have the most information achieved through their superior sequence
length, this makes sense. The importance of the paragraph embedding is highly
predictive as well. While the illness list seems to preform inferior, it adds value to
the entire prediction, presumably, since it’s information content is very different
from the other features.

Version F1 -Micro F1-Macro AUC-Micro AUC-Macro
Only Long 0.5738 0.4927 0.8627 0.8389
Only Illness list 0.3258 0.4630 0.8332 0.7901
Only Paragraphs 0.5419 0.4661 0.8465 0.8209
All 0.6019 0.4879 0.9018 0.8713

Table 6.6: Comparison of the different embeddings on the small Mimic3 test set
as described in 6.1

6.7 Comparison to Other Works

In comparison to the newest other work we underperform. Compared to other
BERT-based works, we are competitive. BERT-based architectures’ main prob-
lems in this task are that BERT-based architectures perform better with more
data. The Mimic3 dataset is already relatively small with its 53’423 samples in
general, for BERT based architectures.
Predicting the 50 most common ICD codes is generally evaluated on the smaller
dataset with 11’371 samples, which further reduces the amount of data. The rea-
son for this is to stay comparable to earlier works of Shi et al., which used only
these 11’371 samples to make their predictions [11]. We generally are confident
that our approach would improve in comparison when given more data, as our
experiments in chapter 4 indicated, and since Zhang’s work stated that in their
significantly bigger dataset, BERT outperforms other approaches [27]. We can

6. Evaluation & Interpretation 46

see the comparison in the table 6.7. As we can see, our approach outperforms
the earlier works by Prakash et al. and Shi et al. and are comparable to Mul-
lenbach et al. with their CAML architecture. When comparing to the work of
Vu et al., which is the most recent of the works and considered state-of-the-art,
we underperform. When comparing our work to the only directly comparable

Version AUC-Micro AUC-Macro
Logistic Regression [9] 0.864 0.829
C-MemNN [42] 0.8330
Shi et al. [11] 0.900
CAML [9] 0.9090 0.8750
DR-CAML [9] 0.9016 0.8804
Vu et al. [17] 0.9460 0.9205
Our 0.9018 0.8713

Table 6.7: Comparison of works on the small Mimic3 test set as described in 6.1

BERT-based architectures of Chen et al. [26], we can see that we outperform it.
We do outperform both their BERTlarge and their BERTbase version. Gener-
ally, we should compare our results to the BERTbase version since this is what
we trained with. It includes 110 million parameters as opposed to the 340 million
parameters found in BERTlarge. We can see the results of this comparison in the
table 6.8. We can not compare the BERT-based architecture proposed by Zhang
et al. since they do not provide their code or provide the respective values for
the small Mimic3 test set.

Version AUC-Micro AUC-Macro
BERTbase [26] 0.8640 0.8290
BERTlarge [26] 0.8890 0.8580
Our 0.9018 0.8713

Table 6.8: Comparison of BERT-based works on the small Mimic3 test set as
described in 6.1

6.8 Interpretation

In recent years interpretation of neural networks has become increasingly pop-
ular. One of the main issues with predictions made by neural networks is that
they do not explain themself. This may become increasingly problematic when
working in areas where the model is taking an advisor’s role. In other words,
a role where a human still takes the final decision, and the model is assisting
him. In such a case, it is not only important what the decision is but also which
information the model considered to make this prediction.

6. Evaluation & Interpretation 47

To provide such an explanation, the field of neural network interpretability has
been increasingly utilized. This work will mostly use the newly developed Cap-
tum environment [43], which offers several well-known interpretability methods.
Captum is an interpretable environment which works in combination with Py-
Torch. Inside Captum, especially the two methods Integrated Gradient [44] and
Deep Lift [45], seemed to provide value for our interpretability method, and ex-
plaining which paragraphs are important for the respective illness.

6.8.1 Deep Lift

Deep Lift is an attribution approach that back-propagates changes to the input,
based on the differences between a reference(baseline) and the input [45]. Deep
Lifts’ goal is to explain the output difference by changing the input variable
towards the reference variable. These changes are then mapped to the output
changes to compare how important they are for the respective output prediction.
Deep Lift uses so-called multipliers to blame specific neurons for differences in
the output.

6.8.2 Integrated Gradient

Integrated gradients work using the integral of gradients concerning inputs along
the path from a given reference to an input [44]. The integral can be approximated
using the Gauss Legendre quadrature rule or a Riemann Sum.

6.8.3 Interpretation Designer

An Interpretation Designer(ID) is a function that takes as an input a Predictor
P (x) as described in the chapter 5 and outputs for each feature group their re-
spective importance. As we described in the chapter 5, a Predictor takes as an
input x ∈ Re×768 1 and outputs y ∈ R50 where each entry yi is interpreted as the
probability of illness i being present in the sample.
An interpretation method M(x, P (x), k, b) like Deep Lift and Integrated Gradi-
ent, generates given a sample from the test set x, a Predictor P (x), a reference
variable b and a target illness yk and outputs z ∈ Re×768 with the same dimen-
sionality as x. So z ∈ Re×768, the entry at position zij can now be interpreted
as the impact that the variable xij had on the prediction of yk compared to the
baseline b. We used as a baseline b always the zero vector of size b ∈ Re×768.
The value zij represents how much a unit change in xij affects the prediction of a
specific yk. These values may be positive or negative, depending on the relative
position to the baseline, always 0 in our case. Since we are interested in the in-
fluence of variables on predictions, we will refer to this quantity’s absolute value.

1For simplicity we will ignore the batch dimension in the following examples

6. Evaluation & Interpretation 48

To define the importance of embedding e, we have to aggregate 768 variables into
a single value.

6.8.4 Aggregation of e

To aggregate e, we experimented with 3 approaches. The dot product between
input and output, the mean of the absolute values, and the L2 norm. We even-
tually used the dot product as an aggregation method since the results were
presented the clearest in this way.

• agg(x, z) := x · z

• agg(x, z) := ‖z‖

• agg(x, z) := 1
768

∑768
i=0|zi|

Using any of these methods on the vector x and z for each illness gave us an
importance matrix M ∈ Re×50. One entry Mij described how important the
embedding at position i was for the prediction of illness j. This defined now per
sample a matrix M .

6.8.5 Aggregation Over All Test Examples

For each sample in the test set, we now had a matrix M . We had to aggregate
them to interpret the entire effects of the inputs for the entire population. To
aggregate l such matrices M into a matrix I, we tried several aggregation meth-
ods. Two of the methods worked. Either we chose to take the sum of all matrices
or take all Mij where the input embedding i was not the 0 vector. We found
that the second approach worked better since weighting the feature importance
relative to their occurrence reduced the "frequency noise" generated by the in-
terpretation methods.
While we tried other approaches, such as comparing the results of all examples
or considering only the examples where illness j was predicted correctly by em-
bedding i. We found that evaluating it in this way shows the observer better how
it works.

6.9 Interpretation Results

We will present an example results of our interpretation pipeline. 2 While more
resulting visualization was interesting, we found the following subset to be most

2Highresolution image location: https://gitlab.ethz.ch/disco-
students/fs20/sluck_medicalnlp_clean/-/tree/master/model/predict_from_embedded/plot_choosen

6. Evaluation & Interpretation 49

informative. We will mostly focus on the dot product results since we found
the results to be the clearest. We will also only present the weighted results
and mostly focus on the paragraph related variables since they are easier to
understand. In the figure 6.1, we can see the total importance aggregated over
all illnesses and with all variables. We can see that in general, overall illness, the

Figure 6.1: Barplot illnesses weighted on the small mimic3 test set as described
in 6.1

most important embeddings in order of importance were

Front,Mixed,RestText,Back,Addendum,HospitalCourse, ..

This makes sense since the bigger embeddings were trained with more words and
a bigger sequence length, as described in 4 and also supported by our results in
section 6.6. The most important paragraphs seem to be the Hospital Course and
the Addendum paragraph in this evaluation. These paragraphs are so important
when aggregated over all illnesses since these 5 embeddings are present in most
of the samples and generally filled with more context, as indicated in the section
4.8.

6.9.1 Paragraph Interpretation

When looking in more detail into the paragraphs, we can see how the model
makes its predictions. As mentioned previously, weighing the paragraphs by the
amount they occur shows a clearer picture. We do so to account for the case
that we may have a very rare paragraph that is highly predictive of a certain
illness in the above aggregations, but not common. In this case, the value for
this paragraph treated as a sum or average will be shown as diminished, but after

6. Evaluation & Interpretation 50

weighting will show its true "if exists" importance. We see in the figure 6.2, the
weighted results again aggregated over all illnesses. As we can clearly see here,
the frequency should be considered before reading the interpretation. Intuitively

Figure 6.2: Overview most important paragraphs, weighted on the small Mimic3
test set as described in 6.1

we can understand the predictions by looking at, for example, the paragraph "res-
piratory" or "resp" (a common abbreviation) is present in the most important
10 paragraphs for the illnesses "Acute respiratory failure," "History of tobacco
use," "Pulmonary collapse," and "Tobacco use disorder."
We can see a complete overview of the relative importance of paragraph i for
illness j in the heatmap in the figure 6.3. As we can see, the cells which appear
greener in the figure are the relatively more important input-variables for the
model’s predictions for illness j. This overview, often containing sparks, is good
and shows that certain paragraphs well determine some diseases. Some diseases
are predominantly red, which indicates that no paragraphs are highly predictive
of this specific illness. We applied z-scores to make this visualization easier to
interpret.
A problem with the shown visualization is induced noise. We assume stems
from illnesses that often happen together or one causing the other, or in general
illnesses that can be measured or detected by measuring non-directly related as-
pects of the body. For example, the "femoral right" paragraph is included in
acute kidney disease. The femoral right is not directly related to chronic kid-
ney disease. Still, it appears in "Acute kidney failure NOS," and indeed, we
can find in the literature a connection by Hsu et al. [46]. Furthermore, acido-
sis and kidneys have a connection, in the sense that kidney problems can cause
acidosis. However, a detailed evaluation of all possible interpretations is out-
side of this work’s scope and unfeasible for nonmedical professionals. To look at

6. Evaluation & Interpretation 51

a complete, understandable example, "Obstructive Sleep Apnea" has the most
common 10 paragraphs, "[’comments’, ’tobacco’, ’department’, ’mental status’,
’location’, ’disp’, ’level of consciousness’, ’campus’, ’activity status’, ’building’]".
Sleep apnea is a potentially serious sleep disorder in which breathing repeatedly
stops and starts. If you snore loudly and feel tired even after a full night’s sleep,
you might have sleep apnea [47]. We can generally discover that "Obstructive
Sleep Apnea" has a direct connection to smoking (as in tobacco), physical activity
(activity status), may impact the mental status/level of consciousness [47], The
variables campus/department/building/location all relate to a similar variable
set describing where the patient was treated. When we look at the list of the
most common paragraphs for "Obstructive Sleep Apnea" in the unnormalized
list, we see the paragraphs "[’past surgical history’, ’medications on admission,’
’nebulization sig,’ ’past medical history,’ ’psh,’ ’comments,’ ’pmh,’ ’medications
at home,’ ’brief hospital course,’ ’final diagnosis’]" and indeed when searching
for the exact paragraph name in the test set of the 18 occurrences(found with
the exact match "Sleep Apnea") we concluded that 12 were found in a section in
the above-mentioned list, particularly the "Past Medical History" has appeared
often. Of the other mentions, 2 were in a section called "Sleep Apnea," which was
too uncommon to be included in the 200 most common illnesses. We conclude
that finding 14/18 in the top-10 paragraphs as good.
In general, we hope that this interpretation helps understand the model’s pre-
dictions more clearly to a medical professional and increase their efficiency while
labeling. We also hope it increases the general trust by practitioners in the mod-
els and can help avoid errors that may results when blindly trusting a model.

6. Evaluation & Interpretation 52

Figure 6.3: Overview most important paragraphs to Illness, weighted and zscore
applied on the small Mimic3 test set as described in 6.1

Chapter 7

Conclusion

The various Predictors/Embedders and other models’ implementation and design
have been an educational and challenging task. The project’s most demanding
aspect was the usage of the relatively new NLP techniques and libraries like
Captum, and it’s combination with the field of medicine. The combination of
various aspects of Computer Science, such as statistics, machine learning, and
BERT systems, was fascinating and educational. The author thoroughly enjoyed
developing and writing this master thesis and had a lot of fun doing so.
We have seen how modern NLP techniques can be used to predict illnesses from
the free-floating text. While we could not outperform state-of-the-art for this
specific task, we have shown that such techniques can be used successfully. The
BERT architecture’s main challenge in this task is that the texts’ length greatly
exceeds modern GPUs’ memory possibilities. The amount of training data is
unfavorable for such models. We are confident that new developments in long-
context transformer architectures such as Longformer and BigBird or other de-
velopments may tackle this problem more successfully in the coming years.
Additionally, we have shown how to easily and intuitively explain machine-
learning-text-based models to clinical practitioners, using modern interpretation
methods. While at the current state of development, interpretation in neural
networks is still a novel topic. We are confident that explainability will be very
important to bring such a model from academia into practice in hospitals and
other sensitive organizations.
In particular, splitting the information into paragraphs is possible in many form-
based texts in many institutions. By splitting forms into such paragraphs before
using them for machine-learning-based models, the interpretability part of the
model can then show the person it is advising how it made its decision and, for
example, highlight the respective paragraph such that the user can easily verify
it.

53

7. Conclusion 54

7.1 Future Work

The task of ICD Coding remains challenging. While we can expect automatic
or advisory systems based on machine learning to be deployed into production
in hospitals worldwide, we assume that cultural and linguistical barriers, both
regional and medical, will make a one size fits all approach infeasible. This
encourages further work and development of datasets and models for the field
accessible to researchers worldwide. We expect that some of our approaches
remain useful and used in other models and domains. Interpretability methods
based on text segments will be a good choice for neural network-based methods
that should also provide their users with information on how the predictions
were made. Such use cases will be found in several areas where form-based
reporting is common. We could expect the usage in other governmental and
management support systems, which commonly use such a form-based reporting
system. Reports often contain big chunks of text preceded by a title and expose
a natural way of splitting long information. Human interpreters can then look
at which text passages the networks used to predict and understand how the
network came to its conclusion. If an entity thinks the prediction is unjust or
wrong, a knowledgeable domain expert can use this interpretation to verify and
explain the prediction to the entity quickly.

Bibliography

[1] K. N. Vokinger, U. J. Mühlematter, A. S. Becker, A. Boss, M. A. Reutter,
and T. D. Szucs, “Artificial intelligence und machine learning in der medi-
zin: eine medizinische und rechtliche würdigung am beispiel der radiologie,”
Jusletter, no. 28.08. 2017, p. online, 2017.

[2] P. Domingos, “A few useful things to know about machine learning,” Com-
munications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[3] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghassemi,
B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii, a freely
accessible critical care database,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[4] Y. Peng, S. Yan, and Z. Lu, “Transfer learning in biomedical natural language
processing: An evaluation of bert and elmo on ten benchmarking datasets,”
arXiv preprint arXiv:1906.05474, 2019.

[5] W. Freeman, A. Weiss, and K. Heslin, “Overview of us hospital stays in 2016:
variation by geographic region: statistical brief# 246,” 2019.

[6] D. A. Grimes, “Epidemiologic research using administrative databases:
garbage in, garbage out,” Obstetrics & Gynecology, vol. 116, no. 5, pp. 1018–
1019, 2010.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are
few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[8] “Icd-9.” [Online]. Available: https://www.cdc.gov/nchs/icd/icd9.htm

[9] J. Mullenbach, S. Wiegreffe, J. Duke, J. Sun, and J. Eisenstein, “Explainable
prediction of medical codes from clinical text,” 2018.

[10] L. R. de Lima, A. H. Laender, and B. A. Ribeiro-Neto, “A hierarchical ap-
proach to the automatic categorization of medical documents,” in Proceed-
ings of the seventh international conference on Information and knowledge
management, 1998, pp. 132–139.

[11] H. Shi, P. Xie, Z. Hu, M. Zhang, and E. P. Xing, “Towards automated icd
coding using deep learning,” 2017.

55

https://www.cdc.gov/nchs/icd/icd9.htm

Bibliography 56

[12] S. Karimi, X. Dai, H. Hassanzadeh, and A. Nguyen, “Automatic diagnosis
coding of radiology reports: a comparison of deep learning and conventional
classification methods,” in BioNLP 2017, 2017, pp. 328–332.

[13] T. Baumel, J. Nassour-Kassis, R. Cohen, M. Elhadad, and N. Elhadad,
“Multi-label classification of patient notes a case study on icd code assign-
ment,” arXiv preprint arXiv:1709.09587, 2017.

[14] C. Song, S. Zhang, N. Sadoughi, P. Xie, and E. Xing, “Generalized zero-shot
icd coding,” arXiv preprint arXiv:1909.13154, 2019.

[15] G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao, and
L. Carin, “Joint embedding of words and labels for text classification,” arXiv
preprint arXiv:1805.04174, 2018.

[16] F. Li and H. Yu, “Icd coding from clinical text using multi-filter residual
convolutional neural network.” in AAAI, 2020, pp. 8180–8187.

[17] T. Vu, D. Q. Nguyen, and A. Nguyen, “A label attention model for icd coding
from clinical text,” arXiv preprint arXiv:2007.06351, 2020.

[18] K. J. O’malley, K. F. Cook, M. D. Price, K. R. Wildes, J. F. Hurdle, and
C. M. Ashton, “Measuring diagnoses: Icd code accuracy,” Health services
research, vol. 40, no. 5p2, pp. 1620–1639, 2005.

[19] “discharge summary.” [Online]. Available: https://medical-dictionary.
thefreedictionary.com/discharge+summary

[20] X. Xie, Y. Xiong, P. S. Yu, and Y. Zhu, “Ehr coding with multi-scale fea-
ture attention and structured knowledge graph propagation,” in Proceedings
of the 28th ACM International Conference on Information and Knowledge
Management, 2019, pp. 649–658.

[21] A. Perotte, R. Pivovarov, K. Natarajan, N. Weiskopf, F. Wood, and N. El-
hadad, “Diagnosis code assignment: models and evaluation metrics,” Journal
of the American Medical Informatics Association, vol. 21, no. 2, pp. 231–237,
2014.

[22] B. Koopman, G. Zuccon, A. Nguyen, A. Bergheim, and N. Grayson, “Auto-
matic icd-10 classification of cancers from free-text death certificates,” Inter-
national journal of medical informatics, vol. 84, no. 11, pp. 956–965, 2015.

[23] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Nau-
mann, J. Gao, and H. Poon, “Domain-specific language model pretraining
for biomedical natural language processing,” 2020.

[24] K. Trapeznikov, “"iobert_v1.1_pubmed_squad_v2".” [Online]. Available:
"https://huggingface.co/ktrapeznikov/biobert_v1.1_pubmed_squad_v2"

https://medical-dictionary.thefreedictionary.com/discharge+summary
https://medical-dictionary.thefreedictionary.com/discharge+summary
"https://huggingface.co/ktrapeznikov/biobert_v1.1_pubmed_squad_v2"

Bibliography 57

[25] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann, and
M. McDermott, “Publicly available clinical bert embeddings,” arXiv preprint
arXiv:1904.03323, 2019.

[26] Y. Chen, “Predicting icd-9 codes from medical notes–does the magic of bert
applies here?”

[27] Z. Zhang, J. Liu, and N. Razavian, “Bert-xml: Large scale automated icd
coding using bert pretraining,” arXiv preprint arXiv:2006.03685, 2020.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017, pp. 5998–6008.

[29] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “Bert pre-training of
deep bidirectional transformers for language understanding,” 2018.

[30] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s transformers: State-
of-the-art natural language processing,” ArXiv, pp. arXiv–1910, 2019.

[31] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon,
P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed, “Big bird: Trans-
formers for longer sequences,” 2020.

[32] J. Shang, T. Ma, C. Xiao, and J. Sun, “Pre-training of graph aug-
mented transformers for medication recommendation,” arXiv preprint
arXiv:1906.00346, 2019.

[33] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, “Biobert:
a pre-trained biomedical language representation model for biomedical text
mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240, 2020.

[34] M. Sänger, L. Weber, M. Kittner, and U. Leser, “Classifying german animal
experiment summaries with multi-lingual bert at clef ehealth 2019 task 1.”
in CLEF (Working Notes), 2019.

[35] N. Poerner, B. Roth, and H. Schütze, “Evaluating neural network explana-
tion methods using hybrid documents and morphological agreement,” arXiv
preprint arXiv:1801.06422, 2018.

[36] R. Hasani, “Interpretable recurrent neural networks in continuous-time con-
trol environments,” Ph.D. dissertation, Wien, 2020.

[37] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, 2017.

Bibliography 58

[38] K. Trivedi, “Fast bert.” [Online]. Available: https://github.com/
kaushaltrivedi/fast-bert

[39] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune bert for text
classification?” in China National Conference on Chinese Computational
Linguistics. Springer, 2019, pp. 194–206.

[40] W. Falcon, “Pytorch lightning,” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning. [Online].
Available: "https://pytorch.org/docs/master/generated/torch.nn.
BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss"

[41] L. N. Smith, “Cyclical learning rates for training neural networks,” 2017.

[42] A. Prakash, S. Zhao, S. A. Hasan, V. Datla, K. Lee, A. Qadir, J. Liu, and
O. Farri, “Condensed memory networks for clinical diagnostic inferencing,”
2017.

[43] PyTorch, “Captum,” GitHub. Note:https://github.com/pytorch/captum.
[Online]. Available: "https://github.com/pytorch/captum"

[44] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” 2017.

[45] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” arXiv preprint
arXiv:1704.02685, 2017.

[46] S. Hsu, D. E. Rifkin, M. H. Criqui, N. C. Suder, P. Garimella, C. Ginsberg,
A. M. Marasco, B. J. McQuaide, E. J. Barinas-Mitchell, M. A. Allison et al.,
“Relationship of femoral artery ultrasound measures of atherosclerosis with
chronic kidney disease,” Journal of vascular surgery, vol. 67, no. 6, pp. 1855–
1863, 2018.

[47] [Online]. Available: https://www.mayoclinic.org/diseases-conditions/
sleep-apnea/symptoms-causes/syc-20377631

https://github.com/kaushaltrivedi/fast-bert
https://github.com/kaushaltrivedi/fast-bert
"https://pytorch.org/docs/master/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss"
"https://pytorch.org/docs/master/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss"
"https://github.com/pytorch/captum"
https://www.mayoclinic.org/diseases-conditions/sleep-apnea/symptoms-causes/syc-20377631
https://www.mayoclinic.org/diseases-conditions/sleep-apnea/symptoms-causes/syc-20377631

Appendix A

Summary of The Findings

We will describe here a summary of our findings for a quick reference. To develop
an ICD coding system using BERT, it is beneficial to use preprocessing. The
variation of Mullebach et al. is the most useful known to us, as shown in the
section 4.3.

A.1 Embedder

When using a simple BERT classifier with a classification layer on top, it’s most
beneficial to use the mixed training direction as described in the chapter 4. Using
a larger sequence length is beneficial. Paragraph splitting, as described in sec-
tion 4.7 works and is beneficial for interpretability related methods. Combining
various forms of embeddings generated via the process in chapter 4 works and is
beneficial for the overall prediction score. Our general experience has been that
these embeddings should ideally be aligned. The embeddings variation chunked
and random did, for example, not work well. We assume they did not work well
because the alignment was suboptimal. The hyperparameter we found to work
best for the long embedders are,

Hyperparameter Value
Optimizer Lambda
Learning Rate 0.0005
Scheduler Warmup Cosine
Batch Size 2
Precision Full Precision
Sequece Length 1024

Table A.1: Hyperparameters used for all 1024 sequence length models.

The Embedder that worked best was "BiomedNLP-PubMedBERT-base-uncased-
abstract-fulltext" and was downloaded through Huggingface. Training this setup
for around 12 epochs was good, more gave diminishing results.

A-1

Summary of The Findings A-2

A.2 Predictor

We found the combination of the embeddings,

• Front, Back and Mixed as described in section 4.6

• Paragraph Embedding as described in section 4.7

• Rest Text as described in 4.9

• Illnesslist as described in 4.13

• Additional Information as described in 4.14

to work best. It was beneficial, where the number of paragraphs could potentially

Version F1 -Micro F1-Macro AUC-Micro AUC-Macro
Only Embeddings 0.5738 0.4927 0.8627 0.8389
Only Illness list 0.3258 0.4630 0.8332 0.7901
Only Paragraphs 0.5419 0.4661 0.8465 0.8209
All 0.6019 0.4879 0.9018 0.8713

Table A.2: Comparison of the different embeddings on the small mimic3 test set
as described in 6.1

be reduced. Also, the illness lists could potentially be removed. We would advise
keeping the other embeddings.
We generally found that using the Lambda optimizer was good. Training using
early stopping was beneficial; patience 3 is suitable. Dense architectures are
competitive and can be used for prototyping. The best architecture can be seen
in the figure 5.3. Using a learning rate around 5e − 4 was good, may depend
heavily on the model. Linear learning rate decay over the training was beneficial.

A.3 Interpretation

Using the Deep Lift variation showed the most useful results. We considered
using the dot product better for overall usage. Weighting the aggregated results
by the amount of non-zero input was essential. For cross illness/input variable
comparison applying z-score is beneficial.

	Acknowledgements
	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic ICD Coding
	2.2 Mimic3
	2.3 Preprocessing
	2.4 Models for ICD Coding
	2.5 BERT
	2.6 Interpretability of Neural Networks

	3 Overview
	3.1 Embedder Overview
	3.2 Embedder Training
	3.3 Embedding Construction and Predictor
	3.4 Evaluation

	4 Embedder
	4.1 Data
	4.2 Huggingface
	4.2.1 Hyperparameters for comparison

	4.3 Preprocessing
	4.3.1 Numbers

	4.4 Sequence Length
	4.5 Training Time and Hyperparameters
	4.6 Training Direction
	4.7 Paragraph Splitting
	4.8 Paragraph Embedder
	4.9 Rest Text
	4.10 Chunked Embedding
	4.11 Random Embedding
	4.12 Sentence Embedding
	4.13 Illness List Embedding
	4.14 Additional Variables

	5 Predictor
	5.1 General Architecture
	5.2 Simple Dense Architecture
	5.3 Simple Dense Architecture, Force Through Smaller
	5.4 Aggregating Techniques
	5.5 Transformer Encoders
	5.6 Best Model
	5.7 Other Notable Aspects
	5.7.1 Optimizers
	5.7.2 Early Stopping
	5.7.3 Batch Size
	5.7.4 Learning Rate
	5.7.5 Learning Rate Decay
	5.7.6 Weight Decay

	6 Evaluation & Interpretation
	6.1 Data
	6.2 Sentence Style
	6.3 Dense Architecture
	6.4 Dense Architecture, Force Through Smaller
	6.5 Aggregating Techniques
	6.6 Individual Embedding Performance
	6.7 Comparison to Other Works
	6.8 Interpretation
	6.8.1 Deep Lift
	6.8.2 Integrated Gradient
	6.8.3 Interpretation Designer
	6.8.4 Aggregation of e
	6.8.5 Aggregation Over All Test Examples

	6.9 Interpretation Results
	6.9.1 Paragraph Interpretation

	7 Conclusion
	7.1 Future Work

	Bibliography
	A Summary of The Findings
	A.1 Embedder
	A.2 Predictor
	A.3 Interpretation

