
Distributed

 Computing

Variance reduction in decentralized
training over heterogeneous data

Master’s Thesis

Yue Liu

liuyue@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Dr. Sebastian U. Stich, Tao Lin

Prof. Dr. Roger Wattenhofer, Prof. Dr. Martin Jaggi

April 7, 2021

Abstract

Large-scale machine learning (ML) applications benefit from decentralized learn-
ing since it could execute parallel training and only needs to communicate with
neighbors. However, comparing to exact averaging in centralized training, de-
centralized could only provide inexact averaging, resulting in model difference
among workers, or to say model variance. When data partition is heterogeneous,
the variance would be even larger and results in more severe client drift with
standard Local SGD. In this work, we propose a new decentralized variance re-
duction method, decentralized SCAFFOLD which uses control variates to correct
for the client drift in its local updates. Benefiting from reducing variance in every
local steps, we show that decentralized SCAFFOLD is 2-3 times faster in terms
of communcation rounds comparing to decentralized Local SGD when heteroge-
neous data. Further, we show that interpolating a few steps doing SCAFFOLD
correction in decentralized Local SGD training could also achieve acceleration
and remedy client drift, based on which we build a well-performing mixture de-
centralized training system with both low computation and low communication
complexity.

1

Acknowledgements

Firstly, I feel so grateful that Dr. Sebastian Stich offers this chance and topic
that is related to my research interest in distributed learning in the first place.
His expertise in this field and patience guided me overcoming numerous obstacles
during the last six months and broadened my horizons in the topic of optimization
in machine learning. Besides, I also thank a lot to Tao Lin who offered lots of
valuable helps for my thesis. Finally, I own thanks to Prof. Martin and Prof.
Roger Wattenhofer for their supervison over the project. Besides, I also would
like to thanks my friend Xijin Chen and flatmate Yan Wu, who are always patient
enough to listen to my continuous anxiety and complaints during these year of
studies in Switzerland. In particular, it’s lovely to have their companion at this
period of ’self-quarantine’, or working from home.

Yue Liu, at Zurich, April 7, 2021

2

Contents

Abstract 1

Acknowledgements 2

1 Introduction 5

1.1 Contributions . 7

1.2 Outline . 8

2 Related work 9

2.1 Non-i.i.d data in decentralized training 9

2.2 Client drift and model variance 9

2.3 Centralized variance reduction methods 10

2.4 Batch Normalization . 11

2.4.1 Global Batch Normalization: 12

2.4.2 Individual Batch Normalization: 13

2.4.3 Batch Normalization and Client Variance 15

3 Set up 17

3.1 Problem description . 17

3.1.1 Definitions and Notations 17

3.2 Main assumptions . 18

3.2.1 Assumption on objective f 18

3.2.2 Assumption on the noise 19

3.2.3 Assumption on the heterogeneity 19

4 Decentralized variance-reduced training 21

4.1 Decentralized variance reductioon 21

4.1.1 Variance-reduced algorithm framework 21

4.1.2 Intuition: How it reduces variance? 22

3

4.1.3 Observation of variance out of toy example 24

4.1.4 Decentralized SVRG . 25

4.1.5 Decentralized SCAFFOLD 26

4.1.6 Convergence analysis of decentralized SCAFFOLD 28

4.2 Decentralized SGD/SCAFFOLD training system 29

5 Benchmark Experiment 32

5.1 Detailed Experimental Setup . 33

5.2 Variance reduction in i.i.d setting 34

5.3 Normalization Techniques Comparison 36

5.4 Overall comparison . 37

5.4.1 Generalization performance and communication rounds . 37

5.4.2 Variance and effect of local steps 40

5.4.3 Computation performance 41

5.4.4 Failure of SVRG . 42

5.5 Decentralized SGD/SCAFFOLD training system 44

5.5.1 Local steps activation . 45

5.5.2 Outer Loops activation . 46

5.5.3 Activating both Outer Loops and Local steps 47

6 Conclusion 49

A Appendix: Convergence result A-1

A.1 Useful properties . A-1

A.2 Overview of decentralized SCAFFOLD A-2

A.2.1 Additional definition . A-3

A.3 Convergence of decentralized SCAFFOLD for nonconvex function A-3

Chapter 1

Introduction

Highly parameterized deep neural network shows significant improvement over
machine learning task, but it also results in dramatic increase in the size, com-
plexity, and computational power of the training systems. In this case, in order
to accelerate and to make use of more computing power, whole training proce-
dure is scaled out to multiple machines via data-parallel. Training samples are
partitioned across multiple decentralized edge devices separately and also the
model training are distributively executed across them without exchanging local
samples. The target of distributed training is as follow,

f? := min
x∈Rd

[f(x) =
1

N

∑
i

fi(x)],

whereN is the number of edge computing nodes or workers and fi = Eξ∼εDiFi(x; ξ)
(Di : local data distribution).

Large mini-batch parallel SGD (1; 2) is adopted to distributed setting. Workers
compute local gradients of the loss function on those different partition simulta-
neously, and then calculate an exact averaged gradient using either the ALLRE-
DUCE communication primitive (3) or via central controller called parameter
server (4). But the collection of all workers for parameter sever would experi-
ence severe communication bottleneck and center node failure (5). To this end,
client sampling out of large amount of workers is proposed to solve bottleneck
from network bandwidth (6; 7; 8), or to train model through fully decentralized
fashion (9; 10; 11; 12) could also get rid of the center node for more efficient large
scale training, where every worker only need to communicate with neighbors.

Variance among workers when heterogeneous data Unlike the variance in
common sense, the variance considered here refers to deviation between models.
The performance of both centralized or decentralized training via just SGD would
suffer from variance among workers when heterogeneous partition. For centralized
training, Local SGD reduces communication cost by performing K local updates
before centralized aggregation x = 1

N

∑
i yi,K , where yi,k is the corresponding

local model at time k ∈ [0,K]. While it has shown success in certain applications,
its performance on heterogeneous data would be actually deteriorated. When

5

data partition is heterogeneous, performing too many local steps would make
local models develop in different directions. It introduces ‘client-variance’ in
the updates across the different clients (6; 13). Thus variance is the deviation
among workers during the local steps. For decentralized training, in addition
to local steps, since no centralized aggregation is allowed, every worker could
only communicate with neighbors. Thus each work has its own local estimation
of global model estimator xi instead of the globally acknowledged model x in
centralized case. Variance could also be the deviation among workers w.r.t final
model xi, which results in a more severe and common problem in decentralized
case. That’s, as long as gossip averaging over graph except complete graph,
inexact averaging would always brings in variance among workers, regardless of
being non-i.i.d or not.

1

N

∑
i

||yi,k − ȳk||2 and
1

N

∑
i

||xi − x̄||2,

where yi,.k: local model at local step k, and xi: aggregated global model.

Batch normalization layer and variance Batch normalization layer (14) is
a popular technique used by most of modern nerual network. While it is effec-
tive in practice, its dependence on minibatch mean and variance is known to
be problematic in parallel training. Most work discussing decentralized train-
ing avoids normalization (10).When data partition is heterogeneous, every local
worker would be normalized by different local distributions layer by layer, thus
resulting in growingly larger deviation between local models(, which is larger
variance) (15). Thus it suggests the significance of reducing variance when doing
decentralized training of models with normalization layer.

Why variance hurts? Both targets are able to achieve the optimum at the
globally averaged model. However, if performing too many local steps K � 1
when underlying data partition is heterogeneous, then averaged model would be
stuck in local optimum of form similar to 1

N

∑
i x

?
i , where x

?
i := argmin

x∈Rd
fi(x).

And it has been detected and confirmed as client drift (6; 16; 17; 18; 15). Thus
it shows that the larger the variance, the more severe the drift could be.

Variance reduction method Since model variance has negative impact on de-
centralized training, variance reduction plays an important role. However, in
single machine, the standard Stochastic variance reduction (SVR) is considering
reducing the variance brought by stochastic gradient, or noise. It consists of a col-
lection of techniques SVRG (13), SAGA (19), SARAH (20), etc. It employs extra
control variates c, c̃ to correct stochastic gradient (SGD) so as to approximate the
full batch gradient and to reduce impact from stochasticity. It iteratively updates
model y with corrected gradient, and it updates those control variates by calcu-
lating full batch gradient w.r.t snapshot point x. If c ≈ ∇F (y; ξ), c̃ ≈ ∇f(y),

y = y − η(∇F (y; ξi)− c+ c̃) ≈ y − η∇f(y). (1.1)

But this approximation via correction could also be applied to help reduce the
model variance in distributed learning. In the distributed setting, D-SVRG
(21; 22; 23) in master/slave model and Network-SVRG(24) combined with gradi-
ent tracking in decentralized mode reduce the noise of the local stochastic gradient
of each node so as to accelerate convergence. But they both have hard constraint
over model dissimilarity(or variance). SCAFFOLD is also SVRG-like designed
particularly to remedy the client drift (6) and supports client sampling, but it’s
only designed for the centralized setting and would suffer from central node fail-
ure. In the decentralized case, GT-SVRG and GT-SAGA (25) uses correction
combined with gradient tracking to reduce both stochastic noise and model vari-
ance, but it needs communication every model updates which requires too much
communication overhead.

In this work, we mainly consider the decentralized SCAFFOLD that could reduce
communication cost by performing K local steps and reduce model variance in
decentralized setting. Intuitively, similar to (1.1), we estimates direction of each
client ci ≈ ∇Fi(yi; ξi), and of global direction c̃i ≈ 1

N

∑
i∇Fi(yi; ξi). Then for

each model update, we correct the gradient with direction difference −ci + c̃i,

yi = yi − η(∇Fi(yi; ξi)− c+ c̃) ≈ yi − η
1

N

∑
j

∇Fj(yj ; ξj),

which aprroximates the ideally bulk synchronous parallel (26), the most communication-
heavy approach. Thus it mitigates the client drift brought by local steps and de-
centralized communication on heterogeneous data. We use this viewpoint to show
that decentralized SCAFFOLD is relatively unaffected by heterogeneity and arbi-
trary decentralized communication pattern. Comparing to other existing method
in the decentralized training, e.g, DSGD (9), decentralized SCAFFOLD is able
to reduce the variance among workers and accelerates in terms of communication
rounds for models, regardless of whether having normalization layer or which
normalization technique used. And even doing local steps with iterative online
choice either pure SGD or modified SGD used withn decetralized SCAFFOLD,
very few steps of correction within decentralized SCAFFOLD could be already
enough to reduce variance, remedy client drift and accelerate at the same time.

1.1 Contributions

The goal is to train deep neural network on top of heterogeneous data in decen-
tralized fashion with both low communication and computation overhead. In this
work, we focus on a common type of non-i.i.d data, widely used in prior work
(27; 28; 29): skewed distribution of data labels across locations/devices. Our
study covers typical DNN models, training datasets, degrees of label skewness,
decentralized learning algorithms and communication topologies.
Contributions We summarize our main results below.

• We propose the decentralized SCAFFOLD from its originally centralized
version and give the theoretical analysis over its convergence rate on het-
erogeneous data.

• We empirically evaluate the performance of decentralized SCAFFOLD, and
demonstrate that this method is robust against the non-i.i.d statistical het-
erogeneity and also outperforms decentralized Local SGD in both commu-
nication efficiency and generalization performance.

• We validate the effectiveness of decentralized SCAFFOLD combined with
different normalization techniques, and shows that model quality are less
dependent of normalization techniques but more related to algorithm when
heterogeneous data. The performance of decentralized SCAFFOLD is con-
sistently outperforms decentralized SGD with all normalization techniques.

• We propose a decentralized training system with mixture SGD and SCAF-
FOLD steps. The combination with small fraction of SCAFFOLD for SGD
could further improve decentralized training of DNN models with low com-
putation, low communication overhead and the best generalization perfor-
mance on arbitrary communication network.

1.2 Outline

The remainder of this thesis is structured as follows. We introduces the pre-
liminaries and background in Section 2. We describe the problem set up and
main assumption in Section 3, and present our decentralized variance reduction
methods in Section 4. Section 5 present the experimental results, followed by
conclusion in Section 6.

Chapter 2

Related work

2.1 Non-i.i.d data in decentralized training

Decentralized Learning aims to train a local inference model for every workers
from locally distributed data {D1, ..., Dm} but to test on global test data D.
Those datasets are usually generated from different source or endpoint, and could
be very different from each other. Non-i.i.d has always been a key challenge in
distributed learning. And when local distribution Di deviates from global true
distribution D, the local objective of each worker is inconsistent with the global
optima. Considering the different distributional shift, there are two different non-
i.i.dness types, label distribution skew(18; 30) and feature distribution skew(18;
31). In label distribution skew, the label distributions P (a|i) (a : label, i :
worker index) vary across workers. Such a case is common in practice. For
example, when user’s activity has specific preference, the data collected from
different users would also show the bias over choices. In feature distribution
skew, the feature distributions P (xi) (x : model) vary across workers although
the knowledge P (a|xi) is same. For example, when doing whether forecasting,
different place is influenced by different landscape. In this work, I mainly consider
the label distribution skew type of heterogeneity.

2.2 Client drift and model variance

Heterogeneous data is a common situation and a typical challenge in general
distributed training. Client drift (6; 16; 17; 18; 15) is known to be detected in
Local SGD when heterogeneous data partition. In centralized training, when data
partition is non-iid, functions for each worker {fi} is distinct, then the direction
of gradient calculated from {fi} would be very different and local updates would
experience drift from the server model. Contrary to finding the global optimum
x?, Local SGD would end up with 1

N

∑
i x

?
i . The amount of this client drift is

depicted and exactly determined by the gradient dissimilarity parameter G,B in
Assumption 3.7.

9

In addition, in decentralized training, there is no server to maintain a common
and global model. Every worker keeps their own model {xi}. The deviation
between {xi} and x̄ = 1

N

∑
i xi is another source of drift. When i.i.d setting,

in centralized training, the deviation of local models yi resulted from noise of
stochastic gradient via local steps would be compromised by the exact averag-
ing later in model aggregation of server. But in decentralized training, every
worker could only communication with their neighbors through gossip averaging.
This kind of inexact averaging cannot alleviate the noise but result in deviation
among workers in global model xi and for the start of next round of local steps,
every worker already has very different starting point. Then the slight deviation
accumulates and results in drift even when i.i.d setting in Figure 5.2a and Fig-
ure 5.3a, and could be depicted by significant model variance 1

N

∑N
i ||xi − x̄||2.

The ultimate goal of decentralized training is to find optimum point on x̄?, and
meantime, every worker is optimum x̄?. That’s zero-variance among workers.

2.3 Centralized variance reduction methods

D-SVRG(21)

D-SVRG is the combination of SVRG(13) and DANE(32). Instead of solving
the DANE subproblem exactly, it uses SVRG as the local solver to produce an
approximated solution. It could be able to converge faster(21) than Local SGD
in terms of communication rounds.

Algorithm 1 D-SVRG

1: Initialize: x0
i = x0

j , ∀i ∈ [n], c̃0
i = ~0 = c0

i

2: for all client i ∈ {1, ..., n} parallel do
3: for outer loops: r ← 1 to R do
4: yri,0 = xri , v

r
i,0 = c̃ri

5: for inner loops: k ← 0 to K − 1 do
6: Sample ξi,k from Di and compute ∇F (yri,k; ξi,k)
7: vri,k = ∇Fi(yri,k; ξi,k)−∇Fi(xri ; ξi,k) + c̃ri
8: yri,k+1 = yri,k − ηcvri,k
9: end for

10: xr+1 = 1
N

∑N
i y

r
i,K . update global model

11: cr+1
i = ∇fi(xr+1) . local full-batch gradient as global control variate

12: c̃r+1 = 1
N

∑N
i c

r+1
i . update global control variate

13: end for
14: end for

However, in its theorectical analysis, it puts hard constraints over the hetero-
geneity and also the optimizer SVRG itself suffers from ineffectiveness in deep

neural network training(33). Thus, even though it fits in the general distributed
variance reduction methods, it still needs more investigation on how it performs
in distributed training of DNN models.

SCAFFOLD(6)

SCAFFOLD models on non-i.i.d as introducing variance among the workers and
applies the variance reduction technique. It estimates control variates for the
server c and workers ci respective for estimator of direction of server model and
local model. Then, the drift of local training is approximated by the difference
between these two update directions, ci − c̃. Thus, during local model update,
SCAFFOLD corrects direction with the opposite direction of estimated drift.
Here we only consider the option I where it reuses the previously computed
gradients so as to save the extra computation of full-batch gradient. Compared
with Local SGD(34), intuitively, SCAFFOLD doubles the communication model
size(x and c̃) per communication round and also doubles the computation due to
the extra modification ci − c̃ on SGD.

Algorithm 2 SCAFFOLD

1: Initialize: x0
i = x0

j , ∀i ∈ [n], c̃0
i = ~0 = c0

i

2: for all client i ∈ {1, ..., n} parallel do
3: for outer loops: r ← 0 to R− 1 do
4: yri,0 = xri
5: for inner loops: k ← 0 to K − 1 do
6: Sample ξi,k from Di and compute ∇F (yri,k; ξi,k)
7: yri,k+1 = yri,k − ηc(∇Fi(yri,k; ξi,k)− cri + c̃ri)
8: end for
9: xr+1 = xr + ηs

1
N

∑N
i (yri,K − xr) . global model

10: cr+1
i = cri − c̃r + 1

Kηc
(xr − yri,K) . local control variate with option I

11: c̃r+1 = c̃r + 1
N

∑N
i (cr+1

i − cri) . local control variate
12: end for
13: end for

2.4 Batch Normalization

It is well-known that the latest deep learning models usually adopt Batch Normal-
ization (BN) (14) to facilitate and stabilize optimization. A BN layer normalized
input data z

ẑ = γ
z − µ̂
σ̂2

+ β

via the batch statistcs µ̂ = µB, σ̂
2 = σ2

B, and for later evaluation, it keeps running
estimates µ̄ and σ̄2 through accumulated averaging of each batch statistics. m ∈
[0, 1] is the parameter for controlling momentum.

µ̄ = mµ̄+ (1−m)µ̂, σ̄2 = mσ̄2 + (1−m)σ̂2

However, classical distributed algorithm and most recent works, including both
the centralized and the decentralized, avoid normalization. Because normaliza-
tion technique, even though works pretty well in practice, puts great challenge
to theoretical studies. Methods could work in general non-convex functions as
theorectial analysis suggested, but situation for models with normalization could
be different. And even in practice, since Batch Normalization needs to calcu-
late batch statistics for every hidden layers and keeps running estimates for later
evaluation, the major concern is that its performance is particular vulnerable to
heterogeneous data distribution(14).Thus how to reasonably normalize under dis-
tributed setting and in particular when underlying distribution for every worker
is different, is still unclear.

Unlike the previous case in single machine, in distributed setting, since data and
computation are located in decentralized devices, each worker would maintain
their own estimator of those parameters in BN layer. In addition, if perform-
ing local steps k ∈ {0, ...,K} and at communication rounds r ∈ {1, ..., R}, the
notation would be

µ̂ri,k, (σ̂2)ri,k, µ̄
r
i,k, (σ̄2)ri,k, γ

r
i,k, β

r
i,k.

Considering how those parameters would communication among workers through-
out training and evaluation, there classifies BN into two different category: Global
Batch Normalization and Individual Batch Normalization.

2.4.1 Global Batch Normalization:

As names suggests, doing global normalization is to make sure to normalize with
same batch statistics. And only then we could guarantee that data is normalized
by the same and true underlying distribution.

1. Synchronized Batch Normalization(SyncBN)(14; 35)The naive thoughts
for distributed setting to mimic the behavior in single machine is to glob-
ally synchronize batch statistics for forward and backward operation to
guarantee that every worker normalize based the same distribution, only
then there is no concern over heterogeneity across workers. For forward
operation, it calculates batch statistics via

µ̂ =
1

N

∑
j

µBj , σ̂
2 =

1

N

∑
j

σ2
Bj , ẑi = γri

zi − µ̂√
σ̂2 + ε

+ βri ,

and for backward operation, it calculates gradient w.r.t input,

∂f

∂zik
=

1√
σ̂2 + ε

(
∂f

∂ẑik
− 1

N

∑
j

1

N

∑
s

∂f

∂ẑjs
− ẑi,k

1

N

∑
j

1

N

∑
s

∂f

∂ẑjs
ẑjs)).

Then for running estimates, since for every update, the used batch statistics
are the same for all workers, then the running estimates it keeps through
classical momentum are the same. In particular, aggregate the affine pa-
rameters along with every communication as part of model,

γr+1
i,0 =

∑
j

wijγ
r
j,K , β

r+1,0
i =

∑
j

wijβ
r
j,K .

However, such fully synchronized Batch Normalization could only happen
for centralized training, and be against the intrinsic property of federated
learning, where it communicates much less. SyncBN needs to communicate
for every forward and backward operation, which puts significantly heavy
communication overhead, and it has servere concern over privacy.

2.4.2 Individual Batch Normalization:

However, in the truly distributed setting, it’s impossible to perform global nor-
malization, but to do it independently for each worker.

µ̂i,k, σ̂
2
i,k, ẑ

r
i,k = γri,k

zri − µ̂i,k√
σ̂2
i,k + ε

+ βri,k,

Considering how to operate on components needed for normalization(running es-
timates and affine parameters), there are three different and somewhat hierarchy
methods, from completely synchronizing all components to completely asynchro-
nizing(keeping both locally). And it’s already investiated that doing batch nor-
malization individually would harmonize local data distribution in the field of
domain adoptation(36; 37), and only then model aggregation could be beneficial.

1. Local Batch Normalization(LBN)(14) More natural and naive way
for training deep learning model with Batch Normalization in federated
learning fashion is to do the Batch Normalization locally, and to average
the running estimates later alone with model aggregation.

µ̄r+1
i =

∑
j

wijµ̄
r
j,K , (σ̄2

i)
r+1 =

∑
j

wij(σ̄
2
j,K)r,

γr+1
i =

∑
j

wijγ
r
j,K , β

r+1
i =

∑
j

wijβ
r
j,K ,

where µ̂i, σ̂2
i used for normalization during training are the unbiased es-

timators w.r.t local distribution Di. And for the linear affine parameters
γri , β

r
i and running estimates µ̄ri , (σ̄2)r will be averaged through gossip as

part of model when model aggregation. Thus doing local Batch Normal-
ization is to leave the deviation brought by normalized by different local
distribution for later modification to gradient or model aggregation within
federated learning.

2. SiloBN(38) SiloBN is adopted from domain adoptation(36). For training,
it’s the same as LBN, using local batch statistics to normalize and treating
affine parameter as part trained model waiting for later model aggregation.
But it also keeps running estimates locally, unlike that in LBN.

µ̄r+1
i = µ̄ri , (σ̄2

i,K)r+1 = (σ̄2
i,K)r,

γr+1
i =

∑
j

wijγ
r
j,K , β

r+1
i =

∑
j

wijβ
r
j,K .

The idea behind it is straightforward and provides different perspective of
standardized distribution. It treats batch statistics and affine parameters
differently, where the former encodes local dataset information, the latter
can be employed to transfer information across different workers. Instead
of making sure every worker uses the same batch statistics, SiloBN stan-
dardizes data to uniform zero-mean and unit variance using local batch
statistics, and the affine parameter here helps to expand data distribution
to more standardized βri -mean and (γri)

2-variance, the deviation of which
could be tackled by algorithm. Keeping BN statistics local permits the
decentralized training of a model robust to the heterogeneity, as being nor-
malized by local statistics ensures that the intermediate activations of all
workers are centered to a similar value(approximate zero-mean and unit-
variance).

3. FedBN(39) FedBN is somewhat more extreme and completely asychro-
nized w.r.t Batch Normalization layer. It not only noramlizes with local
batch statistics but also never communicates affine parameters.

µ̄r+1
i,0 = µ̄ri,K , (σ̄2

i,0)r+1 = (σ̄2
i,K)r,

γr+1
i,0 = γri,K , β

r+1
i,0 = βri,K .

It’s shown in (39) that once having two nice models w1, w2 and their cor-
responding γ1, γ2 respectively, the performance of w̄ = (w1 + w2)/2, γ̄ =
(γ1 + γ2)/2 has the largest generalization error, but w̄ with either γ1 or γ2

still could perform well as w1, γ1 or w2, γ2. It suggests that keeping even
affine parameters local could help not deteriorate the performance when
model aggregation.

Batch Normalization overview

technique
batch statistics

µ̂i

running statistics
(µ̄r+1
i,0 , (σ̄2

i,0)r+1)

affine parameters
(γr+1
i,0 , βr+1

i,0)

Global BN SyncBN µ̂ ≡ 1
N

∑
j µBj

1
N

∑
j(µ̄

r
j,K , (σ̄

2
j,K)r) ∑

j wij(γ
r
j,K , β

r
j,K)

Individual BN
LBN

µBi

∑
j wij(µ̄

r
j,K , (σ̄

2
j,K)r)

SiloBN
(µ̄ri,K , (σ̄

2
i,K)r)

FedBN (γri,K , β
r
i,K)

Table 2.1: How the operation changes for each component within Batch
Normalizaion techniques

Since SyncBN is just an ideal fully synchronized normalization technique where
every worker could be able to be normalized by the same distribution for every
step. It had conformed to initial conjecture over solving the non-i.i.d challenge
for model with normalization layer, however, later it shows that SyncBN with
Local SGD doesn’t outperform that much other instance-based normalization
method, e.g, GN, in terms of generalization performance in Figure 5.4b or of
consensus distance in Figure 5.4a, while it’s already known those instance-based
normalization suffers from some degree of quality loss comparing to BN(40; 18).

Thus it suggests that if using BN, the guarantee with exactly the same dis-
tribution is not the key factor counting for failure of decentralized Local SGD
on heterogeneous data. The naive thought of modifying BN so as to be nor-
malized by approximately global distribution counterintuitively seems not to be
promising. And later in detailed experimental section, it will show that doing
normalization locally, and treating the output of locally normalized data as noth-
ing different and just an internal part of local objective fi is still workable. Those
all the internal impacts combined on fi resulting from heterogenous data could
be as a whole solved by suitable external optimization technique.

2.4.3 Batch Normalization and Client Variance

The heterogeneous data affects BN in two different levels. First from 1) on same
model but different local data then to 2) different model and different local data.
Since standard BN are particularly vulnerable to skewed label partitions, when
under data partition is heterogeneous, distributed training of deep neural network
would suffer from severe quality loss(15). However, it’s also investigated in more
extreme non-i.i.d cases, e.g domain adoptation, that doing BN completely locally
actually mitigates domain shift and harmonizes different local distribution w.r.t
local model(39; 41). Thus model trained on heterogeneous data could be able
to end up with alignment with each other comparing to model without(Figure
1 in (39)). It suggests that if guaranteeing the same model on all workers, then
heterogeneity could be directly mitigated by BN, since the model updated on

non-i.i.d data are still harmonized with each other w.r.t parameter space. Then
it further suggests that the closer the models are, the better the aggregated model
could be. Smaller client variance would take advantage of this alignment brought
by individual BN (doing BN completely locally) to end up with better global
model in distributed training.

Chapter 3

Set up

In this chapter, we introduce the standard set up for problem formulation, basic
notation and the main assumption.

3.1 Problem description

Suppose we have a dataset Z. In distributed setting, data is partitioned and
distributed on n different workers, the partition of dataset is defined as Z =⋃N
i Zi, where Zi

⋂
Zj = ∅,∀i 6= j. The data partition Zi is stored on worker

i, 1 ≤ i ≤ N . No further assumption on statistical distribution of each node Di

is made. Consider the following distributed minimization problem

min
x∈Rd

f(x) :=
1

N

N∑
i

fi(x), where fi(x) = Eξi∼DiFi(x; ξi) (3.1)

fi(x) is defined to be the expected local loss for worker i w.r.t local distributedDi,
and Fi(x; ξ) is the stochastic loss. Also, denote 5fi(x) as the expected gradient,
and 5Fi(x, ξ) as the stochastic gradient.

If finite sample, instead of considering expectation loss, the empirical loss would
be evaluated. B is the maximum number of sample per node.

min
x∈Rd

f(x) :=
1

N

N∑
i

1

B

∑
z

Fi(x; z). (3.2)

3.1.1 Definitions and Notations

Throughout this thesis, the following notations and definitions are used:

17

Table 3.1: summary of notation

N, i total number, index of worker
R, r number, index of communication rounds
K, k number, index number of inner loops

xri , y
r
i,k ∈ Rd global model, local model, of worker i at communication round r, and local steps k.

c̃ri , c
r
i global, local control variate, of worker i at communication round r

W, wij adjacency matrix, entries of topology at time t in decentralized setting
ηc, ηs client step size, model step size

We use xri ∈ Rd denotes the model estimates for worker i at time step r, and
further define the average over all workers

x̄r :=
1

N

N∑
i

xri ∈ Rd. (3.3)

And the equivalent matrix and vector notation is defined as following.

W denotes the adjacency matrix of decentralized network topology.

W∞ :=
11T

N
∈ RN×N

Xr := (xr1, ..., x
r
N) ∈ Rd×N

∇F (X; ξ) := (∇F1(x1; ξ1), ...,∇FN (xN ; ξN)) ∈ Rd×N

∇F (X) := (∇f1(x1), ...,∇fN (xN)) ∈ Rd×N

(3.4)

Then easily there are some useful terms calculated in matrix format,

X̄r := (x̄r, ..., x̄r) ≡ Xr 11T

N
≡ XrW∞ ∈ Rd×N

∇F (X̄) := (∇f1(x̄), ...,∇fN (x̄)) ∈ Rd×N

∇F (X) :=
1

N

N∑
i

fi(xi) ∈ Rd

f(x̄)1T = (f(x̄), ..., f(x̄)) ∈ Rd×N

(3.5)

And in particular, there is also Eξ∇F (X; ξ) = ∇F (X) .

3.2 Main assumptions

3.2.1 Assumption on objective f

Assumption 3.1. (L-smoothness) Each function Fi(x; ξ) : Rd → R, ξ ∼ Di is
differentiable and there exists a constant L ≥ 0 such that for ∀x, y ∈ Rd,

||∇Fi(x; ξ)−∇Fi(y; ξ)|| ≤ L||x− y||. (3.6)

Assumption 3.2. (L-smoothness) Each function fi(x) : Rd → R, i ∈ [n] is
differentiable and there exists a constant L ≥ 0 such that for ∀x, y ∈ Rd,

||∇fi(x)−∇fi(y)|| ≤ L||x− y|| (3.7)

Remark 3.3. Sometimes it’s enough to just assume the smoothness of function
fi(x). Assumption 3.2 is more general than Assumption 3.1, and Assumption 3.1
can imply Assumption 3.2 for convex fi(x)(9).

3.2.2 Assumption on the noise

Assumption 3.4. (uniform bounded noise) For every worker ∀i ∈ [N], the
variance w.r.t each fi is uniform.

EDi ||∇Fi(x; ξ)−∇fi(x)||22 ≤ σ2 (3.8)

Assumption 3.5. (bounded gradient variance) There exists constantM, σ̂2 such
that ∀x1, ..., xn ∈ Rd

Ψ ≤ σ̂2 +
M

n

n∑
i

||∇f(xi)||22, (3.9)

where Ψ := 1
n

∑n
i Eξ∼Di ||∇Fi(x; ξ)−∇fi(x)||22.

Remark 3.6. When uniform bounded on noise,

1

N

∑
i

EDi ||∇Fi(x; ξ)−∇fi(x)||22 ≤ σ2,

which is the special case for bounded gradient variance when M = 0, σ̂2 = σ2.
Thus it’s easy to check that Assumption 3.5 is weaker than assuming uniform
bound on the noise σ2

i in Assumption 3.4.

3.2.3 Assumption on the heterogeneity

Assumption 3.7. ((G,B)-bounded dissimilarity) We assume there exists con-
stant B ≥ 1, G such that ∀x ∈ Rd,

1

N

N∑
i

||∇fi(x)||22 ≤ G2 +B2||∇f(x)||22 (3.10)

Remark 3.8. Another commonly used assumption on dissimilarity is to assume
uniform bound on gradient, ||∇fi(x)||2 ≤ G2(34; 42). When bounded gradient,
then

1

N

N∑
i

||∇fi(x)||2 ≤ G2,

which clearly satisfied Assumption 3.7.

Chapter 4

Decentralized variance-reduced
training

In this section, we mainly discuss the common problem encountered within het-
erogeneous decentralized learning tasks and propose the variance-reduced algo-
rithm, decentralized SVRG and decentralized SCAFFOLD, combined with cor-
responding normalization technique for models with normalization layer.

4.1 Decentralized variance reductioon

In this section, we first describe the general decentralized variance-reduced frame-
work, and then discuss how it has the potential to solve the problem of large
variance among workers and client drift.

4.1.1 Variance-reduced algorithm framework

Here now present the general decentralized variance-reduced framework. It’s
based on the original SVRG(13) in the single machine, classifiying iterations into
two phases, one for updating the variance reduction components, one for model
update with modified stochastic gradient. And within the framework, it has three
main steps:

• local updates to the local model, yi = yi − ηc(∇Fi(yi; ξ)− ci + c̃i)

• local updates to the client control variate, ci = local_control_variate(·)

• and aggregating the updates. (xi, c̃i) = (global_model(·),global_control_variate(·))

Along with the general decentralized variance-reduced framework, since no global
communication is allowed, those parameters of model and control variates are
having two sets of estimators, one for local estimation of local value yi = local_model(·),
ci = local_control_variate(·)) and the other for the local estimation of global

21

Algorithm 3 General decentralized variance-reduced algorithm framework
1: parameters:
2: R: number of communication rounds;
3: K: number of local steps;
4: ηc: learning rate for local model update;
5: ηs: learning rate for global model update;
6: W : adjacency matrix of decentralized topology.
7: Initialize: x0

i = x0
j , ∀i, j ∈ [n]; c̃0

i = ~0 = c0
i , ∀i ∈ [n]

8: for all client i ∈ {1, ..., n} parallel do
9: for outer loops: r ← 0 to R− 1 do

10: yri,0 = xri
11: for inner loops: k ← 0 to K − 1 do
12: yri,k+1 = yri,k − ηc(∇Fi(yri,k; ξi,k)− cri + c̃ri)
13: end for
14: xr+1

i = global_model({y1,K , .., yn,K}; ηs,W)
15: cr+1

i = local_control_variate(·)
16: c̃r+1

i = global_control_variate(·;W)
17: end for
18: end for

value xi = global_model(·), c̃i = global_control_variate(·)), via decentral-
ized communication with neighbors and gossip averaging of each others’ local
value. And different methods have various ways of estimations. And if ci ≡ 0,
then the algorithms is equivalent to decentralized SGD.

4.1.2 Intuition: How it reduces variance?

Variance here refer to the model deviation(local model: yi and global model xi)
among workers instead of the noise in stochastic oracle resulted from SGD. If
communication cost is not a concern, the ideal model update at worker i would
be

yi,k+1 = yi,k − ηc
1

N

∑
i

∇Fi(yi,k; ξi,k). (4.1)

Only then each work is completely synchronized every local step. And 1
N

∑
i∇Fi(yi,k; ξi,k)

provides perfect unbiased estimator of gradient of f =
∑

i fi. And the perfor-
mance is equivalent to ideal centralized Local SGD at i.i.d setting. However, it
needs communication with every worker at every update step. In decentralized
training only allows communication with neighbors resulting in variance among
workers ||xi − x̄||2 ≥ 0, and only allows communication every K steps.
Then consider the case in decentralized variance reduction. Since both ci, c̃i are
constant throughout all local steps given one communication round, if

ci ≈ ∇Fj(yj,k; ξj,k) ∀k ∈ [K],

c̃i ≈
1

N

∑
j

∇Fj(yj,k; ξj,k) ∀k ∈ [K],

for each worker and any local steps within the communication round,

• the gradient update made would be

∇Fi(yi,k; ξi,k)− ci + c̃i ≈ ∇Fi(yi,k; ξi,k)−∇Fi(yi,k; ξi,k) +
1

N

∑
j

∇Fj(yj,k; ξj,k)

=
1

N

∑
j

∇Fj(yj,k; ξj,k),

(4.2)
which means that variance reduction method has the ability to mimic the
synchronization in (4.1) even in decentralized training.

• At mean time, define ȳk := 1
N

∑
i yi,k, and if 1

N

∑
i ci = 1

N

∑
i c̃i,

ȳk = ȳk−1 − ηc
1

N

∑
i

∇Fi(yi,k−1; ξi,k−1)

Consider the variance among workers 1
N

∑
i ||yi,k − ȳk||2. Define Si :=

∇Fi(yi,k−1; ξi,k−1) − 1
N

∑
j ∇Fj(yj,k−1; ξj,k−1). For simplicity, if assuming

at one time yi,k−1 = ȳk−1, then we only comparing the distance after one
local step,
1

N

∑
i

||yi,k − ȳk||2

=
1

N

∑
i

||yi,k−1 − ȳk−1 − ηc(∇Fi(yi,k−1; ξi,k)− ci + c̃i −
1

N

∑
j

∇Fj(yj,k−1; ξj,k−1))||2

=
η2
c

N

∑
i

||∇Fi(yi,k−1; ξi,k)− ci + c̃i −
1

N

∑
j

∇Fj(yj,k−1; ξj,k−1))||2

=
η2
c

N

∑
i

||Si − ci + c̃i||2

Comparing to the variance of SGD without correction of control variates
1

N

∑
i

||yi,k − ȳk||2

=
1

N

∑
i

||yi,k−1 − ȳk−1 − ηc(∇Fi(yi,k−1; ξi,k)−
1

N

∑
j

∇Fj(yj,k−1; ξj,k−1))||2

=
η2
c

N

∑
i

||∇Fi(yi,k−1; ξi,k)−
1

N

∑
j

∇Fj(yj,k−1; ξj,k−1))||2

=
η2
c

N

∑
i

|Si||2

Since ci ≈ ∇Fi(yi,k−1; ξi,k−1) and c̃i ≈ 1
N

∑
j ∇Fj(yj,k−1; ξj,k−1), Si ≈ ci −

c̃i. That’s then∑
i

||Si − ci + c̃i||2 −
∑
i

||Si||2 ≈ −
∑
i

||ci − c̃i||2 ≤ 0.

It means that the distance achieved after local with correction is smaller
than that without, which suggests the ability of variance-reduction method
to reduce variance among workers. And also, there is another toy example
of how consensus distance between decentralized SGD and decentralized
SCAFFOLD.

4.1.3 Observation of variance out of toy example

So as to illustrate how approximation of ci,∇Fi(yi,k; ξi,k), and c̃i, 1
N

∑
j ∇Fj(yj,k; ξj,k)

influences variance, define normalized deviation as ∆1 := 1
N

∑N
i
||ci−∇Fi(yi,k;ξi,k)||2
||∇Fi(yi,k;ξi,k)||2

and ∆2 := 1
N

∑N
i

||c̃i− 1
N

∑
j ∇Fj(yj,k;ξj,k)||2

|| 1
N

∑
j ∇Fj(yj,k;ξj,k)||2 . And following consider a toy ex-

ample on how variance is reduced. Here consider using ResNet-8 on Cifar10
with 8 workers, and local steps K = 245, which is equivalent to 5 epochs
of local datasets. Instead of the absolute but normalized deviation is con-
sidered to illustrate how close or how far the deviation in standard scale.

244 488 732 976 1220 1464 1708 1952 2196 2440
local steps, k

10 1

101

103

105

107

x,
x

{1
,2

}
Decentralized SCAFFOLD, 1, c = 0.1
Decentralized SCAFFOLD, 2, c = 0.1
Decentralized SVRG, 1, c = 0.1
Decentralized SVRG, 2, c = 0.1

Decentralized SVRG, 1, c = 0.01
Decentralized SVRG, 2, c = 0.01
Decentralized SVRG, 1, c = 0.001
Decentralized SVRG, 2, c = 0.001

Figure 4.1: The normal-
ized averaged deviation be-
tween ci,∇Fi(yi,k; ξi,k) and
c̃i,

1
N

∑
j ∇Fj(yj,k; ξj,k): from previ-

ously intuitive analysis, within the
reduction framework, the smaller
the ∆1 and ∆2 is, the smaller the
variance w.r.t every local update is.

244 488 732 976 1220 1464 1708 1952 2196 2440
local steps, k

10 1

101

103

105

107

1 N
i

||y
i,k

y k
||2

||y
k||

2

Decentralized Local SGD, = 0.1
Decentralized SCAFFOLD, c = 0.1
Decentralized SVRG, c = 0.1

Decentralized SVRG, c = 0.01
Decentralized SVRG, c = 0.001

Figure 4.2: The normalized aver-
aged variance among workers for
every local steps: 1

N

∑
i ||yi,k−ȳk||2
||ȳk||2

using different methods and differ-
ent learning rates. The smaller the
value in y-axis, the smaller the vari-
ance. Comparing to Decentralized Lo-
cal SGD, decentralized SCAFFOLD is
able to reduce model variance among
workers, decentralized variance reduc-
tion methods indeed help to reduce
the variance.

Shown in Figure 4.1, decentralized SCAFFOLD could be able provide much bet-
ter estimator to approximate ∇Fi(yi,k; ξi,k) and 1

N

∑
i∇Fi(yi,k; ξi,k), thus result-

ing smaller normalized client variance. Also the failure of D-SVRG is due to
worse approximation, thus instead of correction to reduce variance but deviating
direction and introducing more variance. And this phenomenon is independent
of local model learning rate ηc when given same global model learning rate ηs.

Then in the following section introduces two different decentralized adaptations
from their centralized origins within this variance-reduced framework. One is
called decentralized SVRG from D-SVRG(21) and the other is decentralized
SCAFFOLD from SCAFFOLD(6).

4.1.4 Decentralized SVRG

Decentralized SVRG is the direct adoptation from the centralized version D-
SVRG(21). The naive thoughts behind is that replacing exact averaging with

gossip averaging

xi =
∑
j

wijyj,K , ci = ∇fi(xi), c̃i =
∑
j

wijcj , wij

then only the neighbors {j : wij 6= 0}(including i itself) involved. If underlying
topology is complete graph, then gossip averaging is exactly the same as exact
averaging, and xi = xj , c̃i = c̃j , ∀i 6= j, thus decentralized SVRG is equivalent
to centralized D-SVRG.

Within decentralize SVRG, almost the same as that of original SVRG in sin-
gle machine, it calculates local full-batch gradient every outer loop, and it uses
stochastic gradient w.r.t global model ∇Fi(xri ; ξi,k) when modifying local model
update, vri,k = ∇Fi(yri,k; ξi,k)−∇Fi(xri ; ξi,k) + c̃ri . It needs an large amount of ex-
tra computation for this periodically calculated full-batch gradient comparing to
decentralized Local SGD. In addition, for every global parameter update, since c̃i
needs the global estimation of full-batch gradient w.r.t newly obtained model xi,
the operation of communication of yi,K → xi and ci = ∇fi(xi)→ c̃i is sequential.
Then two times communication is needed for one outer loop.

4.1.5 Decentralized SCAFFOLD

SCAFFOLD(6) is a centralized SVRG-like method. Unlike D-SVRG, it provides
option that needs no full-batch gradient calculation. It uses the precomputed
stochastic gradient throughout local steps of last outer loop as the replacement
of recalculated full-batch gradient at every outer loop in general variance-reduced
framework

cri =
1

K

∑
k

∇Fi(yr−1
i,k ; ξi,k).

The most promising property of SCAFFOLD comparing to D-SVRG to be adopted
in decentralized setting is that it could support client sampling. That’s, for every
global model update and global control variate estimation, it’s still workable with
information from smaller part of workers. And this situation is similar to that in
decentralized setting where every estimation of global parameter is through its
neighbors, a fraction of all workers involved in system. The only difference is that
in the centralized, no matter how sampling, there is only one sampling pattern at
a time and only one global model maintained by server. But in the decentralized,
the neighbors of each worker could be different, and every worker itself maintain
different version of global model. Then in the decentralized training, do model
update and estimate control variates as follow.

xr+1
i =

N∑
j

wij(x
r
i + ηs(y

r
i,K − xri))

cr+1
i = cri − c̃ri +

1

Kηc
(xri − yri,K)

c̃r+1
i =

N∑
j

wij(c̃
r
i + cr+1

i − cri)

When underlying graph is complete, decentralized SCAFFOLD could be equiva-
lent to the centralized. In addition, if initializing c = 1

N ci,

(¯̃c+, c̄+) =
1

N

∑
i

(c̃ri , c
r
i), ¯̃c+ =

1

N

∑
i

c̄+

If annotating in matrix format, then

C̃r+1 = W (C̃r + Cr+1 − Cr)
= W (W (C̃r−1 + Cr − Cr−1)) + Cr+1 − Cr)

= W r+1C̃0 +
r∑
t=1

W t(Cr+1−t − Cr−t)

= WCr +
r−1∑
t=1

(−W t +W t+1)Cr−t︸ ︷︷ ︸
∆Cr

.[W r+1C̃0 = W rC0]

The correction term ∆Cr within C̃r+1 = WCr + ∆Cr of global control variate
should be more stable comparing to decentralized SVRG(C̃r+1 = WCr), since
it’s made up of accumulated previous local control variates Cr−t, t ∈ [1, r − 1],
working as momentum and the larger the number of communication rounds r,
the smaller impact −W t +W t+1 for those Ct when t << r.

Note that there is a trade-off space between SCAFFOLD and SVRG regarding
to the number of batches used to calculate the local control variate ci. If define a
pass over local data as an epoch, and B is the number of batches for mini-batch
or sample points z of worker i w.r.t an epoch. Considering the different value of
K, there will be following three different situation.

B : maximum number of samples per worker, or number of mini batches.
in decentralized SVRG, c+

i = 1
|B|
∑

z∇F (xri ; z) = ∇fi(xri)
in decentralized SCAFFOLD, c+

i = 1
K

∑
k∇F (yr−1

i,k ; ξi,k).

• When K = |B|, the number of batches involved in the global control variate
estimator ci is the same for SVRG and SCAFFOLD.

• WhenK > |B|, SCAFFOLD is using more batches to calculate than SVRG.

• And when K < |B|, less.

Thus it means that SVRG could not be possible to use more batches than |Bi| as
that in SCAFFOLD. But since those gradient ∇F (yi,k; ξi,k) within SCAFFOLD
is w.r.t stale model yr−1

i,k unlike xri in SVRG, it rises a trade-off space to decide
either using more batches with stale model or using newly updated model with
less batches.

In addition, for SCAFFOLD, it has the same number of gradient computation
as SGD before every gossip averaging. But since SVRG would recalculate the
full-batch gradient w.r.t newly averaged model, it always needs another an epoch
of extra computation for local full-batch gradient cr+1

i = ∇fi(xr+1
i) and one more

communication for c̃r+1
i =

∑
j wijc

r+1
j .

4.1.6 Convergence analysis of decentralized SCAFFOLD

Theorem 4.1. For any L-smooth non-convex functions f , the output of decen-
tralized SCAFFOLD has expected error smaller than ε for ηs ≥ 1 and some values
of ηc ≤ ρ2

500LB2 , R satisfying

R = O(
σ2

ρ2Kε2
+

σ2

KNε2
+
LG2

ρ2ε2
+
B2

ρ2ε
) · LF0,

where F0 := f(x0)− f(x?).

Table 4.1: Comparison of convergence rates for general non-convex functions.

Methods Communication rounds R Assumptions

centralized SCAFFOLD(6) O(σ2

KSε2
+ 1

ε (
N
S)

2
3) · LF0 Ass. 3.4

decentralized DSGD(9) O(σ̂2

KNε2
+ G

√
M+1

ρε3/2
+ σ̂2
√
ρKε3/2

+

√
(B2+1)(M+1)

ρε) · LF0 Ass. 3.5, 3.7

Ours (Thm. 4.1) O(σ2

KNε2
+ σ2

ρ2Kε2
+ G2

ρ2ε2
+ B2

ρ2ε
) · LF0 Ass. 3.4, 3.7

Disscusion: Following is the discussion over each key components that could
influences convergence performance.

• Both noise σ2 > 0 and dissimilarity from heterogeneity G2 > 0 dominates.
We observer that the dominating term has linear speed up in number of
workers N and number of local steps K. When σ2 = 0, then the only the
dissimilarity G resulted from heterogeneity dominates. When σ2 = 0 and
data partition is i.i.d, which is G2 = 0, B2 = 0, the convergence for decen-
tralized SCAFFOLD is independent of topology, local steps, and number
of workers. And the result is of the same order as that for decentralized
Local SGD if M = 0.

• mixing rate ρ: when ρ = 1 at complete graph, decentralized SCAFFOLD
is equivalent to the centralized. Since SCAFFOLD doesn’t need any as-
sumption on workers dissimilarity, thus the additional O(G

2

ε2
+ B2

ε) means
decentralized SCAFFOLD needs more communication. But in special case
where B = 1, G = 0, the convergence analysis is the same as that for
centralized SCAFFOLD.

• noise σ2, σ̂2: In the decentralized case comparing to SCAFFOLD, the
underlying topology also influences how noise affects convergence. In par-
ticular, through the analysis in appendix, O(σ2

ρ2Kε2
) is resulted from the

client direction approximation 1
N

∑
i ||ci−∇fi(x̄)||2 with reusing computed

gradients. The smaller the mixing rate is, the noise has more power to
break the convergence, which makes it not ideal for the optimization in the
high-noise regime.

• dissimilarity G2, B2: Instead of the G2 or B2 individually, but O(G
2

ρ2
)

and O(B
2

ρ2
) combined affects the communication performance w.r.t gradi-

ent similarity. It also suggests that the less connectivity of topology affects
convergence via severe gradient dissimilarity. It is similar to case in de-
centralized Local SGD when M = 0(Ass. 3.5 decays to Ass. 3.4), where
dissimilarity affects speed in term depending on topology in form of O(Gρ)

and O(Bρ)

• local steps K: All methods show linear speed up w.r.t local steps, and
consider the noise term O(σ2

ρ2Kε2
) in decentralized SCAFFOLD. It shows

that the doing even more local steps could help to remedy with same number
of communication rounds when worse topology (smaller ρ).

• number of workers N : N only affects the stochastic term for all methods in
term of O(σ2

KNε2
).

4.2 Decentralized SGD/SCAFFOLD training system

Comparing to decentralized Local SGD, decentralized SCAFFOLD uses the ex-
tra control variates to decrease the variance among workers, thus alleviate the
client drift and accelerate. However, the modification to gradient brings extra
computation and estimation of control variates brings extra communication bur-
den(larger communication model). That’s decentralized SCAFFOLD could do
better in generlization performance and communication at the expense of both
computation and communication. Then consider the typical decentralized train-
ing pipeline depicted in Figure 4.3a, which makes up with two components, Local
steps and Communication.

(a) system sketch (b) training pipeline

Figure 4.3: Flow chart of decentralized SGD/SCAFFOLD training sys-
tem

In the following, "SCAFFOLD" is short to doing gradient modification with
control variates in decentralized SCAFFOLD, and "SGD" short for local model
update with sole SGD in decentralized Local SGD. We consider a deterministic
activation pattern for each model update where doing either SGD or SCAFFOLD
at current local step. βx, x ∈ {1, 2} depicts the percentage of SCAFFOLD
activation in different scenarios, and Lx, x ∈ {1, 2} the corresponding interval.
Detailed explanation is in the following. We could tune the hyperparameters βx
and Lx to control the activation pattern for gradient vri,k when doing local model
update

yri,k+1 = yri,k − ηcvri,k
.

• Outer Loops. It’s allowed to choose whether to activate SCAFFOLD
within next outer loop, only then updating control variates {cri , c̃ri } at cur-
rent communication. Assuming choicem1, and it has only two choice within
feasible set m1 ∈ {0, 1}. Use m1 = 1 depicts event {Update cri , c̃ri }, allow-
ing SCAFFOLD for following local steps. m1 = 0 is event {Do nothing},
doing naive SGD for following local steps. Then we define the percent-
age of event {m1 = 1} to be β1. Then it clearly shows that the choice of
{Do nothing} makes just half-sized of information to communicate so as
to be communication efficient comparing to standard decentralized SCAF-
FOLD system (from (xi, c̃i) to (xi)). And in addition, it could save extra
computation of cri and K times gradient modification in local steps (vi,k
from ∇Fi(yi,k; ξ)− ci + c̃i to ∇Fi(yi,k; ξ))

m1 ∈ {0, 1}, P (m1) = 1

m1 = 1, {Update cri , c̃ri } : cr+1
i , (c̃r+1

i , xr+1
i) = gossip(c̃ri + cr+1

i − cri , yri,K)

m1 = 0, {Do nothing} : (xr+1
i) = gossip(yri,K)

• Local steps. Only when m1 = 1, then local steps is allowed to consider
between SGD and SCAFFOLD. vri,k is the gradient used to update local

model, yri,k+1 = yri,k − ηcvri,k, and it’s allowed to decide whether to modify
stochastic gradient, ∇Fi(yri,k; ξi,k). Given choice m1, and similar to that in
Local steps, m2 ∈ {0, 1}. Use m2 = 1 depicts the event {SCAFFOLD},
which is modifying gradient with control variates, then m2 = 0 is the event
{SGD}, which is using direct stochastic gradient computed. We define
the percentage of m2 to be β2. Comparing to previous discussed stan-
dard decentralized SCAFFOLD system, the mixture choices over SGD and
SCAFFOLD could be more computation efficient.

m2 ∈ {0, 1}, P (m2 = 1|m1 = 1) = β1

m2 = 1, {SCAFFOLD} : vri,k = ∇Fi(yri,k; ξi,k)− cri + c̃ri

m2 = 0, {SGD} : vri,k = ∇Fi(yri,k; ξi,k)

• Implementation. For the following experimental exploration, the activa-
tion is deterministic. Here describes the patterns. Following figures shows
the overview of how it implements. Lx, x ∈ {1, 2} indicates the length of
specific block. Lx is the parameter to control the frequency. For example,
when local steps sampling, if L2 = K, then β2K local steps would do gra-
dient modification. For local steps sampling, the maximum value for L2 is
K, and for communication rounds sampling, L1 could be to the maximum
length of how many communication rounds planned for training, L1 ≤ R.
The white block represents the event mx = 0, and black for mx = 1. Only
the last βxLx fraction of specific length does computation or communication
needed for SCAFFOLD.

When L2 ≤ K for local steps sampling, evenly truncate local steps into
smaller block of length L2, then within the smaller block, only the last
β2L2 does computation needed for SCAFFOLD. For example, if β2 = 0.5,
doing SCAFFOLD either every two rounds when L2 = 2 or consecutive last
five rounds every ten rounds L2 = 10 both conform to the rules. And such
frequency is defined by L2.

• Special cases. Note that when β = β1β2 is the overall percentage of lo-
cal model yi,k update using SCAFFOLD modification. Training procedure
decays to standard decentralized Local SGD when β = 0, and to standard
decentralized SCAFFOLD when β = 1,

Chapter 5

Benchmark Experiment

In this section, we conduct extensive experiment so as to investigate the ef-
fectiveness of decentralized SCAFFOLD when training model with and without
normalization layer over heterogeneous data. And the benchmark metrics include
both global model variance 1

N

∑
i ||xi − x̄||2 and top-1 test accuracy of globally

averaged model x̄.

1. Firstly, we show that global model variance in decentralized training would
negatively influence model quality even in i.i.d setting, and decentralized
SCAFFOLD is able to correct the drift. And this effect is consistent for
models no matter with or without normalization.

2. Then we in detailed investigate the impact of different normalization tech-
niques under heterogeneous data partition. It shows that the even though
the performance of decentralized Local SGD changes along with different
normalization techniques, decentralized SCAFFOLD could be able to show
quite consistent performance, and always works much better than Local
SGD.

3. Then through the overall comparison among decentralized Local SGD, de-
centralized SCAFFOLD and decentralized SVRG over both i.i.d and non-
i.i.d data, different number of local steps, and models with or without
normalization, decentralized SCAFFOLD could consistently outperforms
the rest in terms of speed and generalization performance. It’s almost 2-3
times faster than decentralized Local SGD when the number of local steps
is large.

4. At last, we build a decentralized SCAFFOLD training system, where it
could iteratively choose between SGD and SCAFFOLD so as to in addition
decrease the computation overhead. It shows that the system has the great
potential of using only few steps of SCAFFOLD to remedy the client drift
and to accelerate on top of SGD, which embraces both the least computa-
tion and the least communication overhead.

32

5.1 Detailed Experimental Setup

Task We empirically study the decentralized training behavior on image classi-
fication task for CIFAR-10(43) via ResNet-8(44) and Lenet(45), and only con-
sider ring topology. For later discussion over the impact of normalization layer,
ResNet-8 is the typical example for modern neural network using normalization
technique and Lenet for general non-convex function without normalization.

Local training scheme

Table 5.1: Hyperparameters overview

Hyper-parameters in decentralized SCAFFOLD, SVRG and Local SGD
algorithm learning rate workers local steps

decentralized SCAFFOLD
ηs : xi = xi − ηs(yi,K − xi) ηc : yi,k = yi,k−1 − ηcvi,k−1 N Kdecentralized SVRG

decentralized Local SGD η : yi,k = yi,k−1 − ηvi,k−1

For the sake of simplicity, In particular, we only tune the learning rate on SGD
on single machine over range {1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5} for both
ResNet-8 and LeNet. And the best top-1 accuracy obtained on single machine
after 1000 epochs, is 85.45% for ResNet-8 and 74.21% for LeNet respectively.

1. All learning rates involved are constant without decay. Both ResNet-8 and
LeNet are using the best learning rate ηc = 0.1 tuned on single machine
case and the learning rate for model update is fixed ηs = 1 for decentralized
SCAFFOLD and decentralized SVRG, and η = 0.1 for decentralized Local
SGD.

2. No Nesterov momentum acceleration and no weight decay.

3. Batch size for each worker is set to be 128. That’s |Bi| = 49 batches/epoch
if 8 workers, or |Bi| = 25 batches/epoch if 16 workers during training.
Dataset is evenly partitioned by N workers, which guarantees every worker
shares the same number of batches per epoch.

4. Unless mentioned otherwise, the number of workers is set to N = 8.

5. Generalization performance is evaluated on global averaged model x̄ =
1
N

∑
i xi, using top-1 accuracy. Beside, variance between workers and global

average is another important index to consider the individual quality of each
worker.

Heterogeneous data simulation The heterogeneity considered here talks about
the different label distribution P (z|i) (z: label; i: worker index), among workers

in train set, which is also the setting considered by most prior work in this do-
main. Such distribution-based label imbalance could be simulated by allocating
only propotion of the samples of each label according to Dirichlet distribution.
Then the concerntratin parameter α > 0 for Dirichlet distribution controls the
degree of heterogeneity: α = 1000 approximates the homogeneous local data dis-
tribution, and the smaller α is, the more skewed the distribution P (z|i), ∀i ∈ [n]
is. An example of such partitioning is shown in Figure 5.1. And the skewed
label distribution is common whenever data are generated from different users or
device. Some bias within users’ preference will easily result in the skewness in
label.

0 1 2 3 4 5 6 7
client id

0

1

2

3

4

5

6

7

8

9

cla
ss

 la
be

l

= 1000

0 1 2 3 4 5 6 7
client id

0

1

2

3

4

5

6

7

8

9

cla
ss

 la
be

l
= 1

0 1 2 3 4 5 6 7
client id

0

1

2

3

4

5

6

7

8

9

cla
ss

 la
be

l

= 0.001

Figure 5.1: Illustration of # of samples per class allocated to 8 workers
(indicated by dot size), for different α values of Dirichlet distribution.

For later detailed implementation, we consider α = 1000 for representative of the
i.i.d and only could be able to consider the smallest degree α = 1 as representative
of non-i.i.d case since the case α = 0.001 is too extreme to be considered in
general federated learning, where each client have only few fraction of class label.
Probably, personalized federated learning(46) is more suitable, which is out of
scope of this work. For evaluation, the performance of each algorithm is evaluated
by globally averaged model x̄ = 1

N

∑N
i xi on single test set.

5.2 Variance reduction in i.i.d setting

In Figure 5.2 and Figure 5.3 show the result of distributed training of ResNet-8
and Lenet in the centralized and decentralized. It includes both the generalization
performance and global model variance. Since ResNet-8 has normalization layer,
in addition it considers both LBN and GN. The degree of non-i.i.dness is set to
be α = 1000, which is actually i.i.d. N = 16 workers, and Local steps K = 250
which is equivalent to 10 epochs are used. Decentralized training here uses only
ring topology. For simplicity, constant and the same learning rate is used for
both centralized and decentralized training. And the specific value is explained
in section 5.1.

Client drift also happens for i.i.d cases in decentralized training. When
number of local steps is large, ResNet-8 in Figure 5.2b and LeNet in Figure 5.3a
converge to suboptimum comparing to the centralized cases on ring topology. It
results from the inexact communication of gossip averaging for every model up-
date, comparing to truly exact communication in the centralized case. Then even
though i.i.d data partition in the first place, during model training procedure,
worker deviates greatly from each other when local steps is large, and this devi-
ation could not be perfectly compensated by later model aggregating, resulting
in global model variance 1

N

∑
i ||xi − x̄||2 > 0. Then throughout step by step

accumulation, local models trained by SGD starts to drift, and more severe for
model with normalization.

Variance reduction could reduce model variance to alleviate client
drift. From Figure 5.2c, non-negligible gap between Local SGD and SCAF-
FOLD shows that the success of SCAFFOLD against client drift from its ability
to control variance for every model update, which is also the variance among
workers xi w.r.t x̄. And for SCAFFOLD, using GN or LBN doesn’t make much
difference; for Local SGD, the variance for LBN is better than GN even though
LBN suffers more from client drift in terms of accuracy.

0 100 200 300 400 500
communication round

0

20

40

60

80

100

to
p-

1
ac

c

centraliezd, SCAFFOLD, LBN
centralized, Local SGD, LBN
centraliezd, SCAFFOLD, GN
centraliezd, Local SGD, GN
centralized, Local SGD, FedBN

(a) Centralized Resnet-8

0 100 200 300 400 500
communication round

0

20

40

60

80

100

to
p-

1
ac

c

ring, SCAFFOLD, LBN
ring, Local SGD, LBN
ring, SCAFFOLD, GN
ring, Local SGD, GN
ring, Local SGD, FedBN

(b) ResNet-8 on ring
0 100 200 300 400 500

communication rounds

0

5

10

15

20

25

30

35

1 N

N i
||x

i
x|

|2 2 ring, SCAFFOLD, LBN
ring, Local SGD, LBN
ring, SCAFFOLD, GN
ring, Local SGD, GN
ring, Local SGD, FedBN

(c) Model variance

Figure 5.2: Distributed learning of Resnet-8 in the both centralized and
decentralized. GN here uses 2 groups/channel for normalization.

0 100 200 300 400 500
communication round

0

20

40

60

80

100

to
p-

1
ac

c

ring, Local SGD
ring, SCAFFOLD
centralized, SCAFFOLD
centralized, Local SGD

(a) Centralized and decentral-
ized LeNet

0 100 200 300 400 500
communication rounds

0

5

10

15

20

25

30

35

40

1 N

N i
||x

i
x|

|2 2

ring, Local SGD
ring, SCAFFOLD

(b) Global model variance

Figure 5.3: Distributed learning of Lenet in the both centralized and
decentralized

5.3 Normalization Techniques Comparison

In this section mainly discusses the effect of different normalization techniques
so as to investigate how those models with normalization layer are affected. In
the following experiments, decentralized training is performed over ring topology
and N = 8 workers is used. The degree of non-i.i.dness is α = 1. And local steps
is K = 245, which is equivalent to 5 epochs.

For the normalization techniques, LBN, SyncBN as synchronized BN, FedBN as
asynchronized BN, and GN as instance-based normalication. In FedBN, through-
out training procedure, affine parameters (γBN)i, (βBN)i and running estimates
are kept local without any aggregating. But for evaluation, since I evaluate on
the globally averaged model x̄, I test with globally averaging affine parameters
γ̄BN = 1

N

∑
i(γBN)i, β̄BN = 1

N

∑
i(βBN)i, and globally averaged running esti-

mates µ̄ = 1
N

∑
i µ̄i, σ̄

2 = 1
N

∑
i σ̄

2
i . Beside the generalization performance of

x̄, variance between workers and global average is another important index to
consider the quality of each worker.

Normalized by heterogenous distributions doesn’t have negative im-
pact. From Figure 5.4a, consider the artificial scenario in SyncBN where every
worker would have global communication for batch statistics and gradient of in-
put every forward and backward calculation. It makes sure that every worker
is normalized by the same underlying distribution. Similarly to SyncBN, GN
is instance-based, then they both have the ability to decorrelate from heteroge-
neous normalization. On the contrary, LBN is only partially synchronized. It’s
normalized with local batch statistics, but only averages the affine parameters
and running estimates. Even further, FedBN is completely asynchronized w.r.t
normalization. It not only is normalizated with local batch statistics, but also

keeps affine parameters and running estimates local. For both LBN and FedBN,
their normalization is highly correlated to heterogeneous local distribution. But
their performance are very similar given a particular optimizer no mater how
normalizing. Since the test top-1 accuracy is measured by the performance of
x̄, the larger the converged variance means the larger the deviation for xi from
x̄. Even the artificial global model x̄ reaches the optimum, model maintained by
each worker is still not good enough at this time. If using more workers or larger
local steps, the variance would also increase accordingly and it makes the training
procedure delicate. And among them all, FedBN could even be benefit from the
completely local operation and outperforms the rest in terms of accuracy, and de-
centralized SCAFFOLD could consistently outperforms decentralized Local SGD
in terms of both accuracy and variance.

0 200 400 600 800 1000
communication rounds

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

to
p-

1
ac

c

Local SGD, LBN
SCAFFOLD, LBN

Local SGD, GN
SCAFFOLD, GN

Local SGD, FedBN
SCAFFOLD, FedBN

Local SGD, SyncBN
Local SGD, SiloBN

(a) Test top-1 accuracy

0 200 400 600 800 1000
communication rounds

1

2

3

4

5

1 N

N i
||x

i
x|

|2

Local SGD, LBN
SCAFFOLD, LBN

Local SGD, GN
SCAFFOLD, GN

Local SGD, FedBN
SCAFFOLD, FedBN

Local SGD, SyncBN
Local SGD, SiloBN

(b) Global model variance

Figure 5.4: Decetralized learning of ResNet-8 with different normalization
techniques

5.4 Overall comparison

In this section, I evaluates the performance of decentralized SCAFFOLD, decen-
tralized Local SGD and decentralized SVRG in terms of generalization perfor-
mance, communication rounds, variance, and computation performance.

5.4.1 Generalization performance and communication rounds

Table 5.2 and Table 5.3 summarize the results for various degrees of non-i.i.d
data, local training steps and models on CIFAR-10.

Decentralized SCAFFOLD has even better generalization performance.
Considering the standard situation in single machine case, the highest accuracy
reached by SGD given the best learning is 84%. Decentralized Local SGD suffers
a bit from client drift that it couldn’t reach 84% and the larger the number of
steps is, the more it suffers from quality loss. But decentralized SCAFFOLD not
only could be able to be against client drift, but also reach a better optimum.

It’s possible and reasonable, since it’s been detected that decentralized setting
provides more variance in the exploration phase and thus ends up with better
variance reduction method, SVRG, could only work when number of local steps
K is small, and when K is larger, such as K ≥ 1 epoch, both communication
and accuracy performance are hurt and suffer from larger variance shown in Fig-
ure 5.5a, instead of reducing variance. Contrary to SCAFFOLD benefiting from
larger number of local steps, SVRG would either crashes for models without nor-
malization or be hard to converge for models with normalization. However, since
only constant learning rate is used here for SVRG, tuning learning rate could
help training procedure more stable and reach a better quality when large K(e.g,
K ≥ 5 epoch).

Decentralized SCAFFOLD could accelerate in either heterogeneity or
homogeneity when large number of local steps. Like what discussed in
section 4.3.2 over the choice of K, which regards K = 1 epoch as the critical
point. The performance of SCAFFOLD greatly depends on the number of K.
Not only because if K is too large, the discrepancy among workers is too large
to be compensated by later model aggregating, but also K also decides how
many batches will be used to estimate control variates, ci = 1

K

∑
k∇F (yi,k; ξi,k).

When K > 1 epoch, SCAFFOLD is using more than an epoch of batches to
estimates the control variates. Thus there arises a trade-off space over choice of
K. However, also because the correction of control variates, comparing to Local
SGD, SCAFFOLD has stronger ability to tolerate much larger K, thus being
able to take the advantage of large local steps and achieve acceleration in terms
of accuracy in communication round in Table 5.3 regardless of partition.

If centralized, the performance of SCAFFOLD is equivalent to its original cen-
tralized version and decentralized Local SGD to FedAvg(47). Their performance
has been extensively explored by (18), and on the contrary, the consistently sig-
nificant improvement in decentralized SCAFFOLD over decentralized Local SGD
is not always the case.

The accuracy recorded in Table 5.2 is the highest accuracy reached within 1000
communication rounds. For SVRG, twice communication is needed for each outer
loop, one for model gossip, the other for gradient gossip. But for Local SGD and
SCAFFOLD, only once is needed. Then 1000 communication rounds is equiv-
alent to 1000 outer loops of training for Local SGD and SCAFFOLD, and 500
outer loops for SVRG. And "/" in table means this experiment isn’t implemented;
"nan" means, under current parameter and training scheme, the training proce-
dure crashes and loss diverges to NAN.

Table 5.2: Test top-1 accuracy of different decentralized methods in dif-
ferent scenarios (i.e. different non i.i.d degrees, # of local steps, and models.)
on CIFAR-10 after 1000 communication rounds for 8 workers. Then 1000 com-
munication rounds is equivalent to 1000 outer loops of training for Local SGD
and SCAFFOLD, and 500 outer loops for SVRG. ResNet-8 uses LBN for nor-
malization layer. 1 epoch here is equivalent to 49 steps. The accuracy recorded
in Table 5.2 is the highest accuracy reached within 1000 communication rounds.
And "/" in table means this experiment isn’t implemented; "nan" means, under
current parameter and training scheme, the training procedure crashes and loss
diverges to NAN. And the best top-1 accuracy obtained on single machine after
1000 epochs, is 85.45% for ResNet-8 and 74.21% for LeNet respectively.

The test top-1 accuracy of different reached before 1000 communication rounds.
Models partitioning local steps Local SGD SCAFFOLD SVRG

ResNet-8
α = 1

1 52.81 51.92 51.12
0.5 epoch 81.2 81.82 79.45
1 epoch 83.41 83.88 72.30
5 epochs 83.09 85.59 18.28
20 epochs 79 83.75 /

α = 1000
1 epoch 83 85.31 84.89

20 epochs 83 86 /

LeNet α = 1
1 epoch 71.06 70.41 nan

20 epochs 71.12 73.5 /

Table 5.3: Number of communication rounds first reaching 70% test top-1
accuracy for ResNet-8, and 60% for LeNet. ResNet-8 uses LBN for normalization
layer. For SVRG, communication rounds counts separated model gossip and
gradient gossip differently, which means 300 communication rounds recorded is
equivalent to 150 outer loops of training. ∞ means that it could not reach target
accuracy given current scenario. And "/" in table means this experiment isn’t
implemented. 1 epoch here is equivalent to 49 steps.

The number of communciation rounds to reach target performance T
Models partitioning local steps Local SGD SCAFFOLD SVRG

ResNet-8
T = 70%

α = 1

1 4434 4189 4091
0.5 epoch 186 300 2880
1 epoch 116 135 3349
5 epochs 62 30 ∞
20 epochs 57 19 /

α = 1000
1 epoch 73 73 234

20 epochs 30 10 /
LeNet,
T = 60%

α = 1
1 epoch 68 86 nan

20 epochs 13 6 /

5.4.2 Variance and effect of local steps

In this section, after the discussion over generalization performance and commu-
nication rounds, here evaluates the variance of global model for each methods.
Considering the SVRG performance in Table 5.2 and Table 5.3, cases where
K = 5 epochs and K = 20 epochs are not considered particularly for SVRG,
since their training procedures would break due to too many local steps.

Performance of model variance among workers worsens along with
number of local steps. From Figure 5.5a, the variance for all methods in-
creases when using more local steps. And the impact of local steps is more
significant for Local SGD than that for SCAFFOLD. And comparing to Figure
5.5b, where using more local steps brings significant acceleration, meanwhile the
number of communication rounds needed for variance to converge also increases.
Thus it also indicates the trade-off space over local steps about acceleration in
global model training or in convergence of smaller variance.

SVRG fails to reduce but to introduce more variance. It has been pro-
posed that the performance of SVRG even on single machine on models with
normalization layer doesn’t help in acceleration as it’s proven in other non-convex
functions(33). Rather than reducing variance, it introduces variance to modified
gradient vrk due to normalization. The situation is alike in decentralized setting.

From Figure 5.5a, in general, with increasing number of local steps K, the con-
verged variance for all methods are increasing accordingly. But SVRG suffers
more. The relative gap in variance between SVRG and the rest is also increased
along with K, which suggest larger variance among workers, thus making SVRG
converge much slower, and the more unstable x̄ , suggested by the vibration in
generalization performance. And detailed discussion over failure of SVRG is in
later section 5.4.4.

0 500 1000

communication round

10 3

10 1

101

1 N

N i
||x

i
x|

|2 2

K=1

0 500 1000

communication round

10 3

10 1

101

1 N

N i
||x

i
x|

|2 2

0 500 1000

communication round

10 3

10 1

101

K=0.5 epoch

0 500 1000

communication round

10 3

10 1

101

0 500 1000

communication round

10 3

10 1

101

K=1 epoch

0 500 1000

communication round

10 3

10 1

101

0 500 1000

communication round

10 3

10 1

101

K=5 epochs

0 500 1000

communication round

10 3

10 1

101

0 500 1000

communication round

10 3

10 1

101

K=20 epochs

0 500 1000

communication round

10 3

10 1

101

SCAFFOLD Local SGD SVRG

(a) Global model variance

0 200 400 600 800 1000
0

20

40

60

80

100

to
p-

1
ac

c

K=1

0 200 400 600 800 1000

communication rounds

0

20

40

60

80

100

to
p-

1
ac

c

0 200 400 600 800 1000
0

20

40

60

80

100
K=0.5 epoch

0 200 400 600 800 1000

communication rounds

0

20

40

60

80

100
0 200 400 600 800 1000

0

20

40

60

80

100
K=1 epoch

0 200 400 600 800 1000

communication rounds

0

20

40

60

80

100
0 200 400 600 800 1000

0

20

40

60

80

100
K=5 epochs

0 200 400 600 800 1000

communication rounds

0

20

40

60

80

100
0 200 400 600 800 1000

0

20

40

60

80

100
K=20 epochs

0 200 400 600 800 1000

communication rounds

0

20

40

60

80

100

SCAFFOLD Local SGD D-SVRG

(b) Communication performance

Figure 5.5: Different decentralized variance reduction methods on
ResNet-8 over ring given 1000 communication rounds when using different num-
ber of local steps in terms of (a) global model variance and (b) communication
rounds. First row: Resnet-8 with LBN; second row: ResNet-8 with GN, and
num of groups/channel = 2. Here 8 workers are being used, and data partition
is non-i.i.d, α = 1.

5.4.3 Computation performance

Decentralized SCAFFOLD performs consistently across different choice
of local steps w.r.t computation. From Figure 5.6, no matter using GN or
LBN, the curve for SCAFFOLD shows consistency when using different local

steps, even though when K is so large, e.g, K = 20 epoch, then the performance
of SCAFFOLD and Local SGD is deteriorated a bit. However, SCAFFOLD even
shows stronger ability than Local SGD against this source of deviation. Local
SGD is more vulnerable to local steps.

0 200 400 600 800 1000
0

20

40

60

80

100

to
p-

1
ac

c

K=1

0 200 400 600 800 1000

gradient computation

0

20

40

60

80

100

to
p-

1
ac

c

0 200 400 600 800 1000
0

20

40

60

80

100
K=0.5 epoch

0 200 400 600 800 1000

gradient computation

0

20

40

60

80

100
0 200 400 600 800 1000

0

20

40

60

80

100
K=1 epoch

0 200 400 600 800 1000

gradient computation

0

20

40

60

80

100
0 200 400 600 800 1000

0

20

40

60

80

100
K=5 epochs

0 200 400 600 800 1000

gradient computation

0

20

40

60

80

100
0 200 400 600 800 1000

0

20

40

60

80

100
K=20 epochs

0 200 400 600 800 1000

gradient computation

0

20

40

60

80

100

SCAFFOLD Local SGD SVRG

Figure 5.6: Computation performance for variance reduction methods
on ResNet-8 over ring given 1000 batches of computation. Here considers 8
workers and α = 1. Index in x-axis stands for number of times passing over
local dataset, or |E|. For SVRG, it calculates extra full-batch gradient for every
outer loop, thus for before every communication, it needs K + |E| batches of
computation, while Local SGD and SCAFFOLD need K batches. |E| : # of
batches for an epoch.

5.4.4 Failure of SVRG

In this section, we mainly investigate why SVRG fails in reducing variance.

0 2000 4000 6000 8000 10000
communication rounds

0

20

40

60

80

100

to
p-

1
ac

c

m1g1
m1g10
m10g1
m5g5

(a) Decentralized base-
line on Resnet-8 with
LBN and local steps K =
1.

0 200 400 600 800 1000
outer loops

0

20

40

60

80

100

to
p-

1
ac

c

m1g1
m1g10
m10g1
m5g5

(b) Generalization per-
formance with differ-
ent number of local
steps

0 2000 4000 6000 8000 10000
communication rounds

10 3

10 2

10 1

100

101

102

1 N

N i
||x

i
x|

|2 2

m1g1
m1g10
m10g1
m5g5

(c) Global model vari-
ance with different
number of local steps

Figure 5.7: Impact of gossip round in model or global control variate
within SVRG on ResNet-8 with LBN over ring topology and non-iid data par-
tition, α = 1. Here local steps K = 1 epoch is used for all implementation.
"m1g1": standard SVRG with 1 gossip for model, xri then 1 gossip for global
control variate, c̃ri , which counts 2 communication rounds performed for every
outer loop. "mxgy": x times gossip for xri , y times gossip for c̃ri , and x + y
communication rounds counted for every outer loop.

Consider the approximation performance of control variates and client variance

w.r.t every local steps. ∆1 := 1
N

∑N
i
||ci−∇Fi(yi,k;ξi,k)||2
||∇Fi(yi,k;ξi,k)||2 and ∆2 := 1

N

∑N
i

||c̃i− 1
N

∑
j ∇Fj(yj,k;ξj,k)||2

|| 1
N

∑
j ∇Fj(yj,k;ξj,k)||2

49 98 147 196 245 294 343 392 441 490
local steps, k

10 2

10 1

100

101

102

103

104

105

1

Decentralized SCAFFOLD, 1
Decentralized SVRG, 1, m1g1
Decentralized SVRG, 1, m1g10

Decentralized SVRG, 1, m10g1
Decentralized SVRG, 1, m5g5

49 98 147 196 245 294 343 392 441 490
local steps, k

10 2

10 1

100

101

102

103

104

105

2

Decentralized SCAFFOLD, 2
Decentralized SVRG, 2, m1g1
Decentralized SVRG, 2, m1g10

Decentralized SVRG, 2, m10g1
Decentralized SVRG, 2, m5g5

Figure 5.8: The normalized averaged
deviation between ci,∇Fi(yi,k; ξi,k) and
c̃i,

1
N

∑
j ∇Fj(yj,k; ξj,k): from previously intu-

itive analysis, within the reduction framework,
the smaller the ∆1 and ∆2 is, the smaller the
variance w.r.t every local update is.

49 98 147 196 245 294 343 392 441 490
local steps, k

10 2

100

102

104

106

108

1 N
i

||y
i,k

y k
||2

||y
k||

2

Decentralized Local SGD
Decentralized SCAFFOLD
Decentralized SVRG, g1m1

Decentralized SVRG, g10m1
Decentralized SVRG, g1m10

Figure 5.9: The nor-
malized averaged
variance among
workers for ev-
ery local steps:
1
N

∑
i ||yi,k−ȳk||2
||ȳk||2

using
different methods and
the same learning rates.
The larger the variance,
combined with Figure
5.7a, the worse the
model quality in x̄.

Correction with full-batch gradient doesn’t help to reduce variance.
In Figure 5.7, we consider different gossip mechanism in hope of improving per-
formance, but they all fails to compete with decentralized SCAFFOLD. As pre-
viously discussed in section 4.1.2, variance reduction methods is only able to
reduce variance if ci ≈ ∇Fi(yi,k; ξi,k) and c̃i ≈ 1

N

∑
i∇Fi(yi,k; ξi,k). Shown in

Figure 5.8, all D-SVRG scenarios using full-batch gradient as estimator of con-
trol variates has much larger deviation in direction approximation comparing to
decentralized SCAFFOLD. And instead of reducing variance, during local steps,
D-SVRG keeps introducing variance. Even having more exact averaging over
control variates(g10m1 in Figure 5.8) doesn’t help to improve in approximation
of ∇Fi(yi,k; ξi,k) and 1

N

∑
i∇Fi(yi,k; ξi,k) but deviates even further, thus resulting

growing variance and breaking convergence in Figure 5.7a. At the same time, gos-
siping more over model X = Y0 itself could help reduce variance among starting
point ||Y0−Ȳ0||2F for next round inner loop. Then even though the approximation
is still unsatisfactory at this time and keeps introducing variance, but if using
K > 49(49 is equivalent to 1 epoch of local dataset), it has great possibility to
be negatively affected.

5.5 Decentralized SGD/SCAFFOLD training system

This section is conducted so as to investigate how interpolating SCAFFOLD
into SGD could help to be against client drift and accelerate. For the following
experimental exploration, consider the use case where heterogeneous data parti-
tion, α = 1, and decentralized training of ResNet-8 with LBN on Cifar10 over
ring topology. And every worker does K = 49 of local steps before communica-
tion. The main purpose of those experimental is to investigate how performance
changes with activation pattern, and how parameters influences, and at last to
give a comprehensive user guide. The main findings are as follow before detailed
implementation:

1. Both communication and generalization performance is much better com-
paring to β0 standard decentralized Local SGD, even though it is negatively
influenced by partial activation comparing to β = 1 standard decentralized
SCAFFOLD.

2. No matter activating local steps or epochs, interpolating SCAFFOLD steps
within Local SGD could always realize acceleration and reaches better per-
formance in both variance and generalization performance, in Table 5.4 and
Tabel 5.5

• Activating local steps could always works and end up with stable and
reasonable result. And even only small fraction of steps doing SCAF-
FOLD is enough to significantly improve the performance of Local
SGD.

• Activating outer loops is more risky and needs careful tuning over
frequency L1. When β1 is small, it has great tendency to diverge or
shows extremely unstable performance. That’s the most frequent, the
most unstable. When choosing the length of interval L1, it’s safer to
use relatively large number.

3. When activating both local steps and outer loops in Table 5.12, even though
given β = 0.1, only situation where larger β1 (e.g, β1 = 0.5) could work.
The percentage of activated outer loops plays a more important role than
local steps.

4. The frequency is important. The performance starts to be deteriorated
when the more frequent either in local steps or epochs.

5.5.1 Local steps activation

In this section, consider the situation where SCAFFOLD is activated for ev-
ery outer loop, which is given m1 = 1, and only consider local steps activation.
choosingm2 ∈ {0, 1}. β2 indicates the percentage among local steps doing SCAF-
FOLD modification and through changing the length of interval L2 could control
the frequency of SCAFFOLD steps.

Table 5.4: Communication rounds and Top-1 acc: The number of commu-
nication rounds needed to reach top-1 accuracy of 70%, and the maximum top-1
accuracy reached within 1000 communication rounds.

β2 L2 Communication rounds Top-1 acc (%)
0 (SGD) 62 83.09

0.1 K 40 85.38
10 42 85.47

0.5 K 40 85.33
10 39 85.44

1 (SCAFFOLD) 30 85.59

0 200 400 600 800 1000
communication round

100

6 × 10 1

2 × 100

3 × 100

4 × 100

1 N

N i
||x

i
x|

|2 2

= 0, Local SGD
2 = 0.1, L2 = 10
2 = 0.1, L2 = K
2 = 0.5, L2 = 10
2 = 0.5, L2 = K
= 1, SCAFFOLD

(a) Global model variance

0 200 400 600 800 1000
communication rounds

0

20

40

60

80

to
p-

1
ac

c

= 0, Local SGD
2 = 0.1, L2 = 10
2 = 0.1, L2 = K

2 = 0.5, L2 = 10
2 = 0.5, L2 = K
= 1, SCAFFOLD

(b) Top-1 acc

Figure 5.10: Decetralized learning of ResNet-8 with local steps activat-
ing

5.5.2 Outer Loops activation

In this section, consider the situation where activating for outer loop enabling
SCAFFOLD, choosing m1 ∈ {0, 1}, and within the enabled outer loop, every
local step does SCAFFOLD modification, which is given m2 = 1.

Table 5.5: Communication rounds and Top-1 acc: The number of commu-
nication rounds needed to reach top-1 accuracy of 70%, and the maximum top-1
accuracy reached within 1000 communication rounds.

β1 L1 Communication rounds Top-1 acc (%)
0 (SGD) 62 83.09

0.1 10 40 85.05
50 50 82.32

0.5
2 40 68.51
10 42 85.08
50 32 85.38

1 (SCAFFOLD) 30 85.59

0 200 400 600 800 1000
communication round

100

101

102

1 N

N i
||x

i
x|

|2 2

= 0, Local SGD
1 = 0.1, L1 = 10
1 = 0.1, L1 = 50
1 = 0.5, L1 = 10
1 = 0.5, L1 = 50
= 1, SCAFFOLD

(a) Global model variance

0 200 400 600 800 1000
communication rounds

0

20

40

60

80

to
p-

1
ac

c

= 0, Local SGD
1 = 0.1, L1 = 10
1 = 0.1, L1 = 50
1 = 0.5, L1 = 10
1 = 0.5, L1 = 50
= 1, SCAFFOLD

(b) Top-1 accuracy

Figure 5.11: Decetralized learning of ResNet-8 with outer loops activat-
ing

5.5.3 Activating both Outer Loops and Local steps

In this section, consider the situation where activating for both outer loop and
its local steps enabling SCAFFOLD, choosing (m1,m2) ∈ {0, 1} × {0, 1}.

Table 5.6: Communication rounds and Top-1 acc: The number of commu-
nication rounds needed to reach top-1 accuracy of 70%, and the maximum top-1
accuracy reached within 1000 communication rounds.

β β1 β2 L1 L2 Communication rounds Top-1 acc (%)
0 (SGD) 62 83.09

0.1

0.2 0.5 10 2 69 85.08
10 56 84.71

0.5 0.2
10 40 85.07

2 10 39 81.47
2 5 55 79.93

1 (SCAFFOLD) 30 85.59

Figure 5.12: Decetralized learning of ResNet-8 with both local steps
and outer loops activating, but keeping the overall percentage of local model
updates β = β1β2 = 0.1 constant, with different combination of β1 and β2 and
using L1 and L2 to control the length of interval thus frequency.

0 200 400 600 800 1000
communication round

100

101

102

103

1 N

N i
||x

i
x|

|2 2

= 0, Local SGD
1 = 0.2, 2 = 0.5, L1 = 10, L2 = 2
1 = 0.2, 2 = 0.5, L1 = 10, L2 = 10
1 = 0.5, 2 = 0.2, L1 = 10, L2 = 10
1 = 0.5, 2 = 0.2, L1 = 2, L2 = 10
1 = 0.5, 2 = 0.2, L1 = 2, L2 = 5
= 1, SCAFFOLD

(a) Global model variance

0 200 400 600 800 1000
communication rounds

0

20

40

60

80

to
p-

1
ac

c

= 0, Local SGD
1 = 0.2, 2 = 0.5, L1 = 10, L2 = 2
1 = 0.2, 2 = 0.5, L1 = 10, L2 = 10
1 = 0.5, 2 = 0.2, L1 = 10, L2 = 10
1 = 0.5, 2 = 0.2, L1 = 2, L2 = 10
1 = 0.5, 2 = 0.2, L1 = 2, L2 = 5
= 1, SCAFFOLD

(b) Top-1 accuracy

Chapter 6

Conclusion

In this thesis, we have proposed a novel decentralized variance-reduced meth-
ods, decentralized SCAFFOLD over undirected graphs on heterogeneous that
achieve acceleration in terms of communication rounds for general non-convex
functions and also deep neural netowrk with normalization layer. It could also
be able to remedy client drift resulted from heterogeneous data and reaches much
better model quality than standard dencentralized Local SGD. We have further
proposed a novel decentralized training framework with mixture of SGD and
SCAFFOLD. It shows that very few steps of correction within decentralized
SCAFFOLD could be already enough to reduce variance, remedy client drift
and accelerate at the same time, thus resulting in the least communication and
computation overhead.

49

Bibliography

[1] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: training
imagenet in 1 hour,” CoRR, vol. abs/1706.02677, 2017. [Online]. Available:
http://arxiv.org/abs/1706.02677

[2] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer,
“Imagenet training in minutes,” in Proceedings of the 47th International
Conference on Parallel Processing, ser. ICPP 2018. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3225058.3225069

[3] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and
G. E. Dahl, “Measuring the effects of data parallelism on neural network
training,” Journal of Machine Learning Research, vol. 20, no. 112, pp. 1–49,
2019. [Online]. Available: http://jmlr.org/papers/v20/18-789.html

[4] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient
distributed machine learning with the parameter server,” in Advances
in Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds., vol. 27. Curran
Associates, Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/
paper/2014/file/1ff1de774005f8da13f42943881c655f-Paper.pdf

[5] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems, ser.
NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, p. 5336–5346.

[6] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich,
and A. T. Suresh, “SCAFFOLD: Stochastic controlled averaging for
on-device federated learning,” Technical Report, 2019. [Online]. Available:
https://arxiv.org/abs/1910.06378

[7] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira,
H. Eichner, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón,
B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo,
B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný,
A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal,

50

http://arxiv.org/abs/1706.02677
https://doi.org/10.1145/3225058.3225069
http://jmlr.org/papers/v20/18-789.html
https://proceedings.neurips.cc/paper/2014/file/1ff1de774005f8da13f42943881c655f-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/1ff1de774005f8da13f42943881c655f-Paper.pdf
https://arxiv.org/abs/1910.06378

M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova, H. Qi, D. Ramage,
R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr,
P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and
S. Zhao, “Advances and open problems in federated learning,” 2021.

[8] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for robust
model fusion in federated learning,” 2021.

[9] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A unified the-
ory of decentralized SGD with changing topology and local updates,” in
Proceedings of the 37th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, vol. 119. PMLR, 13–18 Jul
2020, pp. 5381–5393.

[10] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “d2: Decentralized training
over decentralized data,” in Proceedings of the 35th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy
and A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 4848–4856.
[Online]. Available: http://proceedings.mlr.press/v80/tang18a.html

[11] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic optimization
and gossip algorithms with compressed communication,” in Proceedings of
the 36th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 09–15 Jun 2019, pp. 3478–3487. [Online]. Available:
http://proceedings.mlr.press/v97/koloskova19a.html

[12] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” 2017.

[13] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in Neural Information
Processing Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds., vol. 26. Curran Associates, Inc.,
2013. [Online]. Available: https://proceedings.neurips.cc/paper/2013/file/
ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32nd
International Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, vol. 37. PMLR, 07–09 Jul 2015, pp. 448–456.

[15] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-IID data
quagmire of decentralized machine learning,” in Proceedings of the 37th In-
ternational Conference on Machine Learning, ser. Proceedings of Machine

http://proceedings.mlr.press/v80/tang18a.html
http://proceedings.mlr.press/v97/koloskova19a.html
https://proceedings.neurips.cc/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf

Learning Research, H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18
Jul 2020, pp. 4387–4398.

[16] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” 2018.

[17] A. Khaled, K. Mishchenko, and P. Richtarik, “Tighter theory for local sgd
on identical and heterogeneous data,” in Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, ser. Pro-
ceedings of Machine Learning Research, S. Chiappa and R. Calandra, Eds.,
vol. 108. PMLR, 26–28 Aug 2020, pp. 4519–4529.

[18] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data
silos: An experimental study,” 2021.

[19] A. Defazio, F. R. Bach, and S. Lacoste-Julien, “SAGA: A fast
incremental gradient method with support for non-strongly convex
composite objectives,” CoRR, vol. abs/1407.0202, 2014. [Online]. Available:
http://arxiv.org/abs/1407.0202

[20] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “SARAH: A novel
method for machine learning problems using stochastic recursive gradient,”
in Proceedings of the 34th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, D. Precup and Y. W. Teh,
Eds., vol. 70. PMLR, 06–11 Aug 2017, pp. 2613–2621.

[21] S. Cen, H. Zhang, Y. Chi, W. Chen, and T.-Y. Liu, “Convergence of dis-
tributed stochastic variance reduced methods without sampling extra data,”
IEEE Transactions on Signal Processing, vol. PP, pp. 1–1, 06 2020.

[22] S. De and T. Goldstein, “Efficient distributed sgd with variance reduction,”
in 2016 IEEE 16th International Conference on Data Mining (ICDM), 2016,
pp. 111–120.

[23] J. Konečný, H. B. McMahan, and D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” 2015. [Online]. Available:
http://arxiv.org/pdf/1511.03575v1.pdf

[24] B. Li, S. Cen, Y. Chen, and Y. Chi, “Communication-efficient
distributed optimization in networks with gradient tracking and variance
reduction,” in Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, S. Chiappa and R. Calandra, Eds., vol. 108.
PMLR, 26–28 Aug 2020, pp. 1662–1672. [Online]. Available: http:
//proceedings.mlr.press/v108/li20f.html

http://arxiv.org/abs/1407.0202
http://arxiv.org/pdf/1511.03575v1.pdf
http://proceedings.mlr.press/v108/li20f.html
http://proceedings.mlr.press/v108/li20f.html

[25] R. Xin, U. A. Khan, and S. Kar, “Variance-reduced decentralized stochastic
optimization with accelerated convergence,” IEEE Transactions on Signal
Processing, vol. 68, pp. 6255–6271, 2020.

[26] A. Gerbessiotis and L. Valiant, “Direct bulk-synchronous parallel
algorithms,” Journal of Parallel and Distributed Computing, vol. 22, no. 2,
pp. 251–267, 1994. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0743731584710859

[27] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine
learning approaching LAN speeds,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). Boston, MA:
USENIX Association, Mar. 2017, pp. 629–647. [Online]. Available: https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh

[28] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, A. Singh and J. Zhu, Eds., vol. 54. Fort Lauderdale,
FL, USA: PMLR, 20–22 Apr 2017, pp. 1273–1282. [Online]. Available:
http://proceedings.mlr.press/v54/mcmahan17a.html

[29] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation
for robust model fusion in federated learning,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp. 2351–2363. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf

[30] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large mini-batches,
use local sgd,” in International Conference on Learning Representations,
2020.

[31] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and
communication efficient federated learning for heterogeneous clients,” in
International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=TNkPBBYFkXg

[32] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed
optimization using an approximate newton-type method,” in Proceedings of
the 31st International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, E. P. Xing and T. Jebara, Eds., vol. 32, no. 2.
Bejing, China: PMLR, 22–24 Jun 2014, pp. 1000–1008.

https://www.sciencedirect.com/science/article/pii/S0743731584710859
https://www.sciencedirect.com/science/article/pii/S0743731584710859
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
http://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.neurips.cc/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://openreview.net/forum?id=TNkPBBYFkXg

[33] A. Defazio and L. Bottou, “On the ineffectiveness of variance reduced opti-
mization for deep learning,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

[34] S. U. Stich, “Local sgd converges fast and communicates little,” 2019.

[35] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, G. Yu, and J. Sun,
“Megdet: A large mini-batch object detector,” in 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2018, pp. 6181–6189.

[36] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normalization
for practical domain adaptation,” 2016.

[37] W.-G. Chang, T. You, S. Seo, S. Kwak, and B. Han, “Domain-specific
batch normalization for unsupervised domain adaptation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[38] M. Andreux, J. O. du Terrail, C. Beguier, and E. W. Tramel, “Siloed feder-
ated learning for multi-centric histopathology datasets,” 2020.

[39] X. Li, M. JIANG, X. Zhang, M. Kamp, and Q. Dou, “Fed{bn}:
Federated learning on non-{iid} features via local batch normalization,”
in International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=6YEQUn0QICG

[40] Y. Wu and K. He, “Group normalization,” 2018.

[41] Q. Liu, Q. Dou, L. Yu, and P. A. Heng, “Ms-net: Multi-site network for im-
proving prostate segmentation with heterogeneous mri data,” IEEE Trans-
actions on Medical Imaging, vol. 39, no. 9, pp. 2713–2724, 2020.

[42] D. Basu, D. Data, C. Karakus, and S. N. Diggavi, “Qsparse-local-sgd:
Distributed sgd with quantization, sparsification, and local computations,”
IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp.
217–226, 2020.

[43] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for
advanced research).” [Online]. Available: http://www.cs.toronto.edu/~kriz/
cifar.html

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

https://openreview.net/forum?id=6YEQUn0QICG
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

[46] V. Kulkarni, M. Kulkarni, and A. Pant, “Survey of personalization techniques
for federated learning,” 03 2020.

[47] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial In-
telligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale,
FL, USA, ser. Proceedings of Machine Learning Research, vol. 54. PMLR,
2017, pp. 1273–1282.

Appendix A

Appendix: Convergence result

A.1 Useful properties

Lemma A.1. For arbitrary a, b ∈ Rd,

||a+ b||2 ≤ (1 + γ)||a||2 + (1 + γ−1)||b||2, γ > 0

and
2aT b ≤ γ||a||2 + γ−1||b||2.

Lemma A.2. For arbitrary set of n variables {ai}ni=1, then

||
∑
i

ai||2 ≤ n
∑
i

||ai||2.

Lemma A.3. For A ∈ Rd×n, B ∈ Rn×n,

||AB||F ≤ ||A||F ||B||2.

Lemma A.4. (6) Let {e1, ..., en} be n random variables in Rd which are not
necessarily independent. First suppose that their mean is i = εi and variance is
bounded as ||Ei − εi||2 ≤ σ2. Then, the following holds

E||
∑
i

ei||2 ≤ ||
∑
i

εi||2 + nσ2 (A.1)

Lemma A.5.
EW ||WtX − X̄||2F ≤ (1− ρ)||X − X̄||2F , (A.2)

where ρ is the second largest eigenvalue of mixing matrix W . Here deterministic
mixing(adjacency) matrix is considered.

Lemma A.6. (Implication of smoothness)From Assumption ??, for any i,

fi(x)− fi(y) ≤ 〈∇fi(x), x− y〉+
L

2
||x− y||2, ∀x, y ∈ Rd.

It also implies
||∇fi(x)−∇fi(y)|| ≤ L||x− y||.

A-1

A.2 Overview of decentralized SCAFFOLD

In this section, we show that decentralized would be equivalent to centralized
SCAFFOLD when complete graph.
For local model update, both centralized and decentralized SCAFFOLD do

yri,k−1 − ηc(∇Fi(yri,k; ξi,k)− cri + c̃ri),

where for centralized SCAFFOLD, c̃ = c̃i, x = xi, ∀i ∈ [N].
SCAFFOLD in the centralized if not considering client sampling.

cr+1
i = cri − c̃+

1

Kηc
(xr − yri,K)

∆xri = yri,K − xr

xr+1 = xr + ηs
1

N

∑
i

∆xri

c̃r+1 = c̃r +
1

N

∑
i

(cr+1
i − cri)

SCAFFOLD in the decentralized

cr+1
i = cri − c̃i +

1

Kηc
(xri − yri,K)

∆xri = yri,K − x̃ri
xr+1
i =

∑
j

wij(x
r
j + ηs∆x

r
j)

c̃r+1
i =

∑
j

wij(c̃
r
j + cr+1

j − crj)

When complete graph for decentralized SCAFFOLD, wij = 1
N , ∀i, j,

xr+1 ≡ xr+1
i =

∑
j

wij(x
r
j + ηs∆x

r
j)

=
1

N

∑
j

(xrj + ηs∆x
r
j) . [xrj ≡ xr, ∀j ∈ [N]]

= xr +
1

N

∑
j

ηs∆x
r
j

c̃r+1 ≡ c̃r+1
i =

∑
j

wij(c̃
r
j + cr+1

j − crj)

=
1

N

∑
j

(c̃rj + cr+1
j − crj) . [c̃rj ≡ c̃r, ∀j ∈ [N]]

= c̃r +
1

N

∑
j

(cr+1
j − crj)

In addition, for every local control variate ci, it actually calculates ci = 1
K

∑
k∇Fi(yri,k; ξi,k).

A.2.1 Additional definition

Before proceeding with the proof of our lemmas, we need some additional defi-
nitions of the various errors we track. As before, we define the effective step-size
to be

η = Kηsηc.

We define the variance of global model among workers

Ξr :=
1

N

∑
i

E||xri − x̄ri ||2

We define client-drift to be how much the clients move from their starting point:

Φr :=
1

KN

∑
i,k

E||yri,k − xri ||2.

Because we are estimating the direction difference ci − c̃i and employs it as cor-
rection. This leads to estimation of such direction:

Γr :=
1

N

∑
i

E||cri − c̃ri ||2.

A.3 Convergence of decentralized SCAFFOLD for non-
convex function

Global model update for averaged model η := Kηsηc,

ηs∆x̄
r = x̄r+1 − x̄r

= − 1

N

∑
i

ηsηc
∑
k

(∇Fi(yri,k; ξi,k) +−cri + c̃ri)

= − η

KN

∑
i,k

(∇Fi(yri,k; ξi,k)− cri + c̃ri)

= − η

KN

∑
i,k

∇Fi(yri,k; ξi,k)−
η

K

∑
k

(
1

N

∑
i

c̃ri −
1

N

∑
i

cri),

where for particular, rewrite correction of direction difference 1
N

∑
i c̃
r
i − 1

N

∑
i c
r
i

in matrix format, also note that W∞W = W∞,

C̃rW∞ − CrW∞ = (C̃r−1 + Cr − Cr−1)W∞W − CrW∞
= C̃r−1W∞ + CrW∞ − Cr−1W∞ − CrW∞
= C̃r−1W∞ − Cr−1W∞

= C̃0W∞ − C0W∞

As long as initializing, C̃0 = C0W∞, then

C̃rW∞ − CrW∞r = 0⇔ 1

N

∑
i

c̃0
i =

1

N

∑
i

c0
i (A.3)

And → ηs∆x̄
r = − η

KN

∑
i,k

∇Fi(yri,k; ξi,k). (A.4)

Variance of global model update

Lemma A.7. The following holds true for any η = Kηsηc ∈ [0, 1/L],

E||ηs(x̄r+1 − x̄r)||2 ≤ η2σ2

KN
+ 2η2E||∇f(x̄r)||2 + 2η2L2Φr (A.5)

Proof.

E||ηs(x̄r+1 − x̄r)||2

= E||ηs∆x̄r||2

= E|| η
KN

∑
i,k

∇Fi(yri,k; ξi,k)||2

= η2E|| 1

KN

∑
i,k

(∇Fi(yri,k; ξi,k)−∇fi(yri,k))||2︸ ︷︷ ︸
:=T3

+ η2E|| 1

KN

∑
i,k

∇fi(yri,k)||2︸ ︷︷ ︸
:=T4

. [variance decomposition]

Consider using the Lemma A.4, E||
∑

i,k(∇Fi(yri,k; ξi,k)−∇fi(yri,k))||2 ≤ KNσ2,
since bounded variance on E||∇Fi(yri,k; ξi,k)−∇fi(yri,k)||2 ≤ σ2.

T3 : = η2E|| 1

KN

∑
i,k

(∇Fi(yri,k; ξi,k)−∇fi(yri,k))||2

= η2 1

K2N2
E||
∑
i,k

(∇Fi(yri,k; ξi,k)−∇fi(yri,k))||2

≤ η2σ2

KN

T4 : = η2E|| 1

KN

∑
i,k

∇fi(yri,k)||2

= η2E|| 1

KN

∑
i,k

(∇fi(yri,k)−∇fi(x̄r) +∇fi(x̄r))||2

≤ 2η2E||∇f(x̄r)||2 +
2η2

KN

∑
i,k

E||∇fi(yri,k)−∇fi(x̄r)||2

≤ 2η2E||∇f(x̄r)||2 + 2η2L2 1

KN

∑
i,k

E||yri,k − x̄r||2

Progress in one outer loop

Lemma A.8. If define Φr = 1
KN

∑
i,k E||yri,k − x̄r||2, then we could have

Ef(x̄r+1)−Ef(x̄r) ≤ (−η
2

+ η2L)E||∇f(x̄r)||2 +
η2L

2KN
σ2 + (

η

2
+ η2L)L2Φr

(A.6)

Proof. Consider the smoothness of f(x),

Ef(x̄r+1) ≤ Ef(x̄r) + E 〈∇f(x̄r), ηs∆x̄
r〉+

L

2
E||ηs∆x̄r||2

= Ef(x̄r) + E

〈
∇f(x̄r), − η

KN

∑
i,k

∇Fi(yri,k; ξi,k)

〉
︸ ︷︷ ︸

:=T1

+
L

2
E||ηs∆x̄r||2︸ ︷︷ ︸

:=T2

T1 : = E

〈
∇f(x̄r), − η

KN

∑
i,k

∇Fi(yri,k; ξi,k)

〉

= E

〈
∇f(x̄r), − η

KN

∑
i,k

∇fi(yri,k)

〉
. [Linearity of expectation]

= E

〈
∇f(x̄r), − η

KN

∑
i,k

(∇fi(yri,k)−∇fi(x̄r) +∇fi(x̄r))

〉

= E

〈
∇f(x̄r), − η

KN

∑
i,k

(∇fi(yri,k)−∇fi(x̄r))− η∇f(x̄r)

〉
= −ηE||∇f(x̄r)||2 +

η

KN

∑
i,k

E
〈
∇f(x̄r), ∇fi(x̄r)−∇fi(yri,k)

〉
≤ −ηE||∇f(x̄r)||2 +

η

2KN

∑
i,k

E||∇f(x̄r)||2 +
η

2KN

∑
i,k

E||∇fi(x̄r)−∇fi(yri,k)||2

= −η
2
E||∇f(x̄r)||2 +

η

2KN

∑
i,k

E||∇fi(x̄r)−∇fi(yri,k)||2

The last inequality uses the property that 〈a, b〉 ≤ 1
2 ||a||

2 + 1
2 ||b||

2.
Combining T1, T2,

Ef(x̄r+1)−Ef(x̄r)

≤ T1 + T2

≤ (−η
2

+ η2L)E||∇f(x̄r)||2 +
η2σ2L

2KN
+ (

η

2KN
+
η2L

KN
)
∑
i,k

E||∇fi(yri,k)−∇fi(x̄r)||2

Client direction approximation

Lemma A.9. Consider the approximation of local control variates to expected
client direction, E||Cr − ∇F (X̄r−1)||2F , then we have for any η = Kηsηc ∈
[0, 1/L], mixing rate ρ ∈ (0, 1],

1

N
E||Cr −∇F (X̄r−1)||2 ≤ σ2

K
+ L2Φr−1

Proof.
1

N
E||Cr −∇F (X̄r−1)||2F =

1

N
E|| 1

K

∑
k

∇F (Y r−1
k ; ξk)−∇F (X̄r−1)||2F

(A.7.1)

≤ σ2

K
+

1

N
E|| 1

K

∑
k

(∇F (Y r−1
k)−∇F (X̄r−1)||2F

≤ σ2

K
+

1

KN

∑
k

E||∇F (Y r−1
k)−∇F (X̄r−1)||2F

≤ σ2

K
+

L2

KN

∑
k

E||Y r−1
k − X̄r−1||2F =

σ2

K
+ L2Φr−1

(A.7)
(A.7.1) follows from application of Lemma A.4, where

1

K2N

N∑
i

Eξ|Y r−1
k−1
||
∑
k

∇F (Y r−1
k ; ξk)−∇F (X̄r−1)||2

≤ 1

K2N

N∑
i

Eξ|Y r−1
k−1
||
∑
k

(∇F (Y r−1
k)−∇F (X̄r−1)||2 +

KNσ2

K2N

Direction correction for each client

Lemma A.10. If define the deviation between local and global control variate as
Γr := 1

NE||Cr − C̃r||2F , then we have for any η = Kηsηc ∈ [0, 1/L], mixing rate
ρ ∈ (0, 1],

Γr ≤ (1− ρ

2
)Γr−1 +

16

ρ
(
σ2

K
+G2 +B2Ωr−1) +

16

ρ
L2Φr−1 (A.8)

Proof.

Γr =
1

N
E||C̃r − Cr||2F

=
1

N
E||(Cr − Cr−1 + C̃r−1)W − Cr||2F

(A.9.1)

≤ (1 + b)
1

N
E||(C̃r−1 − Cr−1)W − (C̃r−1 − Cr−1)W∞||2F + (1 + b−1)

1

N
E||Cr(W − I)||2F

(A.9.2)

≤ (1 + b)(1− ρ)
1

N
E||C̃r−1 − Cr−1||2F + 4(1 +

1

b
)

1

N
E||Cr||2F

(A.9.3)

≤ (1 + b)(1− ρ)
1

N
E||C̃r−1 − Cr−1||2F

+ 8(1 +
1

b
)

1

N
E||Cr −∇F (X̄r−1)||2F + 8(1 +

1

b
)

1

N
E||∇F (X̄r−1)||2F

(A.9)

(A.9.1), (A.9.3): ||x+ y||2 ≤ (1 + b)||x||2 + (1 + b−1)||y||2, ∀b > 0, where for later
(A.9.3), let b = 1. And (C̃r−1 − Cr−1)W∞ = 0 in (A.3)
(A.9.2): for any matrix X, ||XW−X̄||2F ≤ (1−ρ)||X−X̄||2F , and ||XW−X||F ≤
||W − I||||X||F ≤ 2||X||F , where ||W − I|| is the spectrum norm and its value is
equals to its largest eigenvalue.

And under bounded dissimilarity assumption 3.7, rewrite the assumption in ma-
trix format,

1

N
||∇F (x)||2F =

1

N

∑
i

||∇fi(x)||2 ≤ G2 +B2||∇f(x)||2.

In conclude, plugging them into (A.9.3)

Γr ≤ (1+b)(1−ρ)Γr−1 +8(1+
1

b
)(
σ2

K
+G2 +B2E||∇f(x̄r−1)||2)+8(1+

1

b
)L2Φr−1

If b = 1
2
ρ
−1

, then (1 + b)(1− ρ) ≤ (1− ρ
2), and (1 + 1

b) ≤
2
ρ , which completes the

proof.

Variance among workers w.r.t global model

Lemma A.11. If define variance among workers Ξr := 1
NE||Xr−X̄r||2F , and the

deviation between local and global control variate as Γr := 1
NE||Cr − C̃r||2F , then

we have for any η = Kηsηc, s.t η2L2 ≤ c2ρ2α where c is a constant determined
later in Lemma A.13 and α ∈ [1

2 , 1], and mixing rate ρ ∈ (0, 1],

Ξr ≤ (1− ρ

2
)Ξr−1 +

8η2

ρ
(
σ2

K
+G2 +B2E||∇f(x̄r−1)||2) +

8ηcρ

L
Γr−1 + 8c2ρΦr−1

(A.10)

Proof. It’s known that

Xr = (Xr−1 + ηs
∑
k

(Y r−1
k −Xr−1))W, X̄r = XrW∞.

Then define the progress after local steps, ∆Xr = Y r
k −Xr, and ∆X̄r = ∆XrW∞

ηs∆X
r = Y r

K −Xr = −ηsηc
K−1∑
k=0

(∇F (Y r
k ; ξk)− Cr + C̃r)

= −ηsηc
K−1∑
k=0

∇F (Y r
k ; ξk)− ηsηcK(C̃r − Cr)

= −η(Cr+1 + C̃r − Cr)

And ηs∆X̄
r = −ηCr+1W∞ + C̃rW∞ − CrW∞

(A.3)
= −ηCr+1W∞, since in (A.3)

CrW∞ = C̃rW∞.
Then,

1

N
E||Xr − X̄r||2F =

1

N
E||(Xr−1 + ηs∆X

r−1)W − (X̄r−1 + ηs∆X̄
r−1)||2F

≤ 1

N
(1 + b)E||Xr−1W − X̄r−1||2F + (1 + b−1)

1

N
E||ηs∆Xr−1W − ηs∆X̄r−1||2F

≤ (1 + b)(1− ρ)Ξr−1 + (1 + b−1)(1− ρ)
1

N
E||ηs∆Xr−1 − ηs∆X̄r−1||2F

= (1 + b)(1− ρ)Ξr−1 + (1 + b−1)(1− ρ)
η2

N
E||Cr + C̃r−1 − Cr−1 − CrW∞||2F

Here using ||A− Ā||2F =
∑

i ||ai − ā||2 ≤
∑

i ||ai||2 = ||A||2F , we could have

||Cr + C̃r−1 − Cr−1 − CrW∞||2F ≤ ||Cr + C̃r−1 − Cr−1||2F ,

since (Cr + C̃r−1 − Cr−1)W∞ = CrW∞.

1

N
E||Cr + C̃r−1 − Cr−1||2F ≤

2

N
E||Cr −∇F (X̄r−1) +∇F (X̄r−1)||2F +

2

N
E||C̃r−1 − Cr−1||2F

≤ 4

N
E||Cr −∇F (X̄r−1)||2F +

4

N

∑
i

E||∇fi(x̄r−1)||2 + 2Γr−1

≤ 4

N
E||Cr −∇F (X̄r−1)||2F + 4(G2 +B2E||∇f(x̄r−1)||2) + 2Γr−1

(A.11)

Ξr ≤(1 + b)(1− ρ)Ξr−1 + (1 +
1

b
)(1− ρ)4η2(

σ2

K
+G2 +B2E||∇f(x̄r−1)||2 +

1

2
Γr−1)

+ (1 +
1

b
)(1− ρ)4η2L2Φr−1

(A.12)
If b = 1

2
ρ
−1

, then (1 + b)(1 − ρ) ≤ (1 − ρ
2), and (1 + 1

b) ≤
2
ρ . And if plugging

the stepsize bound of form η2L2 ≤ c2ρ2α ≤ c2ρ where c is a constant determined
later and α ∈ [1

2 , 1], then completes the proof.

Bound the local steps

Lemma A.12. If define the averaged local model updates Φr := 1
KN

∑
i.k ||yri,k −

xri ||2, then we have for any η = Kηsηc, s.t η2L2 ≤ c2ρ2α where c is a constant
determined later in Lemma A.13 and α ∈ [1

2 , 1], and mixing rate ρ ∈ (0, 1],

Φr ≤
aη2Lσ2

K
+ 4aη3L2(G2 +B2E||∇f(x̄r)||2) +

2acη

L
Γr + aΞr (A.13)

Proof.
Since η2L2 ≤ c2ρ2α ≤ c2, then 4Kη2

cL
2 ≤ 4η2L2

K ≤ 4c2

K−1

k−1∑
τ=0

(1 +
1

k − 1
+ 4Kη2

cL
2)τ ≤

K−1∑
τ=0

(1 +
1

K − 1
+ 4Kη2

cL
2)τ

≤ K(1 +
1

K − 1
+ 4Kη2

cL
2)K−1

≤ K(1 +
1 + 4c

K − 1
)K−1

≤ Ke1+4c2 ≤ aK

(A.14)

Φr :=
1

KN

∑
k

E||Y r
k − X̄r||2F

≤ 1

KN

∑
k

((η2
cσ

2N + 2Kη2
cE||∇F (X̄r)− Cr + C̃r||2F)aK

+ (1 +
1

K − 1
+ 4Kη2

cL
2)kE||Xr − X̄r||2F)

= (η2
cσ

2N + 4Kη2
cE||∇F (X̄r)||2F + 2Kη2

cE|| − Cr + C̃r||2F)
aK

N

+
1

KN

K−1∑
k=0

(1 +
1

K − 1
+ 4Kη2

cL
2)kE||Xr − X̄r||2F

≤ (
η2σ2

K
+ 4η2(G2 +B2E||∇f(x̄r)||2) + 2η2Γr)a+ aΞr . [ηL ≤ c]

≤ aηcσ2

LK
+ 4aη2(G2 +B2E||∇f(x̄r)) +

2acη

L
Γr + aΞr

(A.15)

Lemma A.13. Define Ur+1 := Ef(x̄r+1) + 25
2
η2L
ρ Γr+1 + ηL2

ρ Ξr+1, for any step
size satisfying η = Kηsηc ≤ cρ2α, where c = 1

500B2 , and α = 1,

Ur+1 ≤ Ur + η2(
629Lσ2

4K
+

200Lσ2

ρ2K
+

Lσ2

2KN
+

57L

800
G2 +

200L

ρ2
G2)− η

12
E||f(x̄r)||2

Proof. To start with, since c = 1
500B2 , then in (A.14), e1+4c2 ≤ 3.

Φr ≤
aηcσ2

LK
+ 4ac2(G2 +B2E||∇f(x̄r)) +

2acη

L
Γr + aΞr

⇒ 25

12
ηL2Φr ≤

25

12

aη2Lσ2

K
+

25

3
aη3L2(G2 +B2E||∇f(x̄r)) +

25

6
acη2LΓr +

25

12
aηL2Ξr

Γr+1 ≤(1− ρ

2
)Γr +

16

ρ
(
σ2

K
+G2 +B2E||f(x̄r)||2) +

16

ρ
L2Φr . [ηL ≤ cρ for last term]

⇒ 25

2

η2L

ρ
Γr+1 ≤

25

2

η2L

ρ
Γr −

25

2

η2L

2
Γr + 200η2L

1

ρ2
(
σ2

K
+G2 +B2E||f(x̄r)||2) + 200c

ηL2

ρ
Φr

Ξr ≤(1− ρ

2
)Ξr +

8η2

ρ
(
σ2

K
+G2 +B2E||f(x̄r)||2) +

8ηcρ

L
Γr + 8cρΦr

⇒ ηL2

ρ
Ξr+1 ≤

ηL2

ρ
Ξr −

ηL2

2
Ξr +

8η3L2

ρ2
(
σ2

K
+G2 +B2E||f(x̄r)||2) + 8cη2LΓr + 8c2ηL2Φr

(A.16)
Combining with (A.7), consider
(Ef(x̄r+1)+ 25

2
η2L
ρ Γr+1 + ηL2

ρ Ξr+1) ≤ (Ef(x̄r)+ 25
2
η2L
ρ Γr+ ηL2

ρ Ξr)+Γrη
2L(25

2 c−
25
4 + 8c) + ΞrηL

2(25
4 −

25
4) + ΦrηL

2(−25
12 + 200 cρ + 8c2 + 1 + ηL) + 25

12(3η2Lσ2

K +

12η3L2(G2 + B2Ωr)) + 25
2 (16η2L 1

ρ2
(σ

2

K + G2 + B2Ωr−1)) + (8η3L2

ρ2
(σ

2

K + G2 +

B2Ωr−1)) + (−η
2 + η2L)Ωr + η2Lσ2

2KN , for the following coefficients,

for Γr : η2L(
25

2
c− 25

4
+ 8c) ≤ 0,

for Ξr : ηL2(
25

4
− 25

4
) ≤ 0,

for Φr : ηL2(−25

12
+ 200

c

ρ
+ 8c2 + 1 + ηL) ≤ 0,

(A.17)

when c ≤ ρ
500B2 ≤ 1

500 , ρ ≤ 1, B2 ≥ 1 in their definition. Then by more
collecting,

Ur+1 − Ur ≤
25

12
(
3η2Lσ2

K
+ 12η3L2(G2 +B2Ωr)) +

25

2
(16η2L

1

ρ2
(
σ2

K
+G2 +B2Ωr−1))

+ (
8η3L2

ρ2
(
σ2

K
+G2 +B2Ωr−1)) + (−η

2
+ η2L)Ωr +

η2Lσ2

2KN

≤ η2(
25Lσ2

4K
+

200Lσ2

ρ2K
+

Lσ2

2KN
+
L

32
G2 +

200L

ρ2
G2 +

Lσ2

25K
+
L

25
G2)

+ η(−1

2
+

1

500B2
+

1

80
+

2

5
+

1

31250
)Ω2

≤ η2(
629Lσ2

4K
+

200Lσ2

ρ2K
+

Lσ2

2KN
+

57L

800
G2 +

200L

ρ2
G2)− η

12
Ω2

(A.18)

Then unrolling the recursion, and Define v0 = 629Lσ2

4K + 200Lσ2

ρ2K
+ Lσ2

2KN + 57L
800G

2 +
200L
ρ2

G2, then

ψR =
1

R+ 1

R∑
r

1

12
Ωr ≤

1

R+ 1

∑
r

(
Ur
η
− Ur+1

η
) + ηv0 ≤

U0

η(R+ 1)
+ ηv0,

where U0 = f(x̄0) if initializing with ||C0 − C̃0|| = 0, ||X0 − X̄0|| = 0.
Via Lemma 2 of sublinear convergence rate from SCAFFOLD(6),
there exists constant step size η ≤ ηmax,

• When R+ 1 ≤ U0
v0η2max

, pick ηmax,

ψR ≤
U0

ηmax(R+ 1)
+

√
v0U0√
R+ 1

• if η2
max ≥ U0

v0(R+1) , pick η = U0
v0(R+1)

ψR =
2
√
v0U0√
R+ 1

Then in conclude, ψR is smaller than the union bound of these two cases,

ψR ≤
U0

ηmax(R+ 1)
+

2
√
v0U0√
R+ 1

v0 = O(σ
2L

ρ2K
+ Lσ2

KN + LG2

ρ2
) then ψR = O(U0B2L

ρ2R
+
√

σ2L
ρ2K

+ Lσ2

KN + LG2

ρ2

√
U0
R) when

η ≤ 1
500L

ρ2

B2 , which completes the proof of theorem 4.1.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related work
	2.1 Non-i.i.d data in decentralized training
	2.2 Client drift and model variance
	2.3 Centralized variance reduction methods
	2.4 Batch Normalization
	2.4.1 Global Batch Normalization:
	2.4.2 Individual Batch Normalization:
	2.4.3 Batch Normalization and Client Variance

	3 Set up
	3.1 Problem description
	3.1.1 Definitions and Notations

	3.2 Main assumptions
	3.2.1 Assumption on objective f
	3.2.2 Assumption on the noise
	3.2.3 Assumption on the heterogeneity

	4 Decentralized variance-reduced training
	4.1 Decentralized variance reductioon
	4.1.1 Variance-reduced algorithm framework
	4.1.2 Intuition: How it reduces variance?
	4.1.3 Observation of variance out of toy example
	4.1.4 Decentralized SVRG
	4.1.5 Decentralized SCAFFOLD
	4.1.6 Convergence analysis of decentralized SCAFFOLD

	4.2 Decentralized SGD/SCAFFOLD training system

	5 Benchmark Experiment
	5.1 Detailed Experimental Setup
	5.2 Variance reduction in i.i.d setting
	5.3 Normalization Techniques Comparison
	5.4 Overall comparison
	5.4.1 Generalization performance and communication rounds
	5.4.2 Variance and effect of local steps
	5.4.3 Computation performance
	5.4.4 Failure of SVRG

	5.5 Decentralized SGD/SCAFFOLD training system
	5.5.1 Local steps activation
	5.5.2 Outer Loops activation
	5.5.3 Activating both Outer Loops and Local steps

	6 Conclusion
	A Appendix: Convergence result
	A.1 Useful properties
	A.2 Overview of decentralized SCAFFOLD
	A.2.1 Additional definition

	A.3 Convergence of decentralized SCAFFOLD for nonconvex function

