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Abstract

In 2009, Satoshi Nakamoto introduced the first digital currency to solve the double-spending prob-
lem without a third party with the original Bitcoin whitepaper [9]. Cryptocurrencies, particularly
Bitcoin, are increasingly utilized as adoption grows and sometimes wrongly mentioned to be anony-
mous. Bitcoin and Ethereum, the two largest cryptocurrencies, are pseudonymous, as they rely
mainly on pseudonyms to dissimulate real identities. The usage of pseudonyms protects real identi-
ties as long as no link is evident between a given pseudonym and a particular identity. Pseudonymity
can be quantified in terms of the probability of an attacker’s success in linking specific transactions
and thus public keys (pseudonyms) to source IP addresses (identities). This semester thesis pro-
poses a framework for automatically conducting various types of experiments given attacker power
parameters and behaviors. The framework records the state of the network as seen by the victim
and its direct neighbors via logging; this data can be analyzed in future research.
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Chapter 1

Introduction

With approximately $164 billion and $23 billion market capitalization1, respectively, Bitcoin and
Ethereum are the two most commonly used cryptocurrencies to date. Bitcoin is the original first
implementation of a blockchain and solved the double-spending problem without the help of a
third party by combining a replicated blockchain, a consensus algorithm, and the so-called proof-of-
work. The classical blockchain is composed of cryptographically backward-linked blocks containing
transaction data. Bitcoin’s main purpose is to serve as a digital currency that is equivalent to
paper money in the real world. Ethereum’s main objective, on the other hand, is not to function
as a digital currency but rather to run decentralized applications2. These applications are enabled
through so-called smart contracts: protocols or small pieces of software running on top of the
Ethereum network and performing backtrackable and irreversible transactions without the help of
a third party. Executions of applications are also transactions and are no different from transactions
sending Ether from one account to another; they can thus be de-anonymized in the same way.
As previously stated, both of these cryptocurrencies are pseudonymous rather than anonymous.
The creation of a Bitcoin wallet or Ethereum account provides the user with a public address,
which is a hashed version of a public key. Transactions are signed with secret keys, verified with
the corresponding public keys, and are assigned to public addresses. This difference is crucial in the
sense that a user is hidden behind its pseudonym only as long as no link between his pseudonym
and his real identity exists. The argument can be made for Bitcoin, at least, that a new public
address is created and used after each transaction. As shown in [1], such transactions originating
from different public addresses can be linked together. Consequently, if one transaction in the set
is de-anonymized, the whole set is de-anonymized as well.
Some other cryptocurrencies take a different approach and include certain privacy guarantees at the
protocol or cryptographic level. One example is Zcash3, a fork of the Bitcoin Core codebase. Zcash
introduces zero-knowledge proofs, allowing transactions to be verified without revealing the sender,
receiver, or transaction amount. A second example is Monero4, which makes use of ring signatures,
ring confidential addresses, and stealth addresses to hide, like Zcash, the sender, receiver, and
transaction amount. Transaction clustering and linking to IP addresses has been demonstrated
in [1] to be feasible with Zcash and Monero as well, even for low budget adversaries.
Our chosen model includes a single victim node, presumed to be the node running on the victim’s
computer, and a single attacker node, running on the attacker’s computer. The attacker is presumed
to be at the network level and on-path, thus sees a fraction of the victim’s connections. The attacker

1https://coinmarketcap.com/, (May 2020)
2Nevertheless, it can still be used as a digital currency.
3https://z.cash/
4https://web.getmonero.org/
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CHAPTER 1. INTRODUCTION 2

could be, for example, its ISP or a powerful entity, such as a government, running routers used by
the victim. Such an attacker has power over the seen connections and may drop, inject, corrupt,
or delay packets at its leisure. In this model, the attacker node follows as closely as possible the
victim’s connections to other peers in the network. With Ethereum, since communications with
peers are encrypted, the network view of the victim’s direct neighbors at any given moment is closest
to the victim’s real view. Since communication between Bitcoin peers is not encrypted, a network
attacker seeing the victim’s connections can eavesdrop, read the raw packets, and reconstruct the
victim’s network view.

1.1 Motivation

Bitcoin mainly and Ethereum secondarily are used as digital money; hence, it makes perfect sense
to discuss financial privacy. Financial privacy is a necessity that is not limited to such activities
as buying drugs on illegal marketplaces. If cryptocurrencies are to be used for everyday purchases,
basic privacy guarantees are required. Transactions must withhold the transaction amounts for
third parties and the total amount behind the origin and destination public addresses from every-
one but the owner of these addresses for obvious reasons. In addition, the coins themselves must
be fungible, meaning that coins are indistinguishable from one another. Such basic privacy guaran-
tees prohibit transaction censorship or pseudonym profiling and analysis. With de-anonymization,
in case these guarantees do not hold, a user’s financial information is released to the public and
can thus be analyzed and exploited. Preventing de-anonymization is an initial step to enhanced
financial privacy. In order to prevent such attacks, exploits must first be found. This framework
allows data to be easily collected and various types of exploits to be tested.
The primary motivation behind this project is to build a practical framework that is able to au-
tomatically simulate different kinds of attacks performed against a selected victim node. The
framework enables the transition from raw wire packet dumping to simple logging for Bitcoin.
As discussed below, the reconstruction of communication from raw packets is possible, and thus
equivalent to logging, but slow. For both Bitcoin and Ethereum, the framework provides a victim
node whose protocol behavior is unchanged compared with the original implementation, and non-
critical local behaviors such as logging are introduced to record the view of the network. It also
provides an attacker node whose behavior is adjusted in such a way to allow automatic following
of the victim’s peers, local logging of the network view, and altered critical behaviors, such as no
advertising and broadcasting of new transactions. By removing the transaction advertisements and
broadcasting on the attacker node, a single experiment recording can be used and the fraction of
seen connections can be modified without having to record a new experiment by stripping off peers.
The third node provided by the framework is a node that simulates a random node in the Bitcoin
or Ethereum network and can be used as reference. In addition, the framework includes scripts
to apply connection deterioration (packet dropping or delay) for a defined fraction of the victim’s
connections seen by the attacker, recording of the nodes logging to save the network views at any
given moment, and the execution of transactions originating from the victim node. After defining
the attacker’s total power (fraction of connections seen), the framework automatically executes the
tasks previously mentioned.

1.2 Tasks and Goals

The final objective of transaction de-anonymization in the case of pseudonymous cryptocurrencies
is to link pseudonyms to real identities. In our model, we consider origin public addresses of trans-
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actions as pseudonyms and IP addresses of running nodes as identities. The objective of this thesis
is to deliver a framework as defined in 1.1. This framework enables data collection, the first critical
step of data analysis. Data collection is crucial in the sense that data analysis techniques are only
as good as the underlying data.
This thesis is divided into two distinct parts. First, raw Bitcoin communication packets are recon-
structed in order to demonstrate that the network view and communication with neighbor peers
of the victim node can be extracted and is equivalent to simple logging at the victim node. Un-
derstanding whether or not raw packet reconstruction to Bitcoin message streams is equivalent to
simple logging at the victim node is useful, as a long and cumbersome process could be replaced by
a far simpler and more elegant solution. In a second time, the actual framework, which consists of
the two sub-projects Bitcoin and Ethereum, is developed. For each of these two cryptocurrencies,
the following tasks have been accomplished:

• Analysis of the main implementations of the protocols (Bitcoin Core and Go Ethereum) and
understanding the relevant sections of the source code, including peer selections, transactions
broadcasting, and internal logging

• Modification of these implementations to introduce extra logging and modified behaviors,
such as peer sharing and no new transactions announcements and broadcasting

• Scripting behaviors such that the attacker follows the victim’s neighbors and both nodes keep
a tight set of common peers

• Assembling all tasks into a single automated framework

• Conducting various kinds of experiments, including the creation of transactions on the victim
node

• Simple proof-of-concept analysis of the logging to suggest the recorded data’s usefulness

1.3 Overview

The rest of the report is structured as follows. In chapter 2, fundamental concepts are defined, and
important tools used throughout the semester thesis and background knowledge required to under-
stand the design choices are introduced. In chapter 3, the design choices for the framework and how
the framework works are presented. Chapter 4 analyzes data recorded through the framework and
briefly discusses its usefulness. Chapter 5 concludes the report by presenting possible extensions
and future work that may serve as the foundation of a following thesis. Finally, chapter 6 summa-
rizes the work, report, and framework. Additionally, the appendix A offers further explanation of
experiments as well as a hands-on tutorial for the framework, from installation to recording.



Chapter 2

Background and Related Work

2.1 Background

Let us begin by defining some important terms, including victim, attacker, and neighbor:

Victim
This is the entity from whom the attacker attempts to de-anonymize the transactions, i.e.,
predict which transactions originated from this node. The victim is running his or her own
Bitcoin or Ethereum node; the node’s parameters or protocol behavior cannot be directly
changed or influenced by the attacker. The victim is assumed to execute a transaction at
some point in time and the task is to determine this transaction.

Attacker
One or multiple entities running Bitcoin or Ethereum nodes and having access to IP addresses
as needed. We have full control of these nodes during the complete process of an attack. We
can modify the protocols’ behavior at leisure and the attacker has the ability to act at the
network level, thus it is capable of seeing a fraction of the victim’s connections. The attacker
can act on these connections at leisure and drop, duplicate, corrupt, or delay packets.

Neighbor
Neighbor peers include all of the other nodes taking part in the Bitcoin or Ethereum networks
to which the victim or attacker connects directly. Similarly to those of the victim, these node’s
parameters or protocol behavior cannot directly be changed or influenced by the attacker.

We will now present and describe important tools used throughout the thesis and key obser-
vations that help understand our attack model and the choice of design. The first task was to
investigate the possibility of reconstructing a Bitcoin protocol stream of messages from a recording
of raw wire packets. The following tools and observation have extensively been used:

TShark
Command line tool able to dump and analyze network traffic from an interface. It is used
to dump the raw wire packets coming from a victim Bitcoin node executing a transaction
halfway through a recording session. The output format is a PCAP file containing all the
captured packets, including headers and payloads. The tool can be found at: https://www.
wireshark.org/docs/man-pages/tshark.html.

gopacket
Go library maintained by Google providing packet processing capabilities. This library has

4
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CHAPTER 2. BACKGROUND AND RELATED WORK 5

proved useful and efficient in reordering and dropping duplicate packets as well as extracting
a continuous stream of Bitcoin messages payloads. This library is hosted on GitHub at:
https://github.com/google/gopacket.

Messages
The extracted stream of payloads is a continuous stream of raw Bitcoin messages following a
pre-defined structure. Each message is composed of a header and a payload, which depends
on the type of message. All raw message structures can be found at: https://en.bitcoin.
it/wiki/Protocol_documentation. The header always contains the following fields and
structure:

magic
Value of type uint32 t defining the origin network of the message, such as the main or
test network. This value can be used to look for the next message if the stream state is
unknown.

command
Value of type char[12] indicating the type of message contained in the payload that
follows the header. This value is NULL padded to be constant in length.

length
Value of type uint32 t indicating the total byte length of the payload.

checksum
Value of type uint32 t composed of the first 4 bytes of the double SHA-256 hash of the
payload, i.e., sha256(sha256(payload)). This value verifies that the payload contains
no errors before decoding it into a message.

Before discussing the message types of interest, let us define two important formats:

Variable Length Integer
Defines the type var int. The encoding is variable in length to save space. Values less
than 0xFD are of type uint8 t. Values less than or equal to 0xFFFF are represented
by the value 0xFD followed by an uint16 t. Values less than or equal to 0xFFFF FFFF

are represented by the value 0xFE followed by an uint32 t. Finally, greater values are
represented by the value 0xFF followed by an uint64 t. The actual integer is encoded
in little endian.

Inventory Vectors
Defines the type inv vect. Composed of two fields: type of type uint32 t and hash
of type char[32]. The type field informs us of the object type referenced by hash.

Three message types are of interest in terms of reconstructing the network view of a node1:

inv Advertisement message for new transactions and blocks. Composed of two fields: count
of type var int defining the number of objects advertised and inventory of type
inv vect[], an array of inv vect of length count.

getdata
Message requesting the objects referenced in the inventory vector. Same composition as
the inv message.

1We are only interested in the view of known transactions.

https://github.com/google/gopacket
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
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tx Message containing the actual transaction data. The raw structure is more complex and
not detailed out, since a single field is of interest: hash of type char[32] - the hash of
the broadcast transaction.

Based on the protocol and implementation details, it is apparent that each time a node learns
about a new transaction it sends out an inv message to each of its neighbors to advertise
this new transaction. In the event that the destination node does not know about this
particular transaction, it sends back a getdata message and the first node sends out a tx
message to broadcast this transaction to the requesting node. This succession of messages
leaks information about when a node learns about a new transaction. For example, when
node A sends out an inv message to node B we know that A recently learned2 about the
referenced transaction and that A thinks3 that node B does not yet know about it. If node
B sends a getdata message to node A, we can infer that A sent an inv message to B and
that B did not know about this transaction, at that time. If node A sends a tx message to
B, we can infer that B sent a getdata message to A and just learned about this transaction.

The second task that had to be accomplished was to build the simulation framework. In this
regard, let us first discuss the two main Bitcoin and Ethereum protocol implementations we focused
on:

Bitcoin Core
Main C++ implementation of the Bitcoin protocol. The framework builds on top of version
0.19.1, the most recent stable version at the time of this thesis. This implementation has
been chosen because it is considered to be the reference implementation and is used by the
majority of nodes. A modification has been made in the configuration to ease up the attack
simulation: the victim, attacker, and reference nodes do not listen for incoming connections
nor do they discover new nodes, but instead only connect to a pre-defined set of peers.

Go Ethereum
Main and official Go implementation (Geth) of the Ethereum protocol (alongside Aleth a C++

and Trinity a Python implementation). The framework builds on top of version 1.9.12, the
most recent stable version at the time of this thesis. This implementation has been chosen
because it is considered to be one of three reference implementations and is used by the
majority of nodes. A modification has been made in the configuration to ease up the attack
simulation: the victim, attacker and reference nodes do not listen for incoming connections.
The victim and reference nodes build outgoing connections to newly discovered nodes and
the attacker receives commands from the victim to determine which peers it should connect
to.

There is a fundamental difference in how communications occur within the Bitcoin and Ethereum
networks. All Bitcoin communications are done in plaintext and thus can be read by an on-path
eavesdropper. As we will see, this implies that the eavesdropper can, by reading directly on wire,
reconstruct the view of the victim by analyzing the exchanged messages. In contrast to Bitcoin, all
Ethereum communications are encrypted4. An on-path eavesdropper cannot read the exchanged
messages. Therefore, there is no way to directly infer the victim’s view of the network. To obtain

2We will see that the Bitcoin Core implementation introduced what they call diffusion of transaction advertising
to increase the privacy of its users.

3A transaction is not advertised to nodes if it is known that they have already learned about it.
4https://github.com/ethereum/devp2p/blob/master/rlpx.md

https://github.com/ethereum/devp2p/blob/master/rlpx.md
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a good approximation of the victim’s network view, the attacker can connect to all of the victim’s
neighbor peers as well as directly to the victim. By doing this, the network view of the attacker
approximates the view of the victim, rushed or delayed by the network’s latency.
Both protocols also differ in the way transactions are broadcast. As seen previously, Bitcoin uses an
advertisement system and broadcasts a transaction only if the destination node specifically requests
it. Additionally, Bitcoin Core introduced transaction diffusion, which adds random delays to the
advertisement of new transactions to each neighbor peer. This prevents most neighbor nodes from
immediately seeing a transaction originating from a node and makes obtaining a transaction from
a third-party node that is not the originating node more probable. This advertisement diffusion
falsifies the attacker’s network view when only relying on the messages obtained from the victim
and his or her neighbor peers instead of reading all visible connections from the wire. Ethereum
broadcasts newly learned transactions immediately and also makes use of an advertisement sys-
tem, but only for a subset of its neighbor peers. If an Ethereum node has n neighbor peers, each
time a new transaction is learned, this transaction is first broadcast to b

√
nc neighbors and then

advertised to the remaining n− b
√
nc neighbors, excluding neighbor peers known to have already

learned about that particular transaction. Since transactions are broadcast and advertised without
delay, the network view of the attacker is a good approximation of that of the victim.
Another important difference between Bitcoin and Ethereum nodes is the way connections to neigh-
bor peers are handled. Bitcoin uses a ping-pong mechanism to test if a neighbor node is still alive.
A ping message is sent every two minutes and a peer is dropped if it fails to reply to ping mes-
sages in an interval of 20 minutes. This rule enables an attacker to add a very high packet dropping
percentage without disconnecting the victim from his or her neighbor peers due to the node being
unreachable. If at least one of these 10 ping messages receives a pong message in return, peers
are still considered to be alive and the connection is maintained. Ethereum also uses a ping-pong
protocol to test the liveness of its neighbors. A ping message is sent every 15 seconds and the peer
is dropped instantly if it fails to reply. Additionally, it instantly disconnects a peer if it receives
an error in response to sending protocol messages or if a TCP connection returns an error. These
differences are key. Bitcoin connections are long-lived and robust while Ethereum connections are
short-lived and fragile. At best, the attack should only hardly be detectable at the application layer.
The victim node should remain in-sync and its set of neighbor peers should remain stable. For Bit-
coin, an attacker can apply a packet dropping rate to a victim’s connections of approximately 25%
while maintaining a healthy, somewhat stable set of connected neighbors. Such a drop rate is not
possible for Ethereum. In fact, after some testing it was determined that even a very low percent-
age lead to a very unstable set of neighbors. It was found that a constant delay of approximately
1000 milliseconds maintains a healthy, somewhat stable set of peers. These observations led to the
following decisions: Bitcoin nodes connect to a pre-defined set of selected peers while Ethereum
nodes continuously discover new random peers and connect to them. For Bitcoin we selected a set
of 200 peers using an online database: https://bitnodes.io/nodes/leaderboard/. We selected
peers in the order of assigned leaderboard grade but applied some extra criteria, including the most
recent Bitcoin protocol version5, a recent Bitcoin Core version6, a long uptime7, and high best
block number8. As for Ethereum, the framework restricts the victim node to outbound connections
to simplify the simulation. This does not introduce any critical change nor does it impact how the
victim node interacts with its neighbor peers. Inbound connections only know about the randomly

570015
6Greater or equal to version 0.17.
77 days or more.
8Not less than the current best block minus 144, the average amount mined in a day, since the leaderboard is

updated only once every 24 hours.

https://bitnodes.io/nodes/leaderboard/
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assigned remote ports on the neighbor peer’s machine, which makes it more difficult for the attacker
to connect to it. Most nodes use the default port but in the event they do not, the attacker would
need to port scan the machine to determine the correct port to send a connection request to. To
simplify this process only outbound connections are allowed.
An important ability of the attacker is to act on a fraction of the victim’s network connections. The
framework can apply different packet dropping and delay rules to a given percentage of observed
connections, even when nodes run on the same machine. To enable this, the framework queries the
current connections of the victim and applies the network conditions to the up- and downstreams
using the local port allocated by the victim for the connections to the selected neighbor peers. This
permits deterioration of victim connections without impacting either the attacker or the reference
client. The following tool is used:

tc A traffic control and manipulation tool used to configure the kernel packet scheduler. Packet
control consists of shaping, scheduling, policing, and dropping. The framework only makes
use of the dropping and delaying features. Requires sudo rights. A description can be found
at: https://linux.die.net/man/8/tc.

2.2 Related Work

The privacy guarantees of both Bitcoin and Ethereum have already been studied. The first attacks
used tools such as the graph analysis in [2], the timing analysis in [8, 5, 3], and the network analysis
in [1]. Eclipsing attacks have also been demonstrated to alter, filter, or control a victim’s view of the
blockchain in [6, 4, 7]. These attacks do not act directly on the quality of the victim’s connections
to its neighbor peers.
The novelty in the design and setup this framework supposes is that the attacker has strong network
capabilities and is located on-path for a fraction of the victim’s connections. This hypothesis gives
the attacker powerful capabilities, such as directly acting on the connection’s quality by dropping,
delaying, or corrupting packets sent and received by the victim. This new setup opens up new
attack vectors, because the attacker holds power over the pace at which the victim receives new
transactions from his or her neighbors and can delay or shape the victim’s network view at leisure.
This semester thesis introduces the first fully automated framework by which to setup and simulate
network level and on-path attacks.

https://linux.die.net/man/8/tc


Chapter 3

Design

3.1 Raw Packets and Logging

As seen previously, because Bitcoin communications are conducted in a non-encrypted manner any
on-path actor is a potential eavesdropper. Let us suppose that the victim is running a Bitcoin
node V on his or her own machine. This node V is connected to NV neighbor peers. Let us
also suppose that there exists another actor, on-path, between V and a fraction fV of its neighbor
peers, who is actively recording and dumping all packets. Let’s call this actor the attacker. Be-
cause the payloads contained in these packets are not encrypted, this attacker potentially has the
ability to reconstruct all communications. Taking this possibility into account, the simulation of
any attack relying on this setup can also rely on logging all communication occurring at the vic-
tim node V instead of recording the raw packets and reconstructing the communication, which is a
slow and resource-intensive process. The setup explained in this paragraph is depicted in figure 3.1.

V

1 - fV

fV

NV

Attacker

inv
getdata

tx

Machine owned by the victim. Running node V.

Machine owned by the attacker.

Machine owned by a third party. Running a node connected to V.

Extraction
Bidirectional Connection
Bidirectional Connection Read by A

      
      

110101
001011

Figure 3.1: Communication Reconstruction From Raw Packets

9
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To verify this hypothesis, I was provided with multiple PCAP files containing the raw pack-
ets recorded by the attacker seeing fV = 1 communications. This verification process comprises
multiple steps:

1. The PCAP file is split into 5 smaller files, each containing 20% of the communications streams.
This helps simulate the fact that the attacker may not see fV = 1 of all streams. Once
the Bitcoin messages are reconstructed, the parts can be merged again to simulate fractions
fV ∈ {0.2, 0.4, 0.6, 0.8, 1}.

2. Each stream of packets between V and a neighbor peer contained in these smaller files is
reconstructed through the stripping of duplicates and the reordering of out of order packets
with the library gopacket presented earlier. The results are directional per neighbor streams
of payloads sent from or to V.

3. Each of these payload streams is parsed and converted into Bitcoin messages of type inv,
getdata, or tx. All other message types are ignored. For each of these messages the recording
timestamp is applied, resulting in directional per neighbor streams of Bitcoin messages with
recording timestamps. The age of each message is computed against a reference node1. This
state is saved on disk as a JSON file, as this process may take multiple hours to execute.

4. From this intermediary JSON file, some simple pre-analysis is performed, such as the removal
of all messages referring to transactions seen first by the reference node or that have been
requested by the victim node. None of these transactions can originate from V.

5. Statistics for each transaction are extracted about the number of peers to whom the trans-
action has been advertised, the number of peers that requested the transaction from V, and
the number of peers to whom the transaction has been broadcast. A CSV file is generated
storing these statistics per transaction. By combining the resulting CSV files, more powerful
attackers can be simulated.

This verification is powerful, as it enables us to simulate attacks following this design by re-
moving the attacker entity during the simulation and recording a log stream directly at V. The
final simulation design is a victim running a Bitcoin node V on his or her own machine, logging all
messages sent to neighboring peers and recording a fraction fV of these logs. The simulation setup
is depicted in figure 3.2. As described above, one can also record using fV = 1 and strip off logs
from particular peers to simulate different levels of power with a single recording2.

3.2 Framework

As suggested previously, nodes participating in the Ethereum network encrypt their communica-
tions in a peer-to-peer manner prohibiting third-party actors from eavesdropping on messages in
the same way possible with Bitcoin and the setup discussed in 3.1. To obtain a comprehensive
network view approximation of the victim, an attacker can directly connect to the victim and his
or her neighbor peers. Because both the victim and the attacker are connected to the same peers
in the network and broadcasting of transactions is not delayed in Ethereum, their views will be

1This reference node is accessible at https://blockchain.info/ via an API.
2One is only allowed to deteriorate as many peers as the lowest power to be simulated. If the lowest attacker

power to be simulate using a particular recording is fV = 0.3, then during this experiment the attacker is allowed to
deteriorate a maximum of 30% of all connections.

https://blockchain.info/
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Figure 3.2: Communication Logged by Node V (Simulation)

very similar.
Let us suppose that the victim is running a node3 V on his or her own machine. Additionally, let
us suppose that another actor, on-path, exists between V and a fraction fV of his or her neighbor
peers, who is actively inspecting packets. Let us call this actor the attacker. In the case of Bitcoin,
packets sent from V to neighbor peers are easily detected due to the fact that they are not en-
crypted. As for Ethereum, the attacker is still capable of inspecting the header of the packets and
discovering the neighbor peers by port scanning the destination IP addresses to determine which
are running a node. Additionally, let us now suppose that the attacker is running his or her own
node A and connects to V. As the attacker inspects the raw packets and discovers neighboring peers
of V, A connects to these peers. This process is dynamic: A connects with or disconnects from
peers as V does. Because the attacker is on-path for these neighbor peers, deteriorating network
conditions can be applied to these streams. For example, the attacker may choose to drop or delay
a percentage of all forwarded packets from or to V. On his or her own node A, the attacker may
now log any messages sent to and received from V as well as from and to all connected neighbors
to obtain a view of the network very similar to that of V. Despite the fact that it does not make
sense to attack a victim on the Bitcoin network using this particular design, this work has been
conducted because it is very similar to the setup for Ethereum. This design and setup potentially
allows for new types of de-anonymization attacks that will still work regardless of whether or not
the communications are encrypted in the future and may be combined with other types of attacks
to increase their effectiveness. The setup explained in this paragraph is depicted in figure 3.3.

The setup used to simulate these types of attacks is slightly different in the framework, as it
is kept as simple as possible without breaking equivalence. For example, in the case of Bitcoin,
both V and A run on the same machine to reduce costs and keep scripting as simple as possible.
Both nodes will have the same public IP address, which is not an issue, as Bitcoin nodes do not
have restrictions considering this parameter. In the context of Ethereum, restrictions exist per IP

address when a new incoming connection is set up. A node will refuse a second incoming connection
originating from the same IP address if both occur within an interval of fewer than 30 seconds.
To simulate real conditions, it was decided that both V and A would run on machines having

3Either Bitcoin or Ethereum.
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Figure 3.3: Setup Simulated by the Framework

different public IP addresses. Another modification in the framework to simulate this design is a
direct channel between V and A to keep A connected to the same set of peers as V. A real attacker
would follow the steps described in the previous paragraph. Additionally, during a simulation, the
framework has access to the victim’s machine; therefore, network conditions are applied directly
at the source instead of at an on-path device. Finally, the framework sets up a reference node R
connected to a set of pre-selected peers following the same conditions used for V and A in the case
of Bitcoin and random peers for Ethereum.
The source code of both Bitcoin Core and Geth clients has been modified. Extra logging is in-
troduced to keep track of exchanged messages from or to nodes V, A, and R. All advertising and
broadcasting of transactions has been deactivated for A only. Because A is a passive4 actor, it is
possible to record experiments where the attacker sees fV = 1 of the victim’s neighbors and later
strips off some neighbors from the resulting logs to simulate different values of fV with a single
recording. Finally, only for Ethereum, incoming connections have been disabled for V to bypass
the required port scan on the neighbor’s machine, permitting the attacker to discover the listening
port. This does not change the protocol’s behavior, as connections are not handled differently based
on whether they are incoming or outgoing, but it simplifies the simulation within the framework.

3.2.1 Scripting

Let us examine the different scripting components that enable and constitute the framework. All
scripts can also be used in a stand-alone manner. For Bitcoin, there are:

peers.py
Queries the external API of the leaderboard hosted on https://bitnodes.io/ and generates
a set of peers complying with filters discussed in 2.1. This set of peers can be integrated in
the configuration files of V, A and R.

4Passive only regarding transactions broadcast in the networks.

https://bitnodes.io/
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sync.py
Freezes the current set of common peers and applies network deteriorating rules to a fraction
of the victim peers. This script has a delay prior to the stabilization of the set of common
peers because of the 20-minute grace period before dropping a peer. This script runs until
interrupted and resets all tc rules before quitting.

record.sh
Activates the internal logging of Bitcoin nodes and records all logging related to inv, getdata
and tx messages. Runs until interrupted and resets Bitcoin’s internal logging before quitting.

tx.sh
Executes a transaction on node V. This script contains a sleeping period before and after
executing the transaction corresponding to the total recording time of an experiment.

auto.sh
Combines record.sh and tx.sh to enable automatic recording of experiments.

And for Ethereum we have:

ethereum.sh
Set up a private Ethereum network composed of a victim, an attacker, and a few mining
third-party nodes. Can be used for local testing.

sync.py
Keeps the set of common peers shared by V and A in sync. Needs to run continuously in the
background on the attacker’s machine.

deter.py
Applies network deteriorating rules on a fraction of the victim’s peers. To be run on the
victim’s machine.

record.sh
As for Bitcoin, the internal logging of the Ethereum nodes is activated and all advertising or
broadcasting messages are recorded. Runs until interrupted and resets Ethereum’s internal
logging prior to quitting. To be run on the victim’s machine.

tx.sh
Similarly to Bitcoin, it executes a transaction on node V. Includes a sleeping period before and
after execution of the transaction corresponding to the total recording time of an experiment.
To be run on the victim’s machine.

auto.sh
As with Bitcoin, it combines record.sh and tx.sh to enable automatic recording of experi-
ments. To be run on the victim’s machine.

Making use of the modified Bitcoin Core and Geth clients combined with the above described
scripts, it is possible to simulate attacks according to the design described in 3.2 with various levels
of power.



Chapter 4

Evaluation

Results and outcomes of this thesis are not intrinsically quantifiable when discussing the funda-
mental framework produced to collect data as a first step against any attack relying on the design
described in 3.2. Nevertheless, proof-of-concept analysis was conducted in order to demonstrate
the usefulness of this thesis, which may pave the way for preventing new types of de-anonymization
attacks against Bitcoin and Ethereum users.

4.1 Bitcoin

A first experiment was conducted to measure the delay introduced to the victim’s view. The setup
was as follows: both the victim and attacker were connected to the same set of neighbor peers,
but V and A weren’t connected to one another. During this experiment, the attacker saw fV = 1
connections. A packet drop percentage of 25 − 30% and a delay of 1000 milliseconds was applied
to 100% of the victim’s peers. The recording time ranged between 2 and 5 hours. The extracted
statistics are listed in table 4.1, which shows that the victim’s view was delayed up to several sec-
onds in comparison with the view of the attacker. It is important to remember that Bitcoin Core
nodes apply diffusion of transactions with a mean delay of 5 seconds.

Duration Drop
(%)

Common TXs
(%)

Only Victim
(%)

First Attacker
(%)

Mean Adv. Attacker
(seconds)

5h 30 94 5 85 1.47
3h 30 94 5 84 7.88
5h 30 93 5 76 6.85
3h30min 30 96 3 72 23.12
2h 30 93 4 97 4.52
3h 25 95 3 99 41.39
3h 25 84 12 99 15.50

Table 4.1: Experiment - Delayed View

An interesting metric to examine for a particular recording is the percentage of transactions
seen only by the victim. This metric is unusually high when compared with the percentage seen
only by the attacker. In order to seek an explanation for this difference, another experiment was
conducted as follows. A first recording of logs was begun on both node V and A. After a delay of

14
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20 minutes, a second recording was started in parallel with the first, again on both nodes. After
an additional 20 minutes, both recordings were stopped. The resulting statistics of the second
recording are presented in table 4.2, which reveals that 25% of all transactions are seen only by
the victim node V. All transactions seen by the attacker during the first recording were extracted
and compared with the transactions seen only by the victim during the second delayed recording.
Common transactions were removed from the second set, the set of transactions seen only by the
victim during the second recording. The results indicate that only approximately 3% of the original
25% of all transactions were actually not seen by the attacker during the first or second recording.
This finding demonstrates that most of the attacker’s unseen transactions during a recording were
delayed transactions that were seen by the attacker before the recording is started. The remaining
unseen 3% of the original 25% of all transactions may be explained by the fact that transaction
broadcasting in the Bitcoin protocol is best effort, and the only guarantee that exists is that a node
eventually receives a transaction.

Common TXs
(%)

Only Victim
(%)

First Attacker
(%)

Mean Adv. Attacker
(seconds)

67 25 85 3.57

Table 4.2: Experiment - Transactions Seen Only by Victim

A second experiment was conducted in which the victim and attacker were connected to the
same set of peers; this time, V and A were connected to each other. The fraction of connections
seen by the attacker was again fV = 1, but no packet dropping percentage or delay was introduced,
and all network conditions were left untouched. The recording time amounted to 10 minutes. Node
A used the original implementation of transaction advertisement and broadcasting. The extracted
statistics are given in table 4.3, which shows that, in comparison with the first experiment, the
percentage of transactions only seen by either V or A was very low and similar in value. Another
important observation is that, since the network conditions of the victim remain untouched, the
percentage of transactions seen first by either V or A was approximately 50% each.

Common TXs
(%)

Only Victim
(%)

First Attacker
(%)

95 3 47
94 3 47
97 1 47
97 2 46
97 1 47
98 1 46
97 2 47
94 3 48
91 4 44
91 4 46

Table 4.3: Experiment - No Deterioration
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From these two experiments and the basic analysis conducted, we conclude that the view of V
may be delayed by the attacker by an amount of time in units of seconds. As a result, the attacker
can expect to see most transactions before the victim does. This observation is interesting, as the
attacker may take action in light of the powerful knowledge that he or she is able to obtain: a
network view similar to that of the victim but with an advantage in time.

4.2 Ethereum

As for Ethereum, two experiments were conducted that included proof-of-concept analysis to
demonstrate the usefulness of the data collected through the framework. A more deep and complete
analysis of the data must be conducted to extract more accurate and meaningful results.
The setup for both experiments was the same. Both the victim and attacker were connected to
the same set of peers, and nodes V and A were connected to one another. The fraction of the
connection seen by the attacker was fV = 1. The applied network conditions for the victim’s con-
nection was a packet dropping percentage of 0% and a delay of 1000 milliseconds. The recording
time amounted to 20 minutes. For these experiments, node A used the modified advertisement and
broadcasting functions, i.e., no transaction advertisement or broadcasting was done by A. The first
experiment deteriorated 50% of the victim’s connections, while the second experiment deteriorated
100% of the connections. A total of 10 recordings were conducted for each experiment.
In order to predict which transactions originated from the victim node V, a few simple features
were extracted from each attacker’s recordings and then combined into a single dataset of labeled
samples. The features generated per transaction were as follows: the percentage of reporting peers,
whether the victim reported the transaction, whether the victim reported the transaction prior to
all other peers, the victim’s advantage1 or disadvantage, the mean interval between reporting peers,
the median interval between reporting peers, the skipping score, and the deteriorating score2. This
dataset was fed to a very basic isolation forest trained on 50% of the non-outliers3 and outliers.
The other 50% of non-outliers and outliers were predicted4 as follows by the isolation forest:

Conn. Deteriorated
(%)

Outliers
(Accuracy)

Normal
(Accuracy)

50 1.0 0.96
100 1.0 0.97

Table 4.4: Predictions - Isolation Forest

This analysis is only a toy example and proof-of-concept that indicates that the recorded data
may contain useful information to de-anonymize transactions from a given victim. It is assumed
and expected that, in this analysis, the most prevalent feature detected by the isolation forest is
that the first peer to report an outlier transaction is the victim itself.

1If the victim reports a transaction 2.3 seconds before everyone else, then the victim’s advantage is 2.3.
2These two scores are explained in appendix A.
3In these experiments, an outlier is a transaction originating from the victim node V.
4Due to the small number of samples the accuracy is very sensitive to the used randomness to generate the forest.
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Outlook

This semester thesis presents an automated and integrated way of recording experiments assuming
the design discussed in 3.2. These recordings may serve as the foundation for data analysis, timing
analysis, machine and deep learning techniques, and other types of analysis. Attacks can be tested
against real-world data recording happening on Bitcoin and Ethereum’s mainnets with different
kinds of parameters, such as the power or transaction advertisement and broadcasting algorithm
of the attacker. The framework would directly benefit from the following two extensions:

Advertisement and Broadcasting Mode
As of now, different modes of advertisement and broadcasting of new transactions have to be
changed manually in the code. The code must be compiled, and the nodes must be restarted
with the new clients. A useful extension would be to integrate automatic mode changes for
the attacker’s node through an API. Three example modes are:

Diffusion
The standard mode for Bitcoin, in which the advertisement is delayed by a random
amount per neighbor peer. Implementing this mode for Ethereum is illogical.

Sniping
The standard mode for Ethereum, in which all new transactions are instantly advertised
to neighboring peers.

NOOP
A mode in which the attacker’s node does no advertisement or broadcasting at all. The
attacker node is passive considering transaction broadcasting.

Secure the RPC Server
Since the framework uses Bitcoin and Ethereum’s mainnets, transactions consume BTC or
ETH worth real money. The Bitcoin and Ethereum nodes have RPC servers running in order
to interact with the nodes through an API. To date, this arrangement is not problematic for
Bitcoin since all nodes run on the same machines and the RPC servers listen on localhost.
As for Ethereum, the RPC servers must listen on the public IP address of the machines in
order for one machine to communicate with another. This setup opens the RPC servers to the
external world and may lead to node hijacking or a compromised wallet. The current solution
is a firewall rule blocking all connections except from selected IP addresses.

17
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5.1 Future Work

The following three ideas may serve as the foundation for future theses to build on this framework:

Attacks
The first rather self-evident idea is to use the framework to record experiments and to test
different kinds of attacks against the data. Two attack ideas are:

Sniping
In this experiment, the attacker uses the sniping mode of advertisement and broad-
casting. Although this mode is Ethereum’s default mode, it is better to modify the
algorithm so that the attacker sends out advertisements only and not transaction mes-
sages. Consequently, a peer will always request a transaction, and the attacker has a
guarantee that the peer didn’t yet see that particular transaction. In this experiment,
the goal is to delay the victim’s view long enough to give the attacker time to snipe all
new transactions to all of the attacker’s peers. Thus, the attacker should deteriorate
100% of the connections. If the delay is very large, the attacker will receive external
transactions long before the victim and will have time to snipe the transaction to the
victim before another peer sends it. The victim will request that transaction, and the
attacker has the guarantee that the transaction does not originate from the victim node.
Transactions originating from the victim node will be seen by the attacker before any
neighbor peer, and the attacker will have time to snipe that transaction to all of the
attacker’s neighbors, who are also the victim’s neighbors. All peers will request that
transaction. Since no neighbor will have seen that transaction, it can only originate
from the victim.

Two Sets
In this experiment, the attacker uses the NOOP mode of advertisement and broadcast-
ing and listens passively. The goal is to create two sets of peers, namely, those who
are deteriorated by the attacker and those who are not. If the attacker deteriorates
50% of the connections and the delay introduced by the deterioration is very large, far
larger than the average network latency, then transactions originating from the victim
should have a pattern seen by the attacker of two distinct sets of peers reporting the
transaction with a delay in between. First all non-deteriorated peers will report the
transaction since the path of the transactions is in two hops: from the victim to the
non-deteriorated peer, and from that peer to the attacker. Since the introduced delay
is much larger than the average network latency, the fastest way for the transaction to
reach the attacker through a deteriorated peer is in three hops: first from the victim to
a non-deteriorated peer, then from that peer to the deteriorated peer, and finally, from
that peer to the attacker. Thus, both sets should report the transaction of the victim
with some network latency in between. This particular pattern should not appear with
external transactions.

Better Network Deterioration
Replace the tool tc and make it possible to apply deteriorating conditions on a per packet
basis. For Bitcoin, this process is easier. Since packets are not encrypted, the attacker can read
the packets and instantly forward packets such as pings or blocks while dropping or delaying
packets about transactions, such as advertisements, requests, or transaction messages. The
process is more complicated for Ethereum due to encryption. The attacker can only make
a guess about the content of the packets. It might be possible to predict which packets are
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pings, transactions, or blocks based on the packets’ total size. Pings are expected to be very
small, transactions somewhat larger, and blocks even larger. With packet size analysis, it
may be possible to predict reliably the type of message in a packet and apply deteriorating
conditions accordingly.

Test-labs
Extend the basic Ethereum test-lab and scale it to a size usable for testing and even attack
execution. The conditions should be comparable to the ones on mainnet and should thus
include participating nodes and simulated network conditions that mimic real-world latency.
This kind of test lab is especially interesting for Bitcoin, as the transaction fee may increase
over 1 USD, and experiments may thus become a cost factor.



Chapter 6

Summary

Pseudonymity can be confusing, as it may give a false impression of anonymity. It is difficult to
fully grasp the complexity of the internet stack combined with the complexity of the Bitcoin and
Ethereum protocols. This complexity increases the attack surface for bad actors presented with
a vast range of potential exploitable processes. As previously mentioned, pseudonymity can be
quantified in terms of the probability of successful linkage between a pseudonym and an identity.
To help keep the users of Bitcoin and Ethereum pseudonymous, the final goal of this semester
thesis was to propose an automated, all-inclusive, and flexible framework capable of executing
various types of experiments assuming different levels of attacker power and behaviors. At the
same time, simulation of these attacks should be kept as simple as possible within the framework.
Each step transforming the attack setup in the real world into the setup in the simulation was
verified to not break equivalence. In sum, simple toy examples of analysis were conducted on
recorded experiments to introduce the useful nature of the data generated. To encourage projects
related to this work, we provide interesting starting points for future theses.

20
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Appendix A

Appendix

A.1 Score Features

Let’s recall the setup of the experiments described in 4.2. The attacker sees fV = 1 of the victim’s
connections and he or she applies a packet drop rate of 0% and packet delay of 1000 milliseconds.
The attacker’s advertisement and broadcasting algorithm is NOOP as described in 5. We define
the skipping score S and deteriorating score D as follows:

p =
n∑

i=1

i (A.1)

S =

∑n
i=1 ti
p

(A.2)

D =

∑n
i=1 ei
p

(A.3)

where n is the total number of peers of the attacker, ti is equal to i if the ith peer to report the
transaction is not deteriorated, otherwise 0, and ei is equal i if the ith peer to report the transaction
is deteriorated, otherwise 0.
These scores are especially interesting for the first experiment, with 50% of the victim’s peers
deteriorated, as they partition the two sets of peers reporting a victim’s transaction as described
in 5.1. As the attacker deteriorates 50% of the victim’s peers, the two sets are expected to have
the same size, thus, the first set of reporting peers is expected to produce a low S score and the
second set of peers reporting is expected to produce a high D score. Transactions not originating
from the victim are expected to have similar S and D scores.

A.2 Tutorial

# This tutorial is only a sketch. Please refer to the framework’s source code,

script and configuration files as it makes some assumptions about folder

structure and IP addresses.

# Bitcoin Core and Go Ethereum’s code base contain strings "TODO CORE" and

"TODO GETH" to mark additional or modified code.

$ REPO=<absolute path to the root directory of this framework>

I



APPENDIX A. APPENDIX II

A.2.1 Bitcoin Core

Compile

# Install main dependencies.

$ sudo apt install build-essential libtool autotools-dev automake pkg-config

bsdmainutils python3 libevent-dev libboost-system-dev libboost-filesystem-dev

libboost-test-dev libboost-thread-dev

# Install dependency for wallet.

$ wget http://download.oracle.com/berkeley-db/db-4.8.30.NC.tar.gz

$ tar -xvf db-4.8.30.NC.tar.gz

$ cd db-4.8.30.NC/build_unix

$ mkdir -p build

$ BDB_PREFIX=$(pwd)/build

$ ../dist/configure --disable-shared --enable-cxx --with-pic --prefix=$BDB_PREFIX

$ make install

# Compile Bitcoin Core with configuration.

$ cd $REPO/bitcoind

$ ./autogen.sh

$ ./configure CPPFLAGS="-I${BDB_PREFIX}/include/ -O2"

LDFLAGS="-L${BDB_PREFIX}/lib/" --without-gui --without-miniupnpc

$ make check

# Compile Bitcoin Core when already configured.

$ cd $REPO/bitcoind

$ make check

Run

$ cd $REPO/bitcoind/src

$ ./bitcoind -conf=$REPO/bitcoind/bitcoin-attacker.conf

$ ./bitcoind -conf=$REPO/bitcoind/bitcoin-victim.conf

$ ./bitcoind -conf=$REPO/bitcoind/bitcoin-ref.conf

Experiment

$ cd $REPO/bitcoind/src

$ LOSS_PERC_FOR_DETER_CONN=<packet drop percentage>

$ DELAY_MS_FOR_DETER_CONN=<packet delay in milliseconds>

$ CONN_DETER_FRACT=<percentage of peers to deteriorate for the victim node>

$ CONN_NON_DETER_STILL_CONNECT=<percentage of non-deteriorated peers the

attacker still connects to>

$ NEXT_TX_ID=<ID of the next transaction to execute>

$ HOW_MANY_TX_TO_RECORD=<how many transactions to record in total>

# In a first terminal.
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$ python3 ../sync.py --exec 100 $LOSS_PERC_FOR_DETER_CONN

$DELAY_MS_FOR_DETER_CONN $CONN_DETER_FRACT $CONN_NON_DETER_STILL_CONNECT

# In a second terminal.

$ bash ../auto.sh $LOSS_PERC_FOR_DETER_CONN $DELAY_MS_FOR_DETER_CONN

$CONN_DETER_FRACT $CONN_NON_DETER_STILL_CONNECT $NEXT_TX_ID

$HOW_MANY_TX_TO_RECORD

A.2.2 Go Ethereum

Compile

# Install main dependencies.

$ sudo apt install build-essential

$ sudo snap install go --classic

# Compile Go Ethereum.

$ cd $REPO/ethereum

$ make all

Run

$ cd $REPO/ethereum

# On the attacker’s machine.

$ ./attacker.sh

$ nohup ./build/bin/geth --type ref --verbosity 3 --cache 4096 &>

.ethereum/log/ref.log &

# On the victim’s machine.

$ ./victim.sh

# On the attacker’s machine again.

$ nohup python3 -u sync.py --exec &> .ethereum/log/sync.log &

Experiment

$ cd $REPO/ethereum

$ LOSS_PERC_FOR_DETER_CONN=<packet drop percentage>

$ DELAY_MS_FOR_DETER_CONN=<packet delay in milliseconds>

$ CONN_DETER_FRACT=<percentage of peers to deteriorate for the victim node>

$ CONN_NON_DETER_STILL_CONNECT=<percentage of non-deteriorated peers the

attacker still connects to>

$ NEXT_TX_ID=<ID of the next transaction to execute>

$ HOW_MANY_TX_TO_RECORD=<how many transactions to record in total>

# In a first terminal on the victim’s machine.

$ python3 deter.py --exec $LOSS_PERC_FOR_DETER_CONN $DELAY_MS_FOR_DETER_CONN
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$CONN_DETER_FRACT $CONN_NON_DETER_STILL_CONNECT

# In a second terminal on the victim’s machine.

$ bash auto.sh $LOSS_PERC_FOR_DETER_CONN $DELAY_MS_FOR_DETER_CONN

$CONN_DETER_FRACT $CONN_NON_DETER_STILL_CONNECT $NEXT_TX_ID

$HOW_MANY_TX_TO_RECORD
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