
Transparent Field Device Management
for Complex Cyber-Physical Industrial

Automation Systems
Semester Thesis

Jonas Brütsch, ETH Zürich

brujonas@ethz.ch

Interaction- and Communication-based Systems Research Group
Institute of Computer Science

University of St.Gallen

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Iori Mizutani and Prof. Dr. Simon Mayer, University of St.Gallen

Prof. Dr. Roger Wattenhofer, ETH Zürich

January 3, 2021

Acknowledgments

At this point, I would like to thank my supervisor, Iori Mizutani, for supporting
and guiding me throughout the thesis. Not only was he able to support me
with his knowledge in the field of industrial automation, but he also taught me
programming-specific and general working practices. I am very grateful for his
support especially in these difficult times.

I also want to thank Professor Roger Wattenhofer and Professor Simon Mayer
for giving me the opportunity to work on this exciting topic. Thanks to their
friendly and uncomplicated way of communicating, it was pleasant to do this
work in such an unusual setting.

For making such a collaboration possible, I would also like to thank the stu-
dent administration of the D-ITET, especially Doris Doebeli, who always very
kindly supports and advises students in exactly such situations.

i

Abstract

As industrial automation systems become more and more complex with the adap-
tion of Industry 4.0, new requirements arise for the increasingly interconnected
systems. A central requirement for such systems is the accessibility of device
information. However, due to abstraction and the use of heterogeneous field de-
vices, this device information is often hidden in the system and not accessible
from an operational point of view.

To address this problem, this paper presents a mechanism that enables trans-
parent field device management for heterogeneous devices. Furthermore, the im-
plementation of a simple proof-of-concept automation system is discussed, which
applies the developed mechanism and enables further research.

ii

Acronyms

FSM Finite-state machine. 11

IAS Industrial Automation Systems. 1, 2, 4, 6, 19

IIoT Industrial Internet of Things. 1

IoT Internet of Things. 1

MCU Microcontroller unit. 8, 11, 14, 15

PLC Programmable logic controller. 6

PoC Proof of concept. 2, 4, 13, 16

UUID Universally Unique Identifier. 5

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 2

1.3 Outline . 3

2 Field Device Management and Control 4

2.1 Field Devices . 5

2.1.1 Device Profile . 5

2.2 Field Device Controller . 6

2.2.1 Device Management . 6

2.2.2 Dynamic Device Configuration 6

2.3 Device Management Gateway . 7

2.3.1 Device Operation . 7

2.3.2 Profile Management . 10

2.3.3 Service Exposure and Discovery 12

3 Implementation 13

3.1 Field Level . 14

3.2 Field Device Controller . 15

3.2.1 uArm Controller . 15

3.2.2 Controller Firmware . 15

3.2.3 Line Protocol . 15

3.3 Gateway Implementation . 18

4 Conclusion and Future Work 19

4.1 Future Work . 19

Bibliography 20

iv

Contents v

A Hardware Component Description A-1

A.1 uArm Swift Pro . A-1

A.2 uArm Controller . A-3

Chapter 1

Introduction

1.1 Motivation

The modern world is slowly turning into a networked world where not only people
but also physical objects are connected. Especially with the rise of the Internet
of Things (IoT), new technologies and their potential applications have emerged.
This trend is also widely seen in the industrial sector, where the Fourth Industrial
Revolution, also called Industry 4.0, arises. One of the key enabler for this
digital transformation is the Industrial Internet of Things (IIoT), which applies
the principles of the IoT to industrial applications [1].

In industry, the automation of processes has been a core topic for decades,
therefore the design and operation of Industrial Automation Systems (IAS) are
well researched and understood. Still, one of the main challenges of IAS is the het-
erogeneity of field devices (e.g., data formats, protocols, and communication in-
terfaces), which makes automation systems more and more complex. To increase
uniformity and consistency of automation system management, many modern
factories are built based on a hierarchical model as often referred to as "Automa-
tion Pyramid" (standardized as IEC 62264 [2], see Fig. 1.1).

When these traditional IAS are enhanced to a more interconnected system
by applying the IIoT principles, transparency becomes a central requirement for
the system. The problem of heterogeneity and the modularisation of the classical
model, however, make it difficult to provide necessary explanations about the
automation system at higher levels. If, for example, a manufacturing process
stops working due to the failure of a single field device, it is difficult for the factory
operator to locate the fault as most manufacturing steps can only be accessed in
an abstracted form at the supervision level. In addition, the adaption of Industry
4.0 often requires a redesign of the manufacturing front and replacements of
outdated appliances, which leads to a more complex system architecture that
further reduces transparency. Many state-of-the-art interconnecting technologies
typically assume an IP-ready middlebox for edge peripheral devices to access
sensor data and drive actuators. Unfortunately, edge devices are not always
equipped with a dedicated middlebox, and the use of a generic middlebox would

1

1. Introduction 2

make the implementation details between peripherals and middleboxes hidden
from the application services.

Figure 1.1: Automation Pyramid1

1.2 Objective

The objective of this project is to create a Proof of concept (PoC) manufactur-
ing automation system which can be used as a base-system for future research
in designing novel IAS architectures. To investigate on the problem of trans-
parency, the focus of this thesis is on designing a mechanism to represent device
accessibility information in an open data format. Specifically, a registration and
interaction pattern should be designed to enable the configuration and opera-
tion of field devices. The proposed mechanism should, furthermore, absorb the
heterogeneity problem of physical device integration (Section 1.1) by supporting
different types of interfaces and protocols.

1M.I.A.C. Automation: http://www.miac-automation.com/mes-oee-track-and-trace

http://www.miac-automation.com/mes-oee-track-and-trace

1. Introduction 3

1.3 Outline

To facilitate reading, the structure of the report is briefly explained in the fol-
lowing paragraph.

The main body of this report is divided into two chapters. The first, Chap-
ter 2, introduces the abstract principles and mechanisms created to enable a
transparent and flexible field device management which supports heterogeneous
devices. The second, Chapter 3, describes all implementation-specific details of
the PoC manufacturing automation system. Both chapters are subdivided into
three sections, each representing one layer of the entire system.
The last chapter concludes the insights gained and briefly summarises the con-
tribution made.

Chapter 2

Field Device Management and
Control

Similar to traditional IAS introduced in Section 1.1, the PoC manufacturing sys-
tem is based on a 3-layer architecture. Fig. 2.1 illustrates how these layers, the
Gateway, the Controllers and several field devices are combined to form a man-
ufacturing automation system. In the context of this report, a manufacturing
automation system refers to a simple implementation of a general IAS. The cen-
tral task of an IAS is to execute specific Actions on field devices in order to carry
out a manufacturing process. In the following sections, control messages and a
global feedback mechanism are presented, which enable a transparent control of
simple and also more complex field devices.

Manufacturing
Automation
System

Field Level

Application
Client

Gateway

Controller 2Controller 1

M

Figure 2.1: Overview of the automation system

4

2. Field Device Management and Control 5

2.1 Field Devices

A field device is a single technical appliance which can influence the surround-
ing environment and/or has some sort of sensing capabilities. At the field level,
several field devices work together to perform manufacturing processes and pro-
vide the system with relevant information for the operation of the process, such
as sensor measurements. The functional complexity of a field device can be as
simple as a light sensor or more sophisticated like a robotic arm.
We hereby introduce a term Action to refer to generic operations on field devices
such as controlling an actuator and reading out sensors. An Action of a field
device can be, for example, a single reading of a certain sensor value or a specific
movement of a robotic arm. To be able to manage and control all the differ-
ent types of devices, a uniform device description must be established, which is
further discussed in the following section.

2.1.1 Device Profile

A Device Profile represents a virtual instance of a physical device. Such a profile
contains necessary meta information for the data access and interactions with
the corresponding device. The meta information stored in the Device Profile
includes:

• Field Device Identifier

• Profile State (see Section 2.3.2)

• Driver Identifier

• Driver Specific Configuration

Two different types of identifiers are used for the device identification. To identify
the device on a local scope, a shorter ID, later referred to as Profile ID, is used. For
a global scope, the longer Universally Unique Identifier (UUID) was employed to
globally identify a unique Device Profile [3]. In this context, the local scope refers
to the application within a Controller and its directly attached Field Devices. On
the Gateway, the Profile ID is only used for Device Profile management and will
not be accessible for external clients. The global scope on the other hand refers to
the external application. The association between these two identifiers is done on
the Gateway so that the lower layers only process the more compact Profile ID.
This provides an efficient handling of profiles as the required network bandwidth
and memory space decreases.

To manage all devices of the system, the state of each device in use has to
be carefully monitored. For this reason, each Device Profile is assigned a Profile
State to indicate whether the corresponding device is currently available or not.

2. Field Device Management and Control 6

All possible Profile States of a Device Profile are described in Section 2.3.2.
Due to the heterogeneity of the field devices, Device Profiles must support a
variety of metadata formats. This is achieved by using the driver-based device
handling scheme described in Section 2.2.2.

2.2 Field Device Controller

The purpose of the Controller, similar to a Programmable logic controller (PLC)
in a traditional IAS, is to make all field devices accessible to the Gateway and to
perform simple control operations. More precisely, the Controller has to translate
incoming requests from the Gateway and execute the Actions on the correspond-
ing devices. Additionally, each Action on a device should trigger a feedback
to the Gateway to return relevant information and maintain a consistent global
state. To ensure transparency, operations on the Controller should be kept as
simple as possible and Actions should not be abstracted whenever possible. For
example, if the Controller translates a complex manoeuvre of a robotic arm into
several atomic Actions, some of the information about the current state of the
robotic arm could be lost due to the abstraction on the Controller. Unlike PLCs,
the Controller should be able to configure and dynamically initialise new devices
without having to update the firmware of the controller hardware. By making
this function accessible to external clients through the Gateway, a transparent
operation of the field level is possible as the configuration settings of the field
devices are available on the client side and not hidden within the Controllers
firmware.

2.2.1 Device Management

To keep the structure of the Controller as simple as possible, all Device Profiles
are managed and stored on the Gateway. Controllers only cache the driver specific
configuration settings in order to reduce redundant data exchange in the network.

2.2.2 Dynamic Device Configuration

One of the key features of the proposed system is the dynamic device configura-
tion. To be able to dynamically install and switch physical devices, a driver-based
configuration scheme was applied. Such a driver-based system has the advantage,
that once a corresponding driver is installed on the Controller, the firmware of
the Controller has not to be modified and all configurations can be done on a
higher level. This requires, however, a dedicated driver for the field device in use.

2. Field Device Management and Control 7

Driver Based Controller Firmware

A driver needs to implement the following two main tasks, the initialisation
of a device on the controller hardware and the execution of an Action on this
device. When a new request is received from the Gateway to the Controller,
the Controller parses the request and forwards it to the associated driver. In
order to identify each driver, each driver must have a unique driver name. The
functionality of such a driver can be as simple as a single digital I/O pin controller
or a more complex, device specific, controller. To preserve transparency over the
entire system, no essential information should be lost when using these drivers.
Therefore, the level of abstraction of the drivers has to be carefully designed.

Registration Messages

To initialize and configure a new field device on the Controller, the Gateway
sends a Registration Message. This Registration message contains a unique Pro-
file ID, a unique driver name and all driver-specific configuration settings. On
controller-side, the configuration settings get cached using the Profile ID as an
index to speed up lookups. After the corresponding driver has initialized the
device, the Controller sends an ACK response to acknowledge the successful reg-
istration. During the initialisation of a device, the Gateway has to ensure that
no other request is sent to the Controller in order to guarantee an undisturbed
initialisation.

2.3 Device Management Gateway

The highest component in the system, the Device Management Gateway, acts as
an entry-point for external service applications. Besides exposing the automation
system to application clients, the Gateway is also responsible for managing and
monitoring all Controllers and registered field devices.

2.3.1 Device Operation

The following sections present the basic procedure to perform Actions on a device
and further discuss a mechanism to handle complex devices and their applica-
tions.

Action Messages

After a device has been successfully registered, the Gateway can send Action
Messages to execute specific commands or read sensor values on a field device.

2. Field Device Management and Control 8

Action messages, similar to Registration messages, contain a unique Profile ID,
a unique driver name and driver-specific Action fields. To handle events and
asynchronous Actions, an additional field is included into the message structure.
This will be discussed in the following sections. Once an Action is completed, the
Controller sends a DATA message to the Gateway to confirm successful execution
and return relevant information.

Blocking vs. Non-Blocking Actions

Depending on the field device, some Actions can be executed almost instanta-
neously (e.g. digital reading), while others that are processed asynchronously are
prolonged by delays (e.g., moving actions of robots). In the following we refer to
the instantaneous Actions as non-blocking and the asynchronous Actions as block-
ing Actions. The procedure of such blocking and non-blocking Action requests
are shown in Fig. 2.2. In a blocking Action all devices connected to the same
Controller are blocked until the Action is completed. Note that this problem
only occurs when the Controller is implemented on a constrained device such as
a single-core Microcontroller unit (MCU). To avoid such blocked phases, an ad-
ditional field is included in the Action message to indicate asynchronous Actions.
After an asynchronous Action has been started, the Controller sends an ACK
message to the Gateway to confirm receipt of the Action. The Gateway may now
send further requests to other devices connected to the same Controller. Upon
completion of the asynchronous Action, a DATA message is sent to the Gateway
for confirmation. To detect the completion of the asynchronous Action on the
Controller, a simple event handling mechanism is implemented.

Event Handling

In this context, we define an Event as an unsolicited or asynchronous reaction
of a field device. This can be, for example, the feedback of a pressed button or
that of a robotic arm after it has completed a movement. For each registered
Device Profile the Controller stores whether an Event of the corresponding device
is expected or not. When a Profile expects an Event, the Event handling function
of its driver is called to check if an Event has actually occurred. If it has, then
the Controller returns a DATA message to the Gateway to report the Event. Any
driver that supports Events must have an Event handling function implemented.

Fig. 2.2 shows the flow of a device Registration (grey dots), a simple blocking
Action (red dots) and a non-blocking Action with the Event handling mechanism
described in this section (green dots).

2. Field Device Management and Control 9

Field Device Controller Gateway Application
Client

Create
Profile

 Request
Registration

Registration
 Response

Li
st

en
 fo

r
 E

ve
nt

s

Bl
oc

ki
ng

 P
ha

se
W

ai
tin

g
 P

ha
se

Return DATA

Request
 Action

Send G- code
 (optional)

Read data

Read data

Read data

Return ACK

Read data

Request
 Action

Request
 Action

Return DATAReturn DATA

Return DATA

Request
 Action

Figure 2.2: Sequence of blocking vs. non-blocking Actions.

Sensor Polling

Some service applications may want to execute a certain Action periodically,
such as reading out sensor values. To reduce repetitive Action messages from
the client application, a polling-based request scheme can be applied. In such
a polling scheme, one component of the system has to manage the initiation
of a polling request. Configuring the reading intervals on the Controller would
result in less network traffic, but transparency would be lost. If, on the other
hand, polling requests are initiated on the client side, all information would be
available on the client, but the network overhead would be much higher. Since
both measures are important for a functioning system, choosing the Gateway for
initiating the polling requests seems to be the most suitable approach.

2. Field Device Management and Control 10

Fig. 2.3 illustrates how such a polling scheme can be configured. After the
profile has been successfully registered on the Gateway, a client can send a con-
figuration request to define the reading interval that will be used for polling the
sensor values. The Gateway then sends Action requests to the Controller at the
specified intervals to retrieve the current sensor values. The received values are
stored on the Gateway to be available for potential client requests.

Field Device Controller Gateway Application
Client

Request value

Return value

・
・
・

・
・
・

Create
Profile

 Request
Registration

Registration
 Response

Configure
read interval

Request
 Action

Read data

Return DATA

Co
nfi

gu
re

d
In

te
rv

al

Request
 Action

Read data

Return DATA

Figure 2.3: Configuration and flow of a polling scheme.

2.3.2 Profile Management

To ensure that no Controller or field device is congested by receiving multiple
requests, the Gateway must carefully monitor the Profile States of all registered
devices. A Device Profile can be in one of the four distinct states listed in

2. Field Device Management and Control 11

Table 2.1.

Profile State Description

UNREG The profile is created but not yet registered on a Controller.

IDLE The profile is registered and available for Actions.

BLOCKING
An action request has been sent to the device,
but no response has been received yet.
All devices connected to the same Controller are blocked.

WAITING The device is currently waiting for an Event.
Only requests to this specific device are blocked.

Table 2.1: Description of all profile states.

The life cycle of a Device Profile follows the Finite-state machine (FSM) de-
picted in Fig. 2.4. After the Gateway receives a Registration request for a new de-
vice from an application client, it forwards this request as a Registration message
to the corresponding Controller and awaits for a registration acknowledgement.
If the Controller is based on a constrained device such as a single-core MCU, all
devices connected to the same Controller are blocked while the device is being
registered. For simplicity, this intermediate step is not included in Fig. 2.4. To
handle the asynchronous Actions discussed in Section 2.3.1, the additional state
WAITING is employed. Since the Profile States are handled on the Gateway, the
transitions of the FSM are labelled from the Gateway’s point of view.

UNREGinit

q0

IDLE BLOCKING WAITING
 Request
Registration

Request
 Action

Receive DATA

Request
 Delete

Receive DATA

Receive
 ACK

Figure 2.4: Device Profile FSM.

2. Field Device Management and Control 12

2.3.3 Service Exposure and Discovery

Finally, available Actions of all the configured field devices shall be advertised
to the outside world through the Gateway. Upon registration of field devices
on a Controller, the supervising Gateway also creates an API for client applica-
tions, which compose an execution task by combining the exposed Actions. Such
exposed Actions at the Gateway (Services) are not bounded to one particular ar-
chitectural style like REST or RPC, and we leave this part open to maintain the
transparency of the end-to-end communication by choosing the right API as the
situation demands. One example of the Services is briefly introduced in Chap-
ter 3 together with the Gateway implementation and demonstrates how such a
Service can also become discoverable to service applications.

Chapter 3

Implementation

To apply the principles and mechanisms introduced in Chapter 2, a simple PoC
manufacturing automation system, let’s call it hereon Miniature Factory, was
built. This chapter describes the physical setup of the Miniature Factory and
goes into some important implementation-specific details. Fig. 3.1 shows the
setup of the Miniature Factory.

Figure 3.1: Setup of the Miniature Factory.

13

3. Implementation 14

3.1 Field Level

The Miniature Factory consists of several field devices to mimic a manufacturing
line. The robotic arm, uArm Swift Pro from UFactory 1, is the key device among
them. Each uArm has an integrated MCU which handles incoming commands
through UART on the USB serial interface and controls the robots’ movements.
UFactory provides a proprietary protocol based on the G-Code (standardized in
ISO 6983 [4]) to command the uArm. Since many actions of the uArm robots
are asynchronous, these robots are suited for testing more complex control pro-
cedures. To replicate a simple production line, the sensors and actuators listed
in Table 3.1 are used in combination with the robotic arms.

As field devices can be dynamically configured and installed in the system,
other sensors and actuators can be integrated to the Miniature Factory, if they
work with interfaces supported by the uArm Controller and have a dedicated
driver implemented in the firmware.

Field Device Interface Description

uArm Conveyor Belt Motor port 2 Conveyor belt (UFACTORY) to move
wooden cubes between two uArms.

uArm Slider Motor port Automatic slider rail (UFACTORY)
to move a uArm along the rail.

Ultrasonic sensor Digital port Ultrasonic Ranger v2.0 (Grove) used for
detecting objects on the conveyor belt.

Tube sensor Digital port Line Finder v1.1 (Grove) used to sense
if a wooden cube is available.

Color sensor I2C port I2C Color Sensor (Grove) used to detect
the colours of the cubes.

Table 3.1: Description of the Field Devices used in the Miniature Factory.

1https://www.ufactory.cc/pages/uarm
2Proprietary port of the uArm Controller specifically for the uArm slider and belt conveyor.

https://www.ufactory.cc/pages/uarm

3. Implementation 15

3.2 Field Device Controller

3.2.1 uArm Controller

To be able to integrate different types of field devices into the system, multiple
uArm Controllers were used. The uArm Controller is an ATmega2560-based Con-
troller board which is specifically designed to control uArm and other peripherals
merchandised by UFactory, including some Grove accessories. Various interfaces
such as UART, IIC, digital ports and proprietary motor ports are available on
the Controller. For direct control, a joystick, some buttons and other devices
are also integrated on the Controller. A more detailed description of the uArm
Controller is given in Appendix A.2.

3.2.2 Controller Firmware

Since the Controller is based on an Arduino Mega 2560, the firmware can be
written in C++, supplemented with some Arduino-specific functionalities. Sev-
eral handler functions are implemented to forward incoming Registration and
Action request to the responsible drivers. In addition, a simple Event listening
mechanism is included to intercept possible Events from registered devices.

Driver Management

To apply the dynamic device configuration introduced in Section 2.2.2, we im-
plemented a specific driver for all field device types listed in Section 3.1. Each
driver provides an initialisation and an Action handling function. If a field device
should also be capable of handling Events, like introduced in Section 2.3.1, the
driver has to implement an additional function for Event handling. To simplify
the process of adding new drivers, an automatic driver initialisation script was
written that inserts several skeleton code snippets and adds a customised tem-
plate driver. In addition to the field device drivers, an MCU-specific driver is
implemented that enables control of the firmware version, monitoring of RAM
usage and a soft reset of the Controller.

3.2.3 Line Protocol

The Line Protocol is a custom protocol developed for the communication between
the uArm Controller and the Gateway. It uses Protocol Buffers [5] to boilerplate
the message packets in a machine-readable .proto open data format for cross-
platform implementations. With the Line Protocol, predefined messages can be
serialised and transferred via a USB interface.

3. Implementation 16

Protocol Buffers

Protocol buffers are a language-neutral and platform-neutral method to serialize
structured data. With automatically generated code, the encoding and decoding
of such messages can be seamlessly implemented in different languages. This
feature was used in the PoC system to generate protocol handlers written in
C++ and Python. More specifically, to generate the protocol handler on the
Controller side, Nanopb [6] was employed. Nanopb is an implementation of
Google’s Protocol Buffers designed specifically for memory-constrained embedded
systems. Since Protocol buffers are an efficient and fast way to serialize data, the
latency of the line protocol can be held below 1ms, which is small enough for the
intended purposes.

Message Structure

Two main message types are defined to implement the communication mecha-
nism between the Gateway and the Controllers described in Chapter 2. Request
messages, which are used to send control Actions to the Controller and Response
messages to send feedback to the Gateway. A Request message can either con-
tain a Registration message or an Action message. The first is used to initialize
a new device on the Controller and the latter is used to send control messages to
the corresponding device. To define the configuration and control settings, both
messages include a driver-specific sub-message. For clarification, Fig. 3.2 shows
the previously described message structure.

Message

Request Response

Registration Action

Figure 3.2: Tree diagram of the message structure.

The Response message contains a Response Code to distinguish between the
different types of responses discussed in Section 2.3.1. Possible Response Codes
and their meaning are listed in Table 3.2.

3. Implementation 17

Response Code Description

DEBUG The message is for debugging purposes only.

ERROR The message should raise an error exception on the
Gateway to handle possible initialization failures.

ACK
The message is used to acknowledge a received Action
or a completed Registration.
Apart from a device identification, it contains no data.

DATA The message is used to return raw data to the Controller
and report successful execution.

Table 3.2: Description of all Response Codes.

The following code snippet shows how such Protocol Buffer messages are
defined. Each field in a message has a specific type which (e.g. in the case of the
Response Code) can be an enumeration type. To restrict a message to contain
only one of multiple fields, the keyword oneof can be used. This enables efficient
coding while supporting heterogeneous message structures.

// message sent from Controller to Gateway
message Response {

ResponseCode code = 1;
uint32 profile_id = 2;
bytes payload = 3;

}

// message sent from Gateway to Controller
message Request {

oneof request_type {
Action action = 1;
Registration registration = 2;

}
}

Listing 3.1: Example structure of Protocol Buffer messages.

3. Implementation 18

3.3 Gateway Implementation

To manage the Device Profiles and control the uArm Controller, a simple Gate-
way implementation was written in Python. The Line Protocol Handler was
implemented using Protocol Buffer’s code generation and a custom class was cre-
ated for each driver to support the different field devices. For testing purposes,
the Device Management Gateway was run on a regular computer connected to the
uArm Controller via USB. Instead of a regular computer, the Gateway implemen-
tation can also be loaded onto a Linux box to create a stand-alone Manufacturing
Automation System. To enable the operation of a large number of field devices,
multiple uArm Controllers can be connected to the Gateway.

Chapter 4

Conclusion and Future Work

The mechanisms and patterns presented in this work enable transparent man-
agement and control of heterogeneous field devices. In addition, the dynamic
driver initialisation makes it possible to configure new devices at runtime and
thus simplifies rearrangements on the shopfloor. The functionality of these prin-
ciples could be validated through the implementation of the Miniature Factory.
In particular, the communication mechanism (e.g., the use of Protocol Buffers
for Field Device management messages) achieved a light-weight communication
scheme while maintaining transparent interaction between the service applica-
tions and hardware components. With the Miniature Factory, a basic system
was built to support future research on IAS architectures and their integration
into explainable systems.

4.1 Future Work

Since the diversity and number of the field devices tested in the Miniature Factory
is limited, the completeness of the Device Profile still requires further evaluation.
Specifically, the usability of the Device Profile must be thoroughly tested when it
is exposed to external service applications. This work focused more on the mech-
anisms within the autonomous system. To complete the structure of the system,
more research needs to be done on the interfaces to external service applications.
Furthermore, it would be interesting to investigate on what kind of characteristics
of the Device Profile and the generated API on the Gateway contribute to the
transparency of the system. To further improve the management of field devices,
a method needs to be developed to convey hardware requirements and setup
descriptions along with the Device Profile. This would simplify the operation
of an IAS. Following the trend of automation, it should be further investigated
whether different transparency requirements arise when the operation of an IAS
is controlled by humans or by machines. This also includes a consideration of
the extend of automation, e.g. which parts can be executed automatically and
which cannot.

19

Bibliography

[1] R. Rio, “What are iot, iiot and industry 4.0?” (accessed
Jan. 02, 2021). [Online]. Available: https://www.arcweb.com/blog/
what-are-iot-iiot-industry-40

[2] IEC, “62264-1: Enterprise-control system integration–part 1: Models and
terminology,” IEC: Geneva, Switzerland, 2013.

[3] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier
(UUID) URN Namespace,” Internet Requests for Comments, Network
Working Group, RFC 4122, July 2005. [Online]. Available: https:
//tools.ietf.org/html/rfc4122

[4] ISO, “6983-1: Automation systems and integration — Numerical control of
machines — Program format and definitions of address words — Part 1:
Data format for positioning, line motion and contouring control systems,”
International Organization for Standardization, Geneva, CH, Standard, 2009.

[5] “Protocol buffers,” Google, (accessed Dec. 23, 2020). [Online]. Available:
https://developers.google.com/protocol-buffers

[6] P. Aimonen, “Nanopb – protocol buffers with small code size,” (accessed
Dec. 30, 2020). [Online]. Available: https://jpa.kapsi.fi/nanopb/

[7] uArm Swift Pro – Developer Guide, UFACTORY, (v1.0.6).

[8] uArm Controller – User Manual, UFACTORY, December 2018, (v1.0.1).

20

https://www.arcweb.com/blog/what-are-iot-iiot-industry-40
https://www.arcweb.com/blog/what-are-iot-iiot-industry-40
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://developers.google.com/protocol-buffers
https://jpa.kapsi.fi/nanopb/

Appendix A

Hardware Component
Description

A.1 uArm Swift Pro

The uArm Swift Pro robotic arm is illustrated in Fig. A.1 and further specifica-
tions are given in Fig. A.2. These figures and a more detailed description of the
uArm Swift Pro can be found in the Developer Guide [7].

 4

2.Reference Frame

Figure A.1: Depiction of the uArm Swift Pro.
¨

A-1

Hardware Component Description A-2

 12

Specifications

Accessories

Integrated Pump Suction Diameter 5mm～10mm

Specifications

Weight 2.2kg

Degrees of Freedom 4

Repeatability 0.2mm

Max. Payload 500g

Working Range 50mm～320mm

Max. Speed 100mm/s

Connector Micro USB

Wireless Bluetooth 4.0

Input Voltage DC 12V

Power Adapter Input:100～240V 50/60Hz; Output: 12V5A 60W

Operation Temperature &
Humidity

0℃-35℃ 30%RH-80%RH

 noncondensing

Storage Temperature &
Humidity

-20℃-60℃ 30%RH-80%RH

 noncondensing

Hardware

Joint Type Customized Gearbox + Stepper
Position Feedback 12 bit Encoder

Reducer Customized ultra-thin Gearbox

Dimension(L*W*H) 150mm*140mm*281mm

Mother Board Arduino MEGA 2560

Material Aluminum

Baud Rate 115200bps

Extendable I/O Interface I/O *27，IIC *1，5V*1，12V*1，Stepper*1

Software

PC Control uArm Studio

App Control uArm Play

For Developer Python/Arduino/ROS

Feature Open Source

Joint Speed & Torque

 Angle Speed Lifetime Torque

Base Motor 0°～180° 40°/s >3000h 12kg⋅cm

Left Motor 0°～130° 40°/s >3000h 12kg⋅cm

Right Motor 0°～106° 40°/s >3000h 12kg⋅cm

End-effector Motor 0°～180° 60°/s 500h 2kg⋅cm

Figure A.2: Specifications of the uArm Swift Pro.
¨

Hardware Component Description A-3

A.2 uArm Controller

Fig. A.3 and Fig. A.4 give a more detailed description of the uArm controller.
All contents of this section are taken from the uArm Controller User Manual [8].

Product Introduction

uArm Controller is an open-source hardware based on Arduino MEGA 2560,
and has a wide range of extendable functions. It's compatible with various
peripherals and great for implementing your creative ideas.

Rotary Potentiometer

1.27mm 4P

IIC IIC Digital Digital

RGB LED

Power Switch

Button*4

USB Input

Micro SD Card Slot

Reset

128*64 OLED

ADXL345

Joystick

128K EEPROM

UART1-485

UART1-485

UART2-TTL

UART3-TTL

Type C*4
(for uarm connection)

BuzzerATMEGA2560

Table of Contents

01

Product Introduction

Hardware Parameters

Hardware Installation

Preset Demo Tutorial

Software Installation

Github Demo

Release Note

0 1

0 2

0 5

0 6

0 6

0 8

1 9

Extendable I/O

Figure A.3: Labeled illustration of the front and back of the uArm controller.
¨

Hardware Component Description A-4

02 03

Hardware Parameters

128X64 Display Pin Description

LCD_CS
LCD_RES
LCD_CD
LCD_SCK
LCD_MOSI

D 4 2
D 4 3
D 4 4
D 3 0
D 3 5

Micro SD Card Pin Description

TF_CS
TF_SCK
TF_MOSI
TF_MISO

D13
SCK(D53)
MOSI(D51)
MISO(D50)

RGB LED Pin Description

RGB_LED_R
RGB_LED_G
RGB_LED_B

D 2
D 3
D 5

（Vil On, Vih Off, Controlled by Hardware PWM）

IIC Device Address

EEPROM 24C128 Address
ADXL345 Address

D13
SCK(D53)

BUTTON Pin Description

BUTTON_A
BUTTON_B
BUTTON_C
BUTTON_D

D 4 7
D 4 9
D 1 2
D 1 1

（Press Vil, Loosen Vih）

Buzzer Pin Description

BUZZER D 4 5

Rotary Potentiometer Pin
Description

ROTARY A 1 5（Hardware PWM Control）

（Measurement Analog）

Joystick Pin Description

JOY_UP
JOY_DOWN
JOY_LEFT
JOY_RIGHT
JOY_CENTRE

D 3 3
D 4 1
D 3 2
D 3 7
D 4 0

（Press Vil, Loosen Vih）

1
A B

C D

3

5

6

2

4

8

7

1 2

3 4

5 6

7 8

Specification

Weight 0.15kg

Dimension(L*W*H) 150mm*132mm*281mm

Connection with PC Micro USB

Input Voltage USB 5V

Main Controller ATMEGA2560 (Arduino compatible)

Display 128x64 OLED

Buttons 4

Rotary Potentionmeter 1

TypeC 4 (only for uarm connection)

RGB LED 1

Micro SD 1

4P Connector 2xDigital IOs / 2xIIC

Extendable I/O 6xdigital IOs

Operation Temperature & Humidity 0℃-35℃ 30%RH-80%RH noncondensing

Storage Temperature & Humidity -20℃-60℃ 30%RH-80%RH noncondensing

Figure A.4: Detailed description of the uArm controller parameters.

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Outline

	2 Field Device Management and Control
	2.1 Field Devices
	2.1.1 Device Profile

	2.2 Field Device Controller
	2.2.1 Device Management
	2.2.2 Dynamic Device Configuration

	2.3 Device Management Gateway
	2.3.1 Device Operation
	2.3.2 Profile Management
	2.3.3 Service Exposure and Discovery

	3 Implementation
	3.1 Field Level
	3.2 Field Device Controller
	3.2.1 uArm Controller
	3.2.2 Controller Firmware
	3.2.3 Line Protocol

	3.3 Gateway Implementation

	4 Conclusion and Future Work
	4.1 Future Work

	Bibliography
	A Hardware Component Description
	A.1 uArm Swift Pro
	A.2 uArm Controller

