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Abstract

This work is about cardinal peer grading. An agent’s grade is split up into
accuracy and score. The accuracy serves as an incentive for agents to grade to
participate truthfully in the peer grading, by giving them rewards for accurate
gradings. The score reflects how its peers rate an agent. For these two parts
a number of properties are studied. This works further includes a proof on the
equality of independence and bipartite graphs, and a proof on the feasibility of
score monotonicity.
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Chapter 1

Introduction

As we have seen in the last few months, during the COVID-19 pandemic, online
classes become more and more important, whether it be from the local primary
schools or for whole online courses at a university. This can for example be a
MOOC (massive open online course) which can have hundreds of enrolled stu-
dents. Grading all of these students is extremely time-consuming for the instruc-
tors. This is where peer grading comes into play: students grade each other. The
instructors then only have to do spot-checking if they choose to do so.

There are multiple modes for peer grading. The most common ones are
cardinal, ordinal or selective peer grading. In cardinal peer grading the grades
are in form of a cardinal number that the students assign to the work of their
peers. In ordinal peer grading the students either compare the works against
one another, e.g., paper A is better than paper B but worse than paper C, or
the students make a ranked list of the works, e.g., the best one is essay D, then
comes essay F, etc. Finally, in the selection problem the students choose the
k best works amongst the given works. This last mode is for example used in
scientific conferences.

This work is about cardinal peer grading. An agent’s grade is split up into
accuracy and score. For those two a number of properties are studied. The
accuracy serves as an incentive for agents to grade to participate truthfully in
the peer grading, by giving them rewards for accurate gradings. And the score
reflects how its peers rate an agent. For all of this a fixed point approach is taken.

In chapter 2, one can find some background information on peer grading.
Chapter 3 contains most of the terms and variables used in this work for look-
up purposes. Chapter 4 discusses the properties used, some in more detail in
the following subchapters. Chapter 5 argues the approaches and models used. In
chapter 6 we construct a family of functions that calculates the accuracy and with
that the incentive for the students to participate in the peer grading honestly. In
chapter 7 we put everything together and give an idea how to calculate the final
grade. Chapter 8 is about the previously conducted work in this area, especially
about Toby Walsh’s PeerRank algorithm [1]. Finally, chapter 9 concludes and
summarizes what has been achieved.
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Chapter 2

Background Information

Peer grading is a system where subjects which are all at the same level assess
each other’s work, for example students which give feedback on the essays of their
classmates. The main advantage of such methods is the time saved by the teacher
or instructor, and has also been to shown improve the students understanding of
the studied material [2]. It is generally not known who these peers are, whether
they are students or scientists, the peers are called agents. So, one or multiple
agents grade the work of another agent.

2.1 Incentive

The assessments agents give can however not be trusted since they are assumed
to be selfish, meaning their main goal is to have the highest grade possible with
as little effort as possible. For this reason a mechanism has to be used in order to
convince the agents to grade honestly. This mechanism is usually an incentive.
The incentive is a reward or a penalty in the grade the agent receives for the
accuracy of their grading [3, 4].

2.2 The PeerRank Algorithm

Toby Walsh’s PeerRank Algorithm [1] is an elegant and simple solution for the
peer grading problem. He assumes that agents with a high grade have a good
knowledge of the subject and therefore are also best fit to assess the work of other
agents. The PeerRank rule as a fixed point function over multiple iterations.

The algorithm fulfills the following properties: The grade always stays in the
given domain, an unanimous decision of the grading agents lead to that decision
as the received grade, every grade in the domain is possible, and all given grades
have an impact on the end result [1]. However, according to the author, the
PeerRank method is not monotonic [1].
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2. Background Information 3

In [1] m denotes the number of participating agents. Ai,j is the grade agent
i receives from agent j. Xn

i is the final grade agent i receives after n iterations
of the algorithm. α indicates how much the weighted average of the received
grades counts towards the grade and β how much the incentive counts towards
the grade. The grades, α and β are normalized to be in the domain [0, 1].

The PeerRank Algorithm is the following:

X0
i = 1

mΣjAi,j

Xn+1
i = (1− α) ∗Xn

i + α
ΣjXn

j
ΣjX

n
j ∗Ai,j

However, this mechanism doesn’t have an incentive like mentioned above. For
this reason Mr. Walsh expanded his PeerRank rule to the Generalized PeerRank
algorithm.

X0
i = 1

mΣjAi,j

Xn+1
i = (1− α− β) ∗Xn

i + α
ΣjXn

j
ΣjX

n
j ∗Ai,j + β

m ∗ Σj1− |Aj,i −Xn
j |



Chapter 3

Naming

The terms listed below are used for this semester project. The lists below serve
as a lookup-table on what the terms mean and what variables are used for them
throughout the project.

3.1 Meaning

1. score: The score is the evaluation of the work an agent did. For example
S22 is the joined grade of agent 22.

2. accuracy, incentive: The accuracy evaluates the ability of an agent to grade
its peers. In other works this is sometimes called incentive.

3. total grade: The total grade is the final evaluation the agents receives. It is
partly dependent on the score and the accuracy.

4. individual grade: The individual grades are the evaluations the agents give
to and receive from their peers. For example ‘g6,2 = 13’ means agent 6
received an individual grade of 13 from agent 2.

5. fixed point : When an agent gives an individual grade which coincides with
its fixed point, this agent receives the highest possible accuracy. The fixed
point depends on the other agents that grade the same peer.

6. u(.): u(.) is a function with an individual grade as input. The function is
mainly used in the section about shift invariance.

7. weight-accuracy-function: The weight-accuracy-function calculates the weight
from the accuracy of an agent in a weighted average.

8. agent : The peers in the peer grading problem are called agents.

4



3. Naming 5

3.2 Variables in the nth iteration

A fixed point approach was taken. Thus, the mechanism uses iterations.

1. score: Sni

2. accuracy : Anj

3. total grade: Xn
j , G

n
j

4. individual grade: gi,j

5. fixed point : Fni,j

6. u(.)

7. weight-accuracy-function: t(.)

Where some terms like the scores or accuracies change over iterations the indi-
vidual grades stay constant. Sometimes for accuracy and score the iteration will
not be written for brevity.



Chapter 4

Preliminaries

This chapter lists a handful of useful properties we aim to achieve. Some of them
are taken from the PeerRank method by Toby Walsh [1] and marked with (PR)
as such and some are taken from [5] and marked with (Sel).

The total grade, the score and also the accuracy should stay in a given domain,
e.g., [0,1], [1,10] or [1,6].

Definition 4.1 (Domain (PR)). The total grade, the score and the accuracy
stay in their given domain. The domains may differ between the total grade, the
score and the accuracy.

All scores and total grades within their given domain are possible.

Definition 4.2 (Non-Imposition (Sel)/No Discrimination (PR)). All sets of
scores and total grades within their respecitive domain are reachable.

All individual grades should have an influence on the score of the agent they
are evaluating.

Definition 4.3 (No Score Dummy (PR)). If agent j changes their evaluation of
agent i and all other individual grades stay the same, i’s score will change.

Definition 4.4 (No Dictators). A single agent can not solely decide the score or
the total grade of another agent.

If all agents that grade agent i have a unanimous decision on the grade of
agent i, then that grade should be the score. However, the total grade is still
depending on i’s accuracy.

Definition 4.5 (Unanimity (PR)). If all agents give an agent the individual
grade k, then the score given to this agent will be k.

Definition 4.6 (Continuity). A function is continuous if for all δ > 0, there is
an ε > 0, such that, if you change the argument by less than ε, the value changes
by less than δ.

6



4. Preliminaries 7

In the continuity property, for us an argument is an individual grade. The
value can be the score, the accuracy or even the total grade.

Definition 4.7 (Surjectivity). A function f from a set X to a set Y is surjective,
if for every element y in the codomain Y of f, there is at least one element x in
the domain X of f such that f(x) = y. [7]

The influence and the grade an agent has should not be depending on their
name.

Definition 4.8 (Anonymity (Sel)). Permutation of agents leads to the same
permutation of total grades.

Definition 4.9 (Strategyproofness). An agent fares not worse by grading the
other agents truthfully.

Definition 4.10 (Impartiality (Sel)). Agents can’t influence their own score.

Definition 4.11 (Shift invariance). If all agents shift their individual grade for
agent j by +a, then the score of agent j also shifts by +a.

Definition 4.12 (Score Monotonicity). If agent j increases their evaluation of
agent i and all other individual grades stay the same, i’s score will

• increase if Ai > 0, or

• decrease if Ai < 0,

where Ai is i’s accuracy.

Definition 4.13 (Accuracy Monotonicity). If agent i grades agent j ‘better’ and
the other agents grade agent j the same way, agent i’s accuracy should increase.
‘Better’ means that i’s individual grade is closer to its fixed point.

Definition 4.14 (Score Independence). Changing gj,i can not change the score
of agent i, ∀(i, j), i 6= j.

Definition 4.15 (Accuracy Independence). Changing gj,i can not change the
accuracy of agent j, ∀(i, j), i 6= j.

Definition 4.16 (Symmetry). If all individual grades are flipped, then all the
scores are also flipped. And by flipped is meant, the maximum grade minus the
individual grade and the maximum grade minus the score, e.i., gmax − grade +
gmin, respectively gmax − score+ gmin.

In the following we take a closer look at some of the previously mentioned
properties.
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Figure 4.1: Shift Invariance

4.1 Shift Invariance

Definition 4.17 (Shift invariance). If all agents shift their individual grade for
agent j by +a the the score of agent j also shifts by +a.

Shift invariance makes sure that the accuracy of the grading agents stays the
same, if all the grading agents shift their individual grades by the same amount,
since the distance to the fixed point doesn’t change.

Example 4.18. The weighted average, Sj =
Σn

i=1gj,i∗Ai

Σn
i=1Ai

, is shift invariant.

Proof. Σn
i=1(gj,i+a)∗Ai

Σn
i=1Ai

=
Σn

i=1gj,i∗Ai+a∗Ai

Σn
i=1Ai

=
Σn

i=1gj,i∗Ai

Σn
i=1Ai

+
a∗Σn

i=1Ai

Σn
i=1Ai

=
Σn

i=1gj,i∗Ai

Σn
i=1Ai

+ a = Sj + a

Remark 4.19. In fact, there is shift invariance for any arbitrary weight function
of the accuracy, t(Ai).

Proof. Σn
i=1(gj,i+a)∗t(Ai)

Σn
i=1t(Ai)

=
Σn

i=1gj,i∗t(Ai)+a∗t(Ai)
Σn

i=1t(Ai)
=

Σn
i=1gj,i∗t(Ai)
Σn

i=1t(Ai)
+

a∗Σn
i=1t(Ai)

Σn
i=1t(Ai)

=
Σn

i=1gj,i∗t(Ai)
Σn

i=1t(Ai)
+ a = Sj + a

Remark 4.20. The form Sj =
Σn

i=1u(gj,i)∗t(Ai)
Σn

i=1t(Ai)
is also shift invariant, with u(.)

being an arbitrary function with u(x + a) = u(x) + a, and t(.) is an arbirtrary
function.

Proof. Σn
i=1u(gj,i+a)∗t(Ai)

Σn
i=1t(Ai)

=
Σn

i=1u(gj,i)∗t(Ai)+a∗t(Ai)
Σn

i=1t(Ai)
=

Σn
i=1u(gj,i)∗t(Ai)

Σn
i=1t(Ai)

+
a∗Σn

i=1t(Ai)
Σn

i=1t(Ai)

=
Σn

i=1u(gj,i)∗t(Ai)
Σn

i=1t(Ai)
+ a = Sj + a

Theorem 4.21. u(x+ a) = u(x) + a⇒ u(x) = x+ u(0)
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Figure 4.2: Symmetry example

Proof. Simply plug in x = 0 and a = x′ on the right side.

u(0 + x′) = u(x′) = u(0) + x′

Theorem 4.22. The form Sj =
Σn

i=1u(gj,i)∗t(Ai)
Σn

i=1t(Ai)
is shift invariant and fulfills

unanimity, if u(0) = 0. t(.) is an arbitrary function.

Proof. We know from Theorem 4.21 that u(x) = x + u(0). In order to fulfill
unanimity we know that Sj has to be 0 if all gj,i are 0. If all gj,i are 0, we have
Sj = 0 =

Σn
i=1u(0)∗t(Ai)
Σn

i=1t(Ai)
for any Ai.

Since t(.) is arbitrary we conclude that u(0) = 0.

Corollary 4.23. With Theorem 4.21 and Theorem 4.22 we conclude that for the
form Sj =

Σn
i=1u(gj,i)∗t(Ai)

Σn
i=1t(Ai)

to be shift invariant and fulfill unanimity we require
that u(x) = x.

4.2 Symmetry

Definition 4.24 (Symmetry). If all individual grades are flipped, then all the
scores are also flipped. And by flipped is meant, the maximum grade minus the
individual grade and the maximum grade minus the score, e.i., gmax − grade +
gmin, respectively gmax − score+ gmin.

Example: Let us assume agents 1, 2 and 3 grade the agent 0 on a scale of 0
to 1. The score is calculated with a weighted average, where the weights are the
accuracies, t(Ai) = Ai. The individual grades are g0,1 = 0.1, g0,2 = 0.2 and g0,3 =
0.9. The accuracies of the grading agents are A1 = 0.7, A2 = 0.6 and A3 = 0.4.
Therefore, the score is S0 =

Σn
i=1g0,i∗t(Ai)
Σn

i=1t(Ai)
= 0.1∗0.7+0.2∗0.6+0.9∗0.4

0.7+0.6+0.4 = 0.3235.

Now the individual grades are flipped, e.g., for agent 1 we have g0,1 = 1−0.1 =
0.9. The other new individual grades are g0,1 = 0.8 and g0,3 = 0.1. The new
score is S0 = 0.9∗0.7+0.8∗0.6+0.1∗0.4

0.7+0.6+0.4 = 0.6765 = 1− 0.3235 [Figure 4.2].
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Theorem 4.25. The weighted average with an arbitrary weighting function t(.)
as scoring rule is symmetric.

Proof. The score is Sj =
Σn

i=1gj,i∗t(Ai)
Σn

i=1t(Ai)
.

Σn
i=1(gmax−gj,i+gmin)∗t(Ai)

Σn
i=1t(Ai)

=
Σn

i=1(gmax+gmin)∗t(Ai)−gj,i∗t(Ai)
Σn

i=1t(Ai)
=

(gmax+gmin)∗Σn
k=1t(Ak)−Σn

i=1gj,i∗t(Ai)

Σn
i=1t(Ai)

=
(gmax+gmin)∗Σn

k=1t(Ak)

Σn
i=1t(Ai)

− Σn
i=1gj,i∗t(Ai)
Σn

i=1t(Ai)
= gmax − Sj + gmin

4.3 Strategyproofness

Definition 4.26 (Strategyproofness). An agent fares not worse by grading the
other agents truthfully.

Definition 4.27 (Impartiality (Sel)). Agents can’t influence their own score.

This work encourages agents to grade truthfully with the an incentive, called
accuracy. Accuracy monotonicity makes sure that better grading gets rewarded
accordingly.

Thanks to score independence, impartiality is achieved.

4.4 Independence

Definition 4.28 (Score Independence). Changing gj,i can not change the score
of agent i, ∀(i, j), i 6= j.

Definition 4.29 (Accuracy Independence). Changing gj,i can not change the
accuracy of agent j, ∀(i, j), i 6= j.

If an agent had no influence on their own total grade they would have no rea-
son to be dishonest in their review of the other agents. Thus, an agent should have
as little influence as possible on their total grade. While the individual grades
an agent gives have of course an impact on this agents accuracy they shouldn’t
have an impact on their score. This is the idea behind score independence.

On the other hand, the reception of individual grades should not influence
the accuracy of an agent which is reflected in the accuracy independence.

This work proves later that score independence and accuracy independence
are actually equivalent. Independence merges the score and the accuracy inde-
pendence into one property.

Definition 4.30 (Independence). Changing gj,i can neither change the score of
agent i nor the accuracy of agent j, ∀(i, j), i 6= j.
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4.4.1 Independence ⇐⇒ Bipartition

A group of peers are given a task. This group of peers is afterwards asked to
grade the work of their peers. In the following we will call the peers agents.

The final evaluation of an agent is based on two parts. The first part is based
on how well the agent performed at the given task. And the second part is based
on how well the agent performed in grading their peers.

Definition 4.31 (Individual Grade). The individual grade gj,i is the grade agent
j receives from agent i, i 6= j.

Definition 4.32 (Score). The Score is the evaluation of the work an agent did.

Definition 4.33 (Accuracy). The Accuracy evaluates the ability of an agent to
grade its peers.

For the rest of the proof we will make two assumptions.

Assumption 4.34 (No Dictators). Every agent that is graded is graded by at
least two other agents.

Definition 4.35 (No Score Dummy). If agent j changes their evaluation of agent
i and all other individual grades stay the same, i’s score will change.

Assumption 4.36 (No Dummy). We assume that we have no score dummy and
accuracy monotonicity.

Lemma 4.37. Score independence and accuracy independence are equivalent.
Thus we get the property called Independence.

Theorem 4.38. Independence is equivalent to a bipartite S-A-graph (score-accuracy-
graph).

Definition 4.39 (Score-Accuracy-Graph). The score-accuracy-graph is an undi-
rected graph where for each agent i we have an Accuracy Node Ai and a Score
Node Si. Both Ai and Si are connected to the dummy node di. If gj,i exists then
we add an edge (Ai, Sj).

Remark 4.40. From Assumption 4.36 we know that, if gj,i changes then Sj
changes and thus Ai also changes.

Proof. First of all let us prove Lemma 4.37.

We prove that accuracy and score indepence are equivalent by showing that
if we don’t have accuracy independence, respectively score independence, then
we also can’t have the other one. No accuracy independence means there exists a
pair (i, j) where changing gj,i can change the accuracy of agent j. And no score
independence means there exists a pair (i, j) where changing gj,i can change the
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Figure 4.3: Score-Accuracy-Graph

Figure 4.4: No Accuracy Independence
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Figure 4.5: No Score Independence

Figure 4.6: Odd Path

score of agent i. We will use the same variables as in a S-A-graph, namely Ai
and Si, as the accuracy and the score of agent i respectively.

Let us assume that we have no accuracy independence. Thus there exists an
individual grade gj,i which can influence Aj . Clearly gj,i influences Sj . And Sj
influences not only Ai but also the accuracy of at least one other agent, since
we don’t have a dictatorship. Because we assumed that we don’t have accuracy
independence we know that Aj also gets influenced by gj,i. This has to happen
through the change of a score of agent k, without loss of generality. Sk is also
influenced through the accuracy of another agent, apart from Aj . This accuracy
node is connected to another score node, and so forth until we reach Sj . Therefore
gk,j would also be able to influence Sj , and thus we have no score independence.

Now let us assume we have no score independence. gj,i is now able to influence
not only Sj but only Si. Si is influenced by the accuracy of at least two other
agents. Let us call one of these agents agent k. Clearly, gi,k can also influence Ai
since we don’t have score independence. Therefore we also can’t have accuracy
independence.

Lemma 4.41. There exists an odd-length path from Ai to Si in the S-A-graph if
and only if independence doesn’t hold.

Proof. We first assume that independence doesn’t hold and show that an odd
path from Ai to Si exists for at least one agent i. Since we have no independence
we know that there is a path from Si to Ai that doesn’t go over any dummy
nodes. We can’t use dummy nodes in our path, since they do not propagate any
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influence. If no dummy nodes are allowed all paths from an accuracy node to a
score node have an odd length. Therefore the assumed path from Si to Ai also
has to be odd.

Next, we build an odd-length path from Ai to Si and try to keep the S-
A-graph independent. We obviously can’t use di since this path would have a
length of two and thus be even. Ai could directly connect to Si. This path
would be odd-length but this graph would clearly not fulfill independence. Ai
can also be connect to the score node of an agent j, Sj . Agent j wasn’t in
our path so far. Si is connected to at least two accuracy nodes, we call one of
them Ak. If k = j we have the same problem that we started with, just with
different indices. Therefore, we assume j 6= k. Ak and Sj could now directly
be connected. This would give us an odd path from Si to Ai but we would also
have no independence since Ai could directly influence Si. Or both nodes can be
connected to new agents. This can go on until we run out of new agents. At the
end we have two nodes, Ay and Sz. Ay can now either be either be connected
to a score node of another agent and destroy the independence. Or it can be
connected to a dummy node and form an even path. Of course Ay has to pick a
score node of another agent and thus we have no independence. Similarly, Sz can
either pick an accuracy node of another agent or a dummy node. And again Sz
has to pick an accuracy node and we have no independence. Therefore, if there
exists an odd-length path from Ai to Si for at least one agent i then independence
can’t hold.

Lemma 4.42. We have an odd-length path from Ai to Si in the S-A-graph if and
only if the S-A-graph is not bipartite.

Proof. It is known that a bipartite graph is equivalent to a graph that doesn’t
have any odd cycles [6]. An odd-length path from Ai to Si is easily made into
an odd cycle with the inclusion of the dummy node di. Thus, if we have an odd-
length path from Ai to Si in the S-A-graph then the S-A-graph is not bipartite.

Next, we prove that if there exists an odd cycle in a S-A-graph, then there
exists an agent i where we have an odd-length path from Ai to Si. Let us assume
we have the odd cycle c in the S-A-graph. First, we prove by contradiction that
there is an agent i such that Ai and Si are both on the cycle.

Let us assume there is no such agent i. From this follows that there is no
dummy no in c and, therefore, for every agent k in c, we either have Ak or Sk in
c. As c is odd, we either have an edge between two accuracy nodes or two score
nodes. This however contradicts the definition of an S-A-graph. Therefore, we
conclude that there exists an agent i such that both Ai and Si are in c, which is
a contradiction to our assumption.
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Since the cycle c is odd and an agent i with both Ai and Si in c exists, there
is both an odd and an even path from Si to Ai in order to form an odd cycle.

Combining Lemma 4.41 and Lemma 4.42 proves Theorem 4.38.

4.5 Score Monotonicity

Score Monotonicity is fulfilled if the scoring rule is a simple average of the indi-
vidual grades, Si =

Σm
i=1gj,i
m , where m is the number of agents that grade agent j.

However, it is less obvious for more complicated scoring rules whether they are
score monotonic or not.

Below the score monotonicity of a very simple peer grading mechanism is
proven.

4.5.1 Score Monotonicity Proof

First, we have to take some assumptions.

Assumption 4.43. The individual grades are in the domain [0, 1].

Assumption 4.44. We look at the scoring rule Sj =
Σm

i=1gj,iAi

Σm
i=1Ai

∈ [0, 1], where m
is the number of agents that grade agent j.

Assumption 4.45. The accuracy, aj,i, of the individual grade gj,i is in the
domain [0, 1].

Assumption 4.46. The accuracy of agent i is calculated with Ai =
∑m

j=1 aj,i
7m +

6
7 ∈ [6

7 , 1].

In the following we will look at a scenario, where all individual grades stay
the same, except for agent 1, which increases by Dg. The change of an individual
grade is called Dg and the following change of accuracy for agent j is called Daj .
We want to show that with this change the score of agent i will increase. We
mark the variables after the change with a prime, e.g. A′3.

We assume that the accuracy of agent 1 after the change in the individual
grade gj,1 can be anywhere in the domain of the accuracy if Dg is at its maximum
of 1. However, the accuracy of the other agents is a factor of m smaller and thus
bound by 1

7mDg.

Assumption 4.47. 1
7Dg ≥ |Da1|

Assumption 4.48. 1
7mDg ≥ |Daj |, j 6= 1
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Thus, A′1−A1 = Da1 ∈ [−1
7Dg,

1
7Dg] andA′j−Aj = Daj ∈ [− 1

7mDg,
1

7mDg], j 6=
1. From this follows

∑m
j=2A

′
j −Aj =

∑m
j=2Daj ∈ [−m−1

7m Dg,
m−1
7m Dg].

Theorem 4.49. A peer grading mechanism with the above assumptions is score
monotonic.

Proof. We show that S′i > Si if the individual grade gi,1 increased to g′i,1 =
gi,1 +Dg. We use if a > b, A ≥ a and b ≥ B then A > B.

S′i =
∑m

i=1 g
′
i,jA

′
j∑m

j=1 A
′
j
>

∑m
j=1 gi,jAj∑m

j=1 Aj
= Si

⇐⇒
∑m

j=1Aj(
∑m

j=2 gi,jA
′
j + g′i,1A

′
1) >

∑m
j=1 gi,jAj

∑m
j=1A

′
j

We subtract
∑m

j=1Aj
∑m

j=1 gi,jAj from both sides.∑m
j=1Aj(

∑m
j=2 gi,jA

′
j+g

′
i,1A

′
1−

∑m
j=1 gi,jAj) >

∑m
j=1 gi,jAj(

∑m
j=1A

′
j−

∑m
j=1Aj)

⇐⇒
∑m

j=2 gi,jA
′
j + g′i,1A

′
1 −

∑m
j=1 gi,jAj > Si(

∑m
j=1A

′
j −Aj)

We want to maximize the term
∑m

j=1A
′
j −Aj on the right-hand side (RHS).

We split the term up into two parts
∑m

j=1A
′
j − Aj =

∑m
j=2A

′
j − Aj + A′1 − A1.

A′1 −A1 can be at most 1
7Dg according to our assumptions. And

∑m
j=1A

′
j −Aj

at most m−1
7m Dg. With this second term we go even further and simplify m−1

7m Dg

to 1
7Dg which is even bigger. So, we get

∑m
j=1A

′
j −Aj > 2

7Dg.

We plug this result into our inequation and also split up
∑m

j=1 gi,jAj into∑m
j=2 gi,jAj + gi,1A1 on the left-hand side (LHS).∑m

j=2 gi,j(A
′
j −Aj) + g′i,1A

′
1 − gi,1A1 > Si

2
7Dg

Again, we look at some terms on the RHS in isolation, where we try to
minimize the RHS.

A′j −Aj has to be at least − 1
7mDg.

On the other term we have g′i,1A
′
1 − gi,1A1 = (gi,1 +Dg)(A1 +Da1)− gi,1A1

= gi,1A1 + gi,1Da1 +DgA1 +DgDa1 − gi,1A1 = (gi,1 +Dg)Da1 +DgA1. Da1

is minimal with Da1 = −1
7Dg. Therefore, we maximize gi,1 with gi,1 = 1 in order

to minimize the whole term (gi,1 +Dg)Da1 and we get

g′i,1A
′
1 − gi,1A1 ≥ (−1)(1 +Dg)

1
7Dg +DgA1.

We plug our new found results into our inequation.∑m
j=2 gi,j(−

1
7mDg)− (1 +Dg)

1
7Dg +DgA1 > Si

2
7Dg

Next, both sides get multiplied by 7
Dg

.

−
∑m

j=2 gi,j
m − (1 +Dg) + 7Ai > 2Si

The RHS is maximized if Si = 1, the LHS is minimized with the individual
accuracies being 1, Dg = 1 and Ai = 6

7 .
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−m−1
m − (1 + 1) + 7 ∗ 6

7 > 2

We simplify −m−1
m to −1 which is even smaller and we arrive at

−1− 2 + 6 = 3 > 2

which is of course always true.

Remark 4.50. We would achieve equality in the proof above if the accuracy were
to be in the domain of [5

6 , 1].



Chapter 5

Approach and Model

5.1 Accuracy and Score

In PeerRank [1] the grade Xn
i of agent i determines how influential agent i is

for the grades of i’s peers. Such an approach assumes that agents knowledgeable
enough to solve the given task well also are knowlegeable enough to assess their
peers accurately. The idea in our work is however that agents with good grades
can also be bad at grading. Therefore, the final grade is split up into two parts,
the score and the accuracy. The score reflects a consensus grade that others
give to an agent. The accuracy indicates the grading ability of an agent, which
is similar to the incentive in other works [3, 4]. At the end the score and the
accuracy are aggregated into a final grade, the total grade, which can be reported
back to the agents, e.g., in form of a school report for pupils. Since the accuracy
is part of the total grade it is in the agents interest to predict the score of the
peers they grade correctly.

5.2 About truth

Remark 5.1 (Grading Scheme). An agent wants to achieve a high total grade.
Therefore, the agent wants its score and its accuracy to be as high as possible.

Definition 5.2 (Ground Truth). The ground truth (GT) is the score of an agent,
if all of its peers grade it truthfully.

Assumption 5.3 (Untruthfulness assumption). If an agent grades untruthfully,
the given grade is further from the GT than if the agent was honest.

Definition 5.4 (Truthfulness). If an agent is not untruthful, it is truthful.

Definition 5.5 (Accuracy Monotonicity). The closer an individual grade gj,i is
to the fixed point Fj,i of the receiving agent j, the better is the accuracy of the
assessing agent i.

18
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Figure 5.1: Example

Definition 5.6 (Fixed point). The fixed point (FP) Fj,i is the score agent j
would receive without the individual grade of agent i, gj,i. Thus, if gj,i was Fj,i
the score of agent j wouldn’t change and be Fj,i.

Example 5.7. The agent 1, 2, 3 and 4 grade their peer 0. Agents 1 to 3 give the
following individual grades: g0,1 = 1, g0,2 = 2 and g0,3 = 3. This gives us a fixed
point of F0,4 = 2 if the scoring rule is either the average or the median. If agent
4 were the only agent grading 0 it would choose g0,4 = 4. But if agent 4 gives
g0,4 = 0.9 instead, it will receive a higher accuracy, even though 0.9 is further
from the GT of 2.5 than 4. Thus agent 4 grades untruthfully. But agent 4 also
benefits from grading untruthfully since they receive a higher accuracy.

However, we also have to consider what information the agents have when
they are grading their peers. They only know the work their peer did. Nothing
else. No grades of other agents, no fixed points, no ground truths.

Let us now assume a grading scale from 0 to 10. An agent can upper bound
the error to the FP by 5 if he always gives a 5 no matter the work. With minimal
effort the agent could already say if the work presented is bad, good or something
in between. If it is terrible he can expect that the FP will be 5 or below, and
thus he can upper bound his error to 2.5 by giving bad work the grade 2.5. If
the work is great he can expect a FP of 5 or above. Thus, by giving a 7.5 he can
upper bound the error to 2.5. If the agent has trouble grading the work or it is
somewhere in between he can give a 5 and again upper bounding the error to 5.

We try a new definition for GT and a new untruthfulness assumption.

Definition 5.8 (Grount truth). The GT is the score of an agent, if all of its
peers grade it, as if they were the only ones to grade the agent.

One can look at the GT as the score of an agent that gets graded by its peers,
as if all of the peers thought themselves as dictators.
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Figure 5.2: Untruthfulness Domain

Definition 5.9 (Untruthfulness). If an agent grades untruthfully, the given grade
is further from the GT than the given grade were as if the agent were the only
one to grade its peer.

The rest we leave as we had it, namely accuracy monotonicity and fixed
points. This gives us a domain where the agent can be untruthful, and also a
domain where to agent grades truthfully.

5.3 Fixed Points

Definition 5.10 (Fixed point). The fixed point (FP) Fj,i is the score agent j
would receive without the individual grade of agent i, gj,i. Thus, if gj,i was Fj,i
the score of agent j wouldn’t change and be Fj,i.

For a one-dimensional problem, at the beginning nothing is known except the
individual grades. Therefore, the accuracies can be assumed to be all equal. The
Fixed Points can calculated. This leads to new accuracies which then leads to
new Fixed points, and so forth [Figure 5.3].

For a multi-dimensional problem not much changes, the different dimensions
can be looked as simply another agent even though the actually belong to the
same agent. The only difference will be that the accuracy of an agent will prob-
ably be multi-dimensional, as well as the score (and the weights in a weighted
average).

Example 5.11. We look a situation where the individual grades are two-dimensional
and the agents 1, 2 and 3 grade agent 0. We assume the three individual grades
form an equilateral triangle. Here, the fixed point of agent i is always between
g0,k and g0,l, i, k, l ∈ {1, 2, 3}, i 6= k 6= l. Thus the distance between the fixed
point and the given individual grade is the same for all agents, and thus also the
accuracy. Therefore, the score of agent 0 is always right in the middle of the
triangle.
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Figure 5.3: Calculating the Accuracy after each iteration

Figure 5.4: Triangle
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5.4 Variance

Does the variance of the partial accuracies an agent receives matter?

Example 5.12. Let’s look at two agents, one which is extremely accurate, except
in a few cases where they are extremely inaccurate. The other agent we look at
always has an accuracy that is a bit better than if they graded at random. From
this we can see that agent 1 mostly spot on with hitting the fixed point except
in a few cases. But if we trust agent 1 too much, when they are very inaccurate
they perturb the score by alot. On the other hand, agent 2 never has very good
accuracy, but the direction they give is always correct. Both are overall equally
important for the score, thus the variance doesn’t really matter for us.

The discussion on the influence of variance can be expanded in future works.

5.5 Model

We make some assumptions on the model of this work.

1. Memorylessness: The total grade is not dependant on previous assigne-
ments.

2. Many-to-many: Only a subset of agents should have to grade an agent.

3. No spot-checks: The grading scheme requires no spot-checks, e.i., no in-
structor/TA grading is required.



Chapter 6

Accuracy

The goal of this chapter is to find a family of functions that calculate the accuracy
of agent i from the distances between the individual grades agent i gave and their
fixed points.

6.1 Accuracy Monotonicity

Definition 6.1 (Accuracy Monotonicity). If agent i grades agent j ‘better’ and
the other agents grade agent j the same way, agent i’s accuracy should increase.
‘Better’ means that i’s individual grade is closer to the fixed point.

The point of accuracy monotonicity is so that more accurate grading actually
gets rewarded accordingly.

6.2 Negative Accuracies

Being able to have negative accuracy would have two main impacts. First, a
negative accuracy would lead to a handicap in the total grade for the agent with
the negative accuracy. Second, score of the agents that get graded by a peer
with negative accuracy would get pushed further from the individual grade given
instead of pulled towards it.

The accuracy should be the highest when we have a distance of 0. The
accuracy should be zero, if the distance is as if the individual grade was given at
random. A negative accuracy would then mean that the distance is worse than
at random. If one grades worse than at random they seem to intentionally try to
skew the rating. Thus, we give them a negative rating.

One issue would be, how we can see that an agent grades at random.

23
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Figure 6.1: Different FPs lead to different domains of positive/negative accuracies

6.2.1 At random

What does it mean when we say at ‘at random’?

Definition 6.2 (At random). At random is in expectation be half of distance
between a given fixed point and its furthest grade in the grading domain.

This definition means that the distance where the Accuracy is 0 can be de-
pendent on where the fixed point is [Figure 6.1].

6.2.2 Integration rule

Our goal is to have a rule such that when an agent grades uniformly at random
they get an accuracy of 0 in expectation in the case where negative accuracies
exist. We achieve this by saying that the integral of the accuracy over the distance
between the fixed point and the individual grade has to be 0. With this rule the
expectation of the accuracy is 0 if picked uniformly at random.

Definition 6.3 (Integration rule). The integral of the accuracy over the domain
of the distance is 0.

6.3 Accuracy Aggregation

The agents receive accuracies from giving individual grades to their peers. These
accuracies need to be aggregated to give an assessment on how accurate the
agents grade overall. These total accuracies are used to find the fixed point in
the next iteration and are part of the total grade.

But how are the accuracies aggregated? Multiplication of accuracies won’t
work if we want negative accuracies to be possible, since the multiplication of
two negative accuracies would be the same if they both were positive. However,
the summation of accuracies could work.
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Figure 6.2: Some examples for valid accuracy functions with negative accuracies

Since we the order of the accuracies shouldn’t matter, due to anonimity, the
aggregation has to treat all partial accuracies the same. There are two new
things we could want from the accuracy. First, if all partial accuracies are the
same, then the aggregated accuracy should also have this value, which we could
call accuracy unanimity. Second, that if one partial accuracy increases and the
other partial accuracies stay the same, then the aggregated accuracy should also
increase. This two rules would pretty much force the aggregated accuracy to be
the average of the partial accuracies. Another advantage is that this rule would
also work for negative partial accuracies.

Another idea could be that accuracies are not aggregated at all. This would
mean that the accuracies are more specific for a given agent.

6.4 Accuracy Function

With this the accuracy as a function of the distance is quite narrowed down. The
Integration rule and the Accuracy Monotonicity are quite strong in itself [Figure
6.2].
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Putting everything together

7.1 Properties that can be fulfilled

It is possible to construct a cardinal peer grading mechanism that meets all
properties listed in chapter 3 (Preliminaries).

Independence is special property, since it is equivalent with a bipartite graph.
Therefore, it can be automatically fulfilled if and only if a model with two groups
of agents that grade each other, but not among themselves, is taken.

7.2 Relationship

What is the relationship between scores and accuracies? And what is the relation
of the accuracy of an agent to the accuracies of other agents?

Should the score be closest to the agent with the highest accuracy?

Example 7.1. Let us assume the agent 1, 2, 3 and 4 grade the agent 0 on a scale
of 0 to 10. The score is calculated simply with a weighted average, where the
weights are the accuracies. The individual grades are g0,1 = 10, g0,2 = 1, g0,3 =
2 and g0,4 = 3. The accuracies of the grading agents are A1 = 0.9, A2 =

0.8, A1 = 0.3 and A1 = 0.1. Therefore, the score is S0 =
Σn

i=1g0,i∗t(Ai)
Σn

i=1t(Ai)
=

10∗0.9+1∗0.8+2∗0.3+3∗0.1
0.9+0.8+0.3+0.1 = 5.0952. The score is not closest to the individual grade

with the highest accuracy, but actually closest to the one with the lowest accuracy
in this example [Figure 7.1].

Figure 7.1: The agent with the highest accuracy is not the closest

26
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7.3 Accuracy Example

One of the cases that would fulfill all the properties is the example used in the
proof for score monotonicity.

Ai =
∑m

j=1 distmax−|gj,i−Fj,i|
7m + 6

7

7.4 Score Example

Again, a scoring rule that would fulfill all properties and even be score monotonic
is the example used in the proof for score monotonicity.

Sj =
Σn

i=1gj,i∗Ai

Σn
i=1Ai

, where n is the number of grades that an agent receives.

7.5 Total Grade Example

At the very end, the total grade can be calculated. The total grade should be
both depending on the score and the accuracy, where a higher score or accuracy
respectively increase the total grade. Otherwise, the instructor or teacher is quite
free in how to calculate the total grade. But it should be stated that the total
grade has to stay in its own domain.

The most intuitiv formula would be Gnj = (1− α) ∗ Snj + α ∗ Anj , where α is
how much of the total grade should be coming from the accuracy.



Chapter 8

Related Work

Most related work on peer grading is either in the context of course evaluation
for students or the selction of papers for scientific conferences. These problems
are mostly tackled in three ways. Cardinal Peer Grading, where each grader give
feedback in form of a number, Ordinal Peer Grading, where the peers are put
into a ranking of the received work, and Peer Selection where the top k peers get
selected. Most work is either for the selection problem [8, 9, 5, 10] or on ordinal
peer grading [11, 12, 13, 14] while there is less literature on cardinal peer grading
[1, 15, 16].

All the papers on selection mentioned solve the problem in a strategyproof
way. According to Luca de Alfaro et al [16, 3] ordinal peer grading is less popular
with students than cardinal peer grading. While the mentioned work on cardinal
peer grading says nothing about strategyproofness, they all use spot-checks and
incentives for the students to grade honestly. There are multiple approaches on
how to construct an incentives for the students as can be seen in [3] and [4].

Toby Walsh’s PeerRank Method [1] stands out from the crowd by being one
of the few mechanisms for cardinal grading and with its elegant solution for
achieving remarkable results. However, according to the author PeerRank is not
score monotonic. The PeerRank Method has been assessed in other works and
even some changes have been proposed and tested [17, 18].

28



Chapter 9

Conclusion

In this work properties for cardinal peer grading were examined. The grades are
split into two parts, accuracy and score. Accuracy measures how good an agent
is at grading its peers and the score aggregates the received individual grades.
This works further includes a proof on the equality of independence and bipartite
graphs, and a proof on the feasibility of score monotonicity. Additionally, a num-
ber of approaches and models for cardinal peer grading are examined. We found
a family of functions for the aggregation of accuracies that fulfill the properties
for the accuracy.
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