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Abstract

The project focused on event forecasting on the temporal knowledge graph (tKG),
based on Hawkes process theories. We implemented a transformer-based model,
inspired by the usage of RNN for the same task and the implementation of trans-
former for temporal events encoding under Hawkes process assumption. We
achieved comparable performances with the transformer structure to that of RNN
on the task. We also conducted further experiments and discussions on hyperpa-
rameter tuning and modifications on the graph information integration method
and hidden state decoding based on Hawkes process.
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Chapter 1

Introduction

The ability to predict the future is chased by humans, covering but not limited to
areas such as the stock market, economic development, weather forecasting, and
sometimes a person’s fate. To better predict future events based on historical
events, essential tasks include describing and encoding past events, recognizing
regular patterns, and linking from past to future. Multiple scientific, mathemat-
ical, statistical, and computational tools are invented for these tasks.

A stochastic process model, Hawkes process [1], can be applied to describe
the process of a sequence of events with temporal information. Hawkes pro-
cess was proposed to describe a category of "self-exciting" events, where past
events would affect the probability of future events’ occurrence through an inten-
sity function. An extension of Hawkes process to cover both "self-exciting" and
"self-inhibitory" events is Neural Hawkes process [2], a multivariate point pro-
cess implemented with a continuous LSTM. Later, Transformer Hawkes process
[3] was proposed, which replaces the RNN with Transformer to better capture
long-term dependencies. It has achieved better performances in learning events’
temporal dependencies than Neural Hawkes Process.

Apart from serial temporal events, the temporal knowledge graph (tKG) is
also a structure to store related events with temporal information. A tKG dif-
fers from a series of temporal events in the sense that events are stored under
a graph structure, and each event is described by a quadruple: {subject, predi-
cate/relation, object, time}. Given one event, the corresponding history sequen-
tial events could be extracted as the ones related to and have an occurrence
time earlier than the query quadruple, e.g., all history events with the same ob-
ject/subject and the same predicate. Common forecasting tasks on tKG include
time prediction and event prediction, and the latter can include subject/object
prediction and relation prediction. An efficient method to encode and decode
events with implicit relational information is required to perform such predic-
tions. Some outstanding works include TransE [4], ComplexE [5], RotatE [6],
etc.

To enhance the performances on prediction tasks on tKG, Graph Hawkes Neu-
ral Network [7] was proposed, which manipulates the tKG structure to sequential
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1. Introduction 2

temporal events, maps to a latent space by LSTM, and performs forecasting with
the help of intensity function from Hawkes process. It has achieved state-of-the-
art event prediction performances on two global event datasets, Global Database
of Events, Language, and Tone (GDELT) [8], and Integrated Crisis Early Warn-
ing System (ICEWS) [9].

Based on the knowledge that transformer structure generally performs better
on long-term in-sequence dependency than RNN models [10] and that with a
delicate batch size setting [11], the transformer can achieve higher training ef-
ficiency than RNNs, we implemented transformer to temporal knowledge graph
data for event-centric forecasting and conducted several related experiments. Our
experiments are conducted on ICEWS data after preprocessing according to task
requirements and model choice.

We prove that while having evaluating metrics approaching the RNN’s, trans-
former’s performances depend delicately on the settings of hyperparameters dur-
ing training, and most of the time, they cannot surpass RNN. We will present
the experiment results thoroughly, analyze, and give possible explanations for the
transformer’s inability to beat the RNN model.



Chapter 2

Background

2.1 Hawkes Process and Extensions

We will discuss Hawkes Process’s background, why it is instructive in sequential
events encoding and decoding, and how neural networks (more complex models)
can be constructive in this task.

2.1.1 Hawkes Process

Mathematically, one can consider events in a sequence (stream) as independent or
dependent in some ways. The mathematical field aiming at describing such event
streams is called the point process. One most basic model for event sequences is
Poisson process [12], which assumes that events are mutually independent, i.e.,
one event’s occurrence would not affect other events’ occurrences at all.

Hawkes process is another mathematical model in point process that assumes
past events will affect the probability of future events’ happening and models
past events’ influences to future events. It is widely applied to geological events,
financial contagions, high-frequency trading activities [13], and similar areas.

One core concept of Hawkes process is the intensity function λ, represent-
ing the event arrival rate (or equivalently, how the previous events affect later
events’ arrival) through time. Traditionally, stationary point processes describe
the intensity function as

λ = E[dN(t)]/dt, (2.1)

where N(t) represents the number of events accumulated up to t, and which
makes λ a constant, meaning an average rate of event arrival throughout time
[1, 14].

On the other hand, Hawkes process introduces a type of "self-exciting" events,
where the arrival of later events are determined by the summed influences of all
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2. Background 4

previous events. In terms of intensity function, it is described as

λ = E[Λ(t)] = ν + λ

∫ t

−∞
g(t− u)du, (2.2)

and equivalently,

λ = ν/{1−
∫ ∞
0

g(v)dv}, (2.3)

where Λ(t) is a stationary random process, ν can be seen as the current event’s
intensity by itself (or base rate, more formally), and the integral of g’s are the
summed influences of past events. With stationarity assumption of events in
Hawkes process, there must be ν > 0 and

∫∞
0 g(v)dv < 1.

Additionally, in Hawkes process’s original statements, g(v) is a non-negative
function such that,

g(v)

{
≥ 0 if v ≥ 0

= 0 if v < 0.
(2.4)

One special case that satisfies this non-negativity is the exponential decay, where

g(v) :=

k∑
j=1

αje
−βjv(v > 0) (2.5)

which is a combination of multiple functions in the exponential family. The
exponential decay is adopted widely in applications of Hawkes process.

However, the non-negativity restriction on g(v) is removed in Neural Hawkes
Process, to describe “self-inhibitory” events. Accordingly, the restriction of v > 0
in Eq.2.5 is removed as well as that of

∫∞
0 g(v)dv < 1 after Eq.2.3.

2.1.2 Neural Hawkes Process

Firstly proposed in 2017, Neural Hawkes Process [2] intended to extend the con-
ventional Hawkes Process by constructing a “neurally self-modulating multivari-
ate point process”, namely introducing an LSTM to the process of computing
the intensity λ of events. The former restriction on intensity’s non-negativity is
omitted with such a setting, which allows for the description of “self-inhibitory”
events with the model. A graphical illustration of self-exciting and -inhibitory
events is shown in Fig. 2.1.

The non-negativity restriction is abandoned based on the compelling influ-
ences between real events, to which we apply the model. One compelling example
is that on individuals, cake consumption can potentially inhibit cookie assump-
tion. Additionally, the exponential decay assumption can also be violated to cover
more complex situations of delayed decay or a switch in excitation/inhibition dur-
ing two events’ time intervals.
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Figure 2.1: An illustration on self-exciting and self-inhibitory events [2].

Since the exponential decay assumption is omitted, another rule to fill in the
continuous-time gap between two discrete events must be introduced. For Neural
Hawkes Process, this is realized by a continuous-LSTM, which has the same
structure as conventional LSTMs. The exponential decay in Hawkes process
still applies to the gap between, but with respect to a non-constant function,
modeling the aforementioned delayed and switched exciting/inhibitory effects
becomes possible.

Neural Hawkes Process denotes an event as a tuple with two elements (k, t),
where k ∈ {1, 2, ...,K} is the event type, and t ∈ R is the occurrence time of the
event. An event stream is then a sequence of such tuples (k1, t1), (k2, t2), .... The
sequence can be theoretically infinitely long, but in reality, often with a finite
length.

Eq.2.6 shows the updating rules of continuous-LSTM.

im+1 ← σ(Wikm + Uih(tm) + di) (2.6a)

im+1 ← σ(Wikm + Uih(tm) + di) (2.6b)
fm+1 ← σ(Wfkm + Ufh(tm) + df ) (2.6c)

fm+1 ← σ(Wfkm + Ufh(tm) + df ) (2.6d)

zm+1 ← 2σ (Wzkm + Uzh (tm) + dz)− 1 (2.6e)
om+1 ← σ (Wokm + Uoh (tm) + do) (2.6f)
cm+1 ← fm+1 ? c (tm) + im+1 ? zm+1 (2.6g)

cm+1 ← fm+1 � cm + ım+1 � zm+1 (2.6h)
δm+1 ← f (Wdkm + Udh (tm) + dd) (2.6i)

The f(·) that calculates the decay function δ is a softplus function, a smoothed
ReLU:

f(x) = ψ log(1 + exp(x/ψ)), (2.7)

and h(t) is computed from the LSTM variables as in Eq.2.9. The intensity
function is K-dimensional, referring to the K types of events, in favor of event
type prediction.

λk(t) = fk

(
w>k h(t)

)
(2.8)
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Figure 2.2: An illustration on the architecture of Transformer Hawkes Process
[3]

h(t) = oi � (2σ(2c(t))− 1) for t ∈ (ti−1, ti] (2.9)

The continuous characteristic in the continuous-LSTM can be observed in
the difference between discrete ci, ci in Eq.2.6 and continuous ct in Eq.2.9. The
transition from discretion to continuity is done similarly to exponential decay in
Hawkes process:

c(t)
def
= cm+1 + (cm+1 − cm+1) exp (−δm+1 (t− tm)) for t ∈ (tm, tm+1] . (2.10)

We will show later that the ht can be extended to other types of neural
networks, and the inputs of the neural network can also be extended to contain
richer information.

2.1.3 Transformer Hawkes Process

The key idea of Transformer Hawkes Process [3] is to replace the RNN in Neu-
ral Hawkes Process with a transformer structure for theoretically better per-
formances in long-term dependency extraction as well as higher computational
efficiency. Fig.2.2 is a graph illustration of the model architecture.

Two significant differences between the transformer and neural Hawkes pro-
cess are that: 1) The intensity function in the transformer structure is expanded
to contain information beyond hidden states, but also time; 2) The hidden states
are calculated from the transformer’s encoder, which is the result of matrix com-
putations taking the sequence as a whole, instead of updating on every event as
in RNN.

The intensity function is calculated from:

λk(t) = fk

(
αk
t− ti
ti

+ w>k h (ti) + bk

)
for t ∈ (ti−1, ti] , (2.11)
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from which we can observe enriched information directly from current event time
and base rate. The fk is also chosen to be a scaled softplus function.

The transformer’s encoder calculates the hidden state h(t) as in Eq.2.13. U ∈
RM×K is the embedding matrix for all K event types in the transformer settings,
Y = [k1,k2, . . . ,kL] ∈ RK×L is the collection of event type embedding, and
Z = [z (t1) , z (t2) , . . . , z (tL)] ∈ RM×L is the collection of event time encodings.
The event time encoding is calculated by

[z (tj)]i =

 cos
(
tj/10000

i−1
M

)
, if i is odd

sin
(
tj/10000

i
M

)
, if i is even

(2.12)

X = (UY + Z)> (2.13a)

Qh = XWQ
h , Kh = XWK

h , Vh = XWV
h (2.13b)

Sh = Softplus

(
QhK

>
h√

MK

)
Vh (2.13c)

S = [S1,S2, . . . ,SH ]WO (2.13d)

H = ReLU
(
SWFC

1 + b1

)
WFC

2 + b2 (2.13e)
h (ti) = H(i, :) (2.13f)

Chapter 3 will explain a similar structure that can apply to event-centric
temporal knowledge graph forecasting.

2.2 Temporal Knowledge Graph

This section will discuss the temporal knowledge graph (tKG), its structure char-
acteristics, and relevant past works on embedding and forecasting.

2.2.1 Semantic Knowledge Graph

The semantic knowledge graph is a kind of multi-relational knowledge base that
stores factual information. One graph illustration is as Fig.2.3. Each node in
the graph represents an entity, and each edge in the graph represents a rela-
tion/predicate. The knowledge graph defines an event with two nodes and one
connecting edge, namely two entities (subject and object) and one relation. It
denotes an event in the form of a tuple of three elements: (s, r, o), pointing at
subject, predicate, object, respectively.
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Figure 2.3: A graphic illustration of semantic knowledge graph [15]

Figure 2.4: A graphic illustration of temporal knowledge graph [7]

2.2.2 Temporal Knowledge Graph

A temporal knowledge graph (tKG) is a semantic knowledge graph with enriched
information in time; namely, each edge simultaneously contains the relation and
the time, the latter indicating the valid period/timestamp of the relation. An
example is Fig.2.4. Accordingly, each event in tKG shall contain two nodes, one
connecting edge, and multiple discrete time stamps (discretion only in favor of
sampling and computation). Formally, a quadruple of four elements: (s, r, o, t)
should be involved, pointing at the subject, relation, object, and time, respec-
tively.

One can consider a sequence of such events as an event stream previously
discussed in Section 2.1.2. There exists an information gap between (k, t) and
(s, r, o, t). One can technically take the combination (s, r, o) as individually cat-
egorized events, but that would impose O(Ks ·Kr ·Ko) types of events in total,
potentially heavy for computation. Conventionally, in forecasting problems, re-
searchers usually focus on only one element, e.g. predicting the type of s given
(r, o, t). Chapter 3 will include more discussions on how to incorporate the infor-
mation from the triplet.

Although predicting t (time prediction) is also an interesting task in the
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academia, this thesis will only focus on event-centric predictions and not on time
predictions.

2.2.3 Temporal Knowledge Graph Completion

One common task on knowledge graph is graph completion, equivalent to link (en-
tity/relation) prediction. On static (semantic) KGs, common approaches include
introducing a scoring function w.r.t. triplets (s, r, o) and perform classification
on candidate classes based on the scores [16]. The scoring functions are com-
puted from learnable embeddings of links. Scoring Examples include TransE [4]
(Eq.2.14), DistMult [17] (Eq.2.15), etc.

f(s, r, o) = ||es + er − eo||2 (2.14)

f(s, r, o) = (eo ? es)eᵀr (2.15)

Various encoding methods for the time information in tKGs can apply to
neural network models. Garcıa-Duran et al. [16] split time into tokens, then
input the tokens to an LSTM to generate a latent representation. For example,
the year stamp “2009” is split to “2”,“0”,“0”,and “9”, and formed as part of the
input sequence of the LSTM. On the other hand, Han et al. [7] directly used
event time to calculate the time-dependent exponential decay in the intensity
function of the point process. The intensity function of each candidate link class
will be transformed to a probability, based on which the neural network makes a
prediction. More details will be in the following section.

Another task on temporal knowledge graph is time prediction, i.e., given an
event, predicting its occurrence time. It is still a less discussed topic, so is it in
this thesis.

2.3 Graph Hawkes Neural Network

Graph Hawkes Neural Network [7], short as GHNN, is an RNN- and Hawkes
process-based model for temporal knowledge graph forecasting, including link
prediction and time prediction. It consists of three major parts: mean aggregator,
continuous LSTM, and predictor. A model architecture illustration is in Fig.2.5.

Event quadruples (s, r, o, t) are firstly grouped to form event streams if they
share the same (s, r) or (r, o), depending on whether the sub-task is object pre-
diction or subject prediction respectively. Take the (s, r) scenario as an example.
At each timestamp, several events share the same (s, r) tuple. The mean aggre-
gator then calculates the mean of the embeddings eo of all objects O in these
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Figure 2.5: A graphic illustration of GHNN [7]. The upper and lower path can
be regarded as object and subject prediction, respectively. The combination of
two paths is part of the time prediction pipeline.

events. The aggregated tensor g(O) is concatenated to the es and er as the input
to the RNN:

km

(
esi , eri , e

h,sr
i

)
= g (Otm (esi , eri))⊕ esi ⊕ eri . (2.16)

The RNN structure is continuous-LSTM (cLSTM) mentioned in Section 2.1.2.
The update rules are as Eq.2.6, 2.10, and 2.9.

With the hidden states h(t) obtained, the intensity function of all candidate
classes is calculated by:

λ
(
eo | esi , epi , ti, e

h,sr
i

)
= f

(
Wλ

(
esi ⊕ h

(
eo, esi , eri , ti, e

h,sr
i

)
⊕ eri

)
· eo
)
,

(2.17)
where ⊕ represents concatenation, eo is the entity embedding of all types, esi , eri
are repsectively the subject and relation at time ti, and f is the softplus function.

GHNN is proved to reach state-of-the-art performances on link prediction on
temporal knowledge graphs.



Chapter 3

Methodology

We will discuss our task settings, model architecture and rationales, and more
details on our model’s components.

3.1 Task Description

The primary task involved is event-centric forecasting on temporal knowledge
graph, in plain words, event (subject/object) type prediction given a sequence
of historical events in a temporal knowledge graph. More formally, denoting
the event sequence as a series of quadruples (s1, r1, o1, t1), ..., (sn, rn, on, tn), we
try to predict sn+1 given (rn+1, on+1, tn+1), or similarly to predict on+1 given
(sn+1, rn+1, tn+1).

In a large-scale knowledge graph, at each t, there can be a considerable
amount of quadruples involved, and while some of them can be quite relevant
to the queried event, many of them can also be irrelevant. There are commonly
two methods to deal with this issue.

Firstly, we build the sequence so that if we query the subject in the form of
(?, rq, oq, tq), we select the past events with the same relation and object to the
event stream, i.e., (si, rq, oq, t≤tq). Vice versa for object query. The number of
involved events is thus limited, and more irrelevant information is omitted. In
reality, the sequence is restricted to a finite maximum length.

Secondly, to integrate information from multiple events simultaneously, we
introduce an aggregator, which compresses the information to a fixed-dimension
tensor. More details are in Section 3.2.3.

3.2 Model Architecture

Our model mainly consists of an embedding block, an aggregator, and a trans-
former. The embedding block generates and learns embeddings of all entity and

11
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Figure 3.1: A graph illustration of our model architecture

relation types. The aggregator obtains a compressed and rich-in-information
tensor from the preprocessed input event sequence. The transformer learns the
sequence pattern and conducts predictions. Specifically, we only apply the trans-
former’s encoder to obtain the hidden state without passing it to the decoder. A
graph illustration is as in Fig.3.1.

Following are discussions on each block with more details.

3.2.1 Embeddings

In this model, both the parameters and the embeddings are learnable. The
embeddings have a fixed size and randomly initialized values.

The subjects and objects share the same set of entity embeddings, covering
Ke classes of entity types. The relation embedding for each event, more del-
icately, is different for the two directions: s → o and o → s. Therefore, the
relation embeddings cover 2Kr classes of relation types. In the implementation,
the corresponding embedding group is selected according to the task’s direction
(to predict s given o or reversed).

3.2.2 Transformer

The transformer is the same as a conventional one without a decoder. We used
the same structure as in Section 2.1.3 and Eq. 2.12 - 2.13.

The transformer’s input is the term X ∈ RL×M in Eq. 2.13, where each row
represents an event, and each column corresponds to a dimension of the input
embedding. As shown in Fig. 3.1, an event’s input is a sum of 1) temporal
encoding and 2) concatenation of subject embedding, aggregator output, and
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relation embedding. The temporal encoding is done through Eq. 2.12, imposing
a mixed trigonometric function to the vector representing event times.

Two core modules of the transformer are the multi-head self-attention and
feedforward network. Self-attention ensures that while the network takes the
whole sequence as the input, it only sees the corresponding history sub-sequence
at each output sequence position. Multi-head attention provides multiple sets of
weights to the input, similar to the idea of model bootstrapping.

Referring back to Eq. 2.13, the attention module output Sh results from
a computation rule applied to key, query and value, corresponding to Kh, Qh,
and Vh, variables. Self-attention in implementation takes the input sequence
as both key and query so that the attention is trained on the sequence itself.
Specifically, we call the parameter

√
MK temperature of the softmax function

or the transformer, which controls how close the softmax is to a max function.
The lower the temperature, the closer it is to the max. Multi-head attention is
done through a weighted aggregation of the outputs from multiple self-attention
modules, which gives the variable S.

Following the attention module is a pointwise feedforward network, denoted
by H. The hidden state of each event hi is thus one column of the tensor H.

After all, note that the sequence length can be different for each stream.
Thus, a padding mask appears to ensure each tensor variable keeps a constant
size throughout the transformer processing.

In our scenario, only the last event of each event stream is under interest. We,
therefore, only take the last event’s hidden state into the intensity calculation and
prediction stage.

3.2.3 Aggregator

TKGs require an aggregator to compress the information from a group of entities
to one representational vector. Two important types experimented here are the
mean aggregator [7] and relational aggregator [18]. Other aggregators in past
literature include the multi-hop aggregator [19], weighted aggregator [20], and
many more.

The mean aggregator’s output is calculated as:

g (Ot (esi , eri)) =
1

|Ot (esi , eri)|
∑

eo∈Ot(esi ,eri)

eo, (3.1)

where Ot(esi , eri) is the group of objects at time t from the events with the same
s and r type, and e is the embedding of the entity/relation type. The aggregator
can also apply to grouped subjects by simply switching o and s in the equation.
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Figure 3.2: A graphical illustration of relational aggregator: a weighted sum of
composition functions of entity and relation embeddings. [18]

The relational aggregator can be regarded as a weighted sum of entity and
relation embeddings’ composition operation, as illustrated in Fig.3.2. A com-
position operation φ(·) can be either subtraction, multiplication, or circular-
correlation:

Subtraction: φ (es, er) = es − er (3.2a)
Multiplication: φ (es, er) = es ∗ er (3.2b)
Circular-correlation: φ (es, er) = es ? er. (3.2c)

In our settings, we experimented on the circular correlation only, in favor of
its surpassing performance than the other two in the original work.

3.2.4 Intensity Function

Intensity function is an essential part of Hawkes process-related analysis. In
GHNN [7], Eq.2.17 calculates the intensity function as a non-linearly transformed
weighted function of a concatenation that includes the hidden state.

In Transformer Hawkes process [3], Eq.2.11 calculates the intensity function as
a non-linearly transformed summation of time-related constant αk t−titi

, weighted
hidden states wᵀ

kh(ti), and a base rate constant bk. The base rate constant is
realized through a linear layer simultaneously with the weighting of hidden states.

Our model proposes a combination of the two – we replaced the hidden state
in Eq.2.11 with the concatenation in Eq.2.17:

λ(eoq | h
s,r
i ) = f

(
(αt

tq − ti
ti

+ Wλ(es ⊕ h(eoq , h
s,r
i )⊕ er) + bλ) · eo

)
, (3.3)

where hs,ri represents the history event sequence of event i, h(eoq , h
s,r
i ) is the

output hidden state of the history from the transformer, and ti is the time of the
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event, the same as the last event’s time in the sequence. The function f is the
softplus function.

The predicted entity class is the one with the highest λ score.

3.3 Learning Scheme

The learning objective is the cross-entropy loss:

L = (Ls,r + Lo,r)/2, (3.4)

where Ls,r is the cross-entropy loss on object prediction given (s, r, t) tuples, and
Lo,r is that on subject prediction, written as:

Ls,r = −
N∑
i=1

Ke∑
k=1

yk log (p (eoi = k | hs,ri )) (3.5a)

Lo,r = −
N∑
i=1

Ke∑
k=1

yk log (p (esi = k | ho,ri )) . (3.5b)

In the implementation, yk is the one-hot label of event i at class k. The
probability term p(eoi = k | hs,ri ) is equivalent to the intensity function λ after
normalization on the corresponding category.



Chapter 4

Experiments

Several experiments are conducted on our proposed model and show that our
model reaches comparative performances as RNN. We have also performed addi-
tional experiments on several individual compositions and parameters. We will
show their influences on the model’s ability to predict.

4.1 Datasets and Preprocessing

4.1.1 Datasets

One commonly used family of temporal knowledge graph is ICEWS - Integrated
Crisis Early Warning System [9], which contains events with the essence of coded
interactions between socio-political actors. Such actors have nation-states, sec-
tors, groups, or individuals, and such interactions include hostile or cooperative
actions.

Two sub-datasets in the family, ICEWS14 and ICEWS0515, are used in
the experiments. ICEWS14 contains all events that happened in 2014, and
ICEWS0515 includes all events that happened in a 10-year span from 2005 to
2015. Hereunder are statistics of the two datasets:

Dataset # Entity types # Relation types # Time stamps Events
ICEWS14 12498 254 270 492679
ICEWS0515 10488 251 4017 461329

Table 4.1: Statistics of datasets

The ICEWS0515 dataset has a train, a validation, and a test set. The original
ICEWS14 dataset, however, contains only train and test sets, without a validation
set. Therefore, we made a resplitted version ICEWS14_resplit and adjusted the
ratio of train:validation:test to 7:1.5:1.5, the same as ICEWS0515.

16
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4.1.2 Preprocessing

The ICEWS dataset contains raw quadruples only. We extract two fixed-length
history event streams for each event quadruple during preprocessing – one is com-
posed of history quadruples with the same subject and relation and the other with
the same relation and object. Appendix A shows the statistics of the generated
sequences.

It is observed that in both ICEWS14 and ICEWS0515 datasets, the validation
and test sequences have a slightly heavier distribution at longer lengths, which
we assume the intention is to test the model’s generalization ability to predict
excessively far events. Such an uneven distribution can be meaningful on longer
sequence lengths, but its utility is limited to a shorter maximum sequence length.

It is also observed that on all the datasets, the mean (and maximum) of
the generated sequences’ lengths are slightly higher in object-centric ones than
subject-centric ones. For simplicity, we still take the average the two losses on
subject- and object-centric sub-datasets. Nevertheless, it is also plausible to
assign a higher weight on subject-centric loss to compensate for the averagely
longer lengths in object-centric sequences, or vice versa.

We selected some fixed maximum history lengths when generating the se-
quences and have conducted experiments on each of them. The maximum ac-
ceptable length of the transformer follows the maximum history length of the
preprocessed dataset.

4.2 Evaluating Metrics

We use two major metrics: mean reciprocal rank (MRR) and Hits@K, for their
common appearance in past literature on (temporal) knowledge graphs [7, 4, 16,
21].

A reciprocal rank is the reciprocal of the true entity class’s rank of probability
among all classes. MRR is then the mean of all events’ reciprocal ranks in a
dataset.

Hits@K measures the percentage of events in a dataset whose true class falls
under the top-K ranked categories in prediction. We take K = 1, 3, 10, aligned
with [7].

For each predicted entity, we compute two types of ranks – raw and filtered,
following GHNN [7]. The raw rank is the rank of the ground truth’s intensity
among that of all entity types. The filtered rank is the rank of the ground truth’s
intensity among all entity types, except the ones that are also the ground truth.
Multiple ground truths can appear simultaneously since one pair of a subject and
relation can have multiple objects simultaneously, and vice versa for one object



4. Experiments 18

and one relation. One example is that one country can be a business partner to
many countries at the same time. The two types of ranks would give two results
to MRR and Hits@K. Therefore, we present two sets of metrics, raw and filtered,
on the test set.

4.3 Experimental Setup

Among all experiments, some fixed parameters are as follows:
Embedding dimensions: Entities and relations: 200; Aggregator output: 200;

Temporal encoding: 600;
Optimizer: Adam [22]; Learning rate: 0.0001; Weight decay: 0.00001;
Dropout of layers not within transformer: 0.5
Softplus Scale β: 10.0
Transformer: Head number: 4; Encoder layer number: 4; Feedforward inner

layer dimension: 1024; Output hidden layer size: 200.

We applied gradient accumulation [23] during training for some large batch
sizes, i.e., to update the optimizer every few batches. We used automatic mixed
precision during training to speed up the process and maximize storage usage for
some large sequence lengths.

On the two datasets with a validation set, the model under test is the one
with the highest MRR on the validation set. On ICEWS14 without a validation
set, the model under test can slightly overfit to the training set. In the following
sections, experiment results from ICEWS14 will be omitted if not necessary.
Whenever necessary, the highest scores observed would be presented, and those
that show a sign of overfitting would be discarded if possible.

4.4 Experiment Results

We will first present comparisons of our transformer model with GHNN [7], then
discuss the function of each part and hyper-parameters in our model with parallel
experiments.

4.4.1 Comparison with RNN

We modified GHNN’s model to omit time prediction-related computations and
loss to align with the task setting. Then GHNN and transformer are compared
under the same common hyperparameters, e.g., batch size, learning rate, etc. We
present the performances on different max sequence lengths.

Fig.4.1, 4.2, and 4.3 show the transformer model and GHNN’s experiment re-
sults on ICEWS14_resplit, ICEWS0515, and ICEWS14, respectively. Appendix
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B includes the exact metrics.

All models are trained under the same batch size 64 and the same learning
rate 0.0001. The models on ICEWS14_resplit and ICEWS0515 are selected at
best validation MRR. Based on these premises, the results on ICEWS14_resplit
and ICEWS0515 show that:

1. The transformer model’s performance is more sensitive to sequence length
than RNN, and no monotonic performance change arises as sequence length in-
creases, which contrasts with the common knowledge that transformer could have
better performances on longer sequences than RNN due to enlarged prediction
capacity [10]. This non-monotonicity, nevertheless, means that one can vary the
sequence lengths to obtain a full profile of the model’s performances on different
lengths.

2. In general, the transformer model is not necessarily better than RNN in
terms of metrics, but under certain situations, the transformer’s performances
are approaching that of RNN’s.

The models trained on ICEWS14 cannot be trust-worthily validated, and
thus overfitting might occur while not foreseeable. For testing and comparison,
we chose models that reach a similar and acceptable low training error. The
results on ICEWS14 show that, with the possible existence of overfitting, the
transformer model can surpass the model at some lengths. This conclusion is
not fully trustable, though, since the results on ICEWS_resplit show a contrary
conclusion that the transformer does not surpass RNN, whichever sequence length
is under test.

4.4.2 Regarding Model Structure

We tested modifications on several model components and present the effects
hereafter. Tested modifications include the total model parameter number, the
aggregator scheme, and a certain component in the intensity function.

Parameter Number

The model setting in Section 4.4.1 gives a total parameter number of about 4.9M.
As a reference, BERT [24] gives a number of around 110M. We thus tested our
model under a boosted parameter space of approximately 23M, which balances
our available computational power and model’s information capacity. This was
done by expanding the transformer’s key and value tensor (K,V) dimensions
to 512, rather than 64 previously. We did this hoping that a larger parameter
space and a larger hidden state dimension in the encoder would help enrich more
information from the sequence.

Table 4.2 shows the results on ICEWS14_resplit and ICEWS0515. We only
offer the raw results on minimum and maximum experimented allowed sequence
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Figure 4.1: Metrics comparison between GHNN and our transformer model, on
ICEWS14_resplit dataset



4. Experiments 21

Figure 4.2: Metrics comparison between GHNN and our transformer model, on
ICEWS0515 dataset
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Figure 4.3: Metrics comparison between GHNN and our transformer model, on
ICEWS14 dataset
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length here since they should be representative, concluded from the previous full
length-wise profile and the similar pattern between raw and filtered test results.

dim(K), dim(V) = 512: no brackets; (dim(K), dim(V) = 64): in brackets
Dataset Max seq length MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)

ICEWS14_resplit 10 22.9839
(24.2635)

14.4027
(15.5541)

25.4133
(26.8560)

40.3296
(41.8056)

300 21.7073
(22.4572)

13.4199
(13.9082)

23.8055
(24.7748)

38.5812
(39.7678)

ICEWS0515 10 38.2561
(39.0785)

29.2283
(30.1033)

42.5478
(43.3634)

55.3365
(56.0870)

300 34.7373
(37.3733)

25.2679
(28.2037)

38.9229
(41.7242)

52.9257
(54.7506)

Table 4.2: Comparison of the transfomer model under different transformer key
and value dimensions.

The results show that enriching the model’s parameter number would not
help the model better learn the patterns.

Aggregator structure

As introduced in Section 3.2.3, we introduced an additional relational aggregator
apart from the mean aggregator. For the relational aggregator, with φ(·) being
the circular-correlation in Eq.3.2, we tested the setting:

g (Ot (esi , eri)) =
1

|Ot (esi , eri)|
∑

eo∈Ot(esi ,eri)

wriφ(eo, eri), (4.1)

where wri is from a learnable matrix W that assigns a weight for each relation
type.

Table 4.3 shows the results on ICEWS15. The experiments are conducted
under the same batch size, parameter numbers, and learning rate. Again, we
only offer results under one sequence length and under the raw test set only,
since they should suffice to show the effect.

Dataset: ICEWS0515
Max sequence length: 50

Aggregator MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)
Mean 38.3318 29.2167 42.7792 55.4912

Relational 32.3110 22.9489 36.3132 50.5452

Table 4.3: Comparison of the transformer model under different aggregator struc-
ture.
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It is evident that the newly introduced compositional aggregator is harmful
to the performances.

One possible reason is that the aggregator is imposed onto the group of events
that have the same subject/object and relation, and thus introducing operations
on the relation embedding (er) would compress redundant information into the
aggregated tensor, and therefore make the tensor less "informative." One possible
improving approach is to group events by the same subject/object and allow for
more relation types. Section 5.2 will discuss on more aggregator options.

Temporal encoding

The positional encoding is an essential part of the attention mechanism to make
use of sequence orders. On the temporal knowledge graph, the positional en-
coding idea is implemented by a temporal encoding, which fuses the event time
information, as in Eq.2.12.

The Hawkes process assumption requires implementing the temporal encoding
with time intervals between events, i.e., tj is the time difference of the event j
from its previous event. This implementation contradicts the original positional
encoding, which computes the encoding with the absolute position in a sentence.
We, therefore, tested a temporal encoding with the absolute event time.

We also tested the model performance without a temporal encoding to verify
its actual contribution to our model. Table 4.4 presents the result.

Dataset: ICEWS14
Max sequence length: 10

Temporal encoding MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)
Without 24.3396 16.3542 26.7169 40.0044

With, Time interval 25.8205 17.5004 28.2841 42.3075
With, Absolute time 19.4451 12.3150 21.0346 33.4834

Table 4.4: Comparison of the transformer model with different temporal encoding
scheme.

It is proved that a model without temporal encoding would have degraded
performances. Therefore, the temporal encoding is not removable. Also, inter-
estingly, the replacement of time interval to absolute event time would damage
the performances profoundly.

Intensity function components

We adjusted the time-related term in the intensity function Eq.3.3, aiming at
making the intensity tensor more informative. We experimented on 1) the time
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term αt’s weight and 2) whether to keep the denominator ti in the time term.

The result is shown in Table 4.5. Experiments on the same dataset are done
under the same batch size, learning rate, and other model specifications.

Dataset: ICEWS0515
Max sequence length: 50

Test method: Raw
Time term MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)

Without time term (αt = 0) 38.3318 29.2167 42.7792 55.4912
αt = 0.0001 37.5861 28.4011 42.0134 54.9120

αt = 0.0001, no denominator (αt(tq − ti)) 37.7580 28.6368 42.1544 54.9756

Table 4.5: Comparison of the transformer model under different intensity function
components: time term equation and weights.

It is observed the existence/absence of the time term αt
tq − ti
ti

does not make

a significant difference to the performances.

4.4.3 Regarding Training Hyper-parameters

Some of the hyperparameters during training would cause differences in model
performances as well. This section will present such effects from dropout, batch
size, and the temperature of the transformer’s attention module.

Dropout

Dropout [25] was invented to avoid overfitting of neural networks by preventing
feature co-adapting. Baldi et al. [26] prove that a dropout in effect is equivalent
to regularization, and a dropout probability of 0.5 imposes the highest level of
regularization.

We experimented on our model with dropout probability p = 0.1 and p = 0.5.
Table ?? shows the results.

Dataset: ICEWS14_resplit
Max sequence length: 250

Test method: Raw
Dropout MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)
p = 0.1 21.5661 13.2399 23.6500 38.4406
p = 0.5 20.9680 12.8873 22.9273 37.2798

Table 4.6: Comparison of the transformer model under different dropout proba-
bilities.
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The results indicate that increasing the dropout for a higher level of regu-
larizing effect would slightly degrade the performances. But at the same time,
metric curves during training show that increasing dropout ratio speeds up the
model’s convergence. With p = 0.1, the model needed more than 60 epochs of
training to converge, while with p = 0.5, it only required 30 epochs.

Batch size

It was observed that the model is batch size-sensitive. Here-under, Table 4.7
contains the results from parallel experiments on batch size. We applied gradient
accumulation to adjust the effective batch sizes.

Dataset: ICEWS0515
Test method: Raw

Max sequence length Batch size MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)
10 64 38.5386 29.3512 42.9447 56.0371

256 38.2561 29.2283 42.5478 55.3365
300 64 35.4433 25.8616 39.9005 53.6842

256 34.7373 25.2679 38.9229 52.9257

Table 4.7: Comparison of the transformer model under different batch sizes.

It is observable that an increase in batch size would lead to a slight decrease
in performance. We only show the raw test results on some lengths, and results
from the remaining settings show the same phenomenon.

Transformer attention temperature

The transformer attention temperature
√
MK in Eq.2.13 controls the softness of

the attention score distribution [27] by controlling the softmax function’s smooth-
ness. The higher the value, the smaller the attention score differences between
more and less "attended" classes.

Table 4.8 presents the results. The models are trained with the same model
specifications and for a similar epoch number.

Results show that the temperatures of (MK)0.3 and (MK)0.8 perform similarly
better than the other two, while

√
MK is usually the default choice [28]. We still

set the power to be 0.5 for all other experiments since the improvement from
other values is rather trivial.
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Dataset: ICEWS14
Max sequence length: 10

Test method: Raw
Temperature MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)

(MK)0.3 26.0919 17.6489 28.6415 42.8802√
MK 25.8205 17.5004 28.2841 42.3075

(MK)0.8 26.0719 17.6326 28.6496 42.8508
MK 25.8691 17.4572 28.5060 42.4462

Table 4.8: Comparison of the transformer model under different temperatures.
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Discussion and Future Works

On our implementation of the transformer in the temporal knowledge graph,
we have observed an approaching yet not beating performance than RNN in
past works. We have also observed modules that bring slight improvements at
best, including a different aggregator scheme, the transformer’s structure, the
intensity function, some training hyperparameters, etc. It is plausible, with all
these experiment results, that the improvement, if any, should come from other
modules, i.e., event embedding, more complex aggregators, other schemes for
temporal encoding, and so on. Following are some works and ideas that might
be helpful for our task.

5.1 Another Sequence Generating Logic

The current event sequence generation scheme is by filtering the events with the
same subject/object and relation. We could expand the grouped event pool to
only restricting one same entity. More events will be passed to the aggregator,
and potentially longer sequences can be generated.

5.2 More Complicated Aggregators

If with the new sequence generating logic above, the current mean and relational
aggregator naturally becomes more complicated because more events are aggre-
gated at each timestamp. Additionally, the relation-dependent weight in the
relational aggregator can be more effective on the new sequence because different
relations exist in events at the same timestamp, and thus more relation-dependent
features can be potentially "extracted."

A similar idea that imposes different weights to events at one timestamp is
attention-based aggregation [29], such that the assignment of aggregator’s weight
includes the attention mechanism already.

Another direction to introduce more events to the aggregator, even though

28
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some events are not directly/strongly related to the queried one. In a graph
structure, this can be realized by a multi-hop neighborhood aggregation [19], i.e.
for the interested event (s, r, o, t), not only its direct (one-hop) neighbors with the
same (s, r, o′, t) will be aggregated, but also its two-hop neighbors (s′′, r′′, o′, t),
and so on. Some restrictions on aggregated events can also help shrink the
aggregation pool size, e.g., allowing two hops at maximum or allowing only multi-
hop neighbors with the same r.

5.3 Informer

Informer [10] is a newly proposed transformer-based model designed explicitly
for long sequence time-series forecasting. It claims to achieve a higher computing
efficiency and better predicting performances, with self-attention distilling layers.
It is possible and plausible to replace the transformer with the informer, especially
on longer sequence lengths.

5.4 Another Temporal Encoding Scheme

Also inspired by Informer [10], the temporal encoding can be replaced by a sum-
mation of more decomposed embeddings, including position embedding and week
or month embeddings. By such decomposition, the model can take into consider-
ation both relative time interval and absolute event time as input simultaneously.
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Conclusion

In this thesis work, we proposed and implemented a transformer-based model
for event forecasting on the temporal knowledge graph. The model also contains
modules of mean aggregator and predictor based on Hawkes process.

We conducted experiments with the model on several widely used temporal
knowledge graph datasets. We compared with the baseline model, GHNN, an
LSTM-based model on the same task. The model has achieved approaching
results compared to GHNN.

We also conducted experiments on several individual modules in the model
and some hyperparameters during training. Results show that the model reaches
its best performances with relatively small batch size and parameter number, a
slight deviation from the typical attention temperature, a relatively small dropout
ratio, and an intensity function that contains no explicit time information. Other
modifications on aggregator structure and temporal encoding have proved to be
counter-effective.

For further potential improvements, one can turn to new event sequence gen-
eration schemes, other aggregator options, different temporal encodings, or even
alternatives for the transformer.
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Appendix A

Statistics of Generated Event
Sequences

TableA.1 - A.3 are statistics of the generated sequences.

A-1



Statistics of Generated Event Sequences A-2

Dataset: ICEWS14_resplit

Sub-centric, Train
Avg length: 31.8
Max length: 191

Obj-centric, Train
Avg length: 37.0
Max length: 191

Sub-centric, Valid
Avg length: 70.7
Max length: 233

Obj-centric, Valid
Avg length: 81.8
Max length: 233

Sub-centric, Test
Avg length: 82.4
Max length: 269

Obj-centric, Test
Avg length: 97.2
Max length: 269

Table A.1: Statistics of generated sequences from ICEWS14_resplit



Statistics of Generated Event Sequences A-3

Dataset: ICEWS0515

Sub-centric, Train
Avg length: 101.4
Max length: 1762

Obj-centric, Train
Avg length: 145.4
Max length: 2186

Sub-centric, Valid
Avg length: 243.9
Max length: 2405

Obj-centric, Valid
Avg length: 363.17
Max length: 2500

Sub-centric, Test
Avg length: 190.2
Max length: 2077

Obj-centric, Test
Avg length: 290.5
Max length: 2500

Table A.2: Statistics of generated sequences from ICEWS0515



Statistics of Generated Event Sequences A-4

Dataset: ICEWS14

Sub-centric, Train
Avg length: 39.8
Max length: 239

Obj-centric, Train
Avg length: 46.2
Max length: 239

Sub-centric, Test
Avg length: 83.3
Max length: 269

Obj-centric, Test
Avg length: 98.2
Max length: 269

Table A.3: Statistics of generated sequences from ICEWS14



Appendix B

Experiment Results of
Transformer and GHNN

Table B.1, B.2 and B.3 show the test metrics of our transformer model and GHNN
verbatim. The metrics of the transformer model is in the first line of each cell,
without a bracket. The metrics of GHNN are in the second line of each cell and
bracketed.

B-1



Experiment Results of Transformer and GHNN B-2

Dataset: ICEWS14_resplit
Transformer: no brackets; (GHNN) in brackets

Test Method Max seq length MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)

10 24.2635
(25.9753)

15.5541
(16.9506)

26.8560
(28.8456)

41.8056
(44.0858)

50 22.8221
(25.7760)

14.2506
(16.7414)

25.2476
(28.6927)

40.0952
(43.7258)

100 22.4640
(26.0422)

13.9062
(16.9547)

24.8604
(29.0038)

39.5559
(44.1530)

Raw 150 22.4465
(25.9803)

13.9035
(17.0022)

24.7850
(28.8129)

39.7291
(43.9038)

200 22.4297
(25.9620)

13.7941
(16.9458)

24.8305
(28.8883)

39.9370
(43.9608)

250 22.9480
(26.1005)

14.3369
(17.0178)

25.4065
(29.0867)

40.3982
(44.1775)

300 22.4572
(26.0428)

13.9082
(16.9880)

24.7748
(28.9821)

39.7678
(44.1170)

10 26.0654
(27.8903)

17.6624
(19.1982)

28.6418
(30.7794)

42.8136
(45.1610)

50 24.4085
(27.6936)

16.0275
(19.0067)

26.8900
(30.5797)

41.0747
(44.8737)

100 24.0040
(27.9783)

15.6308
(19.2274)

26.4831
(30.9077)

40.5496
(45.2106)

Filtered 150 23.1554
(27.8883)

14.8341
(19.2261)

25.5247
(30.7060)

39.7325
(44.9417)

200 23.9509
(27.9113)

15.4848
(19.2335)

26.4689
(30.8127)

40.8553
(45.0510)

250 24.5991
(28.0511)

16.2340
(19.2974)

27.0428
(31.0076)

41.3967
(45.2344)

300 23.9865
(27.9802)

15.6091
(19.2553)

26.3582
(30.8969)

40.7684
(45.1984)

Table B.1: Comparison of our model and GHNN on ICEWS14_resplit under
different maximum sequence lengths, with same batch size and learning rate



Experiment Results of Transformer and GHNN B-3

Dataset: ICEWS0515
Transformer: no brackets; (GHNN) in brackets

Test Method Max seq length MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)

10 39.0785
(41.7107)

30.1033
(32.3514)

43.3634
(46.5168)

56.0870
(59.2419)

30 38.8496
(39.6275)

29.7728
(30.2537)

43.1725
(44.3591)

56.1261
(57.1955)

Raw 50 38.3318
(39.6500)

29.2167
(30.3469)

42.7792
(44.2666)

55.4912
(57.2809)

100 38.1439
(41.3510)

29.0837
(31.9537)

42.4711
(46.0931)

55.1947
(58.9512)

300 37.3733
(41.2009)

28.2037
(31.8040)

41.7242
(45.9962)

54.7506
(58.7878)

10 39.9818
(42.6792)

31.5509
(33.9096)

43.7517
(46.9558)

56.2273
(59.3981)

30 39.7459
(40.5724)

31.2096
(31.7772)

43.5832
(44.7706)

56.2815
(57.3510)

Filtered 50 39.1854
(40.5790)

30.5675
(31.8322)

43.1863
(44.7113)

55.6329
(57.4219)

100 38.9896
(42.3157)

30.4272
(33.5004)

42.9209
(46.5168)

55.3415
(59.1031)

300 38.1888
(42.1473)

29.4980
(33.3030)

42.1190
(46.4597)

54.8693
(58.9368)

Table B.2: Comparison of our model and GHNN on ICEWS0515 under different
maximum sequence lengths, with same batch size and learning rate



Experiment Results of Transformer and GHNN B-4

Dataset: ICEWS14
Transformer: no brackets; (GHNN) in brackets

Test Method Max seq length MRR (%) Hits@1 (%) Hits@3 (%) Hits@10 (%)

Raw 10 25.7936
(24.8037)

16.8910
(15.8443)

28.6570
(27.5866)

43.5133
(42.7554)

50 25.4007
(24.8824)

16.4382
(15.8908)

28.2148
(27.6682)

43.3322
(43.0393)

100 25.1747
(26.3252)

16.3436
(17.1407)

27.8273
(29.2680)

42.8402
(44.6395)

150 24.8077
(26.9833)

16.0067
(17.7468)

27.4218
(29.9370)

42.4943
(45.4558)

200 24.6169
(27.0031)

15.8786
(17.7591)

27.1664
(29.9835)

42.1990
(45.4909)

250 24.9073
(26.7576)

16.1103
(17.4523)

27.5972
(29.8758)

42.6583
(45.4060)

300 24.8124
(26.5435)

16.0034
(17.3022)

27.4104
(29.5373)

42.5425
(45.0332)

Filtered 10 27.7326
(26.7953)

19.1949
(18.1702)

30.5571
(29.5952)

44.5625
(43.7964)

50 27.2926
(26.8653)

18.6426
(18.2029)

30.1467
(29.6131)

44.4132
(44.1268)

100 26.9454
(28.4106)

18.3522
(19.6281)

29.6474
(31.3321)

43.8984
(45.7577)

150 26.4500
(29.1052)

17.8015
(20.2686)

29.2713
(32.0272)

43.4219
(46.5784)

200 26.1179
(29.1167)

17.5249
(20.2849)

28.8528
(32.0117)

43.0687
(46.6208)

250 26.6493
(28.8811)

18.0911
(19.9626)

29.3782
(31.9693)

43.6210
(46.4838)

300 26.5730
(28.6337)

18.0152
(19.7807)

29.2607
(31.6127)

43.5158
(46.1395)

Table B.3: Comparison of our model and GHNN on ICEWS14 under different
maximum sequence lengths, with same batch size and learning rate. Both per-
formances are measured with a model that has an similarly low train error, but
not necessarily right before overfitting.
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