
Distributed

 Computing

Multiagent Reinforcement Learning in
Financial Networks

Distributed Systems Lab

Bryan Yu

Bryayu@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Pál András Papp, Lukas Faber, Béni Egressy

Prof. Dr. Roger Wattenhofer

February 25, 2021

Acknowledgements

Thank you Lukas Faber, Pál András Papp, Béni Egressy, and Professor Roger
Wattenhofer for supporting my interest to study single-agent and multi-agent
reinforcement learning. You’ve all been great at providing guidance and sharing
enlightening discussions on on how to continue the research into the future.

i

Abstract

Banking crises are complex events involving many banks and the network of
interconnection between them. Furthermore, the health of the banking system is
contingent on the current state of all its banks and the choices each bank decides
to take, whether it is in the collective interest of the group or whether actions
are taken solely based on self-interest.

In this thesis, we extend previous agent based models in inter-bank networks
by training their behavior using multi-agent reinforcement learning methods. We
first establish a performance baseline in our stylized environment using single-
agent reinforcement. We then move to the multi-agent setting and empirically
review the learned behavior of the agents.

Our preliminary results showed that simulations with a small number of banks
result in higher concentration of inter-bank capitalization. Furthermore, our ini-
tial attempt at training agents using multi-agent reinforcement learning methods
resulted in behaviors that do not yet appear representative of real world decision
making.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Financial System 2

2.1 Related Work . 2

2.2 Banking Model . 4

2.3 Link Creation . 5

2.4 Default . 5

2.5 System Value . 6

3 Methods 8

3.1 Reinforcement Learning . 8

3.2 Single Agent Reinforcement Learning 9

3.2.1 Proximal Policy Optimization 9

3.2.2 Single-agent Environment 10

3.3 Multi Agent Reinforcement Learning 11

3.3.1 MADDPG . 12

3.3.2 Multi-agent Environment 13

4 Procedure and Results 15

4.1 Environment . 15

4.2 Training . 16

4.3 Single Agent Performance . 17

4.4 Multi Agent Performance . 17

4.5 Discussion . 18

iii

Contents iv

5 Conclusion 22

Bibliography 23

A PPO A-1

B MADDPG B-1

Chapter 1

Introduction

In the modern economy, healthy functioning financial system facilitates the flow
of trade and commerce. After a period of stability, lenders may feel a sense of
security and loosen their lending criterion resulting in leveraged balance sheets
with greater liabilities than assets. As a result, events such as the 1997 Asian
financial crisis, 2008 U.S. financial crisis, 2009 European debt crisis, 2013 Cyprus
banking crisis, 2018 Turkish currency and debt crisis, and other financial events
have occurred in the recent history. Furthermore, as the world becomes increas-
ingly connected, the ability to reason about complex adaptive systems will be an
important tool in preparing and mitigating the effects of future financial crisis.

The study of financial systems modeled as inter-bank networks with bilateral
relationships has been an important tool to reason about system dynamics. Pre-
vious approaches included studying network formations[1], the implications of
network structure [1], dynamic general stochastic equilibrium(DGSE) modeling
[2, 3], and agent-based models [4].

Developments in multi-agent reinforcement learning and machine learning
has introduced new mechanisms for training agents in co-operative tasks [5],
attending to various features in an agent’s observation history [6, 7], and the
ability to learn embeddings that capture the structure of a network [8, 9, 10, 11].

Our goal is to learn how to train inter-bank agents to learn policies using
multi-agent reinforcement learning. By doing so, we hope to incorporate into the
inter-bank network literature an approach to design heterogeneous agents with
policies that considers individual and neighbouring features, network structure,
and network dynamics.

1

Chapter 2

Financial System

Financial systems are complex adaptive systems connecting actors such as banks,
investors, firms, etc. Furthermore, the number of actors in the system, the
strength of the connection between actors, and the creation/termination of con-
nections are subject to change over time. To fit resource constraints, we focus
on inter-bank networks, a subset of a complete financial systems, which aggre-
gates the features of the banking system into agents, capitalization, and bilateral
liabilities which can collectively be represented as a weighted directed graph [12].

We begin with a discussion of related works in Section 2.1. Section 2.2 dis-
cusses the how the structure of the banking system is modeled within the simula-
tion. Section 2.3 discusses the decisions available to the bank-agents. Section 2.4
discusses how default is determined and its effects on the bank-agent. Section 2.5
discusses the clearing mechanism and how it is used to determine the position of
the system.

2.1 Related Work

Inter-bank Network models focus on the banking sector and the interdependent
connections between banks arising from inter-bank liabilities through market ac-
tivity, portfolio holdings, and other financial instruments. This naturally lends
itself to a network model representation with nodes depicting banks and links
depicting inter-bank relations. Furthermore, network models allow research a
window to build insights on how banking crises and contagion can arise.

Allen and Gale [1] and Frexis et al [13] pioneered theoretical work on the
structure of inter-bank networks and suggested that inter-bank networks with
high connectivity results in enhanced system resilience when faced with individual
bank defaults because risk is spread evenly across all other banks. However,
individual bank defaults can impact the financial health of other banks through
knock-on effects arising from inter-bank liabilities. To approximate the impact,
Eisenberg and Noe [14] introduces a clearing vector algorithm that provides a
solution to the higher order feedback. Alternatively, Furfine [15] introduces a

2

2. Financial System 3

sequential algorithm to arrive at a cleared system. However, Furfine’s algorithm
does not account for the simultaneity problem arising from higher order defaults.

Inter-bank liabilities can arise from a variety of channels such as direct linkages
arising from direct loans or indirect linkages arising from banks holding the same
asset or newer financial instruments such as credit default swaps (CDS). One
method to account for the multi-channel nature of liabilities is through multi layer
networks[16]. Montagna and Kok [17] applies multi-layer networks and agent-
based models to allow for a more holistic approach and reveal non-linearities in
the propagation of shocks which may be substantially larger than losses at the
individual layer networks.

For a broader view of the literature, a number of surveys on inter-bank net-
works are available. Allen and Babus [18] presents an early survey of the inter-
bank network literature noting the methods used and then knowledge base on
banking crises, contagion, bubbles.

Upper’s [19] survey focuses on simulation methodologies and assumptions
used to test for contagion in inter-bank markets. Upper found that a majority
of papers reviewed in the survey simulate the failure of individual banks which
stands in contrast to real world banking crises with shocks that affect several
banks simultaneously and that behavior foundations were absent in the analysis
of contagion. Upper concludes that contagion arising from inter-bank liabilities
is likely to be rare but allows that this finding may be due to strong underlying
assumptions and rudimentary behaviors in the simulations. As such, the models
surveyed are useful tools to analyze financial stability but cannot be relied on to
predict crises.

Hüser’s [20] presents a more recent survey focused on the theoretical aspect
of how network structure affects contagion and how bank form connections faced
with the possibility of contagion and systemic risks. Hüser reviews networks
based on empirical studies and notes their inability to draw conclusions on generic
relationships between contagion risk. Hüser next reviews the theoretical inter-
bank network literature and notes the generalized insights learned such as which
network structures tend to dampen or propagate defaults. Hüser then discusses
methods to model the dynamic processes of how firms enter into obligations. In
other words, the process of link formation with which Hüser identifies three main
methods being (1) preferential attachment which conditions link formation on
the characteristics of other nodes (2) strategic network formation where banks
assess the cost and benefits of link formation in cases such as roll over decisions
and (3) endogenous network formation with banks determining the amount of
inter-bank lending/borrowing as an optimization of their balance sheets.

Bargigli [21] surveys the use of agent-based models in economics and network
models. Local agent design characterizes agent behavior based on interactions
within an agent’s neighbourhood whereas global agent design characterizes agent
behavior based on the behavior of all agents. Furthermore, agent behaviors can be

2. Financial System 4

characterized as being exogenous(i.e. decisions are contingent on the utility of the
neighbourhood), endogenous(i.e. decisions are contingent on individual agent’s
utility), deterministic, or stochastic. Agents can find themselves operating in a
static network structure where everything is determined once or dynamic which
allows the network to evolve over time. Bargigli reviews the way individual
incentives affect link formation and the resulting network structures arising from
agent interactions.

2.2 Banking Model

The inter-bank network, I, can be defined as the triple I = (X,L,C)[12] where

• X={1,2,...n} is the set of nodes and each node represents a bank

• C={c1, c2, ..., cn} denotes the capitalization of bank i

• L ⊂ Rn×n is the liabilities matrix. Lij is the weight of liability from bank
i to bank j. We define all values along the diagonal to 0 because banks do
not lend to themselves.

Thus the inter-bank network can be depicted as a weighted directed graph
with nodes representing banks and weighted edges representing as per Figure 2.1.
The capitalization of each bank capitalization can be depicted as per Figure 2.2
and the liabilities matrix similarly as per Figure 2.3.

Bank 1

Bank 2

Bank 3

Figure 2.1: Graph repre-
sentation of banking net-
work

Bank Capitalization
1 250
2 500
3 250

Figure 2.2: Capitalization
matrix C capturing the
capitalization of each
bank.

Bank 1 2 3
1 0 150 20
2 50 0 800
3 10 20 0

Figure 2.3: liabilities
matrix L depicting the
amounts owed from the
row to the column bank.

The inter-bank liability exposure of the i-th bank, li, is thus the sum of the
i-th column of the liabilities matrix. Similarly, the inter-bank asset of the j-th
bank, µj , is then the sum of the j-th column.

li =

n∑
j=1

Lij (2.1)

2. Financial System 5

µj =

n∑
i=1

Lij (2.2)

A bank j is in Ψt
i, the set of creditors to bank i, if Ltij > 0. Similarly, a bank

i is in ∆t
j , the set of debtors to bank j if Ltij > 0.

Ψt
i := {j | Ltij > 0} (2.3)

∆t
j := {i | Ltij > 0} (2.4)

2.3 Link Creation

In inter-bank networks, the liabilities captured by weighted edges are key to
capturing the structure of the networks. Furthermore, inter-bank activity results
in the continual evolution of the network with edges continuously being created
and removed. We allow for dynamic network evolution by allocating agent i a
decision at every time step t captured by the vector ati. The joint action across
all agents is then the n× n joint action matrix, At, as depicted in Figure 2.4.

Bank 1 2 3
1 0.50 0.25 0.25
2 0.10 0.90 0.00
3 0.05 0.5 0.5

Figure 2.4: Example of a joint action matrix, A, capturing each bank’s creation
and removal of liabilities at time t.

2.4 Default

Banking defaults is the event when banks are unable to repay their debts. At
time t, the set of defaulted banks is defined as Ωt. Bank i is in the set of defaulted
banks if ωi, the net position of bank i, is negative as per Equation 2.5.

ωi = ci + µi − li (2.5)

Ωt = {i | ωi < 0} (2.6)

2. Financial System 6

In case of default, we assume only a portion of total capitalization is recovered
by the defaulted bank, ωi, through a discounted sale (assets are sold less than
they are recorded at). As with Rogers & Veraart [22], the haircut multiplier α is
applied to the capitalization ci of bank i. We assume that the inter-bank asset
ai of bank i is uncollectible. Thus ρi is the recovered amount by bank i.

ρi = α · ci (2.7)

The defaulted bank ωi is then liquidated and the recovered amount ρi is
distributed to Ψi, the creditors of bank i. Each creditor, k receives a distribution
in proportion to their share of bank i’s total liabilities li. The distribution from
defaulted bank ωi to creditor bank k ∈ Ψi is thus ψik defined by Equation 2.8.

ψik = ρi ·
Lik
li

(2.8)

2.5 System Value

We determine σ, the system value of the inter-bank network at time t, by ap-
proximating the value each bank would receive in an instantaneous dissolution.
We take a stylized approach to account for higher order defaults due to knock-on
effects by allowing a maximum three rounds of clearing or early halting if the
set of debtors, ∆i, and creditors, Ψi, to bank i do not change for all i ∈ X with
another round of clearing.

Defaulted bank i ∈ Ωt are processed first by applying the haircut multiplier
α to bank capitalization ci. Then the recovered amount ρi is distributed as per
Section 2.4. For non-defaulted banks, i /∈ Ωt, the inter-bank liabilities lti are paid
as per the inter-bank exposure Ltij .

2. Financial System 7

Algorithm 1 Clearing Algorithm
1: Compute Ψt

i, ∆t
i ∀i

2: for iteration = 1,...,3 do
3: for i ∈ Ωt do
4: ρti=α · cti
5: cti = 0
6: for j ∈ Ψt

i do
7: ctj = ctj + ψtij
8: Lij = 0
9: end for

10: end for
11: for i /∈ Ωt do
12: for j ∈ Ψt

i do
13: ctj = ctj + Ltij
14: Lij = 0
15: end for
16: end for
17: Compute Ψt+1

i , ∆t+1
i ∀i

18: if Ψt+1
i = Ψt

i and ∆t+1
i = ∆t

i ∀i then
break

19: end if
20: end for
21: σt =

∑
Ct

Chapter 3

Methods

Reinforcement learning’s (RL) accomplishments in games such as Starcraft[23]
and Go[24] indicates the potential of learning machines to identify policies that
can outperform humans. Single-agent reinforcement learning trains one agent op-
erating in an environment and fits naturally into games such as chess and checkers.
Alternatively, multi-agent reinforcement learning trains multiple agents acting in
the same environment and fits naturally into situations such as competing banks.
In this section we will discuss both single and multi-agent reinforcement and our
motivation to learn how to apply these methods to train inter-bank network
agents.

3.1 Reinforcement Learning

Reinforcement learning focuses on the interaction between an agent, the envi-
ronment, and the usage of experience histories to learn decision making policies
which maximize the accumulation of a reward [25]. As per Figure 3.1, at every
time-step t , the environment is in a particular state St which produces obser-
vations ot which the agent observes. Given the observations, the agent decides
an action Λt with which it determines the environment’s transition into the next
state St+1 . Furthermore, the interaction with the environment triggers a reward
signal Rt which is received by the agent which is used to determine the value of
action taken.

Figure 3.1: Reinforcement Learning agent-environment interaction. Image from
"Reinforcement Learning" by Sutton Barto[25]

8

3. Methods 9

3.2 Single Agent Reinforcement Learning

We use single-agent reinforcement learning to establish a baseline to compare
performance in the stylized inter-bank network. A practical interpretation of
applying single-agent reinforcement learning can be motivated by anecdotal evi-
dence of central actors such as JP Morgan in the Panic of 1907 [26] or the U.S.
Federal Reserve under Geitner in 2008[27].

Single agent reinforcement learning, setting are typically denoted by the tuple
G = (S ,Λ, P, r, γ, p0, T) where S are the states, Λ the action space, P : S×Λ→
S′ is the transition function, r : S × Λ → R is the reward function, p0 : S → R
the initial state distribution, γ the discount factor, and T the time horizon. By
interacting within this setting in the feedback loop in Figure 3.1, the agent uses
past experiences to learn a policy, π : S×Λ→ R, which maximizes the discounted
expected future return as per Equation 3.1.

max
π

L
∞∑
t

[γt · r(st, π(st))] (3.1)

Two popular approaches are value based and policy based methods. Value
based methods attempt to learn the optimal value of a state V ∗ or state-action
pair Q∗(s, a) with methods such as TD methods, Q-learning, and SARSA [25].
Policy based methods focus on learning an optimal policy π∗ mapping states to
actions with algorithms such as REINFORCE and actor-critic approaches[25].
Policy based alleviates the cost of learning the value of the state action space
and instead learns the parameters of an approximating function. However, this
increases the variances amongst the learned policies[25].

3.2.1 Proximal Policy Optimization

We considered the family of policy based methods and identified Proximal policy
optimization (PPO) [28] which addresses issues such as high correlation between
states in an episode by sampling a minibatch from the experiences of multiple
agents running in parallel, accounting for destructive policy updates by using
clipped policy updates which restricts the size and effect of updates, and improves
training times by allowing multiple simulations to run in parallel. Furthermore,
PPO allows for the design of agents capable of acting in a continuous action space
which supports the link creation mechanism.

3. Methods 10

Algorithm 2 PPO, Actor-Critic Style
from Schulman et al. [28]
for iteration=1,2... do

for agent in environment k ∈
{1, 2, ...,K} do

Run policy πθold in k for T
timesteps
Compute advantage estimates
Â1, ..., ÂT

end
Optimize surrogate L wrt θ, with K
epoch and minibatch size M ≤ NT
θold ← θ

end

3.2.2 Single-agent Environment

We prepare the inter-bank network, I, into the single-agent reinforcement learning
setting, G, by mappings as follows.

• States, S, are defined as all possible configurations of the inter-bank network
I. We simulate situations in which n = 3, 10, or 25. Total inter-bank
capitalization is defined as 1000 (i.e.

∑n
i=0 ci = 1000). The total inter-bank

capitalization is randomly distributed across all banks. Total inter-bank
liabilities can take values such that 0 and 2000 (i.e. 0 <

∑n
i=0 li < 2000).

The total inter-bank liabilities is distributed randomly across all banks.
The haircut multiplier, α, is defined to be 0.50.

• Actions, Λ, are defined as all possible configurations of the joint action
matrix A ⊂ Rn×n. The joint action matrix is normalized such that

∑
i Λi =

1.

• State transitions, P (St+1 | St,Λ), defines the deterministic transition from
state St to St+1 contingent on Λt.

• Rewards, r, is calculated under the shared reward scheme defined below as
the change in the system value.

r = σt+1 − σt

• Initial State, p0, is defined probability that any state s ∈ S is selected
during the random initialization of the inter-bank network.

3. Methods 11

• Time-horizon, T , is defined as T = 1.

We motivate the choice of a one step time horizon noting that any set of
actions, {at, at+1, ..., at+k} can be captured by a single action a ∈ Λ. However,
we recognize that longer time horizons may help the agent improve system value
by moving into more recognizable states. We leave the study of longer time
horizon to further research.

With regards to Λ, we opted for a continuous action space as it generalizes the
distribution of a bank’s capitalization. By normalizing each bank’s action, ai ∈ Λ
s.t.

∑
ai = 1, we represent the allocation decision of a bank i’s to itself and other

banks {j|j ∈ X & j 6= i}. This design was motivated by considering it to be
the immediate rescue by recapitalization. We leave generalized link creation to
future research which can be captured by introducing a new link creation action
vector.

In the single-agent paradigm, the agent receives S at every timestep t. As
such, the agent has full-information and makes decisions given C and L. Thus,
the agent has adequate information to determine the set of defaulted banks,
Ωt, and in response can form an appropriate joint-action A. After the en-
vironment receives A, the capitalization matrix is adjusted such that ct+1

i =∑n
j=0 aji · cj . Thus, the environment transitions to St+1 = (Xt+1 = Xt, Ct+1 =

{ct+1
1 , ct+1

2 ..., ct+1
n }, Lt+1 = Lt).

Thus it is appropriate to design r under a shared reward scheme to incentive
the agent to maximize system value as it determines the decision of every bank
i ∈ X.

3.3 Multi Agent Reinforcement Learning

Competing banks naturally naturally lends itself to the multi-agent reinforcement
setting with profit-maximizing firms. Bank decision making is now contingent
on individual incentives, history, and information. Actions that are optimal for
the system as a whole may not ideal for an individual bank. (i.e. if the bank can
acquire assets of another bankrupt firm in a sell-off).

Multi-agent environments are modeled as a decentralized partially observable
Markov decision process (DEC-POMDP) [29] using a tuple H = (S ,Λ,U ,P , r ,Z ,
O , n, γ) with which S is the global state of the environment, Λ the set of n
agents, U the joint-action space, P is the state transition function, r is the
reward function, Z is the set of observations, and γ ∈ [0, 1) is the discount factor.
During every timestep t, each agent, a ∈ Λ, receives an individual observation
za ∈ Z according to the observation function O(s, a) : S × Λ → Z . Based
on za , agents decide on an action ua . Aggregated over all agents, the joint
action vector u ∈ U ≡ Un is obtained and used by the the state transition

3. Methods 12

function P : P(s ′ | s,u) : S ×U × S → [0, 1] which determines the next state
of the environment given the current state and the joint actions. Each agent
a receives an individual reward from the environment from the reward function
r(s,u) : S ×U→ R. Agents collect their individual action-observation histories
with which they learn a policy πta which seeks to maximize their discounted future
reward Rt =

∑∞
i=0 γ

irt+i.

In training multi-agent reinforcement learning agents, Tan [30]’s introduces
independent Q-learning(IQL) applied a fully decentralized approach to learning
by having each agent learn Q-values based on their individual observation history
while treating other agents as part of the environment. By treating other agents
as part of the environment, IQL does not have to learn having to learn in a large
action space but faces problems arising from non-stationary learning where past
observations may not be relevant for future decision making.

Kraemer et al. [5] introduces centralized training with decentralized execu-
tion(CTDE) for cooperative tasks which is motivated by the idea of rehearsals
practices. [5] uses the example of stage performers, where during rehearsals the
group is able to practice with additional equipment such as teleprompters, com-
municate with each other, take breaks, etc. During live performance, these prac-
tice tools are removed but the group is still able to perform with the knowledge
they have learned. CTDE approaches are currently the SOTA in multi-agent
reinforcement learning algorithms such as QTRAN[31], QMIX[32], VDN[33],
COMA[34], MAAC[35]. The issue of non-stationarity is alleviated by allowing
learning algorithms to share local action-observation histories, and additional in-
formation during training while restricting each agent’s execution policy to their
individual action-observation history.

3.3.1 MADDPG

MADDPG[36], is an actor critic approach which extends policy gradients into the
multi-agent environment while using deep networks as function approximators.
The actor is typically the component of the agent which determines the action
to be taken whereas the critic is the component which evaluates the action taken
by the actor.

Trained under the CTDE paradigm, MADDPG attempts to improve the pre-
dictability across agents to deal with the non-stationarity issue. During training,
the critic is given access to information about the actions of other agents and
returns a individual gradient used to update an agent’s actor network. The cen-
tralized critic does not affect the agent during execution as the critic network is
not used to determine an agent’s actions.

3. Methods 13

3.3.2 Multi-agent Environment

We prepare the inter-bank network, I, into the multi-agent reinforcement learning
setting, H, by mappings as follows.

• States, S, is defined as all possible configurations of the inter-bank network
I. Total inter-bank capitalization,

∑
i ci, is defined as 1000 and is randomly

distributed across all agents. Total inter-bank liabilities,
∑

i Li, can take
values such that 0 and 2000 and is randomly across all agents. The haircut
multiplier, α, is defined to be 0.50.

• Agents, Λ, are defined to be set with n = 3, 10, or 25. In our simulations,
each agent is configured with the same network architecture presented in
Section 4.2.

Λ = {a1, ..., an | n ∈ {3, 10, 25}}

• Joint-actions, U , are defined as all possible configurations of the joint action
matrix A ⊂ Rn×n. Each agent ai generates an action vector ui such that∑
ui = 1. The environment aggregates the action vectors {u1, u2..., un} to

arrive at the joint action U t.

• State transitions, P (St+1 | St, U), defines the deterministic transition from
state St to St+1 contingent on U t.

• Rewards, r, are determined using two schemes - shared rewards or individ-
ual rewards. Shared rewards is defined as the change to the system value
as follows:

rsai(t) = σt+1 − σt

Individual rewards is defined as the change in agent ai’s individual net
position ωai from time t to t+ 1.

riai(t) = ωt+1
i − ωti

• Observations, Z, is the defined to be all possible subsets of the set of states,
S (i.e. Z = {z | z ⊂ S}).

• Observation function, O, determines the observation observation z is pre-
sented to agent ai at time t. Thus, agent ai receives the observation
O(st, ai) = ztai = (ctai , L

t).

• Discount factor, γ, is defined to be 0.95. However, we define the time-
horizon, T , such that T = 1. As such, the impact of the discount factor is
negligible.

3. Methods 14

In the simulations, the configuration is generally similar between the single-
agent and multi-agent environments. We point out and motivate the main points
of differentiation (1) rewards and (2) observations.

We apply two reward schemes, shared and individual rewards, in the multi-
agent environment. By applying a shared reward during learning, agents are
induced to maximize the system value as a whole, or in other words, the health of
the inter-bank network. However, competitive environments naturally lends itself
to training agents under an individual reward system where individual returns
drives decision making at a per-bank level.

In the multi-agent environment, agents achieve partial observability of the
environment’s state. Likewise in the real world, banks have access to their per-
sonal information technology systems, and only aggregate information reported
by other banks (i.e. through financial reports or regulatory filings). Thus, agents
are presented their individual capitalization and the liabilities matrix at every
timestep.

Chapter 4

Procedure and Results

We study how to train agents using multi-agent reinforcement learning such that
agents can learn their behaviors based on their environment’s dynamics. By
doing so, this allows research to reduce the assumptions built into the agents.
Section 4.1 discusses how the training and evaluation environments are instan-
tiated. Section 4.2 discusses the deep network built into each agent and how
agents are trained. Section 4.3 discusses the performance of the policy learned
under single-agent reinforcement learning. Section 4.4 reports the performance
obtained by agents trained under multi-agent reinforcement learning. Section 4.5
reports our findings and possible avenues for future research.

4.1 Environment

As per Chapter 2, a random instance of the inter-bank network is generated for
training. We focus on inter-bank network that are structured as fully-connected
graphs. During evaluation, we generate scenarios where at least one bank is in
default.

Every instance of the inter-bank network is allowed a total capitalization of
1000 (

∑n
i=1 ci = 1000) randomly distributed across each agent. The liabilities

matrix is generated with the total inter-bank liability exposure taking a value
between (0, 2000) (0 <

∑n
i=1 li < 2000) that is randomly distributed across each

agent. We define the haircut multiplier α to be 0.50.

During evaluation, the capitalization and liabilities matrix is similarly con-
structed. However, we include a check to ensure that at least one bank is facing
default. Furthermore, we only allow instances where the total liabilities is less
than bank capitalization as per Equation 4.1.

n∑
i=1

ci >
n∑
i=1

li (4.1)

We determine the value of the system at time t as per Section 2.5. Each

15

4. Procedure and Results 16

instance is ran for one time step, which allows agents to conduct one joint action.
After which, each agent receives an individual reward signal depending on the
incentive scheme.

Agents’ learned policies are evaluated by averaging the system value over
100 instances of the evaluation environment. We collect the system value at
instantiation and after adjusting the environment w.r.t. the joint action. The
maximum system value for every evaluation instance is 1000 and as such sets a
theoretical maximum to compare the impact of the agents’ policies.

4.2 Training

In the single-agent environment, the agent is configured with two networks (1)
actor (2) critic. The networks are defined as a multi-layer perceptron with two
layers of sixty-four hidden nodes. A tanh activation is applied to the output
layer.

With PPO, parallel instances of the environment are simulated simultane-
ously. Tuples of (st, a, r, st+1) are collected and when enough samples are col-
lected, the networks is updated. We apply the default settings for PPO2 provided
by stable-baselines [37].

In the multi-agent environment, each agent is configured with four networks
(1) actor (2) critic (3) target actor (4) target critic. The actor and target actor
network is defined as a multi-layer perceptron with four fully connected hidden
layers and a tanh activation in the output layer. The critic and target critic
network similarly uses four fully connected hidden layers with no activation in
the output layer.

The actor and critic network are parameterized by θa and θc respectively.
Similarly, the target actor and target critic are parameterized by θ′a and θ

′
c re-

spectively.

During each time step, t, a buffer, B, collects the tuple (st, u, r, st+1) and is
used to alleviate the issue of high correlation between states.[23]

B = {(st,ut, rt, st+1) ∀ t)} (4.2)

We define the batchsize, b, in our experiments to be 250. Thus, after t > 250,
we take samples of size b from the buffer to train each agent. Agents apply a
soft update, parameterized by λ, during each training step as per Equation 4.3
in which the actor and critic networks moves towards the target actor and target
critics.

θa = (1− λ) · θ′a + λ · θa (4.3)

4. Procedure and Results 17

Number of Banks 3 10 25
Average system value 999.82 997.33 941.84
Average initial value 756.10 916.73 936.42

Table 4.1: Single agent performance - average net value of the system over 100
episodes.

Number of Agents 3 10 25
Average under individual incentive 815.44 906.19 902.67
Average under system incentive 940.13 899.65 924.34

Average initial value 756.10 916.73 936.42

Table 4.2: Multi agent performance - average net value of the system over 100
episodes.

θc = (1− λ) · θ′c + λ · θc (4.4)

We define the critic loss to be the mean squared error in actual and predicted
Q-values. The actor loss is defined to be the output of critic given oi and ui.

4.3 Single Agent Performance

The simulations resulted in increases in the system value averaged across 100
evaluation instances. In the 3 bank simulation, on average the system value
increased from 756.10 to 999.82. In the 10 bank simulation, on average the
system value increased from 916.73 to 997.33. In the 25 bank simulation, on
average the system value increased from 936.42 to 941.84. We note that while
the system value increased in every scenario, the increase was less dramatic as
the number of agents increased. Please refer to Table 4.1.

We note these results as reference points with which to analyse the multi-
agent results.

4.4 Multi Agent Performance

With multi-agent reinforcement learning, in the 3 agent simulation the system
value increased from an average of 756.10 to 940.13 and 815.44 under the system
and individual incentive respectively. In the 10 agent simulation, the system
value decreased from an average of 916.73 to 899.65 and 906.19 under the system
and individual incentive respectively. In the 25 agent scenario, the system value
decreased from 936.42 to 924.34 and 902.67 under the system and individual
incentive respectively. Please refer to Table 4.2.

4. Procedure and Results 18

4.5 Discussion

(a) (b)

(c)

Figure 4.1: Histograms depicting the maximum capitalization allocated to a sin-
gle agent when generating random instances of the financial environment. Figure
4.1 (a),(b),(c) depicts the 3, 10, and 25 agents simulations respectively. Note
the higher concentrations in smaller agent simulations as the total inter-bank
network capitalization, C, is distributed across fewer members.

We first review the distribution of capitalization, C, when instantiating an
inter-bank network. We found in our simulations that inter-bank network capi-
talization were more concentrated in simulations with fewer agents. In our three
agent simulation, a single agent could frequently receive over half of the total
capitalization. Contrarily, in our twenty-five agent simulations, the capitaliza-
tion was more evenly distributed. Please refer to Figure 4.1.

We next review the change in ωi, the net position of each agent. In three-
agent simulation, we note that agents experienced a change in net position of
over 90% of the total inter-bank network capitalization. In other words, the
capitalization of the inter-bank network effectively transferred from one agent to
another. The redistribution of capitalization becomes less extreme in simulations
more agents. However, this may also be due to less concentrated capitalization

4. Procedure and Results 19

during environment instantiation.

We provide a speculation as to why agents may have learned this policy.
That is, under shared rewards, the reward signal to each agent is the change in
total system value. Thus, if the inter-bank capitalization is concentrated into
one bank, then no haircut is applied in determining the system value. Further
investigation is required to confirm this speculation.

Agents trained with individual rewards learn policies that results in lower con-
centration of total inter-bank capitalization. In the three-agent simulations, the
maximum capitalization held by any agent averaged around the 70% as compared
to 90% of inter-bank capitalization as depicted in Figure 4.3.

Overall, our empirical simulations shows that compared to single agent RL,
multi-agent reinforcement learning’s faces challenges in learning joint actions that
maximizes a inter-bank network’s system value. However, we note that this is
reasonable considering the in-perfect information observed by each agent and co-
ordination challenges in distributed execution. We note that one avenue for im-
proving the agent’s abilities is to introduce different networks in the actor/critic
design such as graph neural networks which is able to represent aspects of a
network’s structure. Further research in this area can consider different environ-
ment design and initialization mechanisms, allowing for more general network
configurations, and reward signals which takes into consideration the resulting
inter-bank network concentrations. Another avenue of research is to introduce
market mechanisms or reduce the action space available to agents. To create en-
vironments more reflective of real-world settings, instantiated environments can
be generated that match network characteristics (i.e. degree, clustering, etc) as
provided by real-world inter-bank datasets.

4. Procedure and Results 20

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Histograms depicting change in net position per agent faced with
shared rewards. We consider the change in net position to be a proxy capturing
an agent’s learned policy. (a, b) depicts the three-agent simulation. (c, d) depict
ten-agent simulations. (e, f) depict twenty-five agent simulation. (a, c, e) were
simulations with system rewards. (b, d, f) were simulations with individual re-
wards. Note in (a) that the learned policies exhibited behavior where an extreme
change of net worth can occur. (c),(d),(e),(f) depict less extreme changes in net
worth. However, this may be due to lower initial capitalization.

4. Procedure and Results 21

(a) (b)

Figure 4.3: Histograms depicting then ending capitalization in the three-agent
simulation post-clearing. (a) depicts the concentrations under system rewards.
(b) depicts the concentration under individual rewards. Note how the inter-bank
capitalization is less concentrated under individual rewards.

Chapter 5

Conclusion

We investigated the design of inter-bank network agents using multi-agent rein-
forcement learning under shared and individual reward schemes.

We found that agents trained with system rewards learned policies with un-
expected behaviors in simulations with three agents. Specifically, agents learned
behaviors that resulted in high concentration of total inter-bank capitalization,
as well events where large amounts of net worth changed hands. However, the
learned policies resulted in lower concentration of inter-bank capitalization as the
number of agents in the simulation increased.

Under individual rewards, agents learned policies that resulted in lower con-
centrations of total inter-bank capitalization. Furthermore, agents exhibited be-
haviors that resulted in lower exchange of net worth.

The research of training inter-bank agents using multi-agent reinforcement
learning remains an open question and many avenues are available to improve
the policies learned by agents.

22

Bibliography

[1] F. Allen and D. Gale, “Financial contagion,” Journal of political economy,
vol. 108, no. 1, pp. 1–33, 2000.

[2] O. De Bandt and M. Chahad, “A dgse model to assess the post-crisis regu-
lation of universal banks,” 2016.

[3] J.-Y. Gnabo and N. K. Scholtes, “Assessing the role of interbank network
structure in business and financial cycle analysis,” NBB Working Paper,
Tech. Rep., 2016.

[4] G. Halaj, “Agent-based model of system-wide implications of funding risk,”
2018.

[5] L. Kraemer and B. Banerjee, “Multi-agent reinforcement learning as a re-
hearsal for decentralized planning,” Neurocomputing, vol. 190, pp. 82–94,
2016.

[6] A. Manchin, E. Abbasnejad, and A. van den Hengel, “Reinforcement learning
with attention that works: A self-supervised approach,” in International
Conference on Neural Information Processing. Springer, 2019, pp. 223–
230.

[7] A. Mott, D. Zoran, M. Chrzanowski, D. Wierstra, and D. J. Rezende,
“Towards interpretable reinforcement learning using attention augmented
agents,” arXiv preprint arXiv:1906.02500, 2019.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph con-
volutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[9] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE transactions on neural networks,
vol. 20, no. 1, pp. 61–80, 2008.

[10] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[11] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner
et al., “Relational inductive biases, deep learning, and graph networks,”
arXiv preprint arXiv:1806.01261, 2018.

23

Bibliography 24

[12] J. Leventides, M. Livada, and C. Poulios, The Dynamics of Interbank
Networks. Cham: Springer International Publishing, 2020, pp. 369–395.
[Online]. Available: https://doi.org/10.1007/978-3-030-55857-4_14

[13] X. Freixas, B. M. Parigi, and J.-C. Rochet, “Systemic risk, interbank rela-
tions, and liquidity provision by the central bank,” Journal of money, credit
and banking, pp. 611–638, 2000.

[14] L. Eisenberg and T. H. Noe, “Systemic risk in financial systems,” Manage-
ment Science, vol. 47, no. 2, pp. 236–249, 2001.

[15] C. H. Furfine, “Interbank exposures: Quantifying the risk of contagion,”
Journal of money, credit and banking, pp. 111–128, 2003.

[16] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.
Porter, “Multilayer networks,” Journal of complex networks, vol. 2, no. 3,
pp. 203–271, 2014.

[17] M. Montagna and C. Kok, “Multi-layered interbank model for assessing sys-
temic risk,” 2016.

[18] F. Allen, A. Babus, and E. Carletti, “Financial crises: theory and evidence,”
Annu. Rev. Financ. Econ., vol. 1, no. 1, pp. 97–116, 2009.

[19] C. Upper, “Simulation methods to assess the danger of contagion in interbank
markets,” Journal of Financial Stability, vol. 7, no. 3, pp. 111–125, 2011.

[20] A.-C. Hüser, “Too interconnected to fail: A survey of the interbank networks
literature,” 2015.

[21] L. Bargigli and G. Tedeschi, “Interaction in agent-based economics: A survey
on the network approach,” Physica A: Statistical Mechanics and its Appli-
cations, vol. 399, pp. 1–15, 2014.

[22] L. C. Rogers and L. A. Veraart, “Failure and rescue in an interbank network,”
Management Science, vol. 59, no. 4, pp. 882–898, 2013.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level
control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp.
529–533, 2015.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al.,
“Mastering the game of go with deep neural networks and tree search,” na-
ture, vol. 529, no. 7587, pp. 484–489, 2016.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

https://doi.org/10.1007/978-3-030-55857-4_14

Bibliography 25

[26] R. Chernow, The house of Morgan: An American banking dynasty and the
rise of modern finance. Grove/Atlantic, Inc., 2010.

[27] B. Herzog, “Timothy f. geither" stress test: reflections on financial crises",”
2015.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[29] F. A. Oliehoek and C. Amato, A concise introduction to decentralized
POMDPs. Springer, 2016.

[30] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative
agents,” in Proceedings of the tenth international conference on machine
learning, 1993, pp. 330–337.

[31] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement
learning,” in International Conference on Machine Learning. PMLR, 2019,
pp. 5887–5896.

[32] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep multi-
agent reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2018, pp. 4295–4304.

[33] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,” arXiv
preprint arXiv:1706.05296, 2017.

[34] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Coun-
terfactual multi-agent policy gradients,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 32, no. 1, 2018.

[35] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International Conference on Machine Learning. PMLR, 2019,
pp. 2961–2970.

[36] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” arXiv
preprint arXiv:1706.02275, 2017.

[37] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/
hill-a/stable-baselines, 2018.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

Bibliography 26

[38] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust re-
gion policy optimization,” in International conference on machine learning.
PMLR, 2015, pp. 1889–1897.

[39] S. Kakade and J. Langford, “Approximately optimal approximate reinforce-
ment learning,” in In Proc. 19th International Conference on Machine Learn-
ing. Citeseer, 2002.

[40] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Sil-
ver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement
learning,” in International conference on machine learning. PMLR, 2016,
pp. 1928–1937.

Appendix A

PPO

Schulman et al. proposes a objective function which considers jointly (1) the pol-
icy surrogate (2) value function error term (3) and an entropy bonus to encourage
exploration[28] as per Equation A.1.

LCLIP+V F+S
t (θ) = Êt[LCLIPt (θ)− c1LV Ft (θ) + c2S[πθ](st)] (A.1)

The policy surrogate builds on the work of [38, 39] which attempts to maxi-
mize an surrogate objective function while constraining the size of policy updates
as per Equation A.6. Kakade et al. [39] introduced the conservative policy iter-
ation objective as per Equation A.2.

L(θ) = Êt
[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt

[
rt(θ)Ât

]
(A.2)

rt(θ) =
πθ(at|st)
πθold(at|st)

(A.3)

However, this would lead to large policy updates which translated to large
changes in the policy between updates. As such, [38] restrictions the size of policy
updates with constraints based on the KL divergence as per Equation A.4.

max
θ
Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
(A.4)

subject to Êt[KL[πθold(·|st), πθ(·|st)]] ≤ ω (A.5)

In PPO[28] the benefits of constraining policy updates is achieved by clipping
updates within ε as per Equation A.6.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât] (A.6)

A-1

PPO A-2

The remaining term of PPO’s objective function - the value function error
term LV Ft (θ) is defined as the squared error loss as per Equation A.7, the entropy
bonus, S[πθ](st) being a entropy factor to encourage exploration, and c1 c2 being
coefficients.

(Vθ(st)− V targ
t)2 (A.7)

The advantage value Ât is computed as per Equation A.8 which looks at a T
length trajectory starting at t∈ [0, T][40].

Ât = ωt + (γλ)ωt+1 + ...+ (γλ)T−t+1ωT−1

where ωt = rt + γV (st+1)− V (st)
(A.8)

Thus we have PPO as per Algorithm 2 which takes advantage of having N
actors running in parallel collecting T time steps of observations. Across the NT
observations, a minibatch of size M<NT is selected and used to calculate the
advantage function Ât, and train the network as per Equation A.1.

Appendix B

MADDPG

In order to alleviate the highly correlated nature of observations, an experience
replay buffer D is applied which stores the experiences of all agents in the tuple
(x,x′,u, r) and is sampled from during training.

In MADDPG, each agent receives an individual observations oa and learns a
policy πa which is used to determine ua. Furthermore, Qπa(x,u) is a centralized
action-value function that receives the actions of all agents ua ∈ U as well as
additional state information x and outputs the Q-value for agent a. In the con-
tinuous context, each of the n agents’ policies are parameterized by µθa . As such,
the gradient of the expected return for agent a is thus as per Equation B.1 and
the update rule as per Equation B.2 with µ′ = {µθ′a} being the delayed target
policies.

∇θaJ(µa) = Ex,a∼D [∇θaµa(ua oa)∇uaQµa(x,u)] (B.1)

L(θa) = Ex,a,r,x′ [(Qµi (x,u)− y)2] (B.2)

y = ri + γQµ
′

i (x′,u′) u′
a=µ′

a(oa)
(B.3)

B-1

	Acknowledgements
	Abstract
	1 Introduction
	2 Financial System
	2.1 Related Work
	2.2 Banking Model
	2.3 Link Creation
	2.4 Default
	2.5 System Value

	3 Methods
	3.1 Reinforcement Learning
	3.2 Single Agent Reinforcement Learning
	3.2.1 Proximal Policy Optimization
	3.2.2 Single-agent Environment

	3.3 Multi Agent Reinforcement Learning
	3.3.1 MADDPG
	3.3.2 Multi-agent Environment

	4 Procedure and Results
	4.1 Environment
	4.2 Training
	4.3 Single Agent Performance
	4.4 Multi Agent Performance
	4.5 Discussion

	5 Conclusion
	Bibliography
	A PPO
	B MADDPG

