
Distributed

 Computing

The Weak Snapshot Abstraction
Bachelor’s Thesis

Andrina Arnold

anarnold@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Mr. Wang Ye

Prof. Dr. Roger Wattenhofer

September 7, 2021

Acknowledgements

I would like to thank Mr. Wang Ye for supervising this thesis and for providing
regular feedback, guidance, and insights about the topic.

i

Abstract

With increasing globalization, a more disruptive trade and political environment,
and an increased risk of natural disasters due to climate change, many compa-
nies have spread thousands or even millions of machines across all continents
in order to protect computer and information systems as well as to store data
more reliable. Due to this increase in size and complexity of distributed systems,
communication between processes is no longer limited to point-to-point commu-
nication protocols. To facilitate communication between multiple processes in a
distributed system without a consensus guarantee, reliable broadcast abstractions
play a central role. To enable an asynchronous reliable broadcast in a dynamic
byzantine message passing system where consensus is not guaranteed, an asyn-
chronous dynamic reliable byzantine broadcast algorithm needs to be developed
that provides a mechanism called reconfiguration operation to ensure dynamism.

In this thesis, we designed a weak snapshot abstraction that can be used
as an underlying building block to implement reconfiguration operations in an
asynchronous dynamic byzantine message passing system where consensus is not
guaranteed, e.g. in an asynchronous dynamic reliable byzantine broadcast algo-
rithm.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Related Work . 2

2 System Model and Specification 3

3 The Weak Snapshot Abstraction 4

3.1 Asynchronous Reliable Broadcast Algorithm 4

3.2 The Weak Snapshot Algorithm 5

3.2.1 Semantics of the updatei(c) and scani() Operation 5

3.2.2 Implementation . 5

3.2.3 collect() Procedure . 5

3.2.4 updatei(c) Operation . 6

3.2.5 scani() Operation . 7

3.2.6 Proofs for Property of Mem Array and Properties NV1-NV5 10

4 Conclusion 17

4.1 Conclusion . 17

4.2 Future Work . 17

Bibliography 19

iii

Chapter 1

Introduction

1.1 Motivation

Although many networks already offer reliable communication channels such as
the underlying, itself unreliable Internet Protocol (IP) in combination with Trans-
mission Control Protocol (TCP), these networks still do not offer sufficient reli-
ability for many applications.[1] Operating in a distributed system some senders
may only know and see a strict subset of processes in the system. Thus, a mes-
sage sent by such senders will only be reached by a strict subset of processes in
the same system.

Deploying an asynchronous reliable broadcast algorithm, a process can send
a message to several other processes simultaneously and if a correct process ac-
cepts the message, then the message will eventually be accepted by every correct
process of the system.[2] Consequently, every correct process will eventually ac-
cept the message. Asynchronous reliable broadcast algorithms play a central role
because they do not require a consensus guarantee. To assure that asynchronous
reliable broadcast algorithms work safely and up to expectations, asynchronous
reliable broadcast algorithms must be fault-tolerant. This is because a distributed
system may contain byzantine processes that can behave in a way that could de-
stroy the system.

As some of the processes in the system become slow and outdated or have even
died, one wants to replace them with new, fast ones. Therefore, asynchronous
reliable broadcast algorithms need to provide a reconfiguration operation that
supports the adding and removing of processes to and from a system. A dis-
tributed system that fulfills these requirements is dynamic. Providing dynamism
results in stable, reliable, durable, and long-lasting distributed systems.

An asynchronous dynamic reliable byzantine broadcast algorithm is the so-
lution to meet all the above mentioned requirements. Asynchronous dynamic
reliable byzantine broadcast algorithms have become more and more popular in
many applications such as in cryptography, e.g. to implement threshold secret
sharing in an asynchronous dynamic byzantine message passing systems without

1

1. Introduction 2

a consensus guarantee.

1.2 Objectives

The main goal of this thesis is to develop a weak snapshot abstraction that can
be used as an underlying building block to implement reconfiguration operations
in asynchronous dynamic byzantine message passing systems where consensus is
not guaranteed, e.g. in an asynchronous dynamic reliable byzantine broadcast
algorithm.

Since the weak snapshot abstraction is used in algorithms where consensus
is not guaranteed, the sequence of configurations for each process in the weak
snapshot abstraction differs. Therefore, the property that it is sufficient that a
sequence of configuration exists must be enabled by a weak snapshot abstraction.
For processes in a weak snapshot abstraction, knowing exactly which configura-
tions belong to that sequence is not necessary. The only requirement is that the
processes have some assessment that includes these configurations. Other config-
urations that are not in the sequence may also be included by the assessment.[3]

For a weak snapshot object S, we are going to define a scani() operation
and an updatei(c) operation on a given set of processes P. Additionally, we must
ensure that all scan operations that see any updates must see the "first" update.

1.3 Related Work

We extract and adapt some of the ideas and concepts defined in the work [3],
which solves the atomic R/W storage problem in a dynamic setting without
consensus or stronger primitives. In this work, a weak snapshot abstraction was
specified that operates in a distributed system and was implemented based on a
collection of processes that interact utilizing asynchronous message passing. The
weak snapshot abstraction described in this work was based on a system that
only allows processes to crash but does not permit processes to be byzantine.

In the work [2], an asynchronous reliable broadcast algorithm was designed to
work in a distributed system that might contain up to f byzantine processes out
of n=3f+1 processes. Their asynchronous reliable broadcast algorithm was based
on a static distributed system which means that the system does not permit
processes to be added or removed.

Chapter 2

System Model and Specification

The weak snapshot abstraction is deployed on a distributed system and it is im-
plemented based on a collection of processes that interact utilizing asynchronous
message passing. We assume a universe of processes Π to be unknown and un-
bounded, possibly infinite. Furthermore, it is a precondition that the communi-
cation channels between the processes are reliable.[3]

A set of processes P ⊆ Π can access a weak snapshot object S.[3] We assume
that a process pi ∈ P knows about all processes pj ∈ P . We denoted the number
of all processes pj ∈ P by nP . We assume that at most fP byzantine nodes are
contained in P where the size of the set P is nP = 4fP + 1.

For each process pi ∈ P we define an array Mem of local atomic registers of
length nP . All local atomic registers are initialized to ⊥. We must ensure that
each register Mem[i] contains at most one value which is not ⊥. This is proven
in section 3.2.6 under the headline Property of Mem Array.

3

Chapter 3

The Weak Snapshot Abstraction

A set of processes P can access a weak snapshot object S. For each process pi ∈ P
we define two operations, namely updatei(c) and scani(). Essential is that pi first
terminates all previous outstanding operations on the weak snapshot before pi
invokes the new operation on the weak snapshot.[3]

Both the updatei(c) and the scani() operation use the procedure collect() in
their implementation.

The updatei(c) operation first checks if another updatej(c’) operation was
previously successful by using the collect() procedure. If this is not the case, the
updatei(c) operation will take a value c as an input and will utilize a slightly
modified version of the asynchronous reliable broadcast algorithm [2] to do the
update. Finally, process pi sends <OK, updatei(c)> to all pk ∈ P regardless of
what the collect() procedure returned to indicate that the updatei(c) operation
has successfully completed.

The scani() operation uses the procedure collect() to return a set of values
previously written by an updatej(c’) operation.

3.1 Asynchronous Reliable Broadcast Algorithm

The asynchronous reliable broadcast algorithm [2] satisfies the following properties:

1. If a correct node broadcasts a message reliably, it will eventually be accepted
by every other correct node.[2]

2. If a correct node has not broadcast a message, it will not be accepted by any
other correct node.[2]

3. If a correct node accepts a message, it will be eventually accepted by every
correct node.[2]

4

3. The Weak Snapshot Abstraction 5

3.2 The Weak Snapshot Algorithm

3.2.1 Semantics of the updatei(c) and scani() Operation

"We require the following semantics for the updatei(c) and scani() operation:"
[3]

NV1 "Let o be a scani() operation that returns C. Then for each c ∈ C, an
updatej(c) operation is invoked by some process pj prior to the completion
of o." [3]

NV2 "Let o be an scani() operation that is invoked after the completion of an
updatei(c) operation, and that returns C. Then C 6= ∅." [3]

NV3 "Let o be a scani() operation that returns C and let o’ be a scani() op-
eration that returns C’ and is invoked after the completion of o. Then
C ⊆ C ′." [3]

NV4 "There exists a c such that for every scani() operation that returns C ′ 6= ∅,
it holds that c ∈ C ′." [3]

NV5 "If some majority M of processes in P keep taking steps then every scani()
and updatei(c) invoked by every pi ∈M eventually completes." [3]

3.2.2 Implementation

The set Ci returned by a scani() operation does not have to contain the value
of the most recently completed update that precedes it. Thus, it holds that in
the weak snapshot algorithm we do not demand all updates to be ordered as in
atomic snapshot objects. This means that all scans that see any updates see the
"first" update.[3]

Let scanj() operation o be the first to complete its first collect(). This im-
plies that any other scank() operation o’ starts its second collect() only after o
completes its first collect().[3]

3.2.3 collect() Procedure

First, pi initialize Ci and ReplyCollect to the empty set and sends <COLLECT>
to all pk ∈ P . Each process pk ∈ P receiving <COLLECT> from pj sends <RE-
PLY COLLECT, Mem, pk> to pj . pi waits for <REPLY COLLECT, Mem, pk>
from 3fP + 1 processes pk ∈ P because there are at most fP byzantine processes.
Each <REPLY COLLECT, Mem, pk> message received by pi is added to the
set ReplyCollect. pi iterates with j over the whole Mem array and checks if there

3. The Weak Snapshot Abstraction 6

are at least fP+1 processes pk which have the same value c at Mem[j].Read(). If
this the case, pi adds c to the set Ci.

pi waits for <OK RECEIVED, updatej(c), pq> from fP +1 processes pq ∈ P ,
to ensure that the updatej(c) operation completes before the collect() proce-
dure completes. After an updatej(c) operation completes, pj will send <OK,
updatej(c)> to all pk ∈ P . Therefore, each process pk which receives <OK,
updatej(c)> from pj knows that the updatej(c) operation has successfully com-
pleted. Before sending this information to all processes pq ∈ P , pk waits for
<WRITTEN(pq, updatej(c))> from 3fP + 1 processes pq. This ensures that
byzantine nodes could not directly send <OK RECEIVED, updatej(c), pk> mes-
sages for any pk ∈ P to all pq ∈ P to make pi believe that the updatej(c) operation
has successfully completed. After pk has received <WRITTEN(pq, updatej(c))>
from 3fP + 1 processes pq ∈ P , pk sends <OK RECEIVED, updatej(c), pk> to
all pl ∈ P .

In the end, the collect() procedure returns the set Ci.

3.2.4 updatei(c) Operation

For the updatei(c) operation, we use the asynchronous reliable broadcast algo-
rithm [2] as a basis. If a process pi ∈ P wants to do an updatei(c) operation, pi
first invokes a collect().

If collect() returns a non-empty set, then some updatej(c’) operation has been
successful and pi sends directly <OK, updatei(c)> to all pk ∈ P indicating that
the updatei(c) has successfully completed.

If collect() returns an empty set, then no updatej(c’) operation has been
successful before. Therefore, pi will send <REQUEST(updatei(c))> to all pk ∈
P . Process pi sends an <ECHO(pi, request(updatei(c)))> to all pk ∈ P because
pi sends the <REQUEST(updatei(c))> to all pk ∈ P and therefore pi has already
received <REQUEST(updatei(c))>.

On condition that a process pq ∈ P has received <ECHO(pk, request(updatej(
c))))> from fP+1 processes pk ∈ P for the first time or <REQUEST(updatej(c))>
from pj for the first time, pq will send an <ECHO(pq, request(updatej(c))))> to
all pk ∈ P . It is necessary to only send an <ECHO(pq, request(updatej(c))))> for
the first time a process pq ∈ P has received <ECHO(pk, request(updatej(c))))>
from fP+1 processes pk ∈ P or <REQUEST(updatej(c))> from pj because oth-
erwise a byzantine node pj could send <REQUEST(updatej(c))> and <RE-
QUEST(updatej(c’))> and both request messages will be accepted.

After a process pq ∈ P has received <ECHO(pk, request(updatej(c))))> from
3fP+1 processes pk ∈ P , then pq accepts <REQUEST(updatej(c))>, writes
the value c to its local memory array Mem with Mem[j].Write(c) and sends
<WRITTEN(pq, updatej(c))> to all pk ∈ P .

3. The Weak Snapshot Abstraction 7

Process pi waits for <ECHO(pk, request(updatei(c)))> from 3fP+1 processes
pk ∈ P . Then, pi accepts the <REQUEST(updatei(c)))>, writes the value c to
its local memory array Mem with Mem[i].Write(c) and sends <WRITTEN(pi,
updatei(c))> to all pk ∈ P .

pi waits for <WRITTEN(pk, updatei(c))> from 3fP+1 processes pk ∈ P .
This ensures that at least 2fP+1 processes pk ∈ P have issued Mem[i].Write(c).
At most fP byzantine nodes pf could send <WRITTEN(pf , updatei(c))> to all
pq ∈ P without having issued Mem[i].Write(c) or having written Mem[i].Write(c’)
with c’ 6= c and at most fP correct nodes pl ∈ P might not yet have re-
ceived <ECHO(pk, request(updatei(c)))> from 3fP+1 processes pk ∈ P and
thus, pl has not yet issued Mem[i].Write(c) and has not yet sent <WRITTEN(pl,
updatei(c))> to all pq ∈ P .

After pi has received <WRITTEN(pk, updatei(c))> from 3fP+1 processes
pk ∈ P , pi sends <OK, updatei(c)> to all pk ∈ P . This waiting ensures that a
byzantine node could not just send <OK, updatei(c)> to all pk ∈ P to make other
processes think that the updatei(c) operation has already successfully terminated.

3.2.5 scani() Operation

First, we initialize C to the set returned by the procedure collect(). If C is the
empty set, the operation scani() directly returns the empty set. If C is a non-
empty set, we assign C to the set returned by the second call of the procedure
collect().

3. The Weak Snapshot Abstraction 8

Algorithm 1 Weak Snapshot Algorithm - Code for Process pi
1: procedure collect()
2: Ci = ∅
3: ReplyCollect = ∅
4: send <COLLECT> to all pk ∈ P
5:
6: wait for <REPLY COLLECT, Mem, pk> from 3fP+1 processes pk ∈ P
7:
8: for received <REPLY COLLECT, Mem, pk> do
9: ReplyCollect ← {<REPLY COLLECT, Mem, pk>} ∪ ReplyCollect

10: end for
11:
12: for j ∈ range(nP) do
13: for <REPLY COLLECT, Mem, pk> ∈ ReplyCollect do
14: c=Mem[j].Read()
15: count ← #{<REPLY COLLECT, Mem’, pl> | <REPLY
16: COLLECT, Mem’, pl> ∈ ReplyCollect and Mem’[j].Read()=c}
17: if count>=fP+1 then
18: Ci ← Ci ∪ {c}
19: wait for <OK RECEIVED, updatej(c), pq> from fP+1
20: processes pq ∈ P
21: end if
22: end for
23: end for
24: return Ci

25: end procedure
26:
27: upon receiving <OK, updatej(c)> from pj:
28: wait for <WRITTEN(pk, updatej(c))> from 3fP+1 processes pk
29: send <OK RECEIVED, updatej(c), pq> to all pl ∈ P
30: end upon
31:
32: upon receiving receiving <COLLECT> from pj by process pk ∈ P :
33: send <REPLY COLLECT, Mem, pk> to pj
34: end upon

3. The Weak Snapshot Abstraction 9

1: operation updatei(c)
2: if collect() = ∅ then
3: send <REQUEST(updatei(c))> to all pk ∈ P
4: send <ECHO(pi, request(updatei(c)))> to all pk ∈ P
5:
6: wait for <ECHO(pk, request(updatei(c)))> from 3fP+1 processes
7: pk:
8: accept REQUEST(updatei(c))
9: Mem[i].Write(c)

10: send <WRITTEN(pi, updatei(c))> to all pk ∈ P
11:
12: wait for <WRITTEN(pk, updatei(c))> from 3fP + 1 processes pk
13: end if
14: send <OK, updatei(c)> to all pk ∈ P
15: end operation
16:
17: upon receiving <REQUEST(updatej(c))> from pj for the first

time or <ECHO(pk, request(updatej(c)))> from fP+1 processes
pk for the first time:

18: send <ECHO(pq, request(updatej(c)))> to all pk ∈ P
19: end upon
20:
21: upon receiving <ECHO(pk, request(updatej(c)))> from 3fP+1

processes pk:
22: accept <REQUEST(updatej(c))>
23: Mem[j].Write(c)
24: send <WRITTEN(pq, updatej(c))> to all pk ∈ P
25: end upon
26:
27: operation scani()
28: C ← collect()
29: if C =∅ then
30: return ∅
31: else
32: C ← collect()
33: return C
34: end if
35: end operation

3. The Weak Snapshot Abstraction 10

3.2.6 Proofs for Property of Mem Array and Properties NV1-
NV5

Property of Mem Array For any pi ∈ P , the following holds:

a if pi receives <WRITTEN(pq, updatei(c))> from 3fP+1 processes pq ∈ P and
afterwards Mem[i].Read() from at least fP+1 processes pk ∈ P returns c’,
then c’=c.

b if Mem[i].Read() from the fP+1 processes pk ∈ P return c 6= ⊥ and Mem[i].Read()
from the fP+1 processes pj ∈ P return c′ 6= ⊥, then c=c’.

Proof. To ensure pi receives <WRITTEN(pk, updatei(c))> from 3fP+1 pro-
cesses pk ∈ P , any process pi ∈ P has to accept REQUEST(updatei(c)). We
show that any pi ∈ P accepts at most one REQUEST(updatei(c)) in an execu-
tion.

To proof the lemma, we do a case split where we first (case 1) assume that pi
is a byzantine process and then (case 2) assume that pi is a correct process.

First, we look at the case where pi is a byzantine node. Suppose for the
sake of contradiction that REQUEST(updatei(c)) and REQUEST(updatei(c’))
are accepted in the execution.

Each process pq only sends <ECHO(pq, request(updatei(c)))> to all pk ∈ P ,
if pq receives <REQUEST(updatei(c))> from pi for the first time or <ECHO(pk,
request(updatei(c)))> from fP + 1 processes pk ∈ P for the first time. This
ensures that if pi sends REQUEST(updatei(c)) to some processes pl ∈ Q with Q
⊆ P and REQUEST(updatei(c’)) to some processes pr ∈ R with R ⊆ P, then at
most one REQUEST(updatei(a)) with a ∈ {c, c’} is accepted in an execution.

The reason for this is that any process pk ∈ P would have to receive <ECHO(pq,
request(updatei(c)))> from 3fP+1 processes pq ∈ P to accept REQUEST(updatei(
c)) and <ECHO(pl, request(updatei(c’)))> from 3fP+1 processes pl ∈ P to
accept REQUEST(updatei(c’)). This is not possible because each correct pro-
cess pn can only send <ECHO(pn, request(updatei(c)))> or <ECHO(pn, re-
quest(updatei(c’)))> and each byzantine process pb can send both <ECHO(pb,
request(updatei(c)))> and <ECHO(pb, request(updatei(c’)))>, which means that
at most 5fP+1 < 6fP+2 ECHO(px, request(updatei(a)))> for some a ∈ {c, c′}
and any px ∈ P are sent. This contradicts our assumption that REQUEST(
updatei(c)) and REQUEST(updatei(c’)) are accepted in the execution.

Now, we look at the case where pi is a correct node. Suppose for the sake of
contradiction that REQUEST(updatei(c)) and REQUEST(updatei(c’)) are ac-
cepted in the execution. We will observe the second accept in the execution
which we define as the acceptance of REQUEST(updatei(c’)).

In chapter 3 we state our assumption of a mechanism that always completes
a previous operation on a weak snapshot object if any such operation has been

3. The Weak Snapshot Abstraction 11

invoked and did not complete (because of restarts), whenever a new operation is
invoked on the same weak snapshot object. Thus, when REQUEST(updatei(c’))
is invoked, the updatei(c) has already completed and thus REQUEST(updatei(c))
is accepted.

Before we invoke REQUEST(updatei(c’)), pi completes collect(). By atom-
icity of the Mem array of each process pk ∈ P and since the first REQUEST(
updatei(c)) has successfully completed, pi has received <WRITTEN(pk, updatei(
c))> from at least at least 3fP+1 pk ∈ P indicating that at least 2fP+1 processes
pq have issued Mem[i].Write(c) (because we have at most fP byzantine nodes).

In the procedure collect(), pi send <COLLECT> to all pn ∈ P . At least
3fP+1 processes pk ∈ P will send <REPLY COLLECT, Mem, pk> to pi because
there are at most fP byzantine nodes. We iterate with j ∈ range(nP) over the
whole array Mem and check for each j, if there are at least fP+1 processes pl
which sent <REPLY COLLECT, Mem, pl> to pi and have Mem[j].Read()=c for
any c.

Due to the fact that at least 2fP+1 processes pq have issued Mem[i].Write(c)
in the updatei(c) operation and we wait for <REPLY COLLECT, Mem, pk>
from at least 3fP+1 processes pk, it holds that at most fp byzantine nodes and
at most fP correct nodes send <REPLY COLLECT, Mem, pk> with a Mem
array which does not contain Mem[i].Read()=c. This implies that at least fP+1
processes have Mem[i].Read()=c. Therefore, collect() returns a set containing
the value c, and thus the condition collect()=∅ evaluates to FALSE.

This implies that we do not invoke REQUEST(updatei(c’)) after the collect()
completes returning FALSE and thus, we do not accept REQUEST(updatei(c’)).
This contradicts our assumption that REQUEST(updatei(c)) and REQUEST(
updatei(c’)) are accepted in the execution.

The proof of (a) follows directly from the fact that pi ∈ P accepts at most
one REQUEST(updatei(c)) for any c in an execution.

In order to proof (b), notice that if c 6= c′, this means that both REQUEST(
updatei(c)) and REQUEST(updatei(c’)) are accepted in the execution, which
contradicts the fact that any pi ∈ P accepts at most one REQUEST(updatei(c))
for any c in an execution.

NV1 "Let o be a scani() operation that returns C. Then for each c ∈ C, an
updatej(c) operation is invoked by some process pj prior to the completion
of o." [3]

Proof. We proof integrity by contradiction assuming that scani() operation o
returns C and there exist a c’ 6= ⊥ and c’ ∈ C for which no updateq(c’) operation
is invoked by some process pq prior to the completion of o.

3. The Weak Snapshot Abstraction 12

The value c’ ∈ C means that at least 3fP+1 processes pk ∈ P send <REPLY
COLLECT, Mem, pk> to pi (because there are at most fP byzantine nodes)
and at least fP+1 processes pl, which have sent <REPLY COLLECT, Mem,
pl> to pi, have c’=Mem[q].Read() for any q ∈ range(nP). pi waits for <OK
RECEIVED, updateq(c’), pl> from at least fP+1 processes pl ∈ P . This ensures
that at least one <OK RECEIVED, updateq(c’), pc> from a correct node pc
has been received by pi. This implies that at least 3fP + 1 processes pk ∈ P
have sent <WRITTEN(pk, updateq(c’))> to all pr ∈ P and thus, pq has received
<WRITTEN(pk, updateq(c’))> from 3fP+1 processes pk ∈ P , has accepted
REQUEST(updateq(c’)) and has sent <OK, updateq(c’)> to all pk ∈ P .

This implies that an updateq(c’) operation must be invoked by some process
pq prior to the completion of o. So it contradicts our assumption and proofs
integrity.

NV2 "Let o be an scani() operation that is invoked after the completion of an
updatej(c) operation, and that returns Ci. Then Ci 6= ∅." [3]

Proof. Since updatej(c) completes, either (case 1) collect() procedure during the
updatej(c) operation has returned an empty set and <WRITTEN(pq, updatej(c))>
from 3fP+1 processes pq ∈ P are received by pj or (case 2) collect() returns a
non-empty set during the updatej(c) operation.

We start with the first case where o invokes a scani() operation. In the scani()
operation o, o invokes collect() twice where both times at least fP+1 processes
pk ∈ P have c=Mem[j].Read() by property of Mem array. Thus, collect() returns
Ci with c ∈ Ci.

The second case is that collect() completes returning a non-empty set. Thus,
at least 2fP+1 processes pk ∈ P must have Mem[z].Read()=c’ for some z ∈
range(nP) with c’ 6= ⊥ such that at least fP+1 processes pl returning <REPLY
COLLECT, Mem, pl> to pi have Mem[z].Read()=c’. By atomicity of Mem array
of each pk ∈ P and by property of Mem array, since o is invoked after updatej(c)
completes, at least fP+1 processes pk ∈ P must have read Mem[j].Read()=c’ and
collect() returns Ci with c’ ∈ Ci.

Thus, in both cases the first and second collect during the scani() operation
o return a non-empty set, which means that Ci 6= ∅.

NV3 "Let o be a scani() operation that returns Ci and let o’ be a scanj()
operation that returns Cj and is invoked after the completion of o. Then
Ci ⊆ Cj ." [3]

3. The Weak Snapshot Abstraction 13

Proof. If Ci = ∅, the lemma trivially holds. Otherwise, consider any c ∈ Ci. c ∈
Ci can be achieved by the second collect() of o by receiving <REPLY COLLECT,
Mem, pk> from 3fP+1 processes pk ∈ P and at least fP+1 processes pl ∈ P ,
which have sent <REPLY COLLECT, Mem, pl> to pi, have Mem[q].Read()=c
for any q ∈ range(nP). Due to the fact that at least fP+1 processes pl ∈ P ,
which have sent <REPLY COLLECT, Mem, pl> to pi, have Mem[q].Read()=c
for any q ∈ range(nP), pi waits for <OK RECEIVED, updateq(c), pn> from at
least fP + 1 processes pn ∈ P .

We now proof that c ∈ Cj also holds which can be achieved by receiving
<REPLY COLLECT, Mem, pk> from 3fP+1 processes pk ∈ P and at least
fP+1 processes pl ∈ P , which have sent <REPLY COLLECT, Mem, pl> to pj ,
have Mem[q].Read()=c for any q ∈ range(nP).

During the second collect() of o, pi waits for <OK RECEIVED, updateq(c),
pn> from at least fP + 1 processes pn ∈ P . This implies that at least one <OK
RECEIVED, updateq(c), pc> from a correct node pc has been received by pi.
Thus, the updateq(c) has terminated. Therefore, pq has waited in the updateq(c)
operation for <WRITTEN(pk, updateq(c))> from 3fP+1 processes pk ∈ P and
at most fP byzantine processes have sent <WRITTEN(pk, updateq(c))> to all
pr ∈ P without having issued Mem[q].Write(c). It follows that at least 2fP+1
processes pm have Mem[q].Read()=c.

In the scanj() operation o’, pj receives <REPLY COLLECT, Mem, pk>
from 3fP+1 processes pk ∈ P (because there are at most fP byzantine nodes).
Due to the fact that o’ is invoked after o completes, it holds that both times
collect() is executed during o’, at least fP+1 processes pl ∈ P , which have
sent <REPLY COLLECT, Mem, pl> to pj , have c=Mem[q].Read() for any q
∈ range(nP) and c 6= ⊥. The reason for this is that there are at most fP correct
nodes and at most fP byzantine nodes returning <REPLY COLLECT, Mem,
pk> containing a Mem array with Mem[q].Read()6=c for any q ∈ range(nP).
This follows from the fact that in the updateq(c) operation at most fP byzan-
tine nodes can send <WRITTEN(pk, updateq(c))> to all pr ∈ P without hav-
ing issued Mem[q].Write(c) such that at most fP correct nodes have not issued
Mem[q].Write(c) and have not sent <WRITTEN(pk, updateq(c))> to all pr ∈ P .

Since o’ is invoked after o completes both times a set Cj containing c is
returned from collect(). This implies that c ∈ Cj and thus, Ci ⊆ Cj .

NV4 "There exists a c such that for every scanj() operation that returns Cj 6= ∅,
it holds that c ∈ Cj ." [3]

Proof. Let o be the first scani() operation during which the collect procedure
in Algorithm 1 page 9 line 28 returns a non-empty set, and let Ci 6= ∅ be this
set. Let o’ be any scanj() operation that returns Cj 6= ∅. We next show that

3. The Weak Snapshot Abstraction 14

Ci ⊆ Cj , which means that any c ∈ Ci preserves the requirements of the lemma.
Since Cj 6= ∅, the first invocation of collect() during o’ returns a non-empty set.
By definition of o, the second collect() during o’ starts after the first collect() of
o completes.

For every c ∈ Ci, at least 3fP+1 processes pk ∈ P send <REPLY COLLECT,
Mem, pk> to pi during the first collect() of o. For every c ∈ Ci and any q ∈
range(nP) it holds that at least fP+1 processes pl ∈ P , which have sent <REPLY
COLLECT, Mem, pl> to pi, have Mem[q].Read()=c. Therefore, pi waits for <OK
RECEIVED, updateq(c), pn> from at least fP + 1 processes pn ∈ P .

We now proof that c ∈ Cj also holds which can be achieved by receiving
<REPLY COLLECT, Mem, pk> from 3fP+1 processes pk ∈ P and at least
fP+1 processes pl ∈ P , which have sent <REPLY COLLECT, Mem, pl> to pj ,
have Mem[q].Read()=c for any q ∈ range(nP).

During the first collect() of o, pi waits for <OK RECEIVED, updateq(c),
pn> from at least fP + 1 processes pn ∈ P . This implies that at least one
<OK RECEIVED, updateq(c), pc> from a correct node pc has been received
by pi. Thus, the updateq(c) has terminated. Therefore, pq has waited in the
updateq(c) operation for <WRITTEN(pk, updateq(c))> from 3fP+1 processes
pk and at most fP byzantine processes have sent <WRITTEN(pk, updateq(c))>
to all pr ∈ P without having issued Mem[q].Write(c). It follows that at least
2fP+1 processes pm have Mem[q].Read()=c.

In the scanj() operation o’, pj receives <REPLY COLLECT, Mem, pk> from
3fP+1 processes pk ∈ P (because there are at most fP byzantine nodes). Due
to the fact that o’ is invoked after the first collect() of o completes, it holds
that both times collect() is executed during o’, at least fP+1 processes pl ∈ P ,
which have sent <REPLY COLLECT, Mem, pl> to pj , have c=Mem[q].Read()
for any q ∈ range(nP) and c 6= ⊥. The reason for this is that there are at most
fP byzantine nodes and at most fP correct nodes returning <REPLY COL-
LECT, Mem, pk> containing a Mem array with Mem[q].Read() 6= c for any q ∈
range(nP). This follows from the fact that in the updateq(c) operation at most
fP byzantine nodes can send <WRITTEN(pk, updateq(c))> to all pr ∈ P with-
out having issued Mem[q].Write(c) such that at most fP correct nodes have not
issued Mem[q].Write(c) and have not sent <WRITTEN(pk, updateq(c))> to all
pr ∈ P .

Since o’ is invoked after o completes both times a set Cj containing c is
returned from collect(). Thus, the second collect() of o’ returns c and this implies
that c ∈ Cj and Ci ⊆ Cj .

NV5 "If some majority M of processes in P keep taking steps then every scani()
and updatei(c) invoked by every pi ∈M eventually completes." [3]

3. The Weak Snapshot Abstraction 15

Proof. We first show that the collect() procedure eventually completes.

In the collect() procedure, pi sends <COLLECT> to all pk ∈ P and waits
for <REPLY COLLECT, Mem, pk> from at least 3fP+1 processes pk. Each of
the 3fP + 1 correct processes pk will eventually receive the <COLLECT> from
pi and therefore pk sends <REPLY COLLECT, Mem, pk> to pi. Thus, process
pi will eventually receive <REPLY COLLECT, Mem, pk> from at least 3fP+1
processes pk ∈ P .

If pi had received <REPLY COLLECT, Mem, pl> from fP+1 processes pl
with c=Mem[q].Read() for any q ∈ range(nP), then pi would wait for <OK
RECEIVED, updateq(c), pn> from at least fP+1 processes pn ∈ P .

Due to the fact that at least one correct node has c=Mem[q].Read() for some q
∈ range(nP), it holds that at least one correct node pc has issued Mem[q].Write(c)
and accepted REQUEST(updateq(c)). According to the asynchronous reliable
broadcast algorithm in section 3.1 property 3 if a correct node accepts a message,
then the message will be eventually accepted by every correct node. This implies
that every correct node pu will eventually send a <WRITTEN(pu, updateq(c))>
to all pk ∈ P . Hence, pq will eventually receive <WRITTEN(pk, updateq(c))>
from 3fP+1 processes pk ∈ P and sends an <OK, updateq(c)> to all pn ∈ P .
If pn had received <OK, updateq(c)>, then pn would wait for <WRITTEN(pk,
updateq(c))> from at least 3fP+1 processes pk ∈ P . This condition can be sat-
isfied because as stated above every correct node pu will send <WRITTEN(pu,
updateq(c))> to all pr ∈ P . Afterwards, pn will send <OK RECEIVED, updateq(c),
pn> to all pk ∈ P . pi will eventually receive <OK RECEIVED, updateq(c), pn>
from at least fP+1 processes pn ∈ P because each of the 3fP+1 correct node
pu ∈ P will eventually send <OK RECEIVED, updateq(c), pu> to all pk ∈ P .
Thus, the liveness condition is satisfied.

If pi had not received <REPLY COLLECT, Mem, pl> from fP+1 processes
pl with c=Mem[q].Read() for some q ∈ range(nP), the liveness condition could
be satisfied directly because pi does not issue any wait condition.

Thus, the collect() procedure eventually completes.

We now show that the updatei(c) operation eventually completes knowing
that collect() procedure eventually completes.

On condition that the collect() procedure returns a non-empty set, the updatei(c)
operation directly sends <OK, updatei(c)> to all pk ∈ P indicating that it has
successfully completed.

After the collect() procedure returns an empty set, process pi sends <RE-
QUEST(updatei(c))> to all pk ∈ P . Process pi sends an <ECHO(pi, request(
updatei(c)))> to all pk ∈ P because pi sends the <REQUEST(updatei(c))>
and therefore pi has already received <REQUEST(updatei(c))>. If pi had not
sent the <ECHO(pi, request(updatei(c)))> to all pk ∈ P and pi is a correct
node, no process pr ∈ P could receive <ECHO(pk, request(updatei(c)))> from

3. The Weak Snapshot Abstraction 16

3fP+1 processes pk ∈ P . The reason for this is that we have fP byzantine nodes
and only 3fP correct nodes pk would send an <ECHO(pk, request(updatei(c)))>.
Therefore, pi would get stuck waiting for <ECHO(pk, request(updatei(c)))> from
at least 3fP+1 processes pk. Thus, updatei(c) would not be able to eventually
complete.

Each process pq ∈ P will eventually receive <REQUEST(updatej(c))> from
pj for the first time or <ECHO(pk, request(updatej(c)))> from fP+1 processes
pk ∈ P for the first time because each of the 3fP+1 correct node pl ∈ P will even-
tually receive <REQUEST(updatej(c))> from pj . Then, pl sends <ECHO(pl,
request(updatej(c)))> to all pk ∈ P .

Each process pr ∈ P will eventually receive <ECHO(pq, request(updatej(c)))>
from 3fP+1 processes pq ∈ P because each of the 3fP + 1 correct nodes pl ∈ P
eventually sends <ECHO(pl, request(updatej(c)))> to all pr ∈ P . Then, pr will
send <WRITTEN(pr, updatej(c), c)> to all pk ∈ P .

pi will eventually receive <ECHO(pk, request(updatei(c)))> from 3fP+1
processes pk because of 3fP+1 correct nodes. Then pi sends <WRITTEN(pi,
updatei(c))> to all pr ∈ P .

pi waits for <WRITTEN(pk, updatei(c))> from 3fP+1 processes pk because
there are at most fp byzantine nodes and each of the 3fP+1 correct node pq ∈ P
will eventually send <WRITTEN(pq, updatej(c), c)> to all pr ∈ P . Therefore,
pi will eventually receive <WRITTEN(pk, updatej(c), c)> from 3fP+1 processes
pk ∈ P .

Finally, pi sends <OK, updatei(c)> to all pk ∈ P to indicate that the
updatei(c) operation eventually completes.

We now show that the scani() operation eventually completes.

In the scani() operation, we issue the collect() procedure. Since we have
proven that the collect() procedure eventually completes, the scani() operation
also eventually completes.

Chapter 4

Conclusion

4.1 Conclusion

In this thesis, as a first step we specified the system model and specification
in which our weak snapshot abstraction operates. This system model is a dis-
tributed system without a consensus guarantee. Our weak snapshot abstraction
is implemented based on a collection of processes that interact utilizing asyn-
chronous message passing. Furthermore, a set of processes P, where at most fP
out of nP=4fP+1 processes in P are byzantine, can access a weak snapshot object
S. Our proposed weak snapshot abstraction is different from previous works as
we improved the robustness and the reliability of the weak snapshot abstraction
by allowing byzantine processes in the system.

In Chapter 3, we designed a weak snapshot algorithm consisting of two opera-
tion, namely scani() operation and updatei(c) operation. For the set Ci returned
by a scani() operation, we require that when a scan sees any updates, then it sees
the "first" update. Additionally, we define the scanj() operation o to be the first
to complete its first collect(). This implies that any scank() operation o’ starts
its second collect() only after o completes its first collect(). To implement the
updatei(c) operation, we utilized a slightly modified version of the asynchronous
reliable broadcast algorithm. Our proposed weak snapshot algorithm fulfills the
semantics specified in section 3.2.1 and the property of Mem array which de-
mands that each register Mem[i] contains at most one value which is not ⊥. We
proved this in section 3.2.6.

4.2 Future Work

The developed weak snapshot abstraction can be used as an underlying build-
ing block to implement the reconfiguration operation in asynchronous dynamic
byzantine message passing systems where consensus is not guaranteed. In the
following paragraphs, we outline some possible future applications of our weak
snapshot abstraction.

17

4. Conclusion 18

The system requirements of our weak snapshot abstraction are based on the
work [3], which solves the atomic R/W storage problem in a dynamic setting
without consensus or stronger primitives. Therefore, our weak snapshot abstrac-
tion can be utilized as a basis to design a reconfiguration operation that solves the
atomic R/W storage problem in a dynamic setting without consensus or stronger
primitives with at most fP byzantine processes out of a set of processes P of size
nP=4fP+1. The set of processes P can access a weak snapshot object S.

Besides, as our proposed weak snapshot abstraction operates in asynchronous
dynamic byzantine message passing systems where consensus is not guaranteed
and provides an updatei(c) and a scani() operation, it can be used as a basis to
develop and establish a reconfiguration operation in an asynchronous dynamic
byzantine reliable broadcast algorithm.

Bibliography

[1] R. Guerraoui, J. Komatovic, and D. Seredinschi, “Dynamic byzantine reliable
broadcast [technical report],” CoRR, vol. abs/2001.06271, 2020. [Online].
Available: https://arxiv.org/abs/2001.06271

[2] G. Bracha, “Asynchronous byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/089054018790054X

[3] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer, “Dynamic atomic
storage without consensus,” J. ACM, vol. 58, no. 2, Apr. 2011. [Online].
Available: https://doi.org/10.1145/1944345.1944348

19

https://arxiv.org/abs/2001.06271
https://www.sciencedirect.com/science/article/pii/089054018790054X
https://doi.org/10.1145/1944345.1944348

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Related Work

	2 System Model and Specification
	3 The Weak Snapshot Abstraction
	3.1 Asynchronous Reliable Broadcast Algorithm
	3.2 The Weak Snapshot Algorithm
	3.2.1 Semantics of the updatei(c) and scani() Operation
	3.2.2 Implementation
	3.2.3 collect() Procedure
	3.2.4 updatei(c) Operation
	3.2.5 scani() Operation
	3.2.6 Proofs for Property of Mem Array and Properties NV1-NV5

	4 Conclusion
	4.1 Conclusion
	4.2 Future Work

	Bibliography

