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Abstract

Calculating the shortest distances on a road graph is used in a variety of today’s
applications. It is often necessary for the algorithm to process many queries
fast and reliably for a large number of users. On huge road graphs, traditional
exact distance computation algorithms, such as Dijkstra’s are ill suited for such
problems due to poor scaling. Fortunately, the exact distance is not always neces-
sary. Recent work on distance prediction on road graphs used various embedding
techniques combined with a multi-layer perceptron (MLP). This learning based
approach is able to predict distances accurately, fast and with low space cost.
In this thesis, we focused on distance prediction on MLPs with a simple model
structure and see where the chances and limitations are. Unlike other recent
work, we used no embedding and tried to map the coordinates of two points to
the corresponding distance. We tried to reason why some models do well on some
types of graphs, while they fail on others and why they sometimes fail on larger
graph instances of the same type. For large road graphs, we were motivated by a
new model, which was able to memorize images using a sinusoidal representation
network. With this approach, we were able to predict distances with a negligible
error (up to an MAE of 0.00049 and an MRE of 0.00252). This MLP reduces the
complexity of the model structure and uses less space than a lookup table for a
graph with 1k nodes. However, it does suffer from a long training time.
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Chapter 1

Introduction

1.1 Applications

Shortest path algorithms are a well-studied problem in the field of graph theory
and are used in many of the algorithms which we use every day. For instance in a
social media network, to compute the closeness centrality, one uses the distance
between two nodes [27] and in a trust network, the number of hops between two
entities shows the level of trust [23]. As a measure, how big these graphs and
how frequently used they are here some examples: In 2020 the web mapping plat-
form "Google Maps" was being used by over 1 billion people every month [1]. In
the same year, the social media platform "Facebook" recorded 2.74 billion active
users [2] and in 2018, Switzerland’s biggest online retailer "Digitec" showcased
more than a million products in its catalog [3].

Answering distance queries on such enormous graphs poses a significant challenge
in both space and time cost. However, exact distances are not always required.
For instance, finding points-of-interest (POI ) efficiently and fast, which has be-
come one of the most important tasks in location-based social networks (LBSN ),
where one tries to predict the physical movement of users or launch targeted ad-
vertisement [25]. Another use case is friend recommendations in a social media
network or suggested products in an online shop.

This thesis focuses on road graphs, where there are applications such as find-
ing the optimal route. In a real world scenario, the optimal route is hard to
define, because if we would try to model a street network as a graph, we would
need to include external factors such as the time of the day, the speed limit of
a street segment, the current weather, and so on. Sometimes a user also does
not wish to take the fastest route and takes instead the route where there is the
least amount of traffic or the route where there are no motorways. In this thesis,
we only focus on distance prediction on road graphs. There are however some
papers which focus on these kinds of dynamic networks [29, 31, 21].
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1. Introduction 2

1.2 Background

There are many different algorithms for calculating the exact length of the short-
est path between two nodes in a graph. In a road graph with positive edge
weights, the classic algorithm is Dijkstra. The time cost is dependent on the
implemented priority queue. In an optimal case one uses Fibonacci heaps which
reduce the time complexity to O(|E| + |V | × log|V |). An improved version of
Dijkstra would be the A* algorithm, which takes additional heuristics into con-
sideration. A* works at least as quickly as Dijkstra, but they both still have the
same time complexity [12].

There are also algorithms which work on graphs with negative weights (e.g.
Bellman-Ford) but these are not relevant when looking at road graphs, as all
weights are always non negative.

Instead of calculating the shortest distance each time one could also store the
distance between any pair of nodes in a lookup table, where a processing of a
query could be done in O(1). Unfortunately this has the drawback of having a
space cost of O(|V |2), which is not feasible when we have large real world road
graphs.

All these algorithms have the drawback that their time and/or space cost does
not scale well with the graph size. Especially in a road graph with millions of
nodes and modern applications, which need to be able to address multiple queries
fast at each moment in time. Therefore, if the algorithm cannot guarantee this,
then it is not feasible to use it.

1.3 Our contributions

1. We looked at simple neural networks and their abilities and limitations to
memorize graphs. The focus was laid on how these models scale with the
graph size.

2. For large scale road graphs, where it is essential that fine details are mem-
orized, we propose to use sinusoidal activation functions.

3. We evaluate the different methods to store path distances and give sugges-
tions when each methods should be used.



Chapter 2

Related Work

2.1 Landmark Labels

Most distance approximation algorithms take a landmark based approach, where
a subset of k (k << n) nodes are chosen as landmarks L. For every vertex vi the
distance to all other landmarks is computed in a lookup table. This reduces the
space cost to O(k×n). To approximate the distance between two nodes vi and vj
the landmark with the shortest distance is chosen and the distance is calculated
as the sum of the nodes to this landmark [16]:

dist(v1, v2) ≈ min{D(vi, l) +D(vj , l) | l ∈ L} (2.1)

This can be done in O(|L|). Choosing the number of landmarks is a trade-off
between space and accuracy. The accuracy of the approximation also heavily
depends on the selected landmarks. Finding optimal landmarks is NP-Hard [18],
therefore some heuristics were suggested by Zhao [32] to measure the centrality
of the vertices and from that choose the landmarks:

1. Degree (Number of connections of a node) centrality: The assumption is
that a node with a high degree will probably be traversed a lot.

2. Betweenness (Number of shortest paths passing through the edge): A node
with a high betweenness will be traversed a lot. This is computationally
very expensive.

3. Closeness (Average distance to all nodes): A node with a small closeness is
likely to be at the center of the graph.

One drawback of this approach is that one has to be cautious that the nodes are
still evenly distributed. It is assumed that graphs with a hierarchical structure do
well with degree centrality guided landmarks [32]. Takes and Kosters [24] have
shown that betweenness outperforms closeness and propose a selection strategy
that balances between coverage and centrality. Zhao [32] goes further into the
different strategies. There are also labelings which ensure that the distances can

3



2. Related Work 4

be recovered perfectly, but then the label size becomes larger. At best, the la-
beling is O(log n) times larger than the best possible labeling that still ensures
perfect distance recovery [5].

Theoretical results have further shown some insights in the relationship between
landmark size and accuracy.

Let d̃ be the approximation of the effective distance d, then the approxima-
tion ratio / Stretch is defined as follow:

For some α ≥ 1 and β ≥ 0 the following holds for all pairs of nodes

d(vi, vj) ≤ d̃(vi, vj) ≤ α× d(vi, vj) + β (2.2)

From [19]: On undirected graphs Thorup and Zwick [26] have shown that for
any algorithm with approximation error of α ≤ 2c + 1 where c ∈ N+ must use
at least Ω(n1+

1
c ) space. Furthermore they have provided a model which uses

O(c×n1+
1
n ) space and O(c×m×n

1
c ) time cost to obtain an approximation ratio

of α = 2c− 1 and a O(c) query time. Chechik [7] improves it to O(n1+
1
c ) space

cost and O(1) query time with an increased O(n2 +mn
1
2 ) processing time, where

m is the number of edges. These studies are only of theoretical interest and do
not provide any empirical data.

2.2 Graph Embeddings

Graph embedding techniques can be used to convert high-dimensional sparse
graphs to low dimensional dense vector spaces while still preserving graph struc-
ture properties. Embedding techniques are in general not designed to predict
vertex distances but they can be modified to do it. Moreover the most recent
work that we found [20, 19, 32] in distance prediction makes use of embeddings
in some form. Most graph embedding techniques in the literature can be broken
down into three categories.

Matrix factorization-based methods

Matrix factorization-based methods construct a high-order proximity matrix based
on transition probabilities and factorize it to obtain the node embeddings [30].
These methods cannot easily scale up to large networks [30]. To show this we
quickly go over two examples for Matrix factorization-based methods: Laplacian
Eigenmaps [6] embeds vertices that share an edge with a large weight to be close
in the latent space. It tries to minimize

∥∥Zi − Zj∥∥2Wij where Z is the embedd
matrix and W is a penalty in the embedd space [32]. A further example is the
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Locally Linear Embedding, where the embedding of a node is the sum of vectors
of its neighbors and is defined as Zi = YijZj , where Y is the adjacency matrix [32].

Both of these examples can be solved as an eigenvalue problem and have a compu-
tational complexity of O( |E| k2) where k is the dimension size of the embedding
[32] and are therefore not feasible to apply them in large scale road graphs.

Random walk-based methods

The random walk technique samples the graph as a discrete distribution and
embeds the sample into vectors [32]. Papers [20, 19, 32], which also dealt with
distance prediction made use of node2vec [11], which focuses on the neighborhood
of the nodes. The idea is that nodes with similar neighborhoods tend to have
similar representations. In [20] node2vec simply runs random walks on the graph
and feeds them into word2vec [17], a natural language processing technique for
sentences and words. Rizi et al. [20] suggested an embedding dimensionality
of k = 128 to be optimal. In comparison to matrix factorization techniques,
node2vec has the lower computational cost and the results are still precise [11].

Neural network-based methods

Neural network-based methods are generated from training an encoder and a de-
coder, and trying to minimize the error from mapping the input into the latent
space and then back to the original format [9]. One method would be the Struc-
tural Deep Network Embedding which takes an adjacency matrix of a graph and
adapts the loss function to preserve both the first and second order proximities
[28]. Summarized by Zhao [32]:

First order proximity: When nodes are mapped far away in the embed-
ding space a penalty is added

Second order proximity: Errors in the output which correspond to
nonzero elements in the input are more penalized

In Summary: Graph embedding techniques offer linear space cost and fast
query processing time but are challenging to set up while still preserving distance
information.

2.3 Sinusoidal representation networks

Instead of embedding the distances, another approach could be to compress
the lookup table with a multi-layer perceptron (MLP). MLPs in combination
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with some form of graph embedding have already been used in various papers
[11, 19, 32, 8, 33] on road graphs and networks to predict the shortest distances,
travel time or path finding with great success. They did this by sampling dis-
tances from paths in the graph and learning others from this.

Implicit neural representation are signal representation that parameterize implic-
itly defined functions. These signal representations are usually combined with
a continuous parametrization, to make it more memory efficient and also being
differentiable, with the hope that one can solve inverse problems, such as differ-
ential equations.

Over the last year signal representations parameterized by neural networks have
emerged as a powerful paradigm and have been well studied. Many of the recent
work focuses on the popular ReLU activation function. Sitzmann et al. [22] be-
lieve that these architecture lack the capacity to model fine details and propose
periodic activation functions for implicit neural representations, which are called
sinusoidal representation networks or SIREN.

They have shown that periodic activation functions are ideally suited for rep-
resenting complex natural signals and their derivatives using implicit neural rep-
resentations [22]. Examples for such natural signals are images, audio and video.

Recently Dupont et al. [9], suggested a model which made use of SIREN, and has
shown to accurately map 2D pixel coordinates to a corresponding color. They did
this with a very deep model which mapped 2D coordinates to RGB color values.
Additionally they did a lot of iterations over the model and used low learning
rate to train it. Their model outperformed JPEG images in low bit rates.

Having seen that it is possible to compress images in this way, we hope to accu-
rately map the two 2D coordinates to a distance.



Chapter 3

Distance Approximation

3.1 Problem formulation

We consider a road graph G = (V,E), where V (|V | = n) denotes the set of
nodes, which represent road intersections and dead ends in a real world scenario.
Furthermore let E (|E| = m) denote the set of edges, where each edge represents
a street segment. Each node vi ∈ V has a pair of coordinates and each edge
ei ∈ E has a weight representing the length of the segment. Let d(vi, vj) be the
exact distance function between two nodes, our problem now is to find a function
d̂(vi, vj) such that the difference to the exact distance function is negligible and
the time and space complexity scale slow with the graph size.

3.2 Preliminaries

3.2.1 Multi Layer Perceptrons / Neural Networks

Multi Layer Perceptrons / Neural Networks is a concept that dates back to the
late 1950s which has been inspired by the neural system of the human brain. In
the last couple of years, with the rise of faster GPU’s and cheaper memory, neu-
ral networks have emerged into one of the most popular machine learning model.
Applications for neural network are in image classification, natural language pro-
cessing, autonomous cars and so on.

A neural network consists of input and output neurons, which are connected
through a series of hidden layers. Each connection is weighted and each neuron
can have some form of activation function, where the inputs are processed. The
output is calculated through a forward-propagation where the input neurons are
activated and flow through the network until the output neurons are reached.
Then the weights can be adapted to minimize the error using back-propagation,
where the output neurons are activated and the gradients are calculated from the
end of the model to the front.

7
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3.2.2 Implicit Neural Representations with Periodic Activation
Functions

The following section is a summary of the papers from Sitzmann et al. [22] and
Dupont et al. [9]. Implicit neural representations are neural networks that learn
how to parameterize implicitly defined functions. A continuous parametrization
offers the potential to be more memory efficient, allowing the model to learn finer
details. Additionally, being differentiable allows the model to calculate higher or-
der derivatives analytically. Combining these two may offer a new toolbox for
solving inverse problems, such as differential equations [22].

Most research in the last years has made use of the ReLU (Rectified Linear Unit
activation function, which is defined as follows:

f(x) = max(0, x) (3.1)

ReLU is piecewise linear, which means that the second derivative is zero every-
where. This can imply why ReLU fails to learn fine details. Also activation
functions that do not suffer from this problem and have non-zero second deriva-
tives such as tanh or softmax are often not well behaved [22]. Following these
assumptions, a periodic activation functions for implicit neural representations
was suggested in [22], which are able to learn finer details of the signals and their
derivatives.

SIREN is a simple neural network architecture for implicit neural network ar-
chitecture that enables accurate representation of natural signals called SIREN,
such as images audio and video in a deep learning model [22]. It uses sine as a
periodic activation function which is defined as follows:

Φ(x) = Wn(φn−1 ◦φn−2 ◦ ...◦φ0)(x) +bn, xi 7→ φ(xi) = sin(Wixi+bi) (3.2)

Where φi : RMi 7→ RNi is the i-th layer of the network, W ∈ RNi×Mi is the
weight matrix and ∈ RNi is the bias.

In comparison to other activation functions such as ReLU the derivative of sine
is also a SIREN. It was also shown that when SIREN is supervised using a
constraint Cm involving the derivatives of φ, then φ remains well behaved [22].
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Figure 3.1: Direct copy from [22]: Comparison of different implicit network ar-
chitectures fitting a ground truth image (top left).The representation is only su-
pervised on the target image but we also show first- and second-orderderivatives
of the function fit in rows 2 and 3, respectively.

For the model itself, the weight initializations were chosen carefully, such that
the final output in the last layer is independent of the depth of the model. Sitz-
mann et al. [22] did this by preserving the distribution of activation functions
throughout the whole network.

Sitzmann et al. [22] showed that periodic activation functions using implicit
neural activations are ideally suited to represent complex natural signals and
their derivatives. It also is able to solve several boundary value problems ro-
bustly.

Dupont et al. [9] have recently proposed a new model COIN to compress images,
which makes use of the SIREN model. Their target was to minimize the follow-
ing equation using the mean squared error with the least number of parameters
possible:

min
θ

∑
x,y

∥∥fθ(x, y)− I[x, y]
∥∥2
2

(3.3)

Here, fθ is the mapping from the neural network that maps coordinates to RGB
values of the image and I[x, y] is the correct RGB value at position (x, y) of the
image.

In [9] it was shown that the COIN model outperforms JPEG photos in low
bit rates. The main limitation of this model is that the encoding for each image
takes long and is unique to this picture. What’s interesting is that they used
very deep neural networks, in some cases up to 13 (very small) layers. Another
interesting take away is that they overfitted the model with over 50’000 epochs
and used a very low learning rate of 2e− 4.
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3.3 Graphs

To test our models, we did various tests over different kind of graphs. Here we
just briefly go over the definitions of the graphs and explain why they are of
interest to us.

3.3.1 Claw Graph

A claw graph is the complete bipartite graph K1,3, e.g. one central node which is
connected to three outer nodes. It is a simple graph that cannot be embedded in
the Euclidean space such that the distances between all nodes in the space would
equal the distances in the graph [15].

We are interested in seeing how small one can scale the model and still achieve
good results as well as how much training is necessary.

Figure 3.2: A claw graph

3.3.2 Grid Graph

A m× n two-dimensional grid graph is a graph where the nodes are aligned in a
grid and each node is connected with its closest neighbors.

Figure 3.3: A 10x10 grid graph

The distance between two nodes can be calculated with the L1 norm / Man-
hattan distance. Let pi = (xi, yi), pj = (xj , yj) be some arbitrary point on the
grid. Then the distance between them can be calculated as:

d(pi, pj) = |xi − xj |+ |yi − yj | (3.4)



3. Distance Approximation 11

This makes it trivial to predict distances on a grid. However, we are interested
in seeing how models, which can predict distances really well on the grid graph
behave on manipulated grid graphs.

Grid with random dropped nodes

To simulate real world road graphs, we used a grid graph and deleted a small
proportion of nodes in it, but still made sure that the graph is connected.

Figure 3.4: A grid graph where a quarter of all nodes have been randomly removed

Grid with random edge weights

Another approach to simulate road graphs was to give each edge a non-deterministic
weight in the range of [1 − x, 1 + x] for some x ∈ [0, 1]. This gives a nice com-
parison to the grid manipulation where we exclude nodes and we will learn more
about which manipulation has the bigger influence on the model.

3.3.3 Binary Tree

A binary tree is a hierarchical data structure where there is one central root
node and layers of children, where each node has at most two children. The
distance between two nodes can be calculated if the lowest common ancestor
is known. Unfortunately, this is only possible with a tree traversal algorithm,
which has time complexity O(n). Graph types with hierarchical structures have

Figure 3.5: A complete binary tree of height 4

also been suggested to do well on landmarks by Zhao [32], if one uses centrality
guided landmarks. The hope is that neural networks also utilize the hierarchical
properties of the graph.
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3.3.4 Random geometric graph

In our experiments we also made tests on random geometric graphs, created with
the python package NetworkX. This graph is created by placing nodes uniformly
at random and then placing edges if the distance between two nodes is smaller
than a given range.

Figure 3.6: A random geometric graph

We tested on these kinds of graphs because we assumed that if a model is able
to completely memorize a random geometric graph, where the only constraint are
the proportion of nodes to the edges, then it should also be able to memorize a
graph with more constraints, like road graphs.
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3.3.5 Road Graph

A road graph is an attempt to model a street network. It isn’t defined in some
form but there are characteristics to it. From our findings the number of edges
scales linearly with the number of nodes, usually with a factor in the range of two
to five [4]. Additionally overlaps between edges are rare and appear only in edge
cases, e.g. a tunnel, this gives the model some simplicity. However, apart from
this road graphs can be very varied as they are influenced by external factors
such as rivers and cliffs.

Figure 3.7: A road graph of Zürich made with the python package OSMNX



Chapter 4

Model

4.1 Model Structure

x1

x2

x3

x4

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

Hidden
layer 1

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

Hidden
layer 2

ŷ1

Output
layer

Figure 4.1: An example structure of our model with two hidden layers

For all tests, our model will have an input size of 4 nodes representing the
coordinates of two points p1 = (x1, x2) and p2 = (x3, x4). The model will then
have multiple hidden layers of various sizes which are always fully connected and
at the last layer there is one output neuron.

We deliberately trained the model over the whole dataset (APSP table) with
a high number of epochs, similar to Dupont et al. in [9]. Additionally we fixed
the batch size to the number of nodes, as we did not see any indication that any
other batch size improves the results from our tests.

4.2 Settings

4.2.1 Weight Initializations

Weight initialization of a model is the procedure for how the weights of the
neurons are first initialized. The initializations are meant to preserve the norm
of the gradients, which could speed up the convergence.

14
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Kaiming

Fills the input according to Kaiming et al. [13] using a uniform distribution
U(−bound, bound) where bound is defined as:

bound = gain×
√

3

fanmode
(4.1)

fanmode is a setting where one can either choose to preserve the magnitude of
the weights in forward passes or backward passes. gain is a scaling factor. This
function is meant to work well with the ReLU function. It is an improvement
over 4.2.1.

Xavier / Glorot

Fills the input according to Xavier et al. [10] using a uniform distribution
U(−a, a) where a is defined as:

a = gain×
√

6

fanin + fanout
(4.2)

Here, gain is a scaling factor and fanin (fanout) refers to the maximum
number of input (output) neurons a system can accept. The aim is to have the
same variance for the activation functions on each layer. This should help to
reduce the chance that the gradient explodes or vanishes.

4.2.2 Activation functions

The activation function of a node is a function applied to the input of that node.
Having activation functions allows the model to learn nonlinear functions.

ReLU

Is the most popular activation function. It is a rectified linear unit function:

ReLU(x) = max(0, x) (4.3)

GELU

Gaussian Error Linear Units were first proposed by Hendrycks and Gimpel [14]
and is defined like follows:

GELU(x) = xP (X ≤ x) = xφ(x) = x · 1

2
[1 + erf(x/

√
2] (4.4)
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where erf is the error function. GELU can be approximated with:

GELU(x) ≈ 0.5x(1 + tanh [

√
2

π
(x+ 0.044715x3)] (4.5)

4.2.3 Adaptive learning rate

An adaptive learning rate is an optimization of the gradient descent methods,
where the learning rate changes dynamically during training.

Multiplicative decrease

Multiplicative decrease decays the learning rate by a given factor after a number
of given number of epochs.

Reduce learning rate on plateau

Reduces the learning rate once the metric has stopped improving after a certain
number of rounds (i.e., a plateau has been reached).

4.2.4 Loss Functions

The loss functions describe how the effective loss is calculated after each batch
of inputs. Here we just briefly go over the loss functions that were used in the
tests. ŷ represents the output of the model while y represents the exact distance.
n corresponds to the number of samples in a batch.

Mean Squared Error

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (4.6)

L1 / Mean Absolute Error

L1 =
1

n

n∑
i=1

|yi − ŷi| (4.7)

Mean Squared Relative Error

MSEnorm =
1

n

n∑
i=1

(
yi − ŷi
yi

)2 (4.8)
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Mean Absolute Relative Error

L1norm =
1

n

n∑
i=1

|yi − ŷi
yi
| (4.9)

Reverse Huber loss

This loss function was suggested by Qi et al. [19].

ReverseHuber =
1

n

n∑
i=1

fσ(y − ŷ) (4.10)

where fσ is defined as follows in our experiments:

fσ(x) =

{
δ|x|, if |x| ≤ δ
1
2(x2 + δ2), otherwise

Where δ = 0.2

In all experiments, we used a batch size of size n. We tested this rigorously
on various graphs and models and concluded that this batch size does well for
most of them.



Chapter 5

Graph Memorization

5.0.1 Evaluation criteria

The tests were evaluated by their Mean absolute error (MAE) and Mean relative
error (MRE). Additionally each test was run five times to get the variance of the
results. We categorized the results the following way:

1. MAE < 1%,MRE < 5%: Was considered good

2. MAE < 0.1%,MRE < 1% : Was considered perfect

Additionally, we tried to squeeze the layer sizes and the number of epochs in
the model as much as possible, because a model is not useful if it is computa-
tionally too expensive.

5.1 Distance prediction with simple neural networks

Most papers which have dealt with the same problem using a neural network have
usually combined it with some form of landmark and/or embedding approach
[20, 19, 32, 8]. We take a step back from the approach these papers took and
look at simple models on simple graphs. Using this strategy, we hope to get some
insights in the following questions:

1. What are the possibilities for a simple neural network? What are the
limitations?

2. Why do models do well on specific graphs but fail on others?

3. How do models change when we scale up the graph size?

18
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5.1.1 Claw Graph

There were 19263 tests done in total over a wide range of settings on the claw
graph from 3.3.1. The model weights were initialized with kaiming and the
activation function was GELU for all hidden layers. We used a multiplicative
decreasing learning rate where the learning rate decreased by a factor of 10 after
90% of epochs. Most of the configurations were able to memorize the graph with
little computational cost, we therefore only provide one example of such a setting.

Loss F. Learning R. Epochs Structure MAE MRE
MSE 0.1 440 [4,4,4] 0.00001 0.00001
MSE 0.1 80 [3,1,1] 0.00079 0.00119

Table 5.1: Some of the model configurations that allow for perfect memorization
of the claw graph

Using these settings, we were able to memorize the graph. It is encouraging
that one is able to memorize the claw graph with such a small model.

5.1.2 Grid Graph

There were 3670 tests done on a 10×10 grid and 186 on a 25×25 grid defined in
3.3.2. We used the same loss functions as described in the settings section and a
learning rate in the range of [0.1, 0.0001].

The models used a multiplicative decreasing learning rate where the learning
rate decreased by a factor of 10 after 90% of epochs. For the tests we used a
batch size of n (i.e. the number of nodes).

With the following settings, we were able to memorize a 10 × 10 grid, resp.
25× 25 grid.

Graph Loss F. Learning R. Epochs Structure MAE MRE
10x10 MSE 0.04 80 [20,20,20] 0.00095 0.00352
25x25 L1 0.1 20 [40,40] 0.003 0.011

Table 5.2: Different settings for a model on the grid graph

From our results, we see that a relatively simple model can memorize a grid
graph with little computational power needed. However, in both of these cases
we have more parameters in the model than there are distances.



5. Graph Memorization 20

Manipulated grid graphs

Here we still use a grid graph but modify it dropping random nodes or giving the
edges random weights as described in 3.3.2.

All tests were done on a modified 10 × 10 grid. We used models, which were
able to memorize a normal grid given specific settings. Each model had one
ReLU 4.2.2 activation function on the last layer. The different model structures
are described below:

Model Layer 1 Layer 2 Layer 3
M1 20 20 -
M2 10 10 10
M3 15 15 15
M3 50 50 50

Table 5.3: Different Model structures used

The results are the average results over five runs. We used a learning rate of
0.01 and did not modify it during training. Each configuration was trained for
10 epochs.

Manipulation MAE M1 M2 M3 M4
Random weight [0.5 - 1.5] 2.2% 2.4% 2.3% 2.4%
Random weight [0.6 - 1.4] 1.7% 3.4% 1.9% 2.0%
Random weight [0.7 - 1.3] 1.5% 1.6% 1.4% 1.6%
Random weight [0.8 - 1.2] 1.1% 1.1% 1.1% 1.2%
Random weight [0.9 - 1.1] 0.5% 0.5% 0.4% 0.6%
Normal Grid 0.0% 0.0% 0.0% 0.3%
Nodes dropped [5%] 0.6% 0.6% 0.6% 0.8%
Nodes dropped [10%] 1.0% 2.7% 1.0% 1.3%
Nodes dropped [15%] 2.5% 2.5% 2.5% 2.8%
Nodes dropped [20%] 5.1% 5.3% 5.2% 5.7%
Nodes dropped [25%] 5.5% 5.9% 5.7% 6.7%

Table 5.4: Tests results over each model structure (MAE)

In practice, a road graph has no structure one can use as an assumption. A
similarity that a road graph and a manipulated grid graph have is that there are
no (or negligible part) of overlapping edges. Therefore these results might give
an insight on how much the different manipulations impact a model.
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Manipulation MRE M1 M2 M3 M4
Random weight [0.5 - 1.5] 8.5% 8.7% 8.5% 8.5%
Random weight [0.6 - 1.4] 6.3% 12.8% 6.9% 7.1%
Random weight [0.7 - 1.3] 5.1% 5.4% 5.1% 5.5%
Random weight [0.8 - 1.2] 3.9% 3.9% 3.8% 4.1%
Random weight [0.9 - 1.1] 1.7% 1.7% 1.6% 2.1%
Normal Grid 0.1% 0.1% 0.2% 0.9%
Nodes dropped [5%] 1.5% 1.4% 1.4% 2.4%
Nodes dropped [10%] 2.8% 9.6% 2.6% 3.5%
Nodes dropped [15%] 6.8% 6.6% 6.7% 7.0%
Nodes dropped [20%] 12.9% 13.2% 12.8% 12.3%
Nodes dropped [25%] 18.3% 18.4% 19.4% 14.9%

Table 5.5: Test results over each model structure (MRE)

5.1.3 Binary Tree

Zhao [32] suggested that distance prediction with landmark labeling does well on
graph with hierarchical structures. This motivates us to see if a neural network
also profits from a hierarchical structure, by doing tests on a binary tree from
section 3.3.3.

There were 67520 configurations done on a tree with 7 nodes, 94482 on a 15
node tree and 11411 on a 31 node tree.

The models used a multiplicative decreasing learning rate where the learning
rate decreased by a factor of 10 after 90% of epochs. We tested with all loss
functions as described in the settings section. The learning rate was in the range
of [0.5, 0.00001] and the number of epochs in [10, 10000]. The weights were ini-
tialized with the standard method and the activation function was ReLU for each
layer.

Binary Tree: n = 7

From the plots in Fig:5.1 and Fig:5.2 of the layer sizes, one can see that the
models can only fit the tree well with a very high layer size and a very high
amount of epochs. All configurations that did well used the loss function MSE
4.2.4.

Binary Tree: n = 15

Compared to the tree with 7 nodes, the results visualized in fig:5.3 and fig:5.4
have become worse. The layer sizes increased by 50% and the loss functions that
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Figure 5.1: Binary Tree (n = 7): Com-
parison of layer sizes (of best 0.5% of
runs

Figure 5.2: Binary Tree (n = 7): Com-
parison of Learning Rates (of best 5%
of runs)

Figure 5.3: Binary Tree (n = 15):
Comparison of layer sizes (of best 0.5%
of runs)

Figure 5.4: Binary Tree (n = 15):
Comparison of Learning Rates (of best
5% of runs)

did well are now L1 and Reverse Huber instead of MSE.

Binary Tree: n = 31

Comparing it with the smaller trees in fig:5.6 and fig:5.5, the results have gotten
worse again and we were not able to find a setting for which the model did well
on this graph (The best test had a MAE of 0.032 and a MRE of 0.079, which is
higher than our minimum baseline of a MRE < 5%).

We see that layer size change contributes the most to model error, which leads
us to believe that the number of parameters is the driving factor behind model
accuracy.
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Figure 5.5: Binary Tree (n = 31):
Comparison of layer sizes (all experi-
ments)

Figure 5.6: Binary Tree (n = 31):
Comparison of Learning Rates (all ex-
periments)

5.1.4 Random geometric graph

For the tests on the random geometric graph from section 3.3.4, we used the
Xavier initialization and GELU as the activation function on each layer, because
from the initial testing it seemed to do better. We used all 5 different loss func-
tions as described in the settings in section 4.2.4 and the learning rate ranged
from [0.0001, 0.3].

The number of tests for each graph can be seen in the table below.

7 nodes 15 nodes 30 nodes 45 nodes 60 nodes 75 nodes
6336 49719 3484 1030 217 819

With enough fine tuning, we were able to memorize the graphs up to 75 nodes.
However, like in the binary tree graph, this comes with a cost of large hidden
layers and many epochs. From the plot in Fig: 5.7, we assumed that the number
of parameters of a model scales with the number of nodes in a graph. Fitting
a quadratic curve to the models that achieve < 5%MRE and have the lowest
parameter count of each graph size with the least squares methods gives us a
function of f5%(x) = 35x2. Looking at Figure 5.8, the fitted function would be
f1%(x) = 20.8x2.

If either function would be true, then this would mean that at one point the
model would become bigger than the lookup table of a graph, making the model
completely useless. We conclude that having a bigger model certainly helps but
is no guarantee for memorizing a road graph. Our models lack the ability to
memorize fine details and being able to accurately represent the derivative of the
graph. This brings us to our next test, where we try to adapt our model, such
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Figure 5.7: Random geometric graphs:
Number of parameters of models which
were able to memorize graphs

Figure 5.8: Random geometric graphs:
Number of parameters of models which
were able to perfectly memorize graphs

that it doesn’t suffer from these drawbacks.

5.2 Distance prediction with the SIREN model

Motivated by Dupont et al. [9], we decided to use sinusoidal activation functions.

5.2.1 Model initialization

For our tests, we used different SIREN models with a layer size in the range of
[100, 1000]. Additionally we tested out models with two hidden layers, similar to
our tests on simple graphs and very deep neural networks similar to the model
suggested by [9] with up to 12 hidden layers. The weights were initialized the
same way as in [22], but we used w0 = 1, w = 1 for the weight parameters.

For our graph we used a real road graph of Zürich. A visualization can be found
in Figure 3.7. The graph consists of 1003 nodes and 2142 edges. The distances
were normalized over the longest calculated distance, leading to an average path
length of 0.379 and a variance of 0.028.

There were 522 tests done in total over this road graph.

5.2.2 Results

Layer Sizes & Number of Layers

From our findings, there was no loss of function, which outperformed others. The
learning rate is similar to the work in [22, 9] in the range of [1e− 2, 1e− 4]. All
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Loss F. (LR) Epochs Nr. Layers Layer Sizes MAE MRE
L1 (0.001) 250 12 250 0.00466 0.01999
MSE (0.001) 250 11 250 0.00383 0.0216
Reverse Huber (0.003) 500 10 500 0.00049 0.00252

Table 5.6: Some settings that did well to predict the distances on the Zürich road
graph

Figure 5.9: Layer sizes of best 10% of
runs on Zürich road graph

Figure 5.10: Layer sizes of best 90% of
runs on Zürich road graph

tests were done 3 times each and the variance is close to zero (e.g.0.00001) for
the tests that did well (except the test where we achieved the best results, where
we had one outlier). The results show that the results do not scale with the
model size like in Figure 5.7 and Figure 5.8. A reasonable model size seems to
be essential but increasing it gives no guarantees for better results.
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Figure 5.11: Number of layers of best
10% of runs on Zürich road graph

Figure 5.12: Number of layers for best
90% of runs on Zürich road graph

5.3 Comparison of memory consumption

Here we will have a look at the different methods that we have looked at in this
thesis and look at their effective memory consumption.

Lookup Table

A lookup table where we store the distances has |V |2 entries. Assuming that each
entry uses 4 bytes of space leads to the following relationship between V and the
needed space:

|V |2 ∗ 4

106
= Space of lookup table in MB’s (5.1)

Which yields the following effective values: There are options to compress the

Number of nodes 100 500 1’000 2’500 5’000 7’500 10’000 25’000 50’000 75’000 100’000
MB’s needed 0,04 1 4 25 100 225 400 2’500 10’000 22’500 40’000

table and then use effectively less space. The whole purpose of these values is to
give a feeling on when it makes sense to start using a lookup table or switch to
a neural network.

Considering that our model, for which we were able to memorize the road graph
of Zurich with a mean relative error of around 2%, only needs 2.8 MB of memory,
it already makes sense to use a neural network over a lookup table.

Neural Network

This table shows that even very large and deep neural networks are very memory
efficient to store and that they scale very slowly with the number of parameters.
Knowing that we were able to store the road graph of Zurich in a model with 12
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LS \HL 1 2 3 4 5 6 7 8 9 10
100 0.004 0.045 0.086 0.127 0.169 0.201 0.251 0.292 0.333 0.374
200 0.007 0.168 0.33 0.491 0.652 0.814 0.975 1.1 1.3 1.5
300 0.009 0.371 0.733 1.1 1.5 1.8 2.2 2.5 2.9 3.3
400 0.011 0.654 1.3 1.9 2.6 3.2 3.9 4.5 5.1 5.8
500 0.014 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
600 0.016 1.5 2.9 4.3 5.8 7.2 8.7 10.1 11.6 13.0
700 0.019 2.0 3.9 5.9 7.9 9.8 11.8 13.8 15.7 17.7
800 0.021 2.6 5.1 7.7 10.3 12.8 15.4 18.0 20.5 23.1
900 0.024 3.3 6.5 9.8 13.0 16.2 19.5 22.7 26.0 29.2
1000 0.026 4.0 8.0 12.0 16.0 20.0 24.1 28.1 32.1 36.1

Table 5.7: Memory needed to store a SIREN neural network with a given layer
size (LS) and number of hidden layers (HL) in MBs

hidden layers and a layer size of 250 (which needed 2.8MB space), it should be
possible to store much larger road graphs in our model with a high accuracy.
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Models with graph embedding techniques

From the literature, many models [20, 19, 32] that utilized graph embedding
techniques did not use deep neural networks like we did. To see what influence
different embedding dimensions have on the effective used memory, we fixed the
number of hidden layers to two.

LS / Embedding Dimension 8 16 32 64 128
100 0.082 0.121 0.198 0.352 0.66
200 0.21 0.255 0.345 0.524 0.883
300 0.417 0.469 0.571 0.777 1.2
400 0.705 0.763 0.878 1.1 1.6
500 1.1 1.1 1.3 1.5 2.0
600 1.5 1.6 1.7 2.0 2.6
700 2.0 2.1 2.3 2.6 3.2
800 2.7 2.7 2.9 3.2 3.9
900 3.3 3.4 3.6 4.0 4.7
1000 4.1 4.2 4.4 4.9 5.6

Table 5.8: Memory needed to store a model with an embedding layer with fixed
two hidden layers and different layer sizes (LS) and embedding dimensions (ED)
in MBs

Comparing this table to the previous table, we see that the embedding layer
is responsible for a large part of the memory used, but this proportion becomes
smaller when we scale up the number of parameters in the model itself. However,
looking at the table as a whole, we see that the embedding layer uses a negligible
amount of memory.



Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we investigated if a simple multi layer perceptron (MLP) can be
trained to memorize the distances in simple graphs. It was able to do so for small
graphs but failed when we scaled up the number of nodes. From our tests, we no-
ticed that the number of parameters in the MLP scaled quadratically. This would
mean that it is not feasible to use multilayer perceptrons to predict distances in
graphs that have more than 100 nodes. However, changing the activation func-
tion of our model to a periodic one enabled us to learn finer details while still
having a reasonable model size. This model was able to precisely memorize the
road graph of Zürich with a very deep but small model. When the graph size
exceeds 1000 nodes, then our model already uses less space than a lookup table,
which gives hope for future research.

There are a number of models already proposed [20, 19, 32] to predict the dis-
tances in a road graph. However, these models all use different embeddings
and/or complex model structures, but they also had a different focus. We wanted
to see what it takes to predict the distances perfectly, while they tried to build a
competitive distance predictor. These models have the benefit that they need less
time to train. On the other hand, our model shines on its simple non-specialized
structure, leaving the door open for much larger graphs or other applications
where it is necessary to memorize very fine details.

6.2 Future work

In this thesis, we were not able to draw any general conclusions as to how exactly
simple models need to change, to achieve good accuracy, when we scale up the
graph size. An interesting project would be to find out why this is the case. An
other project would be to use our model on larger graph datasets such that one
has a direct comparison with similar models that were suggested in the literature.
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Appendix A

Plots from chances and
limitations of simple graphs

A.1 Claw Graph

Figure A.1: Comparison of layer sizes
Figure A.2: Comparison of Loss Func-
tions

Figure A.3: Comparison of learning
rates

Figure A.4: Comparison of epochs

A-1



Plots from chances and limitations of simple graphs A-2

A.2 10x10 Grid Graph

Figure A.5: Comparison of loss functions
(outliers excluded)

Figure A.6: Comparison of loss functions
(only best results)

Figure A.7: Comparison of learning
rates (outliers excluded)

Figure A.8: Comparison of learning
rates (only best results)



Plots from chances and limitations of simple graphs A-3

A.3 Tree

Figure A.9: Comparison of loss functions
(outliers excluded)

Figure A.10: Comparison of loss func-
tions (only best results)

Figure A.11: Comparison of learning
rates (outliers excluded)

Figure A.12: Comparison of learning
rates (only best results)



Plots from chances and limitations of simple graphs A-4

A.4 Random geometric graph

Figure A.13: 7 nodes: Comparison of
layer sizes (of best 50% of runs)

Figure A.14: 15 nodes: Comparison of
Learning Rates (of best 15% of runs)

Figure A.15: 30 node: Comparison of
layer sizes (of best 25% of runs

Figure A.16: 45 node: Comparison of
Learning Rates (of best 50% of runs)

Figure A.17: 60 node: Comparison of
layer sizes (of best 50% of runs

Figure A.18: 75 node: Comparison of
Learning Rates (of all runs, without ex-
treme outliers)



Appendix B

Plots from SIREN model

Figure B.1: SIREN: Layer sizes of all
tests

Figure B.2: SIREN: Layer sizes of good
tests

Figure B.3: SIREN: Loss functions of
all tests

Figure B.4: SIREN: Loss functions of
good tests

B-1


