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Abstract

Machine learning models are becoming increasingly prominent in a range of scientific fields, and
with growing popularity also comes an increased need for guarantees and robustness. In particular,
many machine learning models are prone to so-called distribution shifts, where the underlying
probability distribution of the data changes. In this report, we investigate algorithms to detect
distribution shifts on network data. We first give an overview of the topic and formulate the
problem as placing breakpoints in the relevant signal. Thereafter, we test two exact algorithms,
Dynp and Pelt with different cost functions on generated data. We then proceed to investigating
real data sets: the FlockLab Sky data set, and a preprocessed CAIDA data set, using the shift
detection algorithms. Applying different cost functions, we find that the algorithms are able to
detect changes in piecewise constant signals well. Further, we find that the methods generally
perform better when more samples are available, and that discarding the data recorded at night
from the FlockLab data set makes the breakpoints detected by the shift detection methods agree
more with our hypothesis. Additionally, in the CAIDA data set, we explore a connection between
high correlation and shift detection among data set features, and attempt to compare the magnitude
of short-term and long-term network distribution shifts. We find that the results change noticeably
when disregarding certain features that correlate highly with others in the data set, and establish
that in order to make conclusion about long- and short-term shifts, we would have needed longer
data recordings than those available in the CAIDA data set.

Our analysis indicates that we can probably only be confident about finding network shifts on
piecewise constant signals. The methods we use do not perform well otherwise. Thus, we would
encourage future research to seek meaningful transformations of data to piecewise constant signals
if one wishes to detect shifts on them using the shift detection methods which we use. Alternatively,
one could alter the shift detection methods by using different cost functions that perform better
on non-piecewise constant signals. Further, the results from the FlockLab data indicate that one
should possibly consider data recorded under seemingly similar conditions when detecting network
shifts. Thus, another interesting topic for future research could be to determine which factors most
heavily influence how similar the conditions during data collection are. In our case, the time of
recording seems important.
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Chapter 1

Introduction

Machine learning models are becoming increasingly prominent in a wide range of scientific fields.
They are used to solve tasks that computer science has not been able to solve through human design
and even achieve super-human performance in e.g. image recognition tasks or anomaly detection.
However, with growing popularity also comes an increased need for guarantees and robustness.
Many of the machine learning algorithms used today rely on the so-called i.i.d. assumption, that is,
that the data utilized is independent and identically distributed, both during training and during
application. It has been shown that a number of machine learning models are highly prone to
distribution shifts. E.g. in [5], state of the art classifiers display poor performance under relatively
small perturbations to the sampling probability distributions.

1.1 Distribution Shifts

Changes in a probability distribution are called distribution shifts. Mathematically, there are two
types of shifts. Label shifts are scenarios where the distribution over the outputs given the same
inputs change, i.e. the probability distribution p(y|x), where y is the output and x is the input,
changes. The other type of shifts is called covariate shifts, and describes scenarios where only the
input distribution changes, i.e. p(x) varies with time [4].

Arguably, label shifts are particularly critical to machine learning models, as they attempt to
infer the output label y given an input x. In a sense, particularly in generative modeling, these
models learn p(y|x) and estimate y based on the distribution on which they trained. Hence, if on a
new distribution the same input leads to a different output, the model is no longer valid, and needs
to be trained anew on the changed distribution.

There already exists a wide range of research on distribution shifts in different contexts. E.g.
in [5], the authors test different methods for detecting a single shift on image data under different
perturbations of the probability distribution. However, it is also possible to detect multiple shifts,
as distributions may change arbitrarily often.

1.2 Network Shifts

While multiple analysis tools and algorithms exist for time series shift detection, it remains unknown
which methods are best suited to analyze network data. Its behavior may be bursty, separating
network data from other types of time series, and different dimensions of the analyzed signals
may correlate strongly. Furthermore, data points are often missing from real life measurements of
network data.

1



CHAPTER 1. INTRODUCTION 2

In this report, we aim to explore different distribution shift detection methods applied to network
data, discussing their possibilities and limitations. In particular, we assume that the investigated
distributions may change multiple times and try to detect these changes using the algorithms Dynp
and Pelt, which are described further in chapter 3. We investigate two data sets, namely a pre-
processed data set from the Center for Applied Internet Data Analysis (CAIDA) collected from
May 2013 until April 2016 [1], and one collected by Jacob et. al. monitoring the daily wireless link
quality of the FlockLab testbed between July 2019 and March 2020 [3].

1.3 Contributions

Concretely, we analyze the FlockLab and CAIDA data sets using the python library ruptures, which
implements a range of shift detection methods to find breakpoints in a signal. These breakpoints
separate intervals within which there are no distribution shifts. We use the algorithms Dynp and
Pelt with their available cost functions; the L1, L2 and RBF costs. The goals are to analyze how
well they are able to detect shifts on different types of signals, and under which conditions, as well
as to find some more information about the data itself, whenever possible.

On the FlockLab data, we have some idea of where to expect shifts, making it feasible to
test the shift detection methods on the data set. We also make some new discoveries about the
FlockLab data using the shift detection methods, confirming a hypothesis set fourth in [2]. In
addition to testing the methods on this data, we discuss different approaches to dealing with missing
data. Proceeding to the analysis of the CAIDA data, about which we know less, we try to make
some statements about long- and short-term network shifts using these methods. Additionally, we
investigate the effect of pre-processing the data in different ways, i.e. using low-pass filters and by
disregarding multiple highly correlated signal dimensions.



Chapter 2

Background and Related Work

Previous papers have extensively studied distribution shifts both on image data and in time se-
ries [8]. Typically, the algorithms detect shifts by quantifying the dissimilarity of different observed
data, and their distributions, through some cost function.

2.1 Breakpoints

In order to characterize network shifts, we consider regions which are similar in some sense. To
separate these regions, we seek so-called breakpoints or change points in the signal, such that the
samples between two breakpoints are somehow mutually more similar than they are to samples that
do not lie between these breakpoints.1 We consider two different types of shift-detection problems;
in one of them, we do not know the number of breakpoints beforehand, and in the other, we do.

For an unknown number of breakpoints, we both have to decide where to put breakpoints, and
implicitly, how many breakpoints to assign. Formally, given a signal

{Xi}i∈{1,...,T} = {X1, X2, . . . , XT } (2.1)

we seek a set B of indices bi:

B = {b1, b2, . . . , bk} ⊂ {1, . . . , T} (2.2)

called breakpoints of the signal, such that for some cost function C, the expression

k−1∑
i=1

C({Xbi , . . . , Xbi+1−1}) + p · k (2.3)

is minimized. Here, p is a penalty for adding breakpoints, which prevents arbitrarily many break-
points from being detected.

In the other setting, when we know the number of breakpoints to find, we fix k, and solve

B = arg min
B={b1,...,bk}

k−1∑
i=1

C({Xbi , . . . , Xbi+1−1}) (2.4)

There are several approaches to solve both of these problems, and [8] gives an extensive overview.
We use the python library ruptures for the analysis, and a detailed description of the methods can
be found in chapter 3.

1We will be using the terms breakpoint and change point interchangeably in this report.
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CHAPTER 2. BACKGROUND AND RELATED WORK 4

2.2 Data Sets

We analyze two data sets in the report. In the following, we describe each of them, highlight the
features that are most interesting to us, and describe their differences.

2.2.1 FlockLab

The FlockLab data set consists of measurements of the wireless link quality in the FlockLab Sky
testbed from July 2019 to March 2020. It was collected by Jacob et. al., and is described in
detail in [3]. The data collection team measured the wireless link quality by performing tests
consisting of 100 transmissions between nodes, and monitoring the number of transmissions that
were successfully received [2]. In July, August, September and the very beginning of October 2019,
they performed one test every other hour, totalling 12 tests per day, and thereafter, they measured
the wireless link quality every sixth hour, resulting in four tests per day.

From these measurements, we create a data set to analyze by considering those transmissions
where at least half of the transmitted packets are received, and taking the mean of the number of
successful packets. The number of data points per day then corresponds to the number of tests per
day. The analysis of the FlockLab data set can be found in chapter 4. It is particularly interesting
for testing shift detection algorithms, since we have some idea of what to expect from the data, as
is described in chapter 4. In summary, it seems that the wireless link quality is highly correlated
with when we expect people to work, indicating that other online applications interfere with the
FlockLab testbed. Thus, it allows us to test different shift detection methods and verify whether
they agree with the expected results.

2.2.2 CAIDA

The CAIDA (Center for Applied Internet Data Analysis) data set consists of processed measure-
ments of different features of internet connections in Chicago between May 2013 and April 2016.
It contains measurements of the

• packet count, which is the number of packets in a time window

• TCP count, which is the number of TCP packets in a time window

• UDP count, which is the number of UDP packets in a time window

• IPv4 count, which is the number of packets using native IPv4

• IPv6 count, which is the number of packets using native IPv6

• IPv6 tunnel count, which is the number of packets sending IPv6 using an IPv4 tunnel

• cumulative load, which is the sum of all packets’ size, in bytes

• 50, 75, 90 and 95 - percentile loads, which are the packet sizes at the relevant percentile, in
bytes

• number of incomplete TCP flows

• average number of packets per flow

• sum of all packet size in one flow, averaged over the flows
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• mean packet size in one flow, averaged over the flows

of two directions, A and B, for the relevant links. Each measurement spans approximately one
hour, and the measurements are taken on different days, typically spaced by one or three months.
For each day, both directions are measured continuously, and in the processed data set, which we
use, there are samples at a frequency of 100 samples per second. These samples are extracted from
the raw data.

In contrast to the FlockLab data, we do not know what to expect from the CAIDA data set.
However, we can analyze it using the shift detection methods described in chapter 3 and applied
in chapter 4 to hopefully learn more about the data. The findings are described in chapter 5.



Chapter 3

Shift Detection Methods

As mentioned in chapter 2, we are solving a minimization problem by segmenting a signal into
different intervals by so-called breakpoints or change points, characterizing network shifts. There
exists a multitude of algorithms to detect shifts in data sets, many of which are described in [8].

In summary, there are two classes of shift detection problems, where we solve for an optimal
set B of breakpoints bi:

• Known number of breakpoints - If we know the number of breakpoints beforehand, we only
need to place these breakpoints optimally in order to minimize the cost of the signal X:

B = arg min
B={b1,...,bk}

k−1∑
i=1

C({Xbi , . . . , Xbi+1−1})

for a fixed number k. C is a so-called cost function, which somehow measures the similarity
of points in an interval. See Appendix A for a precise definition of the cost functions we use.

• Unknown number of breakpoints - If we do not know the number of breakpoints before-
hand, we minimize the penalized cost of the signal, such that B = {b1, . . . , bk} minimizes the
expression

k−1∑
i=1

C({Xbi , . . . , Xbi+1−1}) + p · k

for an unknown number k. Here, p is the penalty for adding more breakpoints.

Note that if we solve the problem for an unknown number of breakpoints and a cost function
C, and the resulting set contains k0 breakpoints, then solving the problem for a known number of
k0 breakpoints will yield an equally optimal solution. If the minimum is unique, it will yield the
same solution.1

3.1 Algorithms

For the analysis, we mainly use the python library ruptures2, which implements a large portion of
the framework described in [8]. In particular, we extensively use the algorithms

1This is easy to see, since the set of minima of f(x) is the same as the set of minima of f(x) + a for any constant
a ∈ R. Setting a = p · k0 yields the desired result, as the cost functions are equal in this case.

2https://centre-borelli.github.io/ruptures-docs/
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• Dynp - An algorithm which solves for a given number of breakpoints with respect to the
defined cost function, using dynamic programming.

• Pelt - An algorithm which solves for an unknown number of breakpoints in linear time.3

together with the cost functions

• CL1 (or L1 cost) - which penalizes points deviating from the median by the L1 norm of the
discrepancy.

• CL2 (or L2 cost) - which penalizes points deviating from the empirical mean by the L2 norm
of the discrepancy.

• CRBF (or RBF cost) - which searches for changes in the distribution function of the un-
derlying data by use of kernel mean embeddings. The kernel embedding of a probability
distribution using the RBF kernel is injective, meaning that two probability distributions are
equal if and only if they map to the same kernel mean embedding. For a proof of this, see [7].

All of these cost functions are rigorously defined in Appendix A. We choose to use these algorithms
because they solve the problems optimally, in contrast to other options in ruptures that only
approximately solve the problems, and the mentioned cost functions are precisely those available
to Pelt and Dynp.

3.1.1 Parameter Selection

There are a couple of important parameters for Dynp and Pelt, which heavily influence the detected
breakpoints. At initialization, one can set the parameters model, min size and jump for both
algorithms, which respectively define the utilized cost function, the minimum allowed number of
samples between breakpoints, and a number that has to divide each breakpoint.4 The latter two
are by default set to 2 and 5, respectively, and we do not modify them in this section. In chapter
4, however, these parameters will be important.

What we do vary in these tests are the model, i.e. the cost function applied with each algorithm.
Furthermore, when fitting breakpoints to a specific signal, we set the penalty pen, in the case of
Pelt, and the number of detected breakpoints n bkps, in the case of Dynp. As mentioned above,
since Dynp and Pelt are optimal algorithms, for a given number of breakpoints, they will find the
same set of breakpoints if the optimal solution is unique, and the other parameters are also the
same. On the one hand, Pelt is an asymptotically faster algorithm than Dynp, making it interesting
to use in terms of efficiency. On the other hand, selecting the pen parameter correctly may not be
straight-forward, as its value can impact the number of detected breakpoints severely. See section
3.5.1 and figure 4.3.

3.2 Data Generation

We test the methods on different types generated data of with varying levels of noise. Concretely,
we generate

• Piecewise constant (pwc) signals - which have constant values between breakpoints.

3Pelt stands for Pruned exact linear time. Detalils on the implementation can be found in [8]
4For clarity, if jump = 5, then each breakpoint bi is divisible by 5. Presumably, this parameter is set for performance

reasons, as it greatly limits the search space for the set of breakpoints B.
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Figure 3.1: Examples of (normalized) generated signals. The transition between shaded regions
indicate the true breakpoints.

• Piecewise linear (pwl) signals - which are piecewise linear combinations of Gaussian inputs
to a linear regression model.

• Piecewise wavy (pww) signals - which are the sum of two sines switching their frequencies at
each breakpoint.

These signals are already implemented in ruptures.5 Figure 3.1 shows examples of such signals,
containing 400 points and 2 breakpoints.

5See https://centre-borelli.github.io/ruptures-docs/user-guide/ for a more complete description.

https://centre-borelli.github.io/ruptures-docs/user-guide/
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3.3 Evaluation

For comparing a set of detected breakpoints to the true set of breakpoints, ruptures offers the
following metrics:

• Hausdorff-index, which measures the largest number of data points between any detected
breakpoint and its closest true breakpoint.

• Randindex, which is a metric between 0 and 1 computed from which breakpoints belong to
the same interval. It is computed as∑

i<j 1(Âi,j = Ai,j)

T (T − 1)

where Âi,j and Ai,j are the indicators for the true and estimated breakpoints of whether the
samples Xi and Xj belong to the same regime [8].

• Precision, which measures what fraction of the detected breakpoints are actual breakpoints
(within a settable margin).

• Recall, which measures what fraction of actual breakpoints are detected (within a settable
margin).

The different metrics have their own pros and cons. For example, the Hausdorff-index makes a
strong statement if it is small, as this means that all of the detected breakpoints lie within some
margin of the true breakpoints, but if it is large, we do not know whether only one breakpoint was
incorrectly detected, or if there are multiple bad estimates. In our experiments, the Randindex was
also tendentially high, making it difficult to make strong statements from it. As for precision and
recall, if we can be sure that we have selected a good margin, they do make a full statement about
the accuracy of the breakpoints when considered together, but it may not be clear how to choose the
margin properly. Additionally, precision and recall are designed for binary decisions; whether there
is a breakpoint in a given interval or not. However, we found that if there are multiple detected
breakpoints within the margin of a true breakpoint, the computed precision and recall suffer.

3.4 Pre-processing the Data

Before applying search methods to the relevant data, we normalize it in order to facilitate compar-
ison across dimensions. It is important that the signals analyzed have the same scale in order to
obtain consistent results with the applied search methods. This also goes for individual dimensions
of a single signal. For example, if we apply the same penalty to two signals which are merely scaled
versions of each other, we may obtain different breakpoints, in the case of an unknown number of
breakpoints. We would have to scale the penalty as well to obtain the same result; see Appendix B
for a proof. However, as is also shown in Appendix B, only the scale of the signals matter; additive
shifts to a signal do not change the detected breakpoints. Bearing these results in mind, we will
only investigate two approaches to scaling the data:

• No scaling - for the FlockLab data set, we only analyze one dimension, so we can select proper
parameters for Pelt and Dynp without scaling the signal.
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• Standard scaling - for the generated and CAIDA data, we bring each dimension to zero mean
and unit variance by applying the transformation

Xscaled =
X − µX
σX

where X is the signal to be scaled, with mean µX and standard deviation σX . This is done
to avoid over-weighting certain dimensions, as the signals then have the same variance.

Further, we apply a low-pass filter to the CAIDA data in order to reduce the effect of noise, and
therefore also test this method on the generated data. For the FlockLab data set, we also sometimes
have to deal with missing data, and use the following imputation methods:

• Interpolation: Linear interpolation of missing data points according to their timestamps.

• KDE-filling : Estimate the distribution of data and filling the missing data points by sampling
from the estimated distribution.

We defer showing these methods to chapter 4. The reason why we choose two different filling
methods is that if we want to search for phenomena that occur in a signal, we need to be careful
not to detect artifacts of the used filling method. Finding the same results for two different filling
methods makes it more likely that the results stem from the data itself, and not the imputation.

Lastly, in order to reduce the dimensionality and to avoid essentially duplicate data, we analyze
which dimensions of the CAIDA data set correlate particularly strongly, and represented these
using only one of the dimensions. The effect of this is shown in section 5.2.

3.5 Testing the Methods on Generated Data

In the following analysis, we use generated signals with 800 points and 20 breakpoints using Pelt and
Dynp with different cost functions. To evaluate the results, we use the Hausdorff-index, Randindex,
precision and recall, as described in section 3.3.

3.5.1 Results for Pelt

Figures 3.2 and 3.3 show the metrics for changepoint detection on noiseless signals and low-pass
filtered noiseless signals, respectively. The results for the noisy signals can be found in the Appendix
C.1. In the following, we only discuss the noiseless case, since the results with and without noise
are similar.

We see that Pelt only has high precision and recall on piecewise constant signals, where they
are both equal to 1 for all penalties when using the L1 cost, and for a number of penalties when
using the L2 and RBF cost functions. For the other signals, the performance is quite poor for all
models. This is unsurprising for the L1 and L2 costs, since they respectively compute deviations
from the median and empirical mean, and one can see in figure 3.1 that the pwl and pww signals
do vary quite a bit more than the pwc signals. Further, using the RBF cost does not resolve the
problem, evidently.

We also see that the Hausdorff- and Randindex can be somewhat misleading in this setting. For
example in figure 3.2, the results for any of the cost functions are arguably bad for the pww and
pwl signals, but this is only visible if we consider the precision and recall together. Upon closer
inspection, one might notice that the Hausdorff-index is close to the average length of a breakpoint
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interval, which is 40, since we use 800 data points and 20 breakpoints. However, the Randindex
does not seem to deliver much valuable information in this case, as it is mostly above 0.95.

These observations indicate that we should try to find (nearly) piecewise constant signals to be
able to hope for good performance using Pelt. E.g. in the pww case, this could have been done by a
Fourier transform of the signal, since this would result in large components for certain frequencies,
and 0 for other frequencies, and thus approximately be piecewise constant.6

Further, for the piecewise constant signal, there seem to be different sweet spots for the selected
penalty, depending on the model we use. For too low penalties, Pelt tends to find too many change
points and has low precision, while for high penalties, the algorithm finds too few breakpoints and
the recall suffers. We see that Pelt with the L1 cost achieves perfect precision and recall using all
the selected penalties, Pelt using L2 gets perfect scores for pen = 5, and Pelt with RBF achieves
perfect score for pen = 1. The reason for the difference is presumably that the L2 cost function is
unbounded for a given point, while the RBF cost function has to be smaller than 1 for each point,7

making it possible for the L2 cost to produce higher costs that must be penalized accordingly. E.g.
if we apply the same penalty with the L2 and RBF costs, then we might expect the same interval
to have a higher cost using the L2 cost, making it better to split the interval at the cost of one
extra breakpoint in the L2 case, but not in the RBF case.

Figure 3.3 and the Appendix C.1 indicate the effect of applying a low-pass filter to the noiseless
and noisy signals, respectively. Evidently, the quality of the detected breakpoints suffers in these
tests for all cost functions. A possible reason for this is the chosen window size of the signals, which
is set to 20 in this case. If we accept any breakpoint as true if it occurs relatively close to a true
breakpoint, but is somewhat off due to a low-pass filter, it might make sense to increase the margin
to obtain representative results when using precision and recall. For instance, in a noiseless pwc
signal, applying a low-pass filter will result in “ramps” at the breakpoints, so we may accept any
detected breakpoint lying on the ramp as a true breakpoint, since the ramp is part of the transition
between the true intervals. In our experiments, the margin is ±10, which is half of the applied
window size, and possibly too small.

3.5.2 Results for Dynp

As mentioned, if Dynp and Pelt find the same number of breakpoints, they will in fact find the
same breakpoints, given that the optimal solution is unique. Therefore, one could expect that the
results for Dynp are similar to those obtained for Pelt.

However, the algorithms are fundamentally different in the sense that we select the number of
breakpoints to find in the case of Dynp. For 20 breakpoints, we see that in both the noiseless and
in the noisy setting in figure 3.4 and the Appendix C.2, the algorithm finds the correct breakpoints
for the pwc signal for all cost functions. Similarly to the case of Pelt, encouraging more breakpoints
increases the recall and reduces the precision, which may be because detecting too many breakpoints
will mean that we tend to detect more of the actual breakpoints, and that a smaller fraction of the
detected breakpoints are actual breakpoints. This phenomenon is not relevant for the pwc signals,
since we find the correct breakpoints when predicting the correct number of breakpoints, but we
see that the recall does not decrease for any signal with an increasing number of breakpoints in
figure 3.4, although it is never equal to 1.

We also see that the metrics for Dynp rarely reach the theoretical minimum value. Pelt often

6Ideally we would know the possible frequencies between which the signal can switch, since we could then correlate
the signal with these frequencies to receive a perfectly piecewise constant signal.

7Since we are dealing with the square of exp(−f(x, y)) − µ̂exp(−f) for non-negative f(x, y), the exponential and
mean are in the interval (0, 1], and the square of their difference is then in the interval [0, 1).
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would get a precision or recall of 0 for high penalties. In the case of Dynp, however, this does not
seem to be the case. A possible reason for this, is that for too high penalties, Pelt will predict no
breakpoints, and thus achieve the minimum scores, whereas Dynp always assigns the given number
of breakpoints in an optimal fashion.

Figure 3.5 shows that, as with Pelt, the precision and recall of Dynp decreases for low-pass
filtered signals. The relevant discussion in 3.5.1 also applies here.
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Figure 3.2: Results for noiseless signals using Pelt with different cost functions. The horizontal
axis indicates the utilized penalty.
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Figure 3.3: Results for low-pass filtered noiseless signals using Pelt with different cost functions.
The horizontal axis indicates the utilized penalty.
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Figure 3.4: Dynp results for noiseless signals with different cost functions. The horizontal axis
indicates the number of detected breakpoints.
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Figure 3.5: Dynp results for low-pass filtered noiseless signals for different cost functions. The
horizontal axis indicates the number of detected breakpoints.



Chapter 4

FlockLab

The FlockLab Sky data set, which we simply refer to as the FlockLab data set, was collected by
Jacob et. al. and is available in [3]. It consists of measurements of the wireless link quality of
the FlockLab testbed over eight months, from July 2019 to March 2020, where the wireless link
quality was initially tested every two hours, and after three months, every six hours. More details
regarding the testing can be found in [3].

For our analysis, we use the data where at least half of the transmissions in a test are successful,
and generate data points by taking the mean of the corresponding number of received packets for
each test. This results in 12 data points per day for the first three months of the data, and four
data points per day thereafter, when there is no missing data. Indeed, data is occasionally missing,
and for some of our methods, we need to fill the missing data points. See 4.2 for more details.

4.1 Seasonality

One can see with the naked eye that the data set exhibits some degree of periodicity, as is shown in
figure 4.2a and is visible from the autocorrelation plots in figure 4.1.1 In the autocorrelation plots,
we consider all the data recorded using four samples per day, and plot the autocorrelation for the
first 112 lags. Jacob et. al. suggested that the FlockLab testbed is likely disturbed by others using
the internet nearby, causing interference with the transmissions [2].

It seems from figure 4.2a that the periodicity is weekly, and that the transmissions taking place
on the weekends normally have a higher success rate than those taking place on weekdays. Keeping
in mind that there are four samples per day, the autocorrelation plot in figure 4.1 confirms this;
there are peaks at multiples of four, indicating some degree of daily seasonality, and large peaks
at multiples of 28, indicating weekly periodicity.2 Indeed, this agrees well with the hypothesis
from [2], since there would be more internet activity when people work on weekdays, causing less
interference during the weekend than during the weekdays. With the apparent seasonality in mind,
we have some idea of what to expect from the FlockLab data; breakpoints separating the weekends
from the weekdays, as the wireless link quality seems to vary accordingly.

The data set lends itself particularly well to investigating how well we can detect a presumably
known number of breakpoints, as we have some evidence indicating a weekly periodicity. However,
we may also test algorithms solving for an unknown number of breakpoints and investigate for which

1To generate the autocorrelation plots, we need to impute missing data points, as the autocorrelation function we
use to generate the plot assumes equidistant samples. See section 4.2.

2And even one peak on either side of these peaks, confirming that the wireless link quality is indeed different over
two days, presumably Saturday and Sunday.

17
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parameters the search methods agree with our hypothesis. Ideally, we may expect to find that the
search methods distinguish the weekends well from the weekdays for a wide range of parameters
and cost functions. Considering the manageable size of our data, it is feasible to apply an exact
algorithm like Pelt for an unknown number of breakpoints, or to solve the problem for a known
number of breakpoints with the Dynp algorithm. We use both approaches and describe the results
in the coming sections.
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Figure 4.1: Autocorrelation plot filling the data using kernel density estimation (left) and
interpolation (right) (see section 4.2). We see that in both cases, there is significant

autocorrelation at lags that are multiples of four, indicating daily periodicity, as we used four
samples per day for the wireless link quality. Further, the large autocorrelations at multiples of 28

indicate a weekly periodicity.
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Figure 4.2: (a): FlockLab Sky data (b) filled with interpolation and (c) kernel density estimation
to ensure the same number of samples per day. The shaded regions in the plots indicate the

location of weekends, and the blue and red points indicate original and filled data, respectively.
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4.2 Missing Data

About 20 percent of the data is missing in the FlockLab data set, and some of the functions we use
for our analysis do not cope well with missing samples, as they assume that the samples they are
given are equidistant. An example is the autocorrelation plot. Furthermore, in Appendix D.4 there
is an example where ruptures assumes equidistant samples, i.e. we need to fill the missing data to
use it for change point detection. Doing so allows us to detect breakpoints only on the boarder
between days. Hence, in order to apply these methods, we need techniques to impute missing data.

Generating samples and treating them as true data comes with a range of pitfalls. For example,
if we have missing data and simply repeat the last seen sample in order to fill it, we will induce
autocorrelation in the data. If we interpolate, the data in a given interval may seem incorrectly
noiseless, and so on. Therefore, in order to make it more likely that the phenomena we observe are
not artifacts of the filling methods, we employ both KDE-filling and interpolation to impute the
missing data points. These methods are both described in 3.4. If a phenomenon occurs for several
filling methods, it makes it more likely that it is a property of the underlying true data, and not of
the imputation strategies.

E.g. in the case of the autocorrelation function in figure 4.1, we only make conclusions about
seasonality because it seems present using both filling methods. In our view, filling the data
“randomly” using KDE and by “connecting the dots” using interpolation are two rather different
approaches. Yet, in both cases, there is seemingly heavy autocorrelation in the FlockLab data set,
which strengthens our confidence in the conclusion.

4.3 Applying Pelt to the Full Data

Considering the discussion in section 4.1, one might hypothesize that applying Pelt to the FlockLab
data will result in a clear separation of the weekdays and weekends for a wide range of selected
penalties, using any cost function. In the following, we will say that an algorithm performs well if
it clearly separates the weekdays from the weekends, i.e. matches our hypothesis well. We justify
this formulation by considering the autocorrelation plot in figure 4.1 and the discussion in section
4.1. Furthermore, a search method is robust if the detected breakpoints do not vary significantly
with small changes in the selected penalty parameter.

Figure 4.3 shows representative results of applying Pelt to the FlockLab data from November
and December 2019. In this figure, we restrict the minimum number of samples between two
breakpoints to be at least four, i.e. that each interval has the size of at least one day, as the results
without these restrictions are challenging to interpret. For the results without this restriction, see
Appendix D.1. We see that indeed, most of the detected breakpoints lie close to the weekends,
strengthening the hypothesis that the reception is different on the weekends compared to the
weekdays. This is especially true for the L2 cost, as can be seen in the relevant figures (middle
column). However, in particular for the L1 and RBF costs, the detected breakpoints are sensitive
to changes in the selected penalty. Furthermore, occasionally the algorithms find breakpoints in
the middle of the week, even when there is no obvious, visible change.3

A possible reason for the penalty sensitivity and disagreement with our hypothesis, could be
that there are not enough measurements available per day in the November and December data.
Indeed, if we consider measurements from August and September 2019, the performance of the

3Note that e.g. between December 14th and December 21st, breakpoints are detected in the middle of the week,
but this might be attributed to missing data. To the algorithm, if data is missing, the samples on either side of the
chunk of missing data seem to be consecutive. See figure 4.3.
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(a) Pelt change point detection
using L1 for different penalties.

We see that the search method is
not too robust, and that the

detected breakpoints to not agree
too well with our hypothesis.
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(b) Pelt change point detection
using L2 for different penalties.

We see that the search method is
more robust than when using the
L1 cost. The breakpoints seem to
agree more with our hypothesis.
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Change point detection on sky; RBF, penalty 1.5

(c) Pelt change point detection
using RBF for different

penalties. We see that the search
method is not robust. The

breakpoints also do not agree too
well with our hypothesis.

Figure 4.3: Results of applying Pelt to the November and December data using different cost
functions with different penalties, requiring at least four samples between each breakpoint. The

results without this restriction are available in Appendix D.1
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(a) Pelt change point detection
using L1 for different penalties.
We see that the algorithm still
does not separate the weekend
from the weekdays all too well,

and that the algorithm is still not
very robust.
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(b) Pelt change point detection
using L2 for different penalties.

We see that the breakpoints still
match the edges of the weekend
well, and that the robustness is

quite good.
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(c) Pelt change point detection
using RBF for different penalties.

We see that the breakpoints
match the weekends better using
more samples per day, and that

the robustness has improved
compared to the November and

December case.

Figure 4.4: Results of applying Pelt to the August and September data using different cost
functions with different penalties. The minimum size is restricted to eight in these plots, which is

less than the 12 samples per day. The choice is a result of missing data.

search method using the RBF cost does improve, but using the L1 cost, Pelt still does not separate
the weekends particularly well. This is shown in figure 4.4, where we restricted the minimum size
to be eight,4 and the results without the restriction can be found in the Appendix D.1. Note that
when we extend the length of the signal, we tendentially need to increase the penalty. This is
because each point contributes with a non-negative cost, meaning that if there are more points in
an interval, for a constant penalty, the relative penalty per breakpoint decreases with the length of
the interval.

In conclusion, we see that Pelt with the L2 cost seems to do a fairly good job of distinguishing
the weekends from the weekdays. The performance becomes more robust when more datapoints
are available, in the sense that the detected breakpoints vary less. Given enough data, also Pelt
used with the RBF cost seems to perform well based on the August and September data. However,
the algorithm does struggle to separate the weekdays and weekends well when using the L1 cost,
even when more samples are available.

4We tried using 12, the number of samples per day, but it did not work too well, presumably due to missing data
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4.4 Applying Dynp to the Full Data

Applying Dynp to the full FlockLab data leads to quite similar results as when applying Pelt.
The results for the August and September data are shown on the left hand side in figure 4.5, and
for the November and December data, on the left hand side in figure 4.6, using 10 breakpoints
in both cases.5 We show these results, as Dynp generally finds breakpoints at similar locations
as Pelt when using less breakpoints, and the case of 10 breakpoints showcases that the algorithm
sometimes identifies the beginning and end of the weekend as breakpoints, and sometimes chooses
other breakpoints.6 As both Pelt and Dynp are exact algorithms, it is not too surprising that
the detected breakpoints are similar. Given the same costs, if both Pelt and Dynp detect a given
number of breakpoints, and the optimal set of breakpoints is unique, they will both find it. An
interesting takeaway from this, could be that if we want to enforce a certain number of breakpoints,
we can apply Dynp without any parameter selection, except choosing the cost function, and receive
the same results as we would for Pelt using this number of breakpoints. And vice versa, if we find
a given number of breakpoints using Pelt, these breakpoints could have been found using Dynp.

5The plots on the right are treated in section 4.5
6The number 10 is arbitrary. The results for a given number of breakpoints is similar in all cases with up to 16

breakpoints. For the results using 1, 2, ..., 16 breakpoints on the August data, see Appendix D.3.
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(c)

Figure 4.5: Dynp applied to the full data (left) and to the most busy hours of the day (right).
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Figure 4.6: Dynp applied to the full data (left) and to the most busy hours of the day (right).
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4.5 Daily Seasonality

Figure 4.2 shows that in the FlockLab data, the wireless link quality displays some degree of daily
oscillations, as one may also incur from the autocorrelation plots in figure 4.1. Considering that
the data was collected in regular intervals daily, also during midnight, this might be somewhat
unsurprising. Indeed, if the hypothesis that the FlockLab wireless link quality depends strongly on
interference from other devices is true, one would expect a better wireless link quality on average
at midnight than during the day, at least on weekdays. This is because most people will be working
during the day, and thus, there should be more interference then.

Inspired by this realization, we segment the data into different data sets, where each sample
in each of the new data sets is taken at the same hour of day. Ideally, we would see that the
wireless link quality outside of working hours is higher and varies less than during busy hours, as
this would back up our hypothesis that the FlockLab testbed is disturbed by devices used during
work. Furthermore, finding such evidence would allow us to decrease the size of the utilized data,
since the samples collected outside working hours would be essentially constant and deliver no new
information. As such, it would indeed be redundant.

Representative results are shown in figure 4.7. Indeed, the number of received packets varies
much less at 8 p.m. and 2 a.m. than at 8 a.m. and 2 p.m. Still, it is evident from the Appendix
D.2 that ruptures does not perfectly distinguish the weekends as in the other data sets for the
November and December data. In the case of the August and September data in figure D.3, the
results are better for the samples recorded at 9 a.m., 11 a.m., 1 p.m. and 3 p.m., but the search
methods are somewhat unreliable for the other samples.

There could be multiple reasons for this. Firstly, if there are fewer samples per day, and
the search method chooses one sample as a breakpoint, which in reality is close to the expected
breakpoint, the effect of missing by a single sample is significantly bigger than if there are many
data points to choose from. Furthermore, given few data points, there is little information from
which to calculate the cost of intervals and declare shifts, as is also apparent from the results in
section 4.3. For example, if we represent each day by a single data point, a search method has
to decide from respectively two and five samples whether a weekend has a different cost than the
weekday. This makes the approaches particularly prone to outliers and missing data, and motivates
the use of more samples per day.

To remedy this problem we consider only the data where we expect the most seasonality, that is,
the data recorded during the working hours from 8 a.m. to 17 p.m.7 In this setting, the performance
of Pelt does not improve much. Indeed, the robustness suffers somewhat, compared to when using
the full data. This is perhaps due to the decreased number of points per day, resulting from
considering only the data recorded during working hours. However, the Dynp algorithm without
a minimum size restriction detects similar breakpoints on the full data, as on the data measured
during active hours. This is shown on right hand side of figures 4.5 and 4.6. In fact, the performance
generally even improves compared to when using the full data set. One could reason about this by
considering that Dynp will find a specified number of breakpoints in order to minimize the total
cost of the intervals between the breakpoints. Presumably, removing samples which are essentially
the same for all the data will either not change the optimal segmentation that much, or it will
increase the discrepancy between the intervals. The latter will be the case if the removed samples
tend to bring the average values in the intervals closer together. In our case, it seems that this
happens, and Dynp more strongly tends to set the breakpoints between the intervals given the
larger discrepancy. Figures 4.5 and 4.6 show that change point detection on only the samples

7The plots are labeled with different time stamps according to the time of wireless link quality tests.
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recorded during working hours results in breakpoints that agree more strongly with our hypothesis
than when we consider the full data. The samples recorded outside of working hours may disturb
the change point detection, since they give an arguably irrelevantly good impression of the wireless
link quality during weekdays, as these samples do not depend strongly on the day of the week.

Personally, I believe it is not unlikely that such daily seasonality could be common in networks
used by humans within only one timezone. Presumably, less people use wireless devices at night
than during the day or evening, and thus, a seasonality similar to that found in the FlockLab data
may often be present. Hence, for a range of applications, it could be worth checking the influence of
data recorded during different hours of the day, as the behavior during some hours may carry more
information than the behavior during other times of day. Furthermore, when detecting network
shifts, these results indicate that it could be worth checking for changed probability distributions
on samples recorded at a similar time of day, instead of checking the full day. The distribution
of the number of received packets consistently displays daily shifts, as the wireless link quality is
apparently better at night. So arguably, these shifts are not as interesting as those that change the
wireless link quality under presumably similar conditions, i.e. during the same hours on different
days.
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Figure 4.7: Wireless link quality at different hours of the day



Chapter 5

CAIDA

The CAIDA data set contains data from internet traffic in Chicago recorded for one hour at a time
approximately every one to three months between May 2013 and April 2016 [1]. In the CAIDA data
set, there are two directions A and B, for each link, that both get measured in the same way. The
data we use are computed from the original data, and has a sampling frequency of 100 samples per
second. Thus, each hour contains approximately 360,000 samples. While for the FlockLab data we
have some general idea of what type of results to expect, the CAIDA data set is a different beast,
and is arguably also more difficult to interpret as it is higher dimensional. Furthermore, the data
seems quite noisy, visible in figure 5.1, which motivates the use of low-pass filters. Nevertheless,
we can apply the same methods as described up until now, and compare the results for different
choices of parameters and included dimensions. We can also try to infer some information about
the data from our results.

In the following, we perform a number of experiments to analyze the CAIDA data. Due to the
size of each recording, however, we need to compress the data before applying the shift detection
methods. Therefore, we create new data from the original or low-pass filtered data by taking the
mean of 100 consecutive samples and representing this as a single data point. Thus, the signals on
which we do change point detection contain approximately 3,600 samples instead of 360,000. After
this, we bring the signal to zero mean and unit variance, i.e. normalize it using standard scaling,
as described in chapter 3.
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Figure 5.1: Example of a normalized CAIDA signal, taken from February 2nd, 2016 for the A direction. As with the signals use for
change point detection, here, each point really represents the average of 100 consecutive samples.
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5.1 Change Point Detection on Single Dimensions

For multiple dimensions, we do not know a priori whether they exhibit the same breakpoints or not.
Change point detection on each individual dimension may actually result in the same breakpoints
for every dimension. In this case, there would be little point in considering all the dimensions
together, since the same breakpoints would be detected anyways. In order to get some idea of
which dimensions agree on breakpoints, and which ones do not, we perform change point detection
on each dimension and use the Hausdorff index, as described in section 3.3, to investigate their
similarity. Due to the apparent noisy nature of the data, we also show the results using different
low-pass filter window sizes. We find the breakpoints using Dynp with the L2 cost, and show the
results in figure 5.2.1

We find that the detected breakpoints depend on which dimension is used. Considering figure
5.1, it seems that the dimensions indeed look different and thus the detected breakpoints may then
be different as well. We also see that applying a fairly small low-pass filter window of 100 samples,
i.e. averaging over one second, does not influence the similarity matrix greatly. However, when
increasing the window size to 10,000, i.e. averaging over 100 seconds, the breakpoints lie closer to
each other, with the exception of those detected by the load p95 -dimension. Presumably, this is
because we smooth out local variations and see only the long term trends when increasing the size
of the low-pass window. As can be seen in figure 5.1, some of the dimensions, in particular load p95
and IPv6 t count, are quite spikey compared to the other signals. This is possibly a reason why
Dynp detects rather different breakpoints for these dimensions for a low-pass filter window size of
1 and 100 in figure 5.2.

1We use Dynp with the L2 cost because we can then ensure the same number of breakpoints in each case, and
search methods with the L2 cost function produced the best results in chapter 4.
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Figure 5.2: Hausdorff-index between breakpoints found by single dimensions for different low-pass
window sizes using Dynp with the L2 cost. A low Hausdorff-index indicates that the breakpoints

are similar, since they all lie within a small margin of each other.
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5.2 Correlating Dimensions of the CAIDA Data

While we have established that some of the different dimensions of the CAIDA data set detect
different breakpoints when analyzed separately, it could be that certain dimensions correlate with
each other. Strong correlations could be harmful to change point detection, since some trends
may be over-represented. In an extreme case, where two dimensions are identical, including both
dimensions may be considered as giving nearly twice the weight to a single underlying trend causing
both dimensions to look the way they do.2 Thus, if we find that certain dimensions of the data
correlate strongly, it may be justified to consider only one of the strongly correlating dimensions
for change point detection.

We choose to measure the correlation between the dimensions using the Kendall correlation.
This is because it is non-parametric, and we do not have much information about the possible
underlying trends. Correlating the different dimensions of the CAIDA data set reveals significant
correlation between certain dimensions, as is shown in figure 5.3. Interestingly, the correlation
matrices are reminiscent of the similarity plots in figure 5.2. Indeed, we see that the dimensions that
correlate very strongly also have a low Hausdorff-Index, indicating that the breakpoints are the same
up to a small margin. This further justifies removing single dimensions, since the breakpoints found
by the heavily correlated dimensions would be weighted particularly strongly. In particular, the sets
of dimensions {pkt count, IPv4 count, tcp count} and {flow count pkt, flow load total} correlate
strongly. Therefore, we perform change point detection twice; once using all the dimensions of
the data set, and once representing the former of the aforementioned sets by the pkt count, and
the latter by the flow count pkt.3 We also apply different low-pass filters for each combination of
dimensions.

One might think that applying the low-pass filter should make the breakpoints more similar,
as only the long term trends stay when applying a large low-pass window, possibly making the
dimensions themselves more similar. Furthermore, we saw in figure 5.2c that the greatest number
of samples between most breakpoints decreases when the window size is 10,000, and figure 5.3 even
shows that dimensions tend to correlate more strongly when we apply a low-pass filter, than when
we do not. Figure 5.4 shows the effect of considering all dimensions contrary to subsets of them, as
well as the effect of applying a low-pass filter, and performing change point detection using Dynp
for seven and eight breakpoints. We see that the breakpoints are indeed different depending on
what dimensions we use, indicating that some trends might be over-represented when dimensions
are very similar. However, it is not obvious from the figures how the breakpoints change. Both
for few and for many breakpoints, there seems to be some disagreement, but this disagreement
also depends on the size of the used low-pass window. Interestingly, it is not always the case that
increasing the size of the low-pass window makes the breakpoints more similar. We are not sure
why this happens, considering the discussion above, but do report the results.

2In the case of the L1 and L2 costs, it would indeed be twice the weight, as the norms of the deviations from the
median and empirical mean add. However, for the RBF cost, the analysis is more complicated, since the norm of
the signal occurs in an exponential.

3This choice is arbitrary, but considering the strong correlation, the detected breakpoints will likely not differ from
the results if we had chosen other dimensions to represent each set.
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Figure 5.3: Means of Kendall correlation coefficient computed for the different dimensions of
low-pass filtered CAIDA data. While most dimensions correlate at least somewhat, we see that

there is a particularly strong correlation among the in the sets of dimensions {pkt count,
IPv4 count, tcp count} and {flow count pkt, flow load total}. Also interesting to note is the lack

of correlation between IPv6 count and IPv6 t count and most other dimensions.
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Figure 5.4: Change point detection using all available dimensions (CPD full) and representing the
strongly correlated dimensions through pkt count and flow count pkt, as described in section 5.2
(CPD reduced). The two subplots show breakpoints detected for a low-pass filter window of 1

(top), 100 (middle) and 10,000 (bottom). We show the detected breakpoints on top of the
pkt count since it is available in both scenarios, and represents the largest number of dimensions

in CPD reduced.
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5.3 Long Term Evolution

The CAIDA data set was collected over nearly three years; from May 2013 to April 2016. One could
suspect that the most significant distribution shifts happen over a longer time span than one hour,
which is the size of the measurements available to us. An approach to investigating this would be
to consider the entire data set as a single signal, as shown in figure 5.6, and then perform change
point detection on this signal. Note that in figure 5.6,while the horizontal axis does represent the
time within one hour of recorded data, is not representative of the actual time between the data
sets. Between every shaded region, there are in fact multiple weeks, if not months, that are not
shown.

The resulting signal is reminiscent of a noisy piecewise constant signal, at least for some of the
dimensions. Other dimensions, such as the IPv6 t count, load p90 and load p95 show rather spiky
behavior. Presumably, the reason for the piecewise constant reminiscence is that the dimensions
would normally change smoothly, but at the boarder between days, any discrepancy between the
days seems like an abrupt change, similar to those we see piecewise constant signals. Furthermore,
it could be that the hours we have recorded do not perfectly represent the internet state at the time
the data were collected. For example, it could be that we, by chance, recorded the data during an
hour when particularly many people were using the internet, leading to extreme measurments.

With this in mind, we could expect that change point detection on the signal containing all
the available days will separate the days more or less perfectly. Figure 5.5 shows the result when
applying Dynp to detect 19 breakpoints; one less than the number of days in the relevant data.45 We
see that indeed, the match is perfect. However, considering the approximately piecewise constant
nature of the concatenated signal, this is not particularly surprising. The results in chapter 3 show
that Dynp performs best on piecewise constant signals. An interesting question is whether these
shifts arise from a long term network shift, or if they are only due to the nature of sampling a single
hour of data from a time span of many months. It is not possible to answer this question with the
CAIDA data alone, as one would need more regular data to establish whether the typical behavior
of the relevant internet traffic has changed.

−2

0

2

Change point detection on concatenated days
(IPv 6 t count excluded)

Figure 5.5: Change point detection on concatenated days. The breakpoints are displayed on top
of the flow load mean, which is an arbitrary choice. The different shaded regions indicate different
days, and we see that the transitions coincide perfectly with the 19 found breakpoints. It is worth
noting that the detected breakpoints were not found only using the shown dimension, but rather
using all dimensions (except the IPv6 t count). If some breakpoints seem off in this figure, they

are likely detected due to other dimensions.

4ruptures also always places a breakpoint at the end of the signal, which is not included in the number of
breakpoints we specify.

5We do not include the IPv6 t count since it is spikey. When we included it, the breakpoints did not agree
perfectly with the transitions between days. However, considering the shape of this dimension in figure 5.6, we think
it is justified to neglect it, as its behavior seems rather chaotic.
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Figure 5.6: CAIDA data in the B direction, concatenated according to when the data was collected. The shaded regions and x-axis
ticks indicate the transitions between days.



Chapter 6

Discussion

6.1 Shift Detection Methods

While in our analysis we focused on two algorithms, Dynp and Pelt, used with only three different
cost functions, the L1, L2 and RBF costs, many other shift detection methods are available. In
particular, in ruptures, one can specify custom cost functions to try to capture other phenomena
than deviations from the median and mean, or changes in a mean embedding. We saw, for example,
that while the algorithms we used generally perform well on piecewise constant signals, they do not
on more complex time series, such as the piecewise wavy and linear signals. This might be different
for other cost functions.

When removing the hours when we do not expect people to work from the analyzed data in
section 4.5, the results obtained for the FlockLab data were particularly good. Considering the
right hand side plots in figure 4.5, this might be unsurprising, as the resulting signals seem to
resemble noisy piecewise constant signals.

Conversely, considering figure 5.1, which shows an example of a CAIDA signal, one might
suspect that the breakpoints found within one day of this data set may not be representative of
actual shifts, since the signal is not piecewise constant. It could be interesting for future research to
apply different cost functions to the CAIDA data and compare the resulting breakpoints to those
obtained using the methods in this report. If the breakpoints differ greatly, it may be an indication
that either the cost functions we use or the new cost functions are not well suited to detect network
shifts on the CAIDA data.

6.2 FlockLab

6.2.1 The Risk of Confirmation Bias

In the FlockLab analysis, we see that we often have to either set some parameters properly or
consider only parts of the data in order to obtain results that agree well with our hypothesis.
Examples of the first point are the pen, n bkps, min size and jump parameters. Choosing these
inappropriately sometimes leads to results which do not agree too well with the weekend-seasonality
hypothesis. Further, if we only consider the hours during which we expect people to work, one could
view the obtained results (which match the weekend-hypothesis perfectly) as obtained through a
sort of confirmation bias, as we suspect the lower link-quality could be due to disturbances from
other online applications, and change parameters if the fit is poor.

37
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On the other hand, it can be natural to place restrictions on the detected breakpoints, e.g. by
tuning the min size parameter, if we are not interested in e.g. very densly packed breakpoints.
Further, neglecting data that delivers little information is a well established approach in data
analysis [6].1 As we did indeed see that the wireless link quality mostly varies throughout working
hours, and is more or less constant outside of working hours, disregarding the data that carry little
information is, in my view, justified.

6.2.2 Analysis of Seasonality by Other Methods

There already exist tools for detecting regular seasonality and trends in time series. An example
is the STL-analysis, which is implemented in the python library statsmodels.2 Hoping to be
able to detect a weekly seasonality, we experimented with passing the full, scaled and unscaled,
FlockLab Sky data, with and without imputation, to the function STL from statsmodels.tsa,
using different parameters. However, the results were difficult to interpret, and in the resulting
model, the residuals were on the same scale as the detected trends, indicating that the model may
not be too insightful in our case. A possible reason for this is that we considered the full data,
which also contains the samples taken outisde of working hours. In section 4.5, we find that change
point detection works best on data where we consider only the samples recorded during working
hours, and suspect that this might be true for the STL-analysis as well, since the trends seem to
be clearer on the data that only considers these hours. Future research could try passing such
reduced data to this function, either using the FlockLab Sky data or other network data where
certain hours of the day display less variance than others. Then, we may hope to find that also this
analysis method works better when considering the time at which we record the measurements.

6.3 CAIDA

6.3.1 Inter- and Intra-day Similarity

The CAIDA data consists of measurements spanning one hour of internet traffic per recording
between 2013 and 2016. Presumably, the most significant network shifts taking place in this data
set occur over a larger time span than the single hours on which we have data. Thus, when analyzing
the CAIDA data, we would like to compare how similar points in a given interval are, compared to
how similar points in the entire data set are. To this end, we define the per-point-cost.

The Per-Point-Cost

Formally, given a signal with time indices in Itot and two consecutive breakpoints b1, b2 ∈ Itot, we
consider the interval

I = [b1, b2) ⊂ Itot
and compute

cI =
C(I)

|I| , ctot =
C(Itot)

|Itot|
1E.g. principal component analysis is designed to discard (linear combinations of) the dimensions of a data set

containing the least variance.
2https://www.statsmodels.org/stable/examples/notebooks/generated/stl_decomposition.html

https://www.statsmodels.org/stable/examples/notebooks/generated/stl_decomposition.html
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for some cost function C. cI and ctot measure how much each point in the relevant interval con-
tributes to the cost on average. We then define the per-point-cost as

c̃I =
cI
ctot

.

Intuitively, the per-point-cost measures how much each point in a detected interval, i.e. data
between two consecutive breakpoints, costs on average, measured by the relevant cost function,
compared to the average cost of each point in the data. If the per-point-cost is small, this indicates
that the points in a detected interval are more similar than the points in the entire data set are on
average, measuring similarity with the relevant cost function.

Applying the Per-Point-Cost

In order to compare the intra-day similarity to the inter-day-similarity, one approach could be to
apply the per-point-cost with each interval being a separate day. Should the cost be low in this
setting, it would indicate that the differences between days are more significant than those within a
single day. However, considering the nature of the CAIDA data, this comparison has its limitations.
Normally, there are months between the recorded data, which itself only spans one hour; a much
shorter time than the gaps between data. As a consequence, we do not know whether the recorded
hour is actually representative of the “average” internet behavior for a given month, and further,
there is no guarantee on how well we can compare the hours themselves, as some of them may be
anomalous. Additionally, while the discrepancy between days may be large, resulting in a large
ctot, it could be that taking information from only one hour of data results in a cI which is too
small to represent an actual day, due to relatively low variance.

This becomes particularly visible when concatenating the available days and plotting the result;
see figure 5.6. The result is reminiscent of a piecewise constant signal; at the boarder between days,
the different dimensions normally show considerable jumps, and then remain nearly constant until
the next available measurement. This happens because normally, the change in each dimension is
smooth, but any minor difference between two consecutive recordings will seem abrupt.

Possibly, if there were more data available, there could be greater intra-day variation, making it
feasible to compare entire days to each other. We may still see large jumps at the boarder between
days, but maybe the data representing each day is less likely to be anomalous. We would encourage
further research to investigate long-term network shifts by considering precisely data over longer
time spans.



Chapter 7

Conclusion

In this report, we have explored different shift detection methods in the context of network data,
and applied these methods to the FlockLab and CAIDA data sets.

For the FlockLab data, we had some idea of what types of shifts to expect, and were able
to confirm these suspicions using the Pelt and Dynp algorithms with the L1, L2 and RBF cost
functions. Realizing that internet traffic may be highly seasonal with respect to the time of day,
we were able to reduce the size of the utilized data set, as the data recorded outside of working
hours generally displayed little variation. Indeed, the remaining data resembled a noisy piecewise
constant signal, and applying the shift detection methods to this signal lead to results that agreed
more strongly with our hypothesis. Together with the results in chapter 3, it seems that Pelt and
Dynp are able to detect shifts in noisy piecewise constant signals rather well, when using the L1,
L2 and RBF cost functions. Thus, we propose two possible approaches for future research. On
the one hand, finding meaningful transformations of time series data to piecewise constant signals
would allow us to use the shift detection methods that we apply in this paper. As such, it could
be worth seeking such transformations for other signals. On the other hand, this might be quite
challenging for arbitrary signals. Therefore, another approach we would suggest is to find other
cost functions that are able to detect shifts on non-piecewise constant signals. In [8], the authors
already mention multiple possible cost functions that future research could investigate.

We also saw for the FlockLab data that there are regularly daily shifts, in the sense that the
wireless link quality is better at night than during the day. In our view, it could be sensible to
consider data recorded under seemingly similar conditions when detecting network shifts. One
may expect that the conditions during the day are different from those during the night, making it
reasonable to consider data recorded during the same time of day when searching for network shifts.
The time of day is, however, possibly not the only factor which comes into play when concerning
similar conditions, and we would suggest future research in investigating which conditions allow for
a fair comparison, in order to detect network shifts. In particular, it could be interesting to see how
strong of an influence the time of recording has on other data, and whether is is only characteristic
to the FlockLab data.

The CAIDA data is more sparsely spaced and is higher dimensional than the FlockLab data.
It turns out that some of its dimensions correlate strongly, and when performing change point
detection on each dimension individually, the dimensions that correlate strongly tend to find similar
breakpoints. From this, we conclude that it may be wise to remove some of the high correlation
in network data sets prior to shift detection, since some trends may otherwise be over-represented.
Furthermore, while we were able to perform change point detection on the CAIDA data, one could
question the quality of the estimates, as the data does not seem to be piecewise constant, and the

40



CHAPTER 7. CONCLUSION 41

methods we used displayed poorer results for more complex signal shapes in chapter 3. We would
suggest further research in either finding methods that can detect shifts on arbitrary signal shapes,
or to transform the CAIDA data in a meaningful way to something resembling a piecewise constant
signal before making inferences on possible causes of these shifts.

Due to the sparsity of the CAIDA data, we would also encourage research on data taken over
longer time spans, or more regularly. This could allow for long-term shift detection, which is not
possible on the CAIDA data, since we have no guarantee of how representative the recorded hours
are of the internet behavior of the time period in which the data were collected.
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Appendix A

Definitions

Definition A.0.1 (Empirical mean). Given a signal {Xi}i∈{1,··· ,T} ⊂ Rn, we define the empirical
mean of the signal as

µ̂X :=
1

T

T∑
i=1

Xi

Definition A.0.2 (Median). Given a signal {Xi}i∈{1,··· ,T} ⊂ Rn, we define the median of the signal
as X̄, such that |{Xi : X̄ ≥ Xi}| = |{Xi : X̄ ≤ Xi}|, and X̄ ∈ {Xi}. If this equation cannot be
satisfied, X̄ is the mean of the two numbers that most closely satisfy the equation.

Definition A.0.3 (L1 cost). Given a signal {Xi}i∈{1,··· ,T} ⊂ Rn, we define the L1 cost as

CL1(X) :=

T∑
t=1

∥∥Xt − X̄
∥∥
1

Where X̄ is the median of the signal.

Definition A.0.4 (L2 cost). Given a signal {Xi}i∈{1,··· ,T}, we define the L2 cost as

CL2(X) :=

T∑
t=1

‖Xt − µ̂‖22

Where µ̂ is the empirical mean of the signal.

Definition A.0.5 (RBF cost). Given a signal {Xi}i∈{1,··· ,T} ⊂ Rn, we define the RBF cost as

CRBF (X) :=
T∑
i=1

‖Φ(Xi)− µ̄‖2H

Where Φ(x) = k(x, ·), k(x, y) = exp(−γ ‖x− y‖22) is the RBF kernel, and µ̄ is the empirical mean
of the embedded signal {Φ(Xi)}i∈{1,...,T}. Further, γ is a bandwidth factor, which can be chosen
heuristically as the inverse of the median of all pairwise distances in the signal.

I



Appendix B

Analytical Results

B.1 Additive Shift Cost Function Invariance

L1 and L2 costs

Lemma B.1.1. Given two signals {Xt}t∈{1,...,T} and {Yt}t∈{1,...,T}, such that Yt := Xt+a for some
a ∈ Rn, then for the cost functions CL1 , CL2 and CRBF , X and Y have the same cost.

Proof. Let µ̂X and X̄ be the empirical mean and median of the signal X, respectively, and µ̂Y
and Ȳ be the empirical mean and median of the signal Y , respectively. Clearly, µ̂Y = µ̂X + a,
Ȳ = X̄ + a, and it follows immediately that

CL1(X) = CL1(Y ) (B.1)

and
CL2(X) = CL2(Y ) (B.2)

The RBF -cost function is defined as

CRBF (X) :=

T∑
i=1

‖Φ(Xi)− µ̄‖2H (B.3)

Expanding the norm, we obtain (with 〈·, ·〉H as the Hilbert-space inner product)

‖Φ(Xi)− µ̄‖2H = 〈k(Xi, ·)− µ̄, k(Xi, ·)− µ̄〉H = k(Xi, Xi) + ‖µ̄‖2H − 2〈Φ(Xi), µ̄〉. (B.4)

Writing out µ̄

µ̄ =
1

T

T∑
i=1

Φ(Xi) =
1

T

T∑
i=1

k(Xi, ·) (B.5)

which leads to

‖µ‖2H =
1

T 2

T∑
i=1

T∑
j=1

k(Xi, Xj) (B.6)

〈Φ(Xi), µ̄〉 =
1

T

T∑
j=1

k(Xi, Xj). (B.7)

II
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Thus, CRBF (X) depends only on expressions of the form k(Xi, Xj). We now see that exchanging
X and Y must result in the same cost, since

k(Xi, Xj) = exp(−γ ‖Xi −Xj‖22) = exp(−γ ‖Xi + a− (Xj + a)‖22) = k(Yi, Yj) (B.8)

B.2 Scaled Signals

Lemma B.2.1. Given the signals {Xt}t∈{1,...,T} and {Yt}t∈{1,...,T} and a penalty p, such that Yt :=
aXt for some a 6= 0, if the set of breakpoints B = {b1, . . . , bk} minimizes CL1(X) + pk, then B also
minimizes CL1(Y ) + |a|pk.

Proof. We see from the definition of CL1 that

CL1(Y ) = |a|CL1(X) (B.9)

It follows that

min
B={b1,...,bk}

CL1(Y ) + |a|pk = |a| min
B={b1,...,bk}

CL1(X) + pk (B.10)

Since |a| > 0, a set B which minimizes CL1(X) + pk also minimizes CL1(Y ) + |a|pk.

Lemma B.2.2. Given the signals {Xt}t∈{1,...,T} and {Yt}t∈{1,...,T} and a penalty p, such that Yt :=
aXt for some a 6= 0, if the set of breakpoints B = {b1, . . . , bk} minimizes CL2(X) + pk, then B also
minimizes CL2(Y ) + a2pk.

Proof. Left as an exercise to the reader.
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C.1 Full Results for Pelt
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Figure C.1: Results for noiseless signals using Pelt with different cost functions.
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Figure C.2: Results for the same signals but with additive white Gaussian noise with a standard
deviation of 3. The captions indicate the utilized cost function.
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Figure C.3: Results for low-pass filtered noiseless signals for different cost functions.



APPENDIX C. FULL RESULTS SHIFT DETECTION METHODS VIII

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

29 29 29 17 13 64

32 32 32 41 89 763

28 28 28 77 95 767

Hausdorff L1

0

500

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

0.958 0.964 0.966 0.97 0.967 0.918

0.958 0.961 0.964 0.955 0.881 0.0479

0.959 0.964 0.968 0.936 0.899 0.0482

Randindex L1

0.0

0.5

1.0

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

0.133 0.202 0.25 0.576 0.6 0.3

0.128 0.174 0.25 0.591 0.444 0

0.149 0.23 0.333 0.4 0.5 0

Precision L1

0.0

0.5

1.0

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

1 1 1 0.95 0.6 0.15

1 1 1 0.65 0.2 0

1 1 1 0.3 0.3 0

Recall L1

0.0

0.5

1.0

(a) L1

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

29 19 19 14 26 64

32 27 27 77 297 763

28 35 42 422 722 767

Hausdorff L2

0

500

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

0.967 0.971 0.97 0.967 0.965 0.905

0.961 0.97 0.968 0.892 0.421 0.0479

0.966 0.964 0.947 0.636 0.153 0.0482

Randindex L2

0.0

0.5

1.0

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

0.23 0.426 0.528 0.6 0.684 0.714

0.182 0.426 0.533 0.4 0.333 0

0.27 0.452 0.368 0.4 0 0

Precision L2

0.0

0.5

1.0

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

1 1 0.95 0.6 0.65 0.25

1 1 0.8 0.2 0.05 0

1 0.7 0.35 0.1 0 0

Recall L2

0.0

0.5

1.0

(b) L2

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

19 19 17 29 64 235

32 32 27 28 89 763

28 28 28 87 157 767

Hausdorff RBF

0

500

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

0.97 0.969 0.968 0.949 0.916 0.764

0.958 0.961 0.965 0.964 0.88 0.0479

0.959 0.963 0.967 0.924 0.867 0.0482

Randindex RBF

0.0

0.5

1.0

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

0.392 0.593 0.636 0.462 0.625 0.667

0.131 0.182 0.286 0.583 0.333 0

0.152 0.211 0.286 0.375 0.4 0

Precision RBF

0.0

0.5

1.0

0.1 0.5 1.0 5.0 10.0 50.0

pwc

pwl

pww

1 0.8 0.7 0.3 0.25 0.1

1 1 1 0.7 0.15 0

1 1 1 0.3 0.2 0

Recall RBF

0.0

0.5

1.0

(c) RBF

Figure C.4: Results for low-pass filtered noisy signals using Pelt.
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C.2 Full Results for Dynp
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Figure C.5: Dynp results for noiseless signals using with different cost functions.



APPENDIX C. FULL RESULTS SHIFT DETECTION METHODS X

5 15 20 25

pwc

pwl

pww

79 44 3 19

138 133 82 42

310 79 73 73

Hausdorff L1

0

500

5 15 20 25

pwc

pwl

pww

0.858 0.969 0.993 0.99

0.723 0.843 0.908 0.939

0.394 0.89 0.914 0.919

Randindex L1

0.0

0.5

1.0

5 15 20 25

pwc

pwl

pww

1 1 1 0.8

0.2 0.2 0.3 0.28

0 0.133 0.15 0.24

Precision L1

0.0

0.5

1.0

5 15 20 25

pwc

pwl

pww

0.25 0.75 1 1

0.05 0.15 0.3 0.35

0 0.1 0.15 0.3

Recall L1

0.0

0.5

1.0

(a) L1

5 15 20 25

pwc

pwl

pww

113 38 3 14

138 133 82 82

307 97 71 71

Hausdorff L2

0

500

5 15 20 25

pwc

pwl

pww

0.838 0.973 0.992 0.992

0.721 0.828 0.912 0.914

0.425 0.864 0.898 0.899

Randindex L2

0.0

0.5

1.0

5 15 20 25

pwc

pwl

pww

1 1 1 0.8

0.2 0.267 0.3 0.28

0.4 0.133 0.15 0.16

Precision L2

0.0

0.5

1.0

5 15 20 25

pwc

pwl

pww

0.25 0.75 1 1

0.05 0.2 0.3 0.35

0.1 0.1 0.15 0.2

Recall L2

0.0

0.5

1.0

(b) L2

5 15 20 25

pwc

pwl

pww

84 38 3 14

188 98 68 68

202 52 50 46

Hausdorff RBF

0

500

5 15 20 25

pwc

pwl

pww

0.857 0.973 0.993 0.992

0.769 0.884 0.911 0.923

0.637 0.916 0.932 0.936

Randindex RBF

0.0

0.5

1.0

5 15 20 25

pwc

pwl

pww

1 1 1 0.8

0.2 0.267 0.2 0.24

0.4 0.2 0.25 0.28

Precision RBF

0.0

0.5

1.0

5 15 20 25

pwc

pwl

pww

0.25 0.75 1 1

0.05 0.2 0.2 0.3

0.1 0.15 0.25 0.35

Recall RBF

0.0

0.5

1.0

(c) RBF

Figure C.6: Dynp results for the same signals but with additive white Gaussian noise with a
standard deviation of 3. The captions indicate the utilized cost function.
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Figure C.7: Dynp results for low-pass filtered noiseless signals for different cost functions.
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Figure C.8: Dynp results for low-pass filtered noisy signals.
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Further FlockLab Figures

D.1 Change Point Detection with no Minimum Size
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Figure D.1: Results of applying Pelt to the November and December data using no minimum size
restriction. We see that all the applied methods are not robust and that they detect many

breakpoints for low penalites.
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Figure D.2: Results of applying Pelt to the August and September data using no minimum size
restriction. We see that the results are better than in the case of November and December, but

for low penalties, often breakpoints are detected very close to each other.
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D.2 Change Point Detection on Single Hours
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Figure D.3: Change point detection on single hours in August and September using 10
breakpoints, using the L2 cost. The fit is quite good, but not perfect. This is also true when using
5 and 15 breakpoints (not shown). For other samples, the fit is poor in all cases, and we do not

show these plots.
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Figure D.4: Change point detection on single hours in November and December using 10
breakpoints, using the L2 cost. The fit is quite good, but not perfect. This is also true when using
5 and 15 breakpoints (not shown). For other samples, the fit is poor in all cases, and we do not

show these plots.
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Figure D.5: Dynp for 1, 2, ..., 16 breakpoints with the L1 cost on the August and September data
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Figure D.6: Dynp for 1, 2, ..., 16 breakpoints with the L2 cost on the August and September data
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Figure D.7: Dynp for 1, 2, ..., 16 breakpoints with the RBF cost on the August and September
data
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Figure D.8: Results of applying Pelt to the August and September data having interploated
missing data points. In this setting, the algorithms are restricted to only detecting breakpoints at

the boarder between days.

D.4 CPD on Filled FlockLab Data

The Dynp and Pelt algorithms in Ruptures take the parameters min size and jump, which respec-
tively define the minimum allowed number of samples between two breakpoints, and the positions
at which breakpoints may be assigned, since all breakpoint indices must be divisible by jump. We
can use this to our advantage, as we already did with the min size parameter when doing change
point detection on the full November and December data. Setting jump to the number of samples
per day would allow us to enforce each day belonging to a unique regime, i.e. that the only changes
that we care about are due to differences between days, and not intra-day variations. In this case,
we need the same number of samples per day, and we must fill the data similarly to when generating
the autocorrelation plots. The results are shown in figures D.8, D.9, D.10 and D.11. We see that
these breakpoints match our hypothesis better than when we only use the min size restriction.

By default, ruptures sets jump to 5, presumably for performance reasons. Restricting the
number of indices at which breakpoints may occur greatly reduced the complexity of the change
point detection problem.
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Figure D.9: Results of applying Pelt to the August and September data having imputed missing
data points using KDE. In this setting, the algorithms are restricted to only detecting breakpoints

at the boarder between days.
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Figure D.10: Results of applying Pelt to the November and December data having interploated
missing data points. In this setting, the algorithms are restricted to only detecting breakpoints at

the boarder between days.
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Figure D.11: Results of applying Pelt to the August and September data having imputed missing
data points using KDE. In this setting, the algorithms are restricted to only detecting breakpoints

at the boarder between days.
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