

Bachelor Thesis

Deploying a mini-Internet instance
across multiple servers

Alex Studer

Supervision: Tobias Bühler, Thomas Holterbach

Professor: Prof. Dr. Laurent Vanbever

Networked Systems Group

Department of Information Technology and Electrical Engineering

Eidgenössiche Technische Hochschule, Zürch

Spring Term 2021

1

Abstract
The mini-Internet is a “Open platform to teach how the internet practically works”

[1] and currently used for the communication networks lecture at the ETH Zürich

[1]. As of now the mini-Internet can only run on a single server and its size is thus

limited by the computational capacity of the server used. For classes exceeding 150

participating students or in research with a need of bigger and more complex setups,

this limitation would most likely be reached [1]. Hence, to improve the scalability of

the mini-Internet we implemented the functionality into the mini-Internet to deploy

it across multiple servers. This thesis describes how we were able to create an im-

plementation that makes using a multi-server deployment rather easy and invisible

to the users of the mini-Internet. Currently the improved mini-Internet not only

achieves these objectives, but it also preserves backward compatibility and source

code maintainability. In a next step getting the monitoring and debugging features

such as the “connectivity-matrix” ready for multi-server deployments, would enable

us to offer a holistic package for teaching even really big classes with the mini-Inter-

net.

2

1 Introduction
The mini-Internet project has become an important part of the communication net-

works lecture at the ETH Zürich [1, 2]. As of now the mini-Internet runs on a single

server and therefore the size of the mini-Internet is limited by the computational

capacity of the server used. This was already pointed out in the paper “An Open Plat-

form to Teach How the Internet Practically Works” which initially presented the

mini-Internet to the public. Hence, it has suggested to add support for a multi-server

deployment [1]. We can see this need more clearly when we have a look at the con-

crete setup of the mini-Internet used for the communication networks lecture. For

around 100–150 students the mini-Internet consists of about 60 ASes, each com-

posed of 8 routers and 4 switches. Using a server with an Intel Xeon CPU with 24

cores @2.30 GHz and 256 GB of memory running on Ubuntu Server 18.04.3 results

in a CPU load of 51% and a memory usage of 58%. In case of malicious BGP traffic

caused by student misconfigurations we expect the server to crash as high BGP traf-

fic (>15000 advertisements) leads to a strong increase of CPU load (>80%) [1]. Fur-

ther, some classes easily exceed 150 participating students and we could also imag-

ine using the mini-Internet for research purposes where bigger and more complex

setups are needed. In all these cases a single server would not be sufficient anymore

and the deployment of the mini-Internet over multiple servers would become a ne-

cessity.

This project aims to improve the scalability of the mini-Internet by adding the nec-

essary functionality to deploy it over multiple servers. We want to create an imple-

mentation that makes using a multi-server deployment rather easy and invisible to

the users of the mini-Internet. Furthermore, we want to be able to create single-

server setups as before and preserve good maintainability of the source code by

keeping the newly introduced technologies to a minimum.

This thesis will first focus on describing the existing implementation of the mini-

Internet and introducing the new technologies important for the extended imple-

mentation e.g., Generic Route Encapsulation (GRE) (Chapter 2 – Theory). After un-

derstanding the current state and the new technologies used, we discuss how the

3

new multi-server deployment feature works (Chapter 3 – Implementation). Then

we go on presenting how the multi-server mini-Internet was tested and how it per-

forms (Chapter 4 – Result). Chapter 5 highlights the difference between the old and

the new mini-Internet setup and discusses practical deployment scenarios (Chapter

5 – Deploy a mini-Internet over multiple servers). Finally, a brief summary provides

an overview of the achievements of this work and suggests what could be improved

in the future (Chapter 6 – Summary).

The source code, the raw testing data and further materials can be found in a git

repository online. You can access it with the following link.

[https://gitlab.ethz.ch/nsg/students/projects/2021/ba-2021-

12_multi_server_mini_internet/-/tree/master/]

https://gitlab.ethz.ch/nsg/students/projects/2021/ba-2021-12_multi_server_mini_internet/-/tree/master/
https://gitlab.ethz.ch/nsg/students/projects/2021/ba-2021-12_multi_server_mini_internet/-/tree/master/

4

2 Theory
A proper understanding of the mini-Internet and some of the technologies used

forms the basis to understand the decisions made within this project. The following

sections provide a summary of these topics.

The mini-Internet. The mini-Internet consist of three basic components: host,

switches and routers. Each of them runs in its own dedicated Docker container [1].

Open vSwitch bridges and virtual ethernet links are then used to connect the con-

tainers. Open vSwitch is also used for the switch components of the mini-Internet.

For the routers, the Internet routing protocol suite FRRouting is used, and the hosts

are simple Debian Stretch machines with some networking tools added (e.g., trac-

eroute) [1, 2]. Additional components and features can be added if needed (e.g.,

monitoring tools, VPN support) [1, 2]. Finally, besides accessing the components di-

rectly using the Docker tools to interact with containers, there is an option to use

SSH. For example, in class where different groups should be able to access different

components of the mini-Internet the SSH option is to prefer. In this case, for each

group a SSH proxy container would be created which can be accessed remotely.

Starting out from the proxy container the students can then access only the compo-

nents they are allowed to use [1].

Container and namespaces. Central to the implementation of the mini-Internet are

container. They are a more lightweight solution than using virtual machines for each

component since container do not run their own full operating system but make use

of namespaces instead. Namespaces are a feature of the Linux kernel allowing to

isolate software from one another and dynamically allocate system resources to

them [1, 3].

Virtual ethernet devices (veth). Using veth devices one can create an intercon-

nected pair of them. The resulting link could be called a virtual ethernet link. This

link can act as a tunnel between network namespaces [4]. The mini-Internet makes

heavy use of it to interconnect its components with each other [1].

5

Open vSwitch (OvS). Open vSwitch is a free and open-source multilayer virtual

switch [5]. It supports all the features needed for a switch in the mini-Internet. For

example, VLANs, the Spanning Tree Protocol (STP), tunneling protocols and Open-

Flow to name a few [6]. The mini-Internet uses Open vSwitch bridges to a high ex-

tent. Not only are the switch components of the network realized with an OvS bridge

in a container, but the containers are connected to each other using OvS bridges [1].

Instead of directly connecting the different containers together the setup used with

the OvS bridges in-between makes online manipulation in the mini-Internet possi-

ble e.g., simulate link corruption. This project makes special use of this setup to en-

able remote connection between a pair of servers.

FRRouting (FRR). “FRRouting is a free and open-source Internet routing protocol

suit for Linux and Unix platforms.” [7] FRRouting provides a full command line in-

terface (CLI) which resembles CLIs of commonly used routers in the Internet. Hence,

it is used in the mini-Internet for the implementation of the Routers [1].

Generic Route Encapsulation (GRE). GRE is a protocol for encapsulating one pro-

tocol with another protocol. It was first introduced by Cisco in 1994 [8]. As it has

been around for a relatively long time, it is widely supported by devices. In contrast

to protocols which encapsulate a specific protocol X in a protocol Y GRE is more ge-

neric and can be used to encapsulate an arbitrary protocol over another arbitrary

network layer protocol [9].

Figure 2.1: Structure of a GRE encapsulated packet [8]

6

Figure 2.2: Structure of a GRE header [9]

In this project we use GRE to encapsulate an IP packet of network A with an IP

header of network C. This way the IP packet from network A can be transported over

the network C and then decapsulated in network B and be delivered to the destina-

tion IP address specified in network A which lies in network B. Hence, GRE is used

for tunneling between two local IP networks which are connected by another IP net-

work.

Special GRE interfaces can be added to an OvS bridge when corresponding GRE tun-

nels are configured in the Linux IP network stack. This way the incoming traffic to

an OvS bridge can be directed to use the GRE tunnel and thereby create arbitrary

connections between two OvS bridges even if they are not running on the same

server. Exactly this concept of OvS bridges connected by a GRE tunnel will be used

in this project to enable a multi-server deployment of the mini-Internet.

7

3 Implementation
This section carries out in detail how the deployment of the mini-Internet over mul-

tiple servers conceptually works and discusses the most important design choices.

For a more in-dept view of the implementation we recommend having a look at the

actual code.

Separate between ASes only. The mini-Internet like the real internet is composed

of multiple ASes which represent interconnected closed entities. A single AS will not

exceed the capability of a single server unless it is huge and consists of thousands of

components. Therefore, we decided not to allow the possibility to distribute a single

AS over multiple servers. Instead, you can decide on an AS per AS basis on which

server an AS shall exist. This approach has the advantage to minimize the change of

the existing scripts as only the “external links” are subject to the distribution over

the servers. The internal AS links stay unaffected. Consequently, the maintainability

of the scripts is not affected too much.

Global configuration files. We introduced three new configuration files. They form

the “GLOBAL” configuration. The previously existing AS and external links configu-

ration file represent henceforth the “LOCAL” configuration. The new configuration

files consist of a global AS configuration (AS_config_GLOBAL.txt), a global external

links configuration (external_links_config_GLOBAL.txt) and a global server configu-

ration file (server_config_GLOBAL.txt). The global AS configuration is almost identi-

cal to the previous AS configuration only that it has an additional column specifying

on which server the AS should run. The global external links configuration looks

identical to the previous external links configuration. Here, however, if a GLOBAL

configuration is running, the local external links configuration will append addi-

tional columns automatically. They will then contain the information needed to es-

tablish correct remote external links to other servers.

8

Figure 3.1: Visualization of the processing of the global configuration files to local

configuration files and the interconnection of specific scripts and the configuration

files.

The global server configuration is a completely new file consisting of a list of all

servers. For each server, the information necessary for the creation of remote ex-

ternal links e.g., network interface and IP address are specified. Further, the infor-

mation to establish an SSH connection for maintenance is specified as well.

Finally, when the startup script is started, a new server setup script checks if all the

necessary configurations for a multi-server mini-Internet are available. If this is not

the case, the startup script will proceed as before and start creating a single-server

mini-Internet according to the local AS and local external links configurations. If in-

deed a global configuration is recognized, the server setup scripts open SSH connec-

tions to all the other servers, copy all the files needed to them and start the startup

process there as well. It then automatically creates correct local AS and local exter-

nal links configuration files. Afterwards all the setup routines can run as if it were a

single-server mini-Internet just now according to the generated local configuration

files.

This procedure we have chosen here guarantees us that we can continue using the

mini-Internet in the same way as before. We now just have the additional option to

create GLOBAL configurations instead of LOCAL configurations and then automati-

cally deploy our mini-Internet over multiple servers.

9

Remote external links. If a GLOBAL configuration is running, we have a new type of

links. We call them “remote external links” meaning links between ASes which run

on different servers. These special links are indicated in the autogenerated local ex-

ternal links configuration file and treated separately during the setup process. They

constitute the actual key part of a distributed mini-Internet.

For each server pair a GRE tunnel in the Linux IP network stack and an OvS bridge

are automatically created. Then a GRE port corresponding to the created GRE tunnel

is added to each OvS bridge. You can see this visualized in the figure below. In this

example for the remote connection between VM1 and VM3, an OvS bridge called

“remote-VM3” is created, and a GRE tunnel called “greVM1-VM3” specifying 10.0.0.1

as the local tunnel endpoint and 10.0.0.3 as the remote tunnel endpoint is created.

Afterwards a GRE type port “greVM1-VM3” is added to the OvS bridge “remote-VM3”

to connect the OvS bridge to the GRE tunnel. On VM3 the implementation is mir-

rored. We now have OvS bridges on each VM which are connected by a GRE tunnel.

Figure 3.2: Remote external links implementation visualized. You can see the OvS

bridges (red) on each VM which are connected by a GRE tunnel.

For every external link it is indicated in the configuration files between which serv-

ers the connection needs to be established. For example, the peer link between the

10

PARIS router of AS 5 and the PARIS router of AS 6 goes from VM1 to VM3. Thus, the

PARIS router of AS 5 will be connected to the remote-VM3 bridge with a virtual

ethernet link (veth link) and the PARIS router of AS 6 will be connected to the re-

mote-VM1 bridge with a veth link. The same is done for each external link which

needs a connection between VM1 and VM3. As a result, all the endpoints of these

external links connected to the same OvS bridge are now able to communicate with

each other. As this should not be possible, we need to implement a way to isolate the

different connections which use the same GRE tunnel.

We make use of OpenFlow rules on the OvS bridges and the TOS (type of service)

field of the IP header to achieve isolation between the different external links. The

IPv4 TOS field consists of 8 bits where the 2 bits used for ECN (Explicit Congestion

Notification) must be cleared to zero [10]. OvS OpenFlow implementation can access

the TOS field and manipulate it as well. As only the upper 6 bits can be unequal to

zero, we can set every multiple of 4 between 0 and 255 as the TOS value (0, 4, 8, 12,

16, …) when using OpenFlow rules.

Figure 3.3: IPv4 TOS field structure.

This means that e.g., for a packet coming from the interface ext_4_PARI a TOS value

is assigned on remote-VM3, and it is directed to the GRE interface. When arriving at

the remote-VM1 bridge the packet incoming from the GRE interface is matched by

the TOS value, the TOS value will be reset to zero and then the packet will be directed

to the interface ext_3_PARI. We assign the TOS values by multiplying the number of

the external links by 4. This results in having a unique TOS value for each external

link but also limiting the number of external links supported by this implementation

to 64. In most cases this will be enough as normally not each AS on one server has a

11

direct link to an AS on another server. Of course, using the TOS field this way pre-

vents the current specified usage of the TOS field for DSCP. Nevertheless, the more

commonly used ECN part is not affected and thus the tradeoff is worthwhile. With

the OpenFlow rules in place to assign each link its unique TOS value and directing

the traffic only to where it is supposed to go, we successfully isolated the different

external links using the same GRE tunnel.

As the TOS field is part of the IP header and thus only available to IP traffic, we im-

plemented additional OpenFlow rules for handling ARP packets. ARP is needed at

the beginning when the routers not yet know the MAC address of the directly con-

nected router which is on a different server. Hence, every incoming ARP packet from

a veth interface of the remote-VM1 bridge will be forwarded to the GRE interface,

and the ARP packets coming from the GRE interface are flooded to all the veth inter-

faces. The same applies for the remote-VM3 bridge. Alternatively, to this solution we

could think of statically adding entries to the ARP table on each router connected to

a router on another server or adding OvS rules which match the source MAC ad-

dress. However, especially the first approach would greatly limit which IPs we can

define on these interfaces.

You have seen how a single-connection between two servers is implemented. The

same is done for all the pairs of servers. In case you have 4 VMs and all have connec-

tions to each other in a full mesh style, you would have three OvS “remote” bridges

enabling to set up external links between ASes on different servers.

As we use GRE tunnels, the communicating routers on each server do not realize

that there is anything different; it is as if they would run on the same server. Thus,

we achieved our objective that for the user of the mini-Internet nothing has changed.

12

4 Results
In this section we discuss how the newly implemented functionality has been tested

and show that our solution for a multi-server deployment works. We show how a

multi-server mini-Internet performs compared to a single-server one.

Testing configuration and setup. For all the following tests we used the same mini-

Internet configuration you can see illustrated below. Once run on a single VM with

20 cores at 2.3 GHz and once run distributed over 4 VMs with each 5 cores at 2.3

GHz. All machines run on Ubuntu 20.04 LTS and the 5.4.0 Linux Kernel. Thus, the 4

VMs together should have the same amount of computational power available as the

single VM. Memory wise the single VM has about 37 GB available and the 4 VMs each

have 8 GB available.

Figure 5.1: The blue and red boxes symbolize ASes, the green and or-

ange lines indicate external links and the red lines show how the con-

figuration is split up over the different servers (VMs).

13

Functionality. We run multiple traceroutes from a host inside one AS to the corre-

sponding host on another AS. We did the identical traceroutes on the single-server

setup and on the multi-server setup. As you can see by the example below the route

taken between the ASes is the same whether you use a single-server or a multi-

server setup. If you would like to see more traceroutes you can find the testing data

in the git repository mentioned in the introduction. The difference you can see be-

tween these two traceroutes lays in the intra AS routes taken. They change when you

run traceroute multiple times as there is no single preferred route due to load bal-

ancing configured in the intra AS network.

Figure 5.2: Traceroute from AS 5 host at 5.200.20.5 to AS 16 host at 16.200.20.5.

Identical traceroute once on the single-server setup and once on the multi-server

setup.

14

Figure 5.3: CPU and Memory load during startup process on a single-server mini-

Internet setup. The blue line indicates the CPU load [%], the orange line indicates

the memory load [%].

Figure 5.4: CPU and Memory load during startup process on a single-server mini-

Internet setup whit a local configuration from a multi-server mini-Internet running.

The blue line indicates the CPU load [%], the orange line indicates the memory load

[%].

15

Figure 5.5: CPU and Memory load during startup process on an individual server in

a multi-server mini-Internet setup.

System performance compared. You can recognize when comparing figure 5.3 and

figure 5.5 that the setup process of the multi-server mini-Internet is about six times

faster than the single server setup (156s vs. 969s). The multi-server deployment

splits the configuration evenly over all four VMs and then runs the startup process

in parallel on all of them. The single-server setup in contrast has a very low CPU load

over the whole process and thus is not able to make use of the additional available

cores. You can see in figure 5.4 that the single-server setup even takes longer to do

the same task than the single VM in the multi-server setup. This again results from

not leveraging the additional available cores as well as the memory intensive docker

setup running slower. Therefore, it comes as no surprise that the multi-server mini-

Internet is much faster initialized than the single-server one. Memory in general is

not a limiting factor for a mini-Internet setup at all. In the single-server case as well

as in the multi-server case a rather small amount of memory is available (34GB and

4x8GB) but this does not seem to be a problem as only about 15%–25% of the

memory is actually used for the configuration. The figures 5.3 and 5.5 show very well

that the memory usage primarily depends on the number of containers created for

the setup (see reddish highlighted “docker setup” phase). Hence, with a significantly

increased amount of docker containers i.e., components in the mini-Internet, you

may still be able to use this rather small amount of memory or easily allocate more

memory to the system you are using.

16

Figure 5.5: Network traffic on the interface of one VM used to communicate with the

other VMs in a multi-server mini-Internet deployment. The black line indicates the

total number of packets sent or received over the interface. Yellow indicates ARP

(Address Resolution Protocol) packets, green STP (Spanning Tree Protocol) packets,

and red BGP (Border Gateway Protocol) packets.

Network traffic between the servers. During the server setup process the OvS

bridges with the GRE tunnel to all the other servers are created. After this one can

see a baseline STP “Hello message” traffic between these bridges connected with a

GRE tunnel. Then one can see that the IP setup, where the links between all the com-

ponents are created, does not start any communication between the servers as the

routers are not yet configured. During the router configuration process when the

BGP sessions are established, we see a small increase of BGP packets. As there are

not many ASes in this configuration and very small delays between the servers, BGP

seems to have converged just after the routers are configured.

Most traffic arises from ARP packets. Especially due to identical ARP packets being

sent multiple times. This is not a behavior we would expect and needs further inves-

tigation in case this really should happen. But even though we have unexpected ARP

traffic, there is not a lot of traffic happening between the servers during startup and

when the mini-Internet is idle.

17

5 Deploy a mini-Internet
over multiple servers

When deploying the mini-Internet over multiple servers in practice there are differ-

ences in the process one must consider. Hence this section is dedicated to give guid-

ance for a seamless setup process of a multi-server mini-Internet.

Correct Global Configurations. The key for a correctly set up mini-Internet are cor-

rect configuration files. Firstly, the name chosen for the server in the global server

configuration must match the specified server name in the global AS configuration.

Secondly, the server connections information provided in the global server configu-

ration should be tested in advance. The server which will be used to start the setup

process, must have key based SSH access to the other servers. You should use a dif-

ferent interface for the SSH connection than for the connection of the mini-Internet

to guarantee connectivity in case of troubles. As you can see in the figure below the

<server_INTERFACE> and the <server_IP> are indicating the interface used to connect

to the mini-Internet.

Figure 4.1: Special global configuration files and their composition

Cleaning up reliably. Before a mini-Internet configuration can be started and de-

ployed over multiple servers, you should remove possible old configuration on the

servers. Otherwise, unexpected malfunctions can arise. Further, we recommended

to comment out the start of the cleanup.sh script in the startup.sh script, as it is not

yet fully capable of handling multi-server setups. Instead, you should use the

18

hard_reset_GLOBAL.sh script to clean a server. ATTENTION: The global hard reset

might not only clean configuration created on the system by the mini-Internet but

all configurations on the system related to e.g., Docker containers, OvS and IP tun-

nels. Thus, we strongly recommend running the mini-Internet in a VM or a server

where nothing else is running.

There are two ways to use the hard_reset_GLOBAL.sh. You can start it on one server

and add some arguments to also clean all the other servers specified in the

server_config_GLOBAL.txt.

 sudo ./hard_reset_GLOBAL.sh <server_NAME> master

Alternatively, you can run it without any additional arguments, and it only cleans

the server where it was started. In this case you also have to remove the folder of

the mini-Internet containing the configurations manually if a full clean is needed.

 sudo ./hard_reset_GLOBAL.sh

Additional startup arguments. To start a deployed mini-Internet one must pro-

vide some arguments with the startup script. The first one specifies the name of the

server where the startup script is started, and the second argument must be “mas-

ter” to specify that this server starts the setup process on the other servers.

 sudo ./startup.sh <server_NAME> master

In case you only want to install the local part of a multi-server mini-Internet, you

can leave out the word “master”.

If you want to start just a single-server mini-Internet, it can be done as before by

running the startup script without any argument.

 sudo ./startup.sh

19

6 Summary
By adding the option to deploy the mini-Internet over multiple servers new possible

use cases arise for the mini-Internet. It now can scale better and it might be used

with bigger classes for teaching or research projects requiring more complex and

detailed networks for simulation purposes. Performance wise a multi-server de-

ployment needs a significantly smaller amount of time for the setup process, as it

runs parallel on each server. With this rather small mini-Internet configuration used

for testing the network traffic between the servers poses no further limitations.

Invisible scaling for the user. Using GRE tunnels enabled us to create an overlay

network and thus a deployment over multiple servers is invisible to the user of the

mini-Internet. Moreover, for people already familiar with the mini-Internet the ad-

ditional creation of global configuration files should be easy as it is very similar to

the previous process of creating configurations. This is also due to the high grade of

automation which was implemented and reduces the amount of information which

must be specified additionally in the global configurations.

Backward compatibility. With the implementation chosen in this project we were

able to achieve that one can still use the mini-Internet in the same way as before this

upgrade. This has multiple advantages: In many cases a multi-server deployment

will not be necessary and only creating local configurations needs less time and

therefore one might prefer to use the classical single-server setup procedure. Fur-

thermore, as the multi-server deployment is not yet as rich in features as the single-

server version, one might like to have the single-server setup option besides running

multi-server deployments. Preferably this should be possible without having to

maintain two sets of code. Thanks to the backward compatible implementation this

is achieved.

20

Improve connection reliability. With the current implementation of handling, the

ARP with OpenFlow seems to have convergence difficulties. This results in tempo-

rary loss of connection between ASes (ping) but not in downtime of BGP sessions.

As this can be rather annoying, further investigations and improvements would be

beneficial to most users of the mini-Internet.

Upgrade monitoring and debugging tools. When used for teaching the monitoring

and debugging tools such as the connectivity matrix or the measurement platform

play a crucial part in making configuring the mini-Internet a less frustrating experi-

ence for the students. With the multi-server deployment as it is implemented now,

the tools currently are limited to monitor each server on its own.

Improved cleanup. In case the mini-Internet shall be deployed on servers where

already docker containers are running or OvS bridges are used, the currently avail-

able global hard reset is not a sufficient solution, as it would unintentionally clear

them too. A cleanup routine as it is used for the single-server setup adapted to a

multi-server deployment would be a better solution. This should be easily imple-

mentable by merging the functionality of the single-server cleanup with the global

hard reset procedure.

21

References
[1] Thomas Holterbach, Tobias Bühler, Tino Rellstab, Laurent Vanbever, An Open

Platform to Teach How the Internet Practically Works, 2020

[2] The mini-Internet project. http://mini-inter.net/, 26.05.2021

[3] The Linux man-pages project, https://man7.org/linux/man-

pages/man7/namespaces.7.html, 26.05.2021

[4] The Linux man-pages project, https://man7.org/linux/man-

pages/man4/veth.4.html, 26.05.2021

[5] The Linux Foundation, https://www.openvswitch.org/, 26.05.2021

[6] The Linux Foundation, https://www.openvswitch.org/features/, 26.05.2021

[7] FRRouting Project, https://frrouting.org/, 26.05.2021

[8] IETF, https://datatracker.ietf.org/doc/html/rfc1701, 26.05.2021

[9] IETF, https://datatracker.ietf.org/doc/html/rfc2890, 26.05.2021

[10] https://man7.org/linux/man-pages/man7/ovs-fields.7.html,

http://mini-inter.net/
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://www.openvswitch.org/
https://www.openvswitch.org/features/
https://frrouting.org/
https://datatracker.ietf.org/doc/html/rfc1701
https://datatracker.ietf.org/doc/html/rfc2890
https://man7.org/linux/man-pages/man7/ovs-fields.7.html

	Abstract
	1 Introduction
	2 Theory
	3 Implementation
	4 Results
	5 Deploy a mini-Internet over multiple servers
	6 Summary
	References

