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Abstract

Today graph data structures are everywhere, be it social graphs describing the re-
lation between different accounts on social media platforms, road graphs describ-
ing the connections between different intersections in a city, or network graphs
describing the connections between different servers. Being able to quickly query
the shortest path distance between two nodes in such graphs can be of great use.
However, using traditional graph traversing shortest path algorithms such as Di-
jkstra [1] or Floyd-Warshall [2] is slow on big graphs, and alternatively storing
all shortest path information for lookup takes too much space.

Therefore, there have been various attempts at finding ways to speed up
shortest path queries. Some of them include introducing shortcuts in the graph
that preserve distance or computing labels for each node that encode the distance
to selected landmark nodes. This paper explores other approaches that have
not been explored in-depth yet. On the one hand, we investigate the distance
preserving capabilities of established node embedding techniques using a simple
multilayer perceptron. On the other hand, we propose our own graph neural
network models for generating distance preserving embeddings and predicting
shortest path distances. Furthermore, we investigate the relationships between
certain parameters such as embedding size and prediction accuracy.
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Chapter 1

Introduction

Recommending a user the closest gas station to his location on a navigation app
or making suggestions for new friends to add on a social platform are problems
that need to be solved millions of times every second by Big Tech companies.
These problems can be abstracted to shortest path distance queries on a graph.
Therefore, in order to answer such a large number of queries as quickly as possi-
ble, it is important that we have very efficient and accurate algorithms to predict
shortest paths.

For this reason, efforts were already made in the late 2000s to speed up short-
est path queries on graphs. Some research groups worked on exact methods
[3, 4], others on approximate methods [5, 6, 7, 8] and some used a rather rigorous
mathematical approach [9, 10], while others used a rather algorithmic approach
[11, 12, 13]. With the rapid increase in computing power and efficiency of com-
puters in the early 2010s and the subsequent advent of machine learning, new
approaches for solving the approximate version of the problem became possible.
Nevertheless, to date, no more than a handful of papers using such a machine
learning approach for answering approximate shortest path distance queries have
been published. So there is still a lot of potential for improving such algorithms.

Therefore, this work focuses on investigating distance preserving embedding
techniques that have not been studied before and allow for fast query speeds by
processing the embeddings of the start and end nodes of a path. Further, we will
be evaluating them on different datasets to learn more about the intricacies and
challenges in solving this problem. In the second chapter, we first define the task
and then analyze and explain the various traditional and newer techniques that
have been proposed by others so far. Then we look at each investigated model in
detail going over its architecture, hyperparameters and input format. After that
we describe our datasets, the data processing, training and evaluation methods
used and write about the results of our experiments. We finish with a conclusion
of our findings.
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Chapter 2

Background

In this chapter we first define some important terminology used throughout the
thesis and describe the task we are trying to solve. In the last two sections,
we will look at the various traditional and more recent shortest path distance
computation methods related to our work.

2.1 Task

A graph G = (V,E) is a non-linear data structure consisting of vertices V and
edges E. Vertices are sometimes also referred to as nodes. Each edge e = (v1, v2)
can be described as the tuple of vertices v1, v2 it connects. Edges can either be
directed or undirected and weighted or unweighted. Depending on the use case,
weights can be used to express the cost of passing the edge, the length of the
edge or the strength of the connection between its incident vertices.

Figure 2.1: Example of an undirected, weighted graph.

Two vertices v1, v2 are adjacent if there exists an edge e = (v1, v2). A path is
a sequence of pairwise distinct adjacent vertices that begins at an initial vertex
s and ends at a terminal vertex t. The unweighted path length is the number of
edges on the path and the weighted path length is the sum of the weights of the
edges on the path. Therefore the shortest weighted path from vertex 4 to vertex
1 in the example graph 2.1 would be the one traversing vertices 4− 3− 2− 1 and

2



2. Background 3

its length would be 6. The goal of this thesis is to speed up the query times for
approximating the lengths of such shortest weighted paths on road graphs while
maintaining accuracy. For simplicity, we focus on undirected weighted graphs,
while most of the methods discussed can also be applied to directed graphs if
slightly modified.

2.2 Exact Methods

While exact methods are able to make error-free distance predictions this comes
with the downside of them having a larger space or time complexity than ap-
proximate methods. Therefore they are mostly used for small graphs but are less
useful for larger graphs.

2.2.1 Traditional Methods

Two of the oldest methods for computing shortest paths on graphs are Dijk-
stra’s algorithm [1] and the Floyd–Warshall algorithm [2]. Although they were
invented at the beginning of the information age, before the personal computer
even existed, they are still widely used today.

Dijkstra

Dijkstra’s algorithm is a single-source shortest path algorithm, meaning it com-
putes for a single-source node the shortest paths to all other nodes. It works both
on directed and undirected graphs but only with positive edge weights. Its time
complexity depends on the data structure used for storing and querying partial
solutions, but can be as low as O(m+ n log n), where m is the number of edges
and n is the number of vertices in the graph. Its space complexity is O(n).

Floyd–Warshall

The Floyd–Warshall algorithm is an all-pairs shortest path algorithm, meaning
it computes for all pairs of nodes the shortest path between them. It can handle
both directed and undirected graphs and even negative edge weights as long as
there are no negative cycles. Its time complexity is always O(n3) and its space
complexity is O(n2).
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2.2.2 Labeling Methods

To speed up query times over traditional methods many methods make use of
distance labels. During preprocessing every node vi gets a distance label Vi =
{(vj , dist(vi, vj) | vj ∈ Vlabels} that is a set of tuples containing the distances
from vi to some other nodes Vlabels that may differ for each node. The distance
from vi to vj can then easily be calculated by inspecting their distance labels:

dist(vi, vj) = min{dist(vi, v) + dist(vj , v) | v ∈ Vi ∩ Vj} (2.1)

The difficulty with all labeling methods is to find the minimal set of nodes to
which the distances need to be calculated and stored so that all shortest paths
can be exactly computed. Finding that optimal set of nodes for a graph has been
proven to be an NP-hard problem [14].

Multi-Hop Labeling

Multi-Hop Labeling [3] builds on the foundation of 2-Hop Labeling [14], which
computes for every node the distances to a set of hub nodes and stores them
in the nodes distance label to ensure that the above calculation of dist(vi, vj)
indeed yields the correct distance. Instead of generating all 2-hop distance labels
during preprocessing Multi-Hop Labeling generates only a small subset of 2-hop
distance labels and generates the sufficient 2-hop labels needed for answering a
query on-line. This can be achieved using a hierarchical approach where each
node except the root node gets assigned a parent node and if two nodes do
not share a common hub node in their distance labels the distance labels of
their parent nodes get checked recursively until a common hub node is found.
Therefore Multi-Hop Labeling is able to significantly reduce the preprocessing
time and size of the stored distance labels.

Pruned Landmark Labeling

Pruned Landmark Labeling [4] is a method created by Akiba et al. specifically for
large-scale graphs. It makes use of pruned breadth-first searches and significantly
speeds up the preprocessing by exploiting bitwise operations to perform up to
64 breadth-first searches in parallel. To prune the breadth-first searches the
nodes are first ordered either randomly or based on some metric such as degree
or closeness centrality to determine the sequence of root nodes of the searches.
Then a breadth-first search is performed starting from the first root node and
every node appends its distance from the first node to its distance label. In the
following breadth-first searches starting from node s whenever a new node u is
reached the current breadth-first search distance dBFS(s, u) is compared to the
computed distance based on all labels created in previous searches dist(s, u) and
if dBFS(s, u) ≥ dist(s, u) the search gets pruned as shown in Figure 2.2. By
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Figure 2.2: Examples of pruned BFSs. Yellow vertices denote the roots, blue
vertices denote those which we visited and labeled, red vertices denote those
which we visited but pruned, and gray vertices denote those which are already
used as roots. [4]

using pruned breadth-first searches this method significantly reduces label sizes
and is, therefore, able to handle graphs up to two orders of magnitude larger than
previous exact methods.

2.3 Approximate Methods

Compared to the various proposed improvements of exact methods approximate
shortest path distance methods try to further reduce the space and query cost by
sacrificing some prediction accuracy. Depending on the application, this sacrifice
may be worthwhile if exact distances are not absolutely necessary or if we are
dealing with very large graphs.

2.3.1 Landmark Methods

Most approximate shortest path distance methods use a landmark-based ap-
proach. Similar to the previously discussed labeling methods, landmark-based
approaches work by selecting a subset of all nodes as landmark nodes L ⊂ V
with |L| � |V |. Each node then gets assigned a label consisting of its distances
to these landmark nodes. When querying the distance of vi to vj the following
approximation is returned:

dist(vi, vj) = min{dist(vi, l) + dist(vj , l) | l ∈ L} (2.2)

In Figure 2.3 you can see an example landmark labeling of an undirected, weighted
graph containing five nodes and two of which v2, v3 are landmarks.

Efforts at improving landmark-based methods focus mostly on improving the
landmark selection as the prediction accuracy largely depends on it. But as se-
lecting optimal landmarks is NP-hard [15] heuristic solutions need to be employed
to select good landmarks. Potamias et al. showed that compared to randomly
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(a) Road graph example (b) Landmark labeling

Figure 2.3: Landmark labeling example [7]

selecting landmarks using landmark selection heuristics, such as low closeness
centrality, high betweenness centrality or high degree, can reduce the space cost
by a factor of up to 250 while maintaining the same accuracy [15].

Definition 2.1 (Degree). The degree of a vertex v in an unweighted, undirected
graph G = (V,E) is defined as the number of adjacent vertices vi s.t. (v, vi) ∈ E.

Definition 2.2 (Closeness Centrality). The closeness centrality of a vertex v in
a graph G = (V,E) is defined as the average distance 1

n

∑
vi∈V dist(v, vi) of v to

other vertices in the graph.

Definition 2.3 (Betweenness Centrality). The betweenness centrality of a ver-
tex v in a graph G = (V,E) is defined as the proportion of shortest paths∑

s 6=v 6=t
σst(v)
σst

between other vertices s, t ∈ V lies on, where σst is the number of
shortest paths between s and t and σst(v) is the number of these paths that v
lies on.

2.3.2 Embedding Methods

Another line of work in the category of approximate shortest path distance meth-
ods are embedding methods that embed every node in a d-dimensional latent
space such as Euclidean space or hyperbolic space during preprocessing. While
they also compute the one-to-all shortest path distances from a subset of nodes to
all other nodes during the preprocessing, what separates them from the previously
looked at landmark methods is the evaluation method. Instead of approximating
the distance between two nodes vi, vj as described in equation 2.2, embedding
methods use more efficient evaluation functions. They either directly calculate
the Lp norm between the embeddings or they use a simple neural network to pre-
dict the distances based on the embeddings. Therefore they are able to increase
query speeds even more than other approximate methods.
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Orion

In the first of two papers focused on efficient node distance computation in un-
weighted social graphs Zhao et al. proposed a graph coordinate system named
Orion [5]. A graph coordinate system maps nodes in high dimensional graphs to
points in a d-dimensional Euclidean coordinate space. At query time, the associ-
ated coordinates to node vi can then be used together with a Euclidean distance
computation 2.3 to approximate, in constant time, the distance to every other
node vj ∈ V in the graph.

dist(x, y) =

√√√√ d∑
i=1

(xi − yi)2 (2.3)

To map the nodes to Euclidean coordinates during preprocessing Orion selects k
landmark nodes from which the distances to all other nodes are computed using
k breadth-first searches. Then a small number of landmarks are selected as initial
landmarks whose pairwise distances are used in the first step to calibrate their
positions using the Simplex Downhill algorithm [16]. The secondary landmarks
then calibrate their positions using the initial landmarks as anchors to limit the
cost of using the Simplex Downhill algorithm for the calibration of all landmark
nodes as it runs in O(k2 · d) time. Finally, all other nodes are calibrated with
their relative distance to the previously positioned landmarks.

Rigel

While Orion was successful at increasing query speeds significantly, the choice of
using a Euclidean embedding space meant that social graphs, which are usually
highly connected, could not be embedded without some distortion error. Because
of this Zhao et al. proposed another graph coordinate system named Rigel [6] less
than two years after they proposed Orion. Instead of using Euclidean space as
embedding space, Rigel uses a d-dimensional hyperbolic coordinate space which
allows for relatively low distortion error. Another improvement of Rigel over
Orion is that the embedding process can be run on multiple machines in parallel
which allows Rigel to be much more scalable than Orion. Rigel uses the Hyper-
boloid model of hyperbolic space as it has the advantage of a relatively simple
point-to-point distance function 2.4 and the complexity evaluating this function
is not dependent on the space curvature c ≤ 0 which allows for it to be another
tunable parameter.

dist(x, y) = arccosh


√√√√(1 +

d∑
i=1

x2
i

)(
1 +

d∑
i=1

y2
i

)
−

d∑
i=1

xiyi

 · |c| (2.4)

To embed the nodes in the hyperbolic space, Rigel uses a technique similar to
Orion. It first fixes the coordinates of a small number of landmark nodes using
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a global optimization algorithm and then positions all the remaining nodes so
that their distances from the landmarks in the coordinate space match their real
distances as closely as possible. Overall Rigel was a big improvement over Orion
and was also deployed at different social network and gaming companies.

Shortest Path Distance Approximation using DL Techniques

In the paper “Shortest Path Distance Approximation using Deep Learning Tech-
niques” [8] researchers from the University of Passau propose to feed a simple
neural network with node2vec [11] or Poincare [17] embeddings to predict the
shortest path distance of two nodes in social graphs. More specifically, they first
learn the embeddings for each node. To approximate the distance between two
nodes vi, vj they then combine their embeddings emb(vi), emb(vj) using one of
four binary operations. The operations are component-wise subtraction, average,
multiplication or concatenating the embeddings of both nodes. These embedding
combinations are then fed into a feedforward neural network consisting of a single
hidden layer that outputs a real-valued prediction of the shortest path distance.
Since the model is designed to predict distances in unweighted social graphs, the
prediction is rounded to the nearest integer before being output. Although the
model is quite simple, it achieves a significantly lower mean absolute error 2.4 on
the social graph dataset than Rigel and Orion. Moreover, node2vec embeddings
lead to better results than Poincare embeddings in all experiments.

Definition 2.4 (Mean Absolute Error).

MAE =
1

n

n∑
i=1

|ŷi − yi|

Vdist2vec

Vdist2vec is the name of a model recently proposed by Qi et al. in the paper “A
Learning Based Approach to Predict Shortest-Path Distances” [7] that aims to
predict shortest path distances on road networks efficiently and accurately. In-
stead of restricting the evaluation function to be a distance function in Euclidean
space or any model of hyperbolic space, Vdist2vec uses a simple multilayer per-
ceptron (MLP) to predict the shortest path distance given the embeddings of two
vertices. In the same way, Vdist2vec restricts the generation of embeddings as
little as possible by using one-hot encodings of vertices as input and generating
the embeddings of each vertex in the first hidden layer which consists of k nodes.
This results in k-dimensional embeddings of each vertex.



2. Background 9

Figure 2.4: Base architecture of Vdist2vec [7]

In addition, Qi et al. propose two slightly improved variants of their base
model named Vdist2vec-L and Vdist2vec-S. Compared to the base model that
uses a classical mean square error 2.5 as loss function Vdist2vec-L uses a Huber
loss 2.6 to shrink larger errors. Vdist2vec-S on the other hand splits the evaluation
multilayer perceptron up into multiple multilayer perceptrons that each focus on
a different distance range whose outputs are then summed to get the final distance
prediction. As tested in experiments on multiple different graphs, Vdist2vec-S
performed best out of the three proposed models and is currently the state-of-
the-art model for shortest path distance prediction on road networks.

Definition 2.5 (Mean Squared Error).

MSE =
1

n

n∑
i=1

(ŷi − yi)2

Definition 2.6 (Huber Loss).

Lδ(ŷ, y) =

{
1
2(ŷ − y)2 for |ŷ − y| ≤ δ,
δ (|ŷ − y| − 1

2δ), otherwise.



Chapter 3

Data

In this chapter we write about the datasets used for evaluating our models and
how we preprocess them for training.

3.1 Graphs

We use four different graph datasets that vary both in structure as well as in
scale and that have also been used to evaluate Vdist2vec [7]. Their number of
vertices (|V |), number of edges (|E|), average node degree, and diameter (dmax)
are summarized in Table 3.1.

The Winterthur dataset is an OpenStreetMap [18] dataset we acquired using
the OSMnx [19] Python package. The Surat and Dongguan datasets are both
from a collection of urban road network data from the Complex and Sustainable
Urban Networks (CSUN) laboratory [20]. And lastly, the New York dataset is
one of the datasets from the 9th DIMACS Implementation Challenge [21]. All
datasets contain weighted edges and unique map coordinates for each vertex.
Furthermore, they are all undirected.

Graph Dataset |V | |E| avg. deg dmax
Winterthur, Switzerland (WTHUR) 1.6 K 2.2 K 2.73 13 km
Surat, India (SRT) 2.5 K 3.6 K 2.86 51 km
Dongguan, China (DNG) 7.7 K 10.5 K 2.75 97 km
New York, USA (NY) 264 K 365 K 2.76 160 km

Table 3.1: Datasets

10
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Figure 3.1: Graph visualizations (top, left to right: WTHUR, SRT bottom, left
to right: DNG, NY)

3.2 Preprocessing

Clean Up

To clean up the raw datasets we process all graphs the same way using the
NetworkX [22] Python package. This process consists of the following steps:

1. Read the graph from an edgelist or download it using OSMnx.

2. Assign provided coordinates to each vertex.

3. Convert graph to an undirected graph using NetworkX.

4. Extract largest connected component from graph.

5. Rename vertices to integers in the range {0, 1, ..., |V | − 1}

Shortest Path Data

To evaluate our models on these datasets we also calculate the ground truth of the
shortest path distances during the preprocessing phase. Due to the large number
of nodes in the New York graph and the resulting extremely large number of
shortest paths, we are only able to calculate the all-pairs shortest path (APSP)
data for Winterthur, Surat, Dongguan and Quanzhou. For the New York graph
we calculate a fraction of the APSP data using 1000 randomly selected landmark
nodes whose single-source shortest path data we combine. To calculate the single-
source or all-pairs shortest path data we use the single-source Dijkstra and the
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all-pairs Floyd-Warshall implementation of NetworkX, respectively. In Figures
3.3 and 3.2 you can see how both the weighted and unweighted shortest path
lengths are distributed in the datasets.

Figure 3.2: CDF plot of weighted shortest path length distributions

Figure 3.3: CDF plot of unweighted shortest path length distributions



Chapter 4

Models

In this chapter we describe the different types of models we investigate. The
models can be divided into three broad categories: existing node embedding
technique models, graph neural network models and hyperbolic graph convolu-
tional network models. In the first category, we leverage various existing node
embedding techniques [9, 11, 10] and examine how well they preserve distance if
the node embeddings are fed into a simple multilayer perceptron. This is very
similar to what researchers did in a paper we discussed earlier [8], but instead of
evaluating the embeddings on social graphs, we evaluate them on road graphs,
which have a much larger diameter. In the last two categories, we instead pro-
pose graph neural network models to generate distance preserving embeddings
in Euclidean or hyperbolic space, that can efficiently be used to predict shortest
path distances.

4.1 Existing Node Embedding Techniques

In total, we examine three different already existing node embedding techniques
for their distance preserving capabilities: node2vec, GraRep and ProNE. To ob-
tain the node embeddings these techniques produce, we use the respective im-
plementations provided by the nodevectors Python package [23]. We will first
explain how these techniques work, describe the differences between them, and
then describe the model we use to evaluate the techniques.

13



4. Models 14

4.1.1 node2vec

The node embedding technique node2vec [11] generates continuous feature repre-
sentations for nodes in a graph. It is a modification of the previously published
DeepWalk [12] method, which in turn generalizes techniques used in language
models such as word2vec, like the Skip-Gram model [13], to graphs.

The goal of the Skip-Gram model is to find vector representations of words
that capture their meaning so that words that are semantically close to each other
are also close in the vector space. For that it uses the heuristic that the meaning
of a word is determined by the words that occur frequently in its context. Or,
to put it another way, when two words appear in a similar context, they usually
have a similar meaning. DeepWalk builds on that approach by performing from
each node a certain number of fixed-length random walks over the graph to build
node contexts. These contexts can then be processed using the Skip-Gram model
to generate node embeddings that preserve structural information in the graph.
More precisely, DeepWalk optimizes the following objective function:

min
Φ
− logPr({vi−w, · · · , vi−1, vi+1, · · · , vi+w} | Φ(vi)) (4.1)

Where Φ : v ∈ V 7→ Rd is a mapping function that can be stored as a |V | × d
matrix that maps each vertex to its d-dimensional vector representation and the
vertices {vi−w, · · · , vi−1, vi+1, · · · , vi+w} are the context of a given vertex vi on a
given random walk for a specific sliding window size w. Therefore the objective
function tries to maximize the probability of a set of neighborhood vertices given
the vector representation of a vertex vi.
As calculating Pr(vj | Φ(vi)) for some vertex vj ∈ V involves calculating the

(a) Input: Karate Graph (b) Output: Representation

Figure 4.1: 2-dimensional embeddings generated by DeepWalk on the Karate
Graph [12]

normalization factor of a softmax, using a classic softmax would be very com-
putationally expensive. Therefore the authors of DeepWalk propose the use of a
modified softmax called the hierarchical softmax that lowers the computational
cost of calculating Pr(vj | Φ(vi)) from O(|V |) to O(log |V |).
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While node2vec optimizes the same objective function as DeepWalk it intro-
duces two hyperparameters p, q that enable biased random walks. The hyper-
parameters allow the random walk to interpolate between a pure breadth-first-
search that would best model homophily and a pure depth-first-search that would
best model the structural equivalence. Assuming we just traversed the edge (t, v)
from node t to node v and are currently residing at node v, the unnormalized
transition probability αpq(t, x) from node v to node x in an unweighted graph is
defined as formula 4.2.

Figure 4.2: Illustration of
the random walk procedure in
node2vec [11]

αpq(t, x) =


1
p if dtx = 0

1 if dtx = 1
1
q if dtx = 2

(4.2)

Where dtx denotes the shortest path distance between nodes t and x. Intuitively,
the return parameter, p, controls the probability of backtracking to the previously
visited node, and thus setting p to a high value encourages the path to explore
the graph, while a low value keeps the path “local”. On the other hand, the in-out
parameter, q, allows the random walk to differentiate between “inward” and “out-
ward” nodes. Choosing q > 1 makes the walk biased towards close nodes to t and
therefore approximate breadth-first-search behavior, while choosing q < 1 makes
the walk inclined to visit nodes further away from t and therefore approximate
depth-first-search behavior. The added flexibility in exploring neighborhoods al-
lows node2vec to learn richer node representations than DeepWalk. In order
to speed up the training process, node2vec approximates the softmax activation
function by negative sampling.

4.1.2 GraRep

GraRep [9] is a model for learning vector representations of vertices in a graph
that preserve global structural information. Unlike node2vec, GraRep takes a
more analytical approach and does not perform random walks. Instead, it refor-
mulates the problem of defining the k-step relationship between two nodes to a
matrix factorization task.
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The k-step transition probability matrix Ak is defined as the k-th power of
the 1-step transition probability matrix A that is defined as

A = D−1S (4.3)

where S is the adjacency matrix of the graph and the diagonal matrix D is the
degree matrix defined as

Di,j =

{∑
p Si,p, if i = j

0, if i 6= j
(4.4)

This leads to entry Aki,j exactly referring to the transition probability from node
vi to node vj where the transition consists of exactly k steps. GraRep first cal-
culates the different transition probability matrices A1, A2, . . . , AK up to a fixed
hyperparameter K called the order. GraRep then calculates the log probability
matrices Y k

i,j for k ∈ {1, 2, . . . ,K} defined as

Y k
i,j = W k

i,j · Cki,j = log

(
Aki,j∑
tA

k
t,j

)
− log(β) (4.5)

where β = λ/ |V | and λ is a hyperparameter indicating the number of nega-
tive samples. In order to reduce noise, each Y k is modified into a matrix Xk,
where Xk

i,j = max(0, Y k
i,j). GraRep then calculates the singular value decom-

position (SVD) of each Xk = UkΣk(V k)T and approximates W k = Ukd (Σk
d)

1
2

using the d largest eigenvalues and the corresponding eigenvectors, where d is
the embedding dimensionality hyperparameter. This process is also called trun-
cated singular value decomposition (tSVD). The i-th row of matrix W k ∈ R|V |×d
can then be seen as the vector representation of the i-th vertex capturing k-step
relational information. Finally, the different k-step representations W k are ei-
ther concatenated, summed up or merged in some other way to obtain the graph
representation matrix W .

A key advantage of GraRep is that the different k-step relational information
is not projected into the same subspace as in node2vec, and instead can be
preserved in distinct subspaces.

4.1.3 ProNE

ProNE [10] is the most recently published of the three embedding techniques and
aims to increase efficiency and scalability over the other methods while maintain-
ing or even slightly improving the performance. The embedding generation is
based on a two-step process. In the first step the embeddings are initialized
efficiently by formulating the task as a sparse matrix factorization, similar to
GraRep. In the second step the embeddings are then enhanced by propagating
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them in a spectrally modulated space. The second step can also be applied to
other embedding techniques to improve their performance for various downstream
tasks.

More precisely, in the first step they use the set of edges E as node–context
pair set D = E and define the occurence probability of context vj given node vi
as

p̂i,j = σ(rTi cj) (4.6)

where σ is the sigmoid function and ri, ci ∈ Rd are the embedding and context
vectors of node vi, respectively. They then define the objective function to be
minimized as

L = −
∑

(i,j)∈D

[
pi,j lnσ(rTi cj) + τPD,j lnσ(−rTi cj)

]
(4.7)

where pi,j = Ai,j/Di,i, with A being the adjacency matrix and D being the di-
agonal degree matrix. The second part of the objective function aims to avoid
the trivial solution ri = cj by negative sampling, where τ is the negative sample
ratio and PD,j are the negative samples associated with context node vj . They
then reformulate the problem of minimizing the objective function into a matrix
factorization task. To solve the matrix factorization task, they use a truncated
singular value decomposition (tSVD) as used by GraRep to approximate W k.
However, since the matrix to be factorized is sparse, a randomized tSVD can be
used to speed up this process.

In the second step they then propagate the initialized d-dimensional embed-
dings Rd ∈ R|V |×d in a spectrally modulated space. This is to allow the embed-
dings to capture global structural information, since in the first step only edges
are used as node-context pairs and therefore only local structural information
is initially captured. Formally, given the initial embeddings Rd, the following
propagation rule is used:

Rd ← D−1A(In − L̃)Rd (4.8)

where D is the degree matrix, In is the identity matrix, L̃ is the Laplacian filter
and combined, D−1A(In − L̃) is the modulated network of G.

4.1.4 Comparison

To better understand the differences between the embeddings generated by these
three techniques, Figures 4.4 and 4.5 on the following pages illustrate the task
our model must solve if we are using addition or difference as binary opera-
tion. Every plot is a graph-technique pair, where each point is either the addi-
tion emb(vi) + emb(vj) or difference |emb(vi)− emb(vj)| of the embeddings of
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nodes vi, vj and the points color represents the normalized shortest path distance
dist(vi, vj)/dmax. Even though these visualizations are limited to 2-dimensional
embeddings, they do allow for some interesting insights. Two of them are:

• The structure of the embeddings varies greatly. While the embeddings
produced by node2vec are in some kind of bowl shape, the embeddings
generated by a low order GraRep are spread along two perpendicular axis
and increasing the order causes them to spread further. In contrast, the
spectral propagation of ProNE generates a ball of radius 2.

• Some techniques seem to preserve shortest path distances better than oth-
ers. While node2vec and ProNE do not seem to preserve much structure,
GraRep seems to be quite structure-preserving, especially at a higher order.

4.1.5 Evaluation Model

Regardless of the technique used to create the embeddings, all models have the
same basic neural network architecture as shown in Figure 4.3. For a pair of
nodes vi, vj we first apply one of three binary operations to their embeddings
emb(vi), emb(vj) ∈ Rd. We either concatenate them (emb(vi), emb(vj)) resulting
in a 2d-dimensional input, add them emb(vi)+emb(vj) or we take their difference
|emb(vi)− emb(vj)| which both result in a d-dimensional input. Therefore, de-
pending on what binary operation we use to combine the embeddings, the input
layer of our network has size d or 2d. We fix the size of the hidden layer to 128
as making it independent of the embedding size makes it easier to compare the
performances of different embedding sizes. We use a rectified linear unit (ReLU)
as activation function in the hidden layer. In the output layer we use a softplus
activation function as the predicted distances should never be negative.

Figure 4.3: Example of model architecture using addition as binary operation
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Winterthur, Switzerland Surat, India

a.)

b.)

c.)

d.)

Figure 4.4: Illustration of the task the model has to perform depending on the
technique we use to generate the embeddings. The coordinates of each dot are
the sum of the embedding vectors of two nodes vi, vj and the dot’s color rep-
resents the normalized shortest path distance between vi and vj . a.) node2vec
(walklength=80, windowsize=10, p=1, q=1) b.) GraRep (order=10) c.) GraRep
(order=100) d.) ProNE.
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Winterthur, Switzerland Surat, India

a.)

b.)

c.)

d.)

Figure 4.5: Illustration of the task the model has to perform depending on the
technique we use to generate the embeddings. The coordinates of each dot are
the difference of the embedding vectors of two nodes vi, vj and the dot’s color
represents the normalized shortest path distance between vi and vj . a.) node2vec
(walklength=80, windowsize=10, p=1, q=1) b.) GraRep (order=10) c.) GraRep
(order=100) d.) ProNE.
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4.2 Graph Neural Networks

As in the previous section, we will first look at the theoretical background of
graph neural networks and then describe the specific graph neural networks we
used for our shortest path distance prediction task.

4.2.1 Message Passing

Graph neural networks (GNNs) are a class of neural networks that has recently
become popular for processing data represented by graph data structures. Graph
neural networks are used for various tasks such as node classification, graph clas-
sification and link prediction. We will focus on general message passing graph
neural networks as almost all popular graph neural networks are of this type.

Given a graph G and for each node vi an initial representation vector h0
i ,

the message passing graph neural network performs T message passing rounds,
consisting of propagation and aggregation steps, which can be described as

hti = qt

ht−1
i ,

⋃
∀j:vj

k−→vi

ft(h
t−1
i , k, ht−1

j )

 (4.9)

where qt is the update function and ft is the message building function, both
must be differentiable. The outputs of ft, the messages, are aggregated over all
j such that the edge (vj , vi) ∈ E and has attributes k. For aggregation, any
permutation invariant function can be used, such as max, sum or mean. The
initial node representation vectors can be anything from embeddings generated
using previously discussed techniques to node attributes, or just randomly ini-
tialized vectors. After performing T message passing rounds in which all node
representation vectors are updated in parallel, each node vi is assigned a final
representation vector hTi . Therefore T is also called the depth or number of
message passing layers of the graph neural network. These final representation
vectors can then be fed into further downstream tasks or they can be extracted
and used as embeddings.

4.2.2 Base Architecture

To build our graph neural networks we use the message passing base class pro-
vided by the PyTorch Geometric library for PyTorch [24]. We propose several
graph neural networks for end-to-end shortest path distance prediction on road
graphs that are all based on the following architecture:

Starting with the 2-dimensional coordinate data of each node as initial em-
beddings, they are first passed through a single, fully connected linear layer with
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input size 2 and output size d. The output of the first hidden layer is then fed
into l consecutive message passing layers whose output dimension is d. The kind
of message passing layer used differs slightly for the different models. In general,
we use a rectified linear unit as activation function after message passing layers,
except for the last message passing layer where we do not use any activation
function to allow for negative embedding coordinates as well. Either only the
output of the last message passing layer or a combination of all outputs of the
individual message passing layers then represent the final embedding. Depending
on the model, the embeddings are additionally normalized before being used for
distance evaluation. To predict the distance between two nodes vi, vj we either
pass a combination of their embeddings to a multilayer perceptron or directly
calculate the Lp-norm of |emb(vi)− emb(vj)|.

4.2.3 CoordNet

CoordNet (CN) uses a slight modification of the edge convolutional operator [25]
for message passing, which can be described as

hti =
∑

j:(vi,vj)∈E

ft

(
ht−1
i ‖ ht−1

j − ht−1
i ‖ w((vi, vj))

)
(4.10)

where ‖ is the concatenation operator, w((vi, vj)) is the normalized weight of edge
(vi, vj) and ft is a simple two-layer multilayer perceptron. The first layer of ft
MLP has input size 2d, output size d and uses a ReLU activation function, while
the second layer has input and output size d without any activation function.
To aggregate the messages a simple summation is used. The output of the last
message passing layer is normalized so that all embedding vectors have an L2-
norm equal to 1. To predict the shortest path distance between two nodes their
respective embedding vectors are concatenated and passed to a two-layer MLP.
The first layer of the MLP has input size 2d, output size d and uses a ReLU
activation function. The second layer has input size d and output size 1 as the
output of this layer represents the predicted distance.

4.2.4 StackedCoordNet

StackedCoordNet (SCN) is a small modification of CoordNet. It uses the same
modified edge convolutional operator as described in 4.10 and the same MLP
to predict the distances based on the generated embeddings. It differs from
CoordNet in that it uses the outputs of all message passing layers (before the
ReLU activation function) and the input to the first message passing layer to
generate embeddings. More precisely, it sums all outputs and the input of the
first layer and normalizes them so that every embedding vector has an L2-norm
of 1. The reason for this modification is that it is harder for the model to learn
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when only the output of the last layer is used, and we have found that models
with fewer layers predict short distances more accurately, while models with more
layers predict long distances more accurately.

4.2.5 StackedEuclidCoordNet

StackedEuclidCoordNet (SECN) is another slight modification to StackedCoord-
Net. It is exactly the same as StackedCoordNet except that it does not use
an MLP for the final distance prediction and instead directly calculates the
Euclidean distance between emb(vi) and emb(vj) to predict the shortest path
distance between vi and vj . We found that although an MLP generally leads
to a lower training error, it is prone to overfitting. Moreover, calculating the
Euclidean distance between two embedding vectors is even more efficient than
sending them through a two-layer MLP.

4.2.6 StackedAngleCoordNet

StackedAngleCoordNet (SACN) is also a slight modification of StackedCoordNet.
It is identical to StackedEuclidCoordNet, but instead of calculating the Euclidean
distance between two embeddings, the angle between them is calculated in radians
to estimate their shortest path distance.

4.3 Hyperbolic Graph Convolutional Network

The hyperbolic graph convolutional network (HGCN) [26] is a modification of
classic graph neural networks proposed by Chami et al. in a paper of the same
name. Classic graph neural networks embed nodes in Euclidean space, which
has been shown to cause large distortions when embedding real-world graphs
with a hierarchical structure. Hyperbolic geometry offers a great advantage over
Euclidean geometry, as it allows to embed hierarchical graphs with much less
distortion.

However, transferring the concept of graph neural networks to hyperbolic
space presents certain challenges: (1) Converting Euclidean input node features
into useful inputs for the HGCN. (2) Performing the aggregation step and linear
transformations in hyperbolic space. (3) Choosing the best hyperbolic space
curvature for every layer.
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The HGCN overcomes these challenges in the following way: (1) It trans-
forms input node features from Euclidean space into hyperbolic space using an
exponential map. (2) The aggregation step, as well as linear transformations,
are performed in a Euclidean tangent space as shown in 4.6. More precisely, the
hyperbolic points are first projected into a Euclidean tangent space using a log-
arithmic map, then the aggregation or linear transformation is performed, and
finally the points are projected back into hyperbolic space using an exponential
map. (3) At each layer, the feature transformations can be performed in hyper-
bolic space with individual curvature. One has the option of either manually
selecting the individual curvatures or having them trained. The HGCN uses the
hyperboloid model of hyperbolic space for its simplicity and numerical stability.

Definition 4.1 (Hyperboloid model). The hyperboloid model is a model of d-
dimensional hyperbolic space, in which points are represented as points on the
forward sheet of a two-sheeted (d+ 1)-dimensional hyperboloid. We denote Hd,K

as the hyperboloid manifold of dimension d with curvature c = −1/K (K > 0).

Figure 4.6: The HGCN aggregation step first maps messages into a Euclidean
tangent space, performs the aggregation in the tangent space, and then maps
them back to hyperbolic space. [26]

4.3.1 DPModel

To take advantage of the HGCN’s ability to embed real graphs with low distortion
for our task, we build a model that uses the HGCN to generate hyperbolic node
embeddings and then directly calculates the hyperbolic distance between the
embeddings of two nodes to predict their shortest path distance. This model is
called DPModel, which stands for distance prediction model. The DPModel uses
the coordinates of the nodes as initial embeddings and passes them to a l-layer
HGCN. The HGCNs implementation is available on the research team’s GitHub1.
In each layer of the HGCN the activation function, as well as the dimensionality

1https://github.com/HazyResearch/hgcn

https://github.com/HazyResearch/hgcn
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and curvature of the output space, can be specified. We use a rectified linear
unit as activation function in all layers except for the final layer where we use no
activation function. In addition, we set the output dimensionality of all layers
to a certain value d and either use the same curvature c for all layers or have
the curvatures trained. The HGCN outputs for each node vi an embedding
emb(vi) ∈ Hd,K represented as coordinates in the hyperboloid model of hyperbolic
space. Finally, to predict the shortest path distance between vi and vj a simple
hyperboloid distance computation is performed as defined in 4.3.

Definition 4.2 (Minkowski inner product). Let 〈·, ·〉L : Rd+1×Rd+1 → R denote
the Minkowski inner product:

〈x, y〉L = −x0y0 + x1y1 + . . .+ xdyd

Definition 4.3 (Distance in Hyperboloid Model). The distance between two
points (x, y) in Hd,K can be computed as:

dKL (x, y) = arcosh(−〈x, y〉L) ·
√
K



Chapter 5

Experiments

In this chapter, we describe the experiments we performed and the settings we
used. We also write about the conclusions we draw from the results of the exper-
iments and reason about why the experiments turned out the way they did. We
first describe the general training settings and then specify them in the individual
subsections.

5.1 Training Settings

During preprocessing, we normalized the coordinates (xi, yi) of each node vi in
the following way:

x′i =
xi −min(x)

max(x)−min(x)
y′i =

yi −min(y)

max(y)−min(y)

We also divided the weight of each edge by the weight of the edge with the max-
imum weight. We did the same with the shortest path distances on which we
trained the model, we divided each distance by dmax. To train our models, we
used the mean relative error (MRE) as loss function. We prefer the mean relative
error to the mean absolute error because it gives more weight to the prediction
errors on short paths. We believe this is desirable because accurately predicting
short distances is more difficult than predicting long distances. However, we use
the mean absolute error 2.4 (divided by the diameter of the respective graph)
together with the mean relative error 5.1 as evaluation metrics. Unless otherwise
specified, the Adam or Riemannian Adam (HGCN) [26] optimization algorithm
was used for training with a learning rate of 0.001 and the batch size was 512.
In general, we used l = 3 message passing layers in our models as we found that
to be a good compromise between efficiency and accuracy.

Definition 5.1 (Mean Relative Error).

MRE =
1

n

n∑
i=1

|ŷi − yi|
yi

26
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5.2 Results

In this section we present the results of our experiments. We first review the
general results obtained with the various existing node embedding techniques
and our neural network models and then address some aspects in detail.

5.2.1 Existing Node Embedding Techniques

To compare the existing node embedding techniques we trained the evaluation
model for 20 epochs on randomly selected 90% of the APSP data and tested
on the other 10% of the APSP data. Although the embedding techniques are
capable of using edge weights, we did not use them because we did not find
large differences between the performances with edge weights and without edge
weights. We used the default settings for node2vec, i.e., we made 10 walks per
node of length 80, used a window size of 10, and set p and q to 1. GraRep10
and GraRep100 are GraRep embeddings with orders 10 and 100 respectively. We
used 128-dimensional embeddings for all tests.

WTHUR SRT
MRE MAE MRE MAE

Addition 0.2440 0.0616 0.3063 0.0497
node2vec Difference 0.4036 0.1195 0.9999 0.1735

Concatenation 0.1858 0.0486 0.2022 0.0340
Addition 0.0922 0.0199 0.0847 0.0109

GraRep10 Difference 0.0859 0.0214 0.0795 0.0107
Concatenation 0.0748 0.0181 0.0613 0.0086
Addition 0.0748 0.0133 0.0694 0.0071

GraRep100 Difference 0.0571 0.0128 0.0565 0.0073
Concatenation 0.0573 0.0120 0.0502 0.0058
Addition 0.0804 0.0174 0.0946 0.0121

ProNE Difference 0.2222 0.0623 0.3079 0.0544
Concatenation 0.0660 0.0156 0.0674 0.0096

Table 5.1: Results

From the results, we can conclude that node2vec does not have a competitive
distance preserving capability compared to GraRep and ProNE. We can also see
that the order 100 GraRep performs best and that the accuracy changes only
slightly when using difference or concatenation as a binary operator, which cor-
responds to our observations from the task visualizations in Figures 4.4 and 4.5.
However, ProNE generates embeddings even quicker than the order 10 GraRep
and is almost as distance preserving as the order 100 GraRep, as long as we do
not use it with the subtraction binary operation.
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5.2.2 Graph Neural Networks

To evaluate the performances of our proposed graph neural network models we
trained them for 100 epochs on randomly selected 10% of the APSP data and
tested them on the other 90% of the APSP data. We did separate tests with
32-dimensional and 128-dimensional embeddings.

WTHUR SRT DNG
MRE MAE MRE MAE MRE MAE

CN 0.0480 0.0091 0.0435 0.0041 0.0702 0.0151
SCN 0.0460 0.0085 0.0396 0.0041 0.0693 0.0123
SECN 0.0557 0.0120 0.0492 0.0065 0.0533 0.0128
SACN 0.0545 0.0115 0.0477 0.0062 0.0509 0.0124

Table 5.2: Results with 32-dimensional embeddings

WTHUR SRT DNG
MRE MAE MRE MAE MRE MAE

CN 0.0309 0.0053 0.0378 0.0038 0.0529 0.0115
SCN 0.0281 0.0047 0.0309 0.0034 0.0518 0.0100
SECN 0.0486 0.0106 0.0450 0.0062 0.0537 0.0137
SACN 0.0474 0.0101 0.0436 0.0060 0.0485 0.0117

Table 5.3: Results with 128-dimensional embeddings

An interesting finding from the test results is that the StackedCoordNet per-
forms best on the smaller graphs, but is beaten by the StackedAngleCoordNet
on the larger DNG graph, which could be an indicator of the better generaliza-
tion ability of StackedAngleCoordNet. Another finding is that while all models
are able to take advantage of the larger embedding size, the models that use an
MLP as evaluation method are able to take even more advantage of it than the
other models. Overall, SECN and SACN perform similarly, which is not surpris-
ing given their architectural similarities, but SACN generally outperforms SECN.
Similarily, SCN persistently performs better than CN, which confirms the benefit
of a stacked architecture in terms of prediction accuracy.
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5.2.3 Hyperbolic Graph Convolutional Network

To test the performance of our proposed DPModel, we performed multiple tests
on the WTHUR and SRT graphs. Since the HGCN used to generate the embed-
dings is quite inefficient due to the large number of mapping operations between
the tangent spaces and hyperbolic space it must perform, we chose to train 50
epochs with a bigger batch size of 4096 on randomly selected 10% of the APSP
data. As before we then tested the trained model on the other 90% of the APSP
data. We performed tests with 32-dimensional and 128-dimensional embeddings
and also used l = 1 or l = 3 message passing layers in the HGCN. We fixed the
curvatures of the hyperbolic embeddings to c = 1 since training them proved to
be numerically unstable and did not yield consistent results.

WTHUR SRT
MRE MAE MRE MAE

DPModel l = 1 0.1077 0.0266 0.1063 0.0166
l = 3 0.0978 0.0233 0.0779 0.0125

Table 5.4: Results with 32-dimensional embeddings

WTHUR SRT
MRE MAE MRE MAE

DPModel l = 1 0.1091 0.0266 0.1271 0.0213
l = 3 0.1004 0.0242 0.0665 0.0081

Table 5.5: Results with 128-dimensional embeddings

From the test results, it can be concluded that although the DPModel with
l = 3 performs better than with l = 1, the performance of the 3-layer DPModel
is still not comparable to that of the graph neural network models. A reason
for the relatively poor performance of DPModel on these road graphs could be
that the road graphs are not hyperbolic enough. Gromov’s hyperbolicity is a
measure of how hyperbolic a graph is. A lower value means that the graph
is more hyperbolic, e.g. a tree graph has a hyperbolicity of 1. However, the
hyperbolicity of the WTHUR graph is only 17 while the SRT graph is even less
hyperbolic with a value of 20. Even though the DPModel is relatively inaccurate
compared to the other method it also has almost an order of magnitude fewer
parameters than SACN and SECN.
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5.2.4 Landmark Training

Since computing the all-pairs shortest path (APSP) data, or even 10% of it, is
often not efficiently possible for large graphs, we investigate how our proposed
neural graph network models perform when only a very small amount of training
data is available. We randomly selected k � |V | landmark vertices and calculated
the single-source shortest path (SSSP) data from these landmarks to all other
vertices using exact shortest path distance methods. We then trained our models
for d400/ke or, in the case of NY, d100/ke epochs on the obtained SSSP data. We
tested the trained models on the APSP data or, in the case of NY, on the SSSP
data from 1000 landmarks, which were completely disjoint of the landmark sets
used to train the models. We tested the models with 32-dimensional embeddings
as well as with 128-dimensional embeddings.

WTHUR SRT NY
MRE MAE MRE MAE MRE MAE

CN

k = 5 0.3976 0.0699 0.3586 0.0484 0.2096 0.0630
k = 10 0.3225 0.0695 0.1478 0.0198 0.1166 0.0340
k = 50 0.2173 0.0486 0.3382 0.0358 0.0517 0.0146
k = 100 0.2231 0.0496 0.2964 0.0407 0.0399 0.0104

SCN

k = 5 0.3151 0.0571 0.4600 0.0633 0.2094 0.0636
k = 10 0.1837 0.0412 0.1562 0.0203 0.0917 0.0249
k = 50 0.2226 0.0508 0.1400 0.0178 0.0512 0.0139
k = 100 0.2106 0.0497 0.3009 0.0374 0.0381 0.0095

SECN

k = 5 0.1269 0.0242 0.0948 0.0118 0.0608 0.0156
k = 10 0.0936 0.0209 0.0812 0.0104 0.0618 0.0147
k = 50 0.0897 0.0212 0.0814 0.0118 0.0392 0.0104
k = 100 0.0891 0.0226 0.0851 0.0125 0.0369 0.0100

SACN

k = 5 0.1361 0.0261 0.0946 0.0117 0.0606 0.0153
k = 10 0.0922 0.0199 0.0772 0.0100 0.0582 0.0134
k = 50 0.0877 0.0207 0.0777 0.0105 0.0384 0.0103
k = 100 0.0900 0.0230 0.0833 0.0121 0.0358 0.0094

Table 5.6: Results with 32-dimensional embeddings

While CoordNet and StackedCoordNet performed better in the previous tests
where 10% of the APSP data was used for training they are beaten quite clearly by
StackedEuclidCoordNet and StackedAngleCoordNet in these tests. This demon-
strates the generalizability of the SECN and SACN. Although the models in these
tests do not appear to be very accurate, with mean relative errors usually ex-
ceeding 5%, it is important to note that the time spent training them is orders
of magnitude lower than in the previous tests. It may seem counterintuitive that
the models perform better when trained on fewer landmarks, but this could also
be because we trained the models for fewer epochs the more landmarks we used.
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WTHUR SRT NY
MRE MAE MRE MAE MRE MAE

CN

k = 5 0.2862 0.0603 0.3831 0.0521 0.2132 0.0637
k = 10 0.2296 0.0523 0.1360 0.0201 0.1468 0.0397
k = 50 0.2177 0.0515 0.0201 0.0343 0.0518 0.0148
k = 100 0.2216 0.0508 0.2404 0.0320 0.0289 0.0067

SCN

k = 5 0.2934 0.0604 0.3798 0.0553 0.2064 0.0619
k = 10 0.1815 0.0427 0.1372 0.0192 0.1135 0.0337
k = 50 0.2081 0.0441 0.1773 0.0237 0.0483 0.0132
k = 100 0.1841 0.0404 0.1903 0.0242 0.0291 0.0070

SECN

k = 5 0.1189 0.0216 0.0990 0.0117 0.0652 0.0156
k = 10 0.0827 0.0176 0.0694 0.0084 0.0684 0.0153
k = 50 0.0798 0.0185 0.0767 0.0099 0.0383 0.0106
k = 100 0.0790 0.0179 0.0802 0.0118 0.0357 0.0097

SACN

k = 5 0.1156 0.0206 0.0987 0.0117 0.0624 0.0149
k = 10 0.0814 0.0167 0.0677 0.0084 0.0636 0.0141
k = 50 0.0784 0.0178 0.0802 0.0106 0.0356 0.0096
k = 100 0.0756 0.0170 0.0800 0.0117 0.0340 0.0090

Table 5.7: Results with 128-dimensional embeddings

5.2.5 Impact of Embedding Dimensionality on Accuracy

To examine the impact of embedding dimensionality on the prediction accuracy,
we plot the mean relative error of four different models on the WTHUR and SRT
graphs as a function of the embedding sizes used. EmbNet and EmbNet2H are
based on the following approach: we train a single fully connected linear layer
that takes one-hot node representations as input and outputs the d-dimensional
embeddings of the corresponding nodes. Therefore, we do not restrict the embed-
ding generation at all and let the model learn the best embedding for each node
with parameters that are completely independent of the embeddings of other
nodes. EmbNet then uses a simple Euclidean distance calculation between the
embeddings of the nodes to predict the distance, while EmbNet2H passes the
concatenated embeddings of two nodes to a two-layer MLP identical to the one
used in CoordNet and StackedCoordNet.

The results in Figure 5.1 are somewhat unexpected, as in some cases the loss
increases again the larger the embeddings become. Since this is more notice-
able for EmbNet and EmbNet2H, we suspect that this is due to the difficulty of
the Adam optimizer to efficiently use the additional degrees of freedom. From a
dimensionality of d = 2 to d = 8 the prediction accuracy increases most signifi-
cantly. From d = 8 to d = 64 the accuracy generally continues to increase, while
from d = 64 to d = 256 it mostly stagnates or even decreases again. Therefore,
a dimensionality of between d = 16 and d = 64 seems to be the best compromise
between prediction accuracy and space requirements on these graphs.
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(a) WTHUR

(b) SRT

Figure 5.1: Impact of embedding dimensionality on MRE

5.2.6 Error Distribution over Path Lengths

To better investigate which path lengths are the most difficult to accurately
predict, we plot the mean relative error and the mean absolute error as a function
of the path length. We visualize the error distributions of SCN and DPModel on
the APSP data of the WTHUR graph after training them on randomly selected
90% of the APSP data. More precisely, we split the APSP data into 20 sets
ordered by path length and calculate the MRE and MAE on these sets.



5. Experiments 33

(a) StackedCoordNet

(b) DPModel

Figure 5.2: MRE and MAE distribution over the path lengths

From the diagrams we can conclude that short paths are significantly more
difficult to predict accurately. Even if the models are trained only on the short
paths, the errors do not decrease significantly. An explanation for that could be
that it is not possible to embed the complete bipartite graph K1,3, also referred
to as the “claw” graph, isometrically in any dimension. And since road graphs
generally have many claw graphs as induced subgraphs this could be the reason
why the models have difficulty accurately predicting short path lengths.



Chapter 6

Conclusion & Future Work

Our work on this thesis and the experiments we performed allow us to draw
several conclusions. Furthermore, there are some ways in which our work could
be expanded.

6.1 Conclusion

With respect to existing embedding techniques, we found that node2vec embed-
dings are significantly less distance preserving compared to GraRep and ProNE
embeddings. We also found that while high-order GraRep embeddings appear
to be the most distance preserving embeddings of the three techniques, ProNE
embeddings come close to their distance preserving capabilities and are far more
efficient. Regarding our four proposed graph neural network models, we were
able to demonstrate that graph neural networks can be used to generate dis-
tance preserving embeddings with competitive accuracy. While the graph neural
network models using an MLP as evaluation method performed better with rel-
atively large amounts of training data, the graph neural networks calculating
the angle or Euclidean distance for evaluation demonstrated their superior gen-
eralizability when only very little training data was used. Our hyperbolic graph
convolutional network model did not yield the improvements we had hoped for,
which we attribute to the lacking hyperbolicity of road graphs.

6.2 Future Work

Our work could be extended by finding ways to develop a graph neural network
model that is capable of transferring knowledge learned from one or more graphs
to other unseen graphs, i.e., without retraining. We tried to transfer our models
to new graphs but weren’t able to get below 10% mean relative error. To obtain
transferable graph neural network models, one could improve on our normaliza-
tion and regularization techniques.
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