
Distributed

    Computing 

Region Based File Sharing
Bachelor’s Thesis

Adrian Jenny

adjenny@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Robin Fritsch, Béni Egressy
Prof. Dr. Roger Wattenhofer

August 18, 2021



Acknowledgements

I thank my thesis supervisors Béni Egressy and Robin Fritsch. They showed
admirable patience and support when I was given the chance to propose my own
idea for a thesis and it came to formulating the core question as a concrete topic.
I also very much enjoyed the conducive atmosphere in our weekly meetings where
we were discussing new ideas and I was given directions as to what to focus on.

Further, I thank Professor Roger Wattenhofer and the whole of the Dis-
tributed Computing Group for allowing and encouraging students to come up
with their own ideas as thesis topics and supporting them on their way.

i



Abstract

Large-scale file-sharing infrastructures tend to employ some sort of file replication
mechanism between nodes in the network. Choosing the correct network nodes
that should hold a copy of a file and thereby serve as a replica site is a challenging
task. Many different strategies have been proposed where only the optimization of
read accesses was considered. In this thesis, we model the underlying network as
a graph and try to choose the best nodes as replica sites such as to both optimize
read and write operations. To that end, we propose a method for the spreading
of file updates in the network and thereupon investigate different strategies for
the selection of the correct nodes. We will see that the algorithms based on these
strategies all suffer from not being able to account for all effects that might follow
from having made some wrong decision earlier on in their execution.
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Chapter 1

Introduction

We live in a world with an ever-growing need for convenient and fast solutions for
data exchange or, in general, new ways for efficient sharing of digital resources.
Different scenarios require the consideration of different aspects in the creation of
an infrastructure that aims to offer said sharing capabilities. Large scale scientific
computing, a company’s internal file sharing system, highly-available and low-
latency web content or the access to services that run the Internet of Things are
all examples of scenarios that pose a different set of challenges and requirements
to the underlying infrastructure that enables these services.

For large-scale file-sharing services, replication is a commonly used technique
to offer availability as well as locality. In this thesis, we strive to approach the
problem of optimal replica placement, i.e. choosing the correct nodes in a network
to host certain files, from a new angle where the costs incurred by file updates
between replica sites are also considered. To that end, we go on in chapter 2
to introduce a model and give some definitions on which the later work will be
based. In chapter 3 we will discuss different ways as to how a file update might
spread in a network such as to minimize some given notion of costs. The bulk of
this work is presented in chapter 4 where we will introduce different algorithms
These algorithms aim to approximate an optimal choice of nodes used to serve as
replica sites for a specific file. These algorithms all try to choose nodes such that
the induced additional costs for the spreading of updates on write operations do
not outstrip the benefits gained through offering lower latency access. We will
illustrate the challenges these algorithms face through specific examples and show
how this might adversely affect their result. Finally, in chapter 5 we will draw
our conclusions and point out some limitations to our chosen model. Based on
these limitations, we give recommendations as to how these might be addressed
through future investigations.
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Chapter 2

Background

2.1 General Problem Statement

The fast delivery of digital resources relies on an underlying infrastructure that
is both optimized and versatile. Depending on the specific needs and implemen-
tation, some of the following considerations are being taken into account when
designing such an infrastructure:

• read access latency

• read-only vs. read-write datasets

• usage of storage space

• usage of network bandwidth

• processing overhead

• resiliency to outages

• data consistency

• dynamic vs. static environment

• load balancing

• ...

Combining several desired properties for an optimized infrastructure design presents
a significant challenge since the fulfillment of one property may adversely affect
others. While there already exist commercial solutions that each optimize for a
subset of the given properties (e.g. Content Distribution Networks [1] for low-
latency, read-only web content), there are still other areas that did not yet receive
enough attention.

2



2. Background 3

2.2 Related Work

There exist many different strategies for sharing mutable resources in reliable
networks. The Arvy family of protocols [2] specifically is concerned with regu-
lating access and ownership of a single resource in a network. However, as soon
as different types of accesses, e.g. read and write operations, can be discerned,
Arvy’s way of transferring ownership for every access request may lead to un-
necessary traffic when applied to a simple read request from a node that is far
away from most other nodes wishing to access that resource. Therefore, most
implementations of advanced data sharing or file store infrastructures rely on
some sort of caching or data replication strategy. A replica placement algorithm
aims to find the best set of nodes in a network to be used as replica sites for a
given resource. Replica selection algorithms on the other hand aim to direct an
accessing node to at least one of these replica sites. Both of these processes work
together to try to optimize for some property (e.g. minimize read access latency
given some storage space limits and access patterns). The surveys in [3, 4] give
an overview of different approaches to both replica placement and selection while
also pointing out their limitations. In [5] we see an approach that tries to re-
duce access latencies in environments with very limited storage space per node
by grouping nodes that are geographically close together into a region, with only
a small number of nodes having to serve as a replica site of a file for the whole
region. [6] provides functionality for decentralized decision-making for dynamic
environments where a global decision-making entity might be a bottleneck.
However, most approaches merely focus on optimizing read accesses, a fact that
is also pointed out in [7] and in [8] as "The optimization problems of write oper-
ation in data grid have not been well studied". It is further mentioned in [4] that
most works of literature only focus on read-only datasets and that the overhead
of a consistency model for an updateable dataset can neutralize the benefits that
were gained by replication in the first place.
Conversely, we see a discussion of the difference between "aggressive copy" vs.
"lazy copy" in [9]. The aggressive copy mechanism updates all replica sites of a
given file with the file’s most recent version as soon as a write operation to one
of the replica sites occurs, while the lazy copy mechanism only updates other
replica sites with the file’s most recent version as soon as those other replica sites
first need to serve that file. The approach described in [10] uses the underlying
replication strategy that was described in [5] and adds a consistency mechanism
for write operations resembling a multi-master-slave model that changes its syn-
chronization mode based on access patterns.
Even though [7, 8, 9, 10] all offer some consideration for mechanisms to keep up-
dateable datasets consistent while also trying to reduce the update cost overhead,
all of these approaches only focus on adding those mechanisms on top of a given
set of replica sites instead of considering the possible costs these write operations
might later incur already during replica placement.
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2.3 Model

2.3.1 Network

We model the underlying network as a connected Graph: G = (V,E) with V
being the set of vertices that represent the nodes in the network and E being
the set of strictly-positively weighted, undirected edges representing the physical
network connections.
We will need a cost function to help us access the weight associated with an edge
and represent it as a cost to our network.

Definition 2.1 (Cost function). We define c : E → R+ as the cost function that
yields the the weight of an edge. For {u,w} ∈ E we may write c(u,w) instead of
c({u,w}) for notational convenience. Further, for a set of edges E′ ⊆ E, c(E′)
just yields the sum of the contained edges’ weights. I.e. c(E′) =

∑
e∈E′ c(e).

It is helpful to have a concept of a connection between nodes in the network.
The notion of a general path in G can be thought of as a set of edges P ⊆ E
that forms a connection between two endpoint vertices. The cost function from
2.1 can be used to help decide on shortest paths within a given graph. In order
to access information about the shortest path, we introduce a path function.

Definition 2.2 (Path function). We may access the set of edges on a shortest
path between two nodes with the path function p : V × V → P(E). Assuming
s, t ∈ V and s 6= t, then p(s, t) ⊆ E yields the set of edges on the shortest path
between s and t meaning that c(p(s, t)) yields the lowest possible cost compared
to c(E′) with E′ ⊆ E being any other set of edges that connects s and t. For
notational convenience, we may also write p(s, T ) with T ⊂ V to obtain the
set of edges on the shortest path from s to the closest node in T . Concretely,
c(p(s, T )) = min{c(p(s, t))|t ∈ T}.

2.3.2 Files and Accesses

Whenever we talk about anything regarding a file or a file access, then we think
of a file object as an element in the set of files, e.g. f ∈ F .
Such a file may be stored at none or up to all nodes in the network.

Definition 2.3 (Hosts Set). We use H : F → P(V ) to find the set of vertices
in our graph that represent the nodes at which a particular file is stored. E.g.
H(f) = T ⊆ V yields the set of vertices T representing the nodes where we can
find file f .
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In order to access a file f , a node might be interested in the closest replica site
for file f . We therefore introduce the concept of a closest host for a particular
file:

Definition 2.4 (Closest Host). We define h : V × F → V as the function used
to find the closest node in the network that stores a file and therefore serves as
a host for that file. Assuming H(f) 6= ∅ for some file f ∈ F , then h(s, f) ∈ H(f)
for some node s ∈ V with c(p(s, h(s, f))) = min{c(p(s, t))|t ∈ H(f)} Because all
edge weights are strictly positive, we have: s ∈ H(f) =⇒ h(s, f) = s.

Reminiscent of a real-world setting, some nodes may only need to work with
a particular subset of all the files and also with varying frequencies between
different files and types of accesses. We differentiate between a read and a write
access and introduce the notion of a corresponding read and write demand for
every node-file-pair.

Definition 2.5 (Demands). We model demands for a file as the number of
interactions between a given node and a given file. Let v ∈ V represent a node
in our network and let f ∈ F represent a file in the collection of files. We define:

• Read Demand: η : V × F → N0 with e.g. η(v, f) as the number of times
node v performs a read access on file f .

• Write Demand: ω : V × F → N0 with e.g. ω(v, f) as the number of times
node v performs a write access on file f .



Chapter 3

Replication Network

Assume we have a node in a network that wants to update a file that is potentially
stored at multiple replica sites. We need to decide on a way for that update to
spread to all replica sites in the network. Based on this mechanism, we can apply
our cost function in order to effectively compare different assignments of files to
replica sites.
As described in our model, we represent the underlying network as an undirected
graph G = (V,E) with positive edge weights and we consider a set F of files.
We use an aggressive-copy mechanism as compared to a lazy-copy mechanism in
all our considerations in order to keep all replica sites updated with a file’s most
recent version. The differences between those mechanisms are discussed in detail
in [9].

3.1 Time vs. Network Costs

Assume we have the set H(f) of replica sites for file f and a node v ∈ V that
updates f . For the specific examples presented in figure 3.1 below we have
H(f) = {x, y, z} colored in blue.

(a) Time (b) Network

Figure 3.1
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3. Replication Network 7

We have to decide whether we wish to look at the "time" that was needed for
the update to reach the last replica site or rather the overall network cost that
is incurred by writing and replicating a file. The first option implicitly assumes
that the edge weights represent the bandwidth and physical latency between
nodes whereas the second option allows a more general cost function based on
other parameters.

• Time: A simple mechanism that optimizes the time for the update to
spread to the nodes in H(f) is to send it from v to every node in H(f) via
the shortest path. In this case, the replication network for file f and node
v is the shortest-path-tree rooted at v with all leaves in H(f). The time
needed to distribute the update is then equal to the length of the longest of
the shortest paths to nodes in H(f), i.e. max{c(p(v, t))|t ∈ H(f)}. In the
example depicted in figure 3.1a this is equal to c(p(v, z)) = 13. Note how
the update gets distributed from v to all nodes in H(f) along the respective
shortest paths with the longest shortest path shown in green.

• Network costs: In order to minimize the total network costs incurred by a
file update, we want the update of file f to spread along a set Ef ⊆ E of
edges that connects {v}∪H(f) such that the sum of edge weights in S, i.e.
c(Ef ), is minimal. As shown in figure 3.1b, the update would need to be
distributed along the green edges in order to minimize network costs such
that c(Ef ) = 16. Different approaches as to how to get this set of edges
are discussed in more detail below.

We see that using a replication network based on optimizing overall network costs
allows us to minimize the cost of every write access for a more arbitrarily defined
edge cost function. Such a general edge cost function may be defined in such a
way as to capture different preferences or to represent real-world costs associated
with the usage of specific physical links between nodes. Furthermore, even if
one were to try to optimize for time with the approach described above, then it
may happen that the corresponding network costs increase significantly. As seen
in the example in figure 3.1a, while we could minimize time costs, the network
costs of this approach reach c(p(v, x) ∪ p(v, y) ∪ p(v, z)) = 28 compared to 16
as in figure 3.1b. In order to allow for more flexibility, we will therefore focus
our considerations on minimizing network costs and go on to discuss different
approaches as to how to achieve this.
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3.2 Minimizing Network Costs

We consider the choices for a replication network for a single file f . To minimize
the total network cost for updates, we need a set of edges Ef ⊆ E in G that
connects all nodes in H(f). We see that the subgraph Gf spanned by Ef would
need to be a tree in order to be a replication network of minimal cost. This fact
becomes obvious if we assumed Gf to not be a tree, i.e. to contain edges such
that loops are formed in Gf . In this case, we could simply remove the edge with
the highest cost from each loop in order to lower our costs but let the vertices
remain connected.
A tree that provides the required properties is called a Steiner tree:

Definition 3.1 (Steiner tree). For G = (V,E) and R ⊆ V , let ST (G,R) = G′ =
(V ′, E′) be the Steiner tree of G. Then G′ is the subgraph of G with E′ ⊆ E
such that the vertices in R ⊆ V ′ are connected and the sum of the edge weights
in E′, i.e. c(E′), is minimal.

Let v ∈ V be a node that updates/writes file f . We recognize that if v ∈ Vf
with Vf being the set of nodes in the Steiner tree ST (G,H(f)) = Gf = (Vf , Ef ),
then this Steiner tree spanned across H(f) trivially provides the best replication
network that minimizes overall network load. If v /∈ Vf then the best replication
network is the Steiner tree that is guaranteed to include v, i.e. ST (G, {v}∪H(f)).

Computing these trees would either have to be done statically or during live
operations with f . In both cases, we would reach a limit to the practicability
of this approach to a solution as we explore ever-larger networks. This is due
to the inherent complexities involved in the computation of Steiner trees. It has
been shown that finding solutions to the Steiner tree problem within at most 96

95
times the cost of an optimal solution is NP-hard [11]. The currently best-known
approximation algorithm with polynomial running time performs within an ap-
proximation factor of 1.39 of the optimal solution [12].

However, even if the computation were simple, there are potentially up to
|V \ H(f)| + 1 different replication networks for every file f that could require
such a Steiner tree since ST (G, {v}∪H(f))may be different for every node v ∈ V .
One way to avoid this computational overhead is to use a simpler approach in
which node v sends its update along the shortest path to the closest node in Vf
and then the update gets distributed along the edges of Gf . This way, the tree
that connects the designated replica sites of a file remains the same for every write
operation on f . Thus, we call this approach the fixed replication network.
Conversely, we call the approach where we create a new Steiner tree for every
write operation a dynamic replication network. While both approaches yield
trees, the sum of the edge weights in the fixed replication network is never smaller
than the sum of the edge weights in the dynamic replication network.



3. Replication Network 9

Consider the Steiner tree Gf = (Vf , Ef ) = ST (G,H(f)) from before. Con-
versely, let G′

f = (V ′
f , E

′
f ) = ST (G, {v} ∪H(f)) be the Steiner tree that includes

v (dynamic replication network for some v ∈ V \H(f)). We wish to find out how
much worse it can be to connect v to Gf via the shortest path (fixed replication
network for v) as opposed to the total cost of an optimal solution provided by
G′
f . Concretely, we wish to investigate the factor of α in the following equation:

c(p(v, Vf )) + c(Ef ) ≤ α · c(E′
f ) (3.1)

An approximate solution for obtaining Steiner trees via shortest paths is pre-
sented in [13]. The authors assume S to be the set of nodes that must be included
in the Steiner tree. In their approach, the authors start with a single node from S
and then continually grow their tree by always adding everything on the shortest
path to the closest of the remaining unincluded nodes in S. They show that the
cost of their resulting tree has a cost that is never worse than 2 · (1 − 1

|s|) times
that of the optimal Steiner tree. We see that this factor approaches 2 for large
|S|.
However, we cannot use the proof of this bound for our approach because even
though we add v to the existing Steiner tree Gf via the shortest path, v might
not have been added at that point or in that order. This is because the described
approach in [13] always chooses the shortest path to the closest of the remaining
nodes to be included.
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Theorem 3.2. For any G, and any f ∈ F , the factor of α in equation 3.1 has a
constant upper bound of α < 3

2 .

Proof. We established before that if v ∈ H(f), or indeed v ∈ Vf , we then have
Gf = G′

f . As this situation does not give us any information about how large α
could be in a potential worst-case, we will now assume that v ∈ V \ V ′

f .
Recall that in G′

f we look at the Steiner tree ST (G, {v} ∪ H(f)) whereas Gf =
ST (G,H(f)). Without loss of generality, we can make certain assumptions on the
shape of G′

f . Concretely, we can assume G′
f to be of a form in which v connects

subgraphs Ti of Gf , for i ∈ [n] and n ∈ N, via distinct paths. We therefore have
n as the number of distinct subgraphs that are connected through v. Given this,
we can distinguish different cases as to how v could be included in G′

f compared
to Gf .

Case: n = 1

Figure 3.2

If n = 1 then v was connected to
via the shortest path p(v, Vf ) to Gf
to form G′

f . In this case we have
c(p(v, Vf )) + c(Ef ) = α · c(E′

f ) with
α = 1 and our simple approach thus
yields the optimal solution.

Case: n ≥ 2

In this case we have up to n different subgraphs Ti of Gf with i ∈ [n]. These sub-
graphs’ combined vertex sets further contain all the vertices in H(f). According
to our assumptions, every subgraph Ti is connected to v via a distinct path pi of
cost c(pi) = ci in order to form G′

f as depicted in figure 3.3. Further, we let Vi
and Ei be the vertex and edge sets of every Ti with i ∈ [n] respectively. Thus,
the minimal cost provided by G′

f can be written as:

c(E′
f ) =

∑
i∈[n]

(c(Ei) + ci) (3.2)



3. Replication Network 11

Figure 3.3

We note how min{c1, . . . , cn} ≤ 1
n ·

∑
i∈[n] ci and we use this knowledge to ap-

ply the following transformations to the costs resulting from using our simplified
approach:

c(Ef ) + c(p(v, Vf )) ≤ c(Ef ) + min{c1, . . . , cn}

<
∑
i∈[n]

(c(Ei) + ci) + min{c1, . . . , cn}

=
∑
i∈[n]

c(Ei) +
∑
i∈[n]

ci +min{c1, . . . , cn}

≤
∑
i∈[n]

c(Ei) + (
n+ 1

n
) ·

∑
i∈[n]

ci

< (
n+ 1

n
) · (

∑
i∈[n]

c(Ei) +
∑
i∈[n]

ci)

= (
n+ 1

n
) ·

∑
i∈[n]

(c(Ei) + ci)

= (
n+ 1

n
) · c(E′

f )

(3.3)

Recognizing that max{n+1
n |n ≥ 2} = 3

2 , we could show that α from equation 3.1
always stays below 3

2 for any n ∈ N thereby proving according to theorem 3.2
that α < 3

2 .
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3.3 Fixed vs. Dynamic Replication Network

We have seen that the cost of using a fixed replication network lies within 3
2

times the cost of a dynamic replication network with many cases being below
this worst-case.
While the costs of write operations in a fixed replication network may exceed the
same costs of a dynamic replication network, the fixed case has other potential
advantages. Firstly, the solution is easier to compute and requires less storage
overhead while also getting rid of the need for a lookup overhead during runtime
at every node for it to recognize in which situation it is currently in. Secondly
and most importantly, every write operation travels along the same set of edges
in the fixed Steiner tree that connects the replica nodes. This means that the
network costs would not increase if we just designated every node on the Steiner
tree as a replica node. Doing this offers us the benefit of decreasing overall read
costs because we now offer more and potentially closer replica nodes for read
operations while not increasing write costs at all. This also offers the possibility
to come up with algorithms that create Gf at the same time as they are exploring
the correct nodes to put in H(f). Even though this thesis does not deal with the
effects of mutual exclusion and simultaneous writes, the mentioned second point
also provides the opportunity to implement a mechanism to detect simultaneous
writes since write updates are bound to meet on the tree spanned by the fixed
replication network.



Chapter 4

Algorithms

Having established the fact that we wish file updates to be distributed to all
replica sites in an aggressive manner via a replication network, we still need a
way to decide on appropriate nodes that should serve as replica sites for a file.
As mentioned in [4, 7, 8] most available research only focuses on minimizing read
accesses with respect to limited storage space per node and other considerations.
While the approaches described in [7, 8, 9, 10] try to offer mechanisms for efficient
data consistency methods in updatable datasets, they still only work on top of
given replica sites. In the last chapter we assumed to already be given H(f) for
a file f . However, we still need an efficient way to determine H(f) for every file.
We also know that ideally Gf forms a Steiner tree for all nodes in H(f). The tree
structure of the fixed replication network Gf then allows us to use every node of
Gf as a replica site for f such that H(f) = Vf .
We wish to consider the nodes’ update behavior already during replica placement
in order to choose every file’s replica sites such that the resulting replication net-
work serves to minimize total network cost.

The total network cost consists of both total read and total write costs in
our network.

Definition 4.1 (Total Read Cost). As established before, whenever a node v ∈ V
wants to access a file f ∈ F , it gets that file from its closest replica site for a read
cost of c(p(v, h(v, f))) to the network. If the node v serves itself as a replica site
for file f , i.e. if v ∈ H(f), then the resulting read cost is 0.
This yields our formula for the total read costs in the whole network:

TotalReadCost =
∑
f∈F

∑
v∈V

η(v, f) · c(p(v, h(v, f)))

Assuming Gf = (Vf , Ef ) represents the subgraph of G that models our repli-
cation network for a file f ∈ F , then we can use Gf to define write costs.

Definition 4.2 (Total Write Cost). As discussed in chapter 3, whenever a node
v ∈ V wants to write or update a file f ∈ F , it sends the updated file to the

13
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closest replica site h(v, f) from where it gets further distributed along all the
edges of Gf to all nodes in H(f).
The formula for the total write costs is therefore:

TotalWriteCost =
∑
f∈F

∑
v∈V

ω(v, f) · (c(p(v, h(v, f))) + c(Ef ))

We see that the network costs incurred for read operations decrease, the closer
a requesting node is to an available replica site. Conversely, while the write cost
of a simple write operation may also decrease if a closer replica site is reachable,
the availability of that replica site means in turn that it also has to be connected
to the other replica sites via some additional edges in Ef , causing write operations
of other nodes to increase in cost.
We observe how the total costs are each calculated as the sum of the costs of
operations with every file f ∈ F . Since we did not introduce any notion of
dependency between the files, we can assume the creations of the corresponding
replication networks Gf for f ∈ F to also be independent of each other. Without
loss of generality, we can therefore focus our attention on how an algorithm finds
a replication network for a single file. To that end, we introduce CostGf

as a
shorthand for all the read and write costs incurred by operations with a file f
given Gf .

In the selection of appropriate nodes for H(f) and the corresponding creation
of Gf , we wish to strike a balance such as to minimize the sum of read and write
costs, i.e. CostGf

, incurred by operations with f .

4.1 Special Cases

Only considering a single file f ∈ F , we immediately recognize two special cases:

Case |H(f)| = 1:

There exists only one replica site for file f . In this case, a file update doesn’t
have to be distributed to other replica sites and therefore we have Ef = ∅. In
this case, a single read access to f incurs the same costs as a single write access
to f for all nodes because c(Ef ) = 0.

Case H(f) = V :

Here the file is stored on all nodes represented by the vertices in G. The read costs
for f will be 0 for all nodes in the network because we have ∀v ∈ V : h(v, f) = v.
In order for c(Ef ) to be minimal, Gf has to be the Minimum-Spanning-Tree
(MST) of G. The MST is just the special case Steiner tree ST (G,V ) for whose
computation several efficient algorithms are available [14, 15].
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4.2 Simple GreedyNeighbor

In this first step, we propose a very simple and naive implementation of how we
might determine which nodes should belong to H(f) and how we should create
Gf out of G. Our algorithm is based on the observation that, in a fixed replication
network Gf , we can use every node in Vf as a replica site. We therefore have
H(g) = Vf and we may use these terms interchangeably.

To be better able to reason about this and further approaches, we introduce
the notion of neighborhood in our network:

Definition 4.3 (Neighborhood). Given graph G = (V,E) and U ⊆ V , we denote
N(U) ⊆ V as the union of the neighborhoods of all the vertices of U in G. In
the case of |U | = 1, e.g. U = {u}, we just write N(u) for convenience, with N(u)
meaning that ∀v ∈ N(u),∃e ∈ E: e = {u, v}.

Using this, we can now give a description of a first approach to a greedy
algorithm.

Algorithm 1: Simple GreedyNeighbor
1 Ef := ∅
2 Vf := ChooseBest(V )
3 G′

f := Gf
4 while true do
5 W := N(Vf ) \ Vf
6 foreach wi ∈W do
7 v := argminu∈N(wi)∩Vf {c(wi, u)}
8 Tf := (Vf ∪ v,Ef ∪ {wi, v})
9 if CostTf < CostG′

f
then

10 G′
f := Tf

11 end
12 end
13 if Gf 6= G′

f then
14 Gf := G′

f

15 else
16 break
17 end
18 end

The algorithm presented above greedily grows Gf given the underlying net-
work represented by G. Initially, Gf does not have any edges. For the first node,
we call ChooseBest(V) in line 2 of the algorithm. This initializes Vf to only
contain the single node out of V that would have been chosen if we were only
allowed to choose one node as a replica site for f . We continue the initialization
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by storing a copy of the current Gf in G′
f in line 3.

From there, we iteratively grow Gf until we cannot get any more cost-benefits
by adding further neighbors. In each iteration, the neighboring nodes to Vf in G
that are not yet part of Vf are considered as candidates to be added to Gf . These
candidates are represented by the setW in line 5. For each of these candidates, if
one of them has edges to multiple different nodes in Vf , we identify the shortest
of these edges in line 7. We then add the candidate and the corresponding edge
that brought us the greatest cost reduction to Vf and Ef respectively. After
that, we check whether we were able to grow Gf and iterate again until there
is no more neighbor to Vf that would yield any benefit if it were added to the
replication network Gf . Note how every iteration will reduce the costs and we
will therefore never have a situation where our costs are higher than after the
algorithm’s initialization.

4.2.1 Trees

In a first step, we want to show how the algorithm presented in 1 runs on a
restricted set of possible inputs. To that end, we assume for now that G has
the form of a tree, i.e. G has no loops. That fact implies that there is only one
path between any two nodes. This also trivializes the need to find a suitable
replication network Gf between the chosen nodes in H(f).

In order to better reason about this algorithm, we need a way to describe
different partitions of our graph.

Definition 4.4 (Partition). Let G = (V,E) be a graph and let e = {u,w} ∈ E
with u,w ∈ V be an edge in our graph. If e forms a bridge in G, then if e
were removed, G is no longer connected. Now assuming that e is a bridge, we
introduce partG : V × E → P(V ) as the partitioning function for G.
Given the above, partG(u, {u,w}) ⊂ V represents the set of nodes that remain
connected to u in G if the edge {u,w} were removed. Note that partG(u, {u,w})
will always yield a strict subset of V because we assumed e to be a bridge and
we therefore do not have any other paths to connect u and w without using e.

Theorem 4.5. Algorithm 1 will yield the optimal Gf if G is a tree.

Proof. Let s ∈ V be the starting node that was chosen during the algorithm’s
initialization in line 2, i.e. s is the node that yields the lowest costs if we were
only allowed to choose a single node. To prove Theorem 4.5, we need to prove
two different parts. We need to show that our stop condition is sound and that
there is no node other than s that could yield fewer costs in the resulting Gf if
it was used as a starting node instead.
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To prove that our stop condition is sound, we need to show that we cannot
arrive in a situation where it would make sense to continue growing Gf even if
there are no direct neighbors of Gf in G that offer any cost-benefit. Concretely,
there cannot be a configuration that includes all the nodes from Vf as replica sites
that yields lower costs than just using Gf . We investigate the question of when
adding a neighbor offers a cost-benefit. Assume u ∈ Vf ∧ w ∈ N(u) ∧ w /∈ Vf .
The node represented by w is therefore a possible candidate to be added. What
effect does adding w to Gf have on total costs?

• Effect on partG(u, {u,w}): Because w is further away than u, no nodes
in partG(u, {u,w}) will change their desired replica site if they want to
read file f and therefore the read costs will not change for this partition.
However, if they want to write file f then their write update has to be
distributed to w as well and the cost for every write operation increases by
c({u,w}).

• Effect on partG(w, {u,w}): Because w is closer than u to all nodes in
partG(w, {u,w}) they will all change their desired replica site for file f to
w and therefore decrease costs for every read operation by c({u,w}). Costs
for write operations will not change because writes needed to be sent along
{u,w} anyway to reach u even if w were not added.

Note that partG(w, {u,w}) = V \ partG(u, {u,w})

Figure 4.1

It therefore makes sense to add w if the following condition holds:∑
v∈partG(u,{u,w})

ω(v, f) · c(u,w) <
∑

v∈partG(w,{u,w})

η(v, f) · c(u,w) (4.1)

As all our edge weights are strictly positive, we see that the multiplication with
the edge cost does not change the outcome and the question of adding w is there-
fore independent of c(u,w) in this scenario. The greedy algorithm terminates as
soon as the above condition is not satisfied for any neighbor of Vf in G.
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Now assume we added w anyway even though the above condition was not sat-
isfied. Because G is a tree, trying to grow Gf further from w can only decrease
the value on the right hand side of the condition shown in 4.1, while it can only
increase for the left hand side. We therefore know that if the condition did not
hold when we added w, it will also never hold if we try to grow further from w.
Thus it made sense to not add w in the first place and stop growing altogether as
soon as no neighbor offers any cost-benefit, i.e. no neighbor w to a node u ∈ Vf
satisfies condition 4.1.

Further, we need to show that there exists no starting node t 6= s that gives
a better result than starting with s.
Let Gf = (Vf , Ef ) be the subgraph that was found when s was chosen as a
starting node While G′

f = (V ′
f , E

′
f ) is the subgraph that results from using t as

the starting node. We need to differentiate the following cases:

Case t ∈ Vf :

Starting in t, G′
f cannot grow to include nodes from V \ Vf since none of these

nodes can satisfy the condition in 4.1 because they also did not satisfy it when
s was used as starting node. Moreover, we know that G′

f will grow to include
s since the algorithm is guaranteed to include every neighbor that offers a cost-
benefit and we know that the connection between s and t got included in Gf
because it offered lower costs than using s alone which is, in turn, less costly
than using t alone. We now know that V ′

f ⊆ Vf and s ∈ Vf as well as s ∈ V ′
f .

From there, the algorithm will continue to grow G′
f by applying condition 4.1 to

every candidate until eventually Gf = G′
f .

Case t /∈ Vf :

In this case, G′
f cannot grow further away from s because, according to the first

part of our proof from above, these directions cannot become profitable again
since t was already not included in Gf . Therefore, as long as N(V ′

f )∩Vf = ∅, G′
f

can only grow straight towards s. Analogous to the reasoning from the previous
case, upon including the first node from Vf to V ′

f it can and will only grow
up to the bounds of Gf and include all nodes of Gf . Thus we get a G′

f with
V ′
f = Vf ∪nodes(p(t, s)) with nodes(p(t, s)) yielding the set of nodes that appear

in the set of edges represented by p(t, s) and therefore Vf ⊂ V ′
f . Since condition

4.1 did not hold for the additional nodes in V ′
f during the creation of Gf , these

nodes were not beneficial and thus using G′
f as the replication network for f

yields higher costs than Gf .
We see in both cases that, starting in t 6= s, we cannot arrive at a G′

f that offers
a lower total cost than Gf .
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4.2.2 General Connected Graph

We have seen that the presented algorithm yields optimal results if we restrict
ourselves to only allowing trees as valid inputs for G. However, most modern
networks’ backbone infrastructures, especially the internet [16], are not built or
designed after a tree topology. This has many obvious reasons including redun-
dancy concerns and load balancing. Therefore we now no longer assume the
underlying network represented by G to be a tree. We merely require G to be
a connected graph. In comparison to trees, G may now have multiple different
paths between any two given nodes and we could therefore also have loops in
G. This now allows for multiple choices for connections between nodes in Vf .
In particular, partG is not applicable to edges that are part of a loop and the
argument about the condition 4.1 never again being true if we continue growing
Gf may not be valid in all cases. Furthermore, we recognize that the presented
algorithm can only reason about the benefits that the inclusion of neighbors to
Vf might incur while it is oblivious to connections between nodes further away
from Vf . We illustrate the different challenges arising around G being a general
connected graph below. For simplicity, we will assume node u ∈ V to be an
articulation point in G for all of the following examples. That is, if u and all the
edges to its neighbors were removed, then G would no longer be connected.

Switching

We wish to describe the phenomenon of “switching” in the context of an iteration
of algorithm 1. As established before, whenever a node wishes to perform a read
or a write operation with file f , it interacts with the closest replica site. E.g.
h(w, f) = u means that node w interacts with file f via node u. As a new replica

(a) (b)

Figure 4.2: Switching Showcase

site gets added to Vf after an iteration of algorithm 1, some nodes will have a new
preferred, i.e. closest, replica site. However, we only talk of “switching” when
this new replica site was not part of the path to the old replica site. Switching
can therefore never occur in trees because there is only one path between any
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two nodes. However, if we look at the part of a general graph as shown in 4.2a,
we see an occurrence of node w switching from node u over to node v to interact
with file f as soon as v got added as a replica site as seen in 4.2b. In order
for this situation to occur in this fashion, several conditions need to hold about
this part of the network. Firstly, the algorithm must have arrived in a situation
where node u got added as a replica site in 4.2a and the demands for f of all the
participating nodes as well as the edge lengths in G need to be such that node v
got included in Vf in a further iteration of the algorithm. The conditions of the
edge lengths for the given example are as follows:

(i) α < β + γ

(ii) γ < α+ β

(iii) β < γ

Conditions (i) and (ii) explain why nodes v and w chose to contact replica site
u directly via their respective edges to u in 4.2a. The condition in (iii) explains
why node w chose to switch its path to the replication network in 4.2b after v
got included in Vf . In fact, we could even have β < α, in that case, if node w
got included in Vf instead of node v, then node v would be the one to switch its
path to a preferred replica site. We extend the example from above with a new

Figure 4.3

node x and the added condition (iv) α + δ < ε. In this case, if v got included
in Vf in the next step, w would be switching as before but x would not. This is
because x already reached u over a path that led via v.
We now investigate what the effect on read and write costs would be if v were
included in Vf . We see that for all nodes that already reached u via v, i.e. node
x because of (iv), the induced read costs decrease by α per read operation while
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the induced write costs stay the same. This is the same case as was already
shown for trees. Consequently, there could also be further nodes that will re-
main with node u as preferred replica site irrespective of the inclusion of v to
Vf . For those nodes, the read costs would stay the same while the write costs
per operation increase by α. However, if we look at the switching node w, we
can observe more subtle behavior. The read and write costs induced by w (and
every further node only reachable through w) decrease by γ−β per read or write
operation. Yet there is an additional effect on the costs for every write operation.
Write updates now have to go along the edge with length α in order to spread
to the rest of Gf . Therefore the costs per write increase by α. We remember
(ii) γ < α + β ⇐⇒ γ − β < α and see that for write operations, the savings
are smaller than the additional write overhead of α. Therefore, switching nodes
alone with sufficiently more write demand than read demand could never cause
the inclusion of v to Vf according to algorithm 1 because it would only increase
the costs at that step.

While we see this difference in behavior between simple trees as compared to
general graphs, we also make a further observation. If the algorithm presented
in 1 were to be implemented in practice, as long as the underlying network could
be represented as a tree, we could simply use the condition mentioned in 4.1 to
decide for every neighbor of Vf if it is worth to be included in the replication
network. This would allow for a fairly efficient implementation. However, if G is
not guaranteed to be a tree and if switching might occur, then if one wouldn’t
want to have to recalculate all of the costs for every candidate at every iteration, it
would become necessary to use a more sophisticated condition that also mentions
the different edge lengths instead of only comparing demands.

Wrong Choice

In this section we wish to present a fundamental limitation of algorithm 1. The
limitations are inherent to the greedy nature of the algorithm as well as its limited
local knowledge about the graph layout around the neighborhood of Vf . The
occurring problem is further enabled by the aforementioned switching of paths.
Observe the three different instances of a graph shown in figure 4.4. We can think
of the underlying network as showing the connections between two regions of
nodes that are themselves relatively closely connected. We differentiate between
the region consisting of nodes u, v and w and the region consisting of nodes x,
y and z. These two regions might represent two geographically distanced office
locations or any other situation that could explain why the weight of the edges
connecting the corresponding subgraphs is significantly larger than the weight of
any of the other edges. Also note how the edge {u, x} has a weight that is again
significantly larger than the weight of edge {w, z}.
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(a) start (b) wrong (c) right

Figure 4.4

For the purposes of the example, we let none of the nodes have any demand
for file f except for the following:

• Node u: η(u, f) = 100, ω(u, f) = 1

• Node z: η(z, f) = 10, ω(z, f) = 0

Given these demands and edge weights, the algorithm will initialize and choose
node u as a starting node as seen in figure 4.4a. Because ω(u, f) < η(z, f) and no
other demands, we know that it makes sense for the algorithm to grow Gf beyond
only u to also encompass node z no matter the length of the path. Also note that
right after the initialization, node z has its preferred route to replica site u via
the path p(z, u) = {{u, v}, {v, w}, {w, z}} with a total cost of c(p(z, u)) = 103.
However, if we let the algorithm continue, it will add node x to Vf in the first
iteration and continue to grow during further iterations until it reaches node z
as shown in figure 4.4b whereas the replication network presented in figure 4.4c
would have been the optimal choice. We call the replication network found by
the algorithm and shown in blue in 4.4b Gf = (Vf , Ef ) and we conversely call
the replication network depicted in 4.4c G′

f = (V ′
f , E

′
f ). Since all of the nodes

that have any demand for file f , i.e. u and z, are themselves replica sites in
Gf as well as G′

f , we do not have any induced read costs for either of the two
replication networks and we therefore only have to compare the cost of write op-
erations that send their updates along the edges of the corresponding replication
network. With c(Ef ) = 1002 and c(E′

f ) = 103 we recognize that our algorithm
gave a result that is close to 10 times as costly as the optimal result. We will go
on to investigate how the algorithm chose such a path and what this means for
its approximation ratio compared to an optimal solution.
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Comparing figure 4.4a to figure 4.4b we note that the algorithm must have in-
cluded node x in Vf in the first iteration after the initialization whereas node
v would have been on the optimal path. We therefore know, by the design of
the algorithm, that it must have been more beneficial to include node x in that
iteration and we go on to compare the effects of including either of these two
nodes.

• Inclusion of node v:
We see that h(z, f) changes to node v. Therefore we reduce the costs of a
single read operation of node z by 1 and we save 10 in read costs compared
to the initial state. The inclusion of edge {u, v} to Ef causes u’s write cost
to rise by 1 for every write operation. Since ω(u, f) = 1, we therefore have
total cost savings of 9 in the first iteration.

• Inclusion of node x:
The inclusion of edge {u, x} to Ef causes a total increase in write costs of
1000. However, since c(p(x, z)) < c(p(u, z)) this will cause node z to switch
such that in the end h(z, f) = x. This yields savings of 10 · (c(p(u, z)) −
c(p(x, z))) = 1010 over all read accesses performed by z. We therefore have
total savings of 10 > 9.

We see how the algorithm decided on this by the greater immediate savings it
could gain while only having knowledge about the effects of the possible inclusion
of direct neighbors to u.
Admittedly, the respective edge lengths and demands for file f were chosen such
as to illustrate a worst-case scenario with that combination. Also the larger the
difference in weights of the two edges between the two regions in the graph, the
more unlikely it is for such a network to exist in practice.
However, we may still show how this problem causes the algorithm to possibly
deliver results whose costs do not lie within a constant factor of the costs of an
optimal result.

Theorem 4.6. The resulting Gf of algorithm 1 yields costs for operations with
file f that do not lie within a constant factor of the costs of an optimal solution.

Proof. We again look at the graph shown in figure 4.4a yet we assume c(u, x) = α
and c(w, z) = β. Since we know that node z will be included anyway be-
cause η(z, f) > ω(u, f), we only have to find out how much longer we could
make the path {{u, x}, {x, y}, {z, z}} compared to the shortest path p(z, u) =
{{u, v}, {v, w}, {w, z}}. Because both paths contain two separate edges each
with a weight of 1, we will only focus on the edges {u, x} and {w, z} respectively.
We saw that the switching of z to x caused an increase in write costs that was
just set off by the decrease in read costs such that the total savings were just
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more than if the algorithm would have chosen to include v instead of x. In order
for this to be true we need to satisfy

η(z, f) · 1− ω(u, f) · 1 < η(z, f) · (β + 2− 2)− ω(u, f) · α (4.2)

where the left hand side represents the savings incurred by adding v to Vf and
the right hand side represents the same for node x.
If we now let n be any arbitrarily large integer, we may choose β = 2 and
α = 2n. In order to still satisfy the above condition we can choose ω(u, f) = 1
and η(z, f) = 2n. Substitution yields

2n− 1 < 2n (4.3)

We see how the difference in costs between the solutions represented by figure
4.4b and figure 4.4c respectively can be completely described by α and β. With
our choice of α and β we get 2n+2

2+2 = n+1
2 as the ratio between these costs. Since

we can choose an arbitrarily large n, this ratio can also get arbitrarily large. We
therefore know that the algorithm’s resulting cost does not lie within a constant
factor of the optimal cost as had to be proven.

As a side note, for the above problem to occur on the given graph, we im-
plicitly assumed η(u, f) to be sufficiently large such that u gets chosen as the
starting node during the algorithm’s initialization.
Even though such a situation becomes ever more unlikely for ever-larger differ-
ences in path lengths to be encountered in the real world, we still acknowledge
that algorithm 1 therefore cannot be used on general graphs.
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4.3 GreedyNeighbor on Shortest Paths

In order to find a way around the problem stated in theorem 4.6 we adjust the
algorithm from 1 to only consider neighbors as candidates to be added to Gf if
the edge that connects the current node from Vf to that neighbor, lies on the
shortest path between that neighbor and Vf .
More concretely, assume u ∈ Vf and C ′

u = N(u) \ Vf 6= ∅. This means that the
set C ′

u contains at least one neighbor of u that might be a potential candidate to
be added to the replication network. However, we might only consider a subset
of C ′

u as real candidates, namely only the neighbors of u whose edge to u also
lies on the shortest path to u: Cu = {w|w ∈ C ′

u ∧ {u,w} ∈ p(u,w)}.

This yields the following algorithm:
Algorithm 2: GreedyNeighborSP
1 Ef := ∅
2 Vf := ChooseBest(V )
3 G′

f := Gf
4 while true do
5 W := N(Vf ) \ Vf
6 foreach wi ∈W do
7 v := argminu∈N(wi)∩Vf {c(wi, u)}
8 if {wi, v} /∈ p(wi, v) then
9 continue

10 end
11 Tf := (Vf ∪ v,Ef ∪ {wi, v})
12 if CostTf < CostG′

f
then

13 G′
f := Tf

14 end
15 end
16 if Gf 6= G′

f then
17 Gf := G′

f

18 else
19 break
20 end
21 end

The necessary restrictions outlined above are described in algorithm 2 on the
lines 8 to 10. Concretely the algorithm now ensures that if there is a neighbor
v ∈ N(Vf ) \ Vf then that neighbor will only be evaluated as a possible candidate
if the shortest edge connecting Vf to v (ensured on line 7) also lies on the shortest
path from Vf to v. If not, the consideration of v as a possible candidate will be
skipped in this iteration (line 9). While it might still be beneficial to include v
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in Vf , this will now only happen if v is reached via a shortest path. This change
now inhibits the occurrence of problems like those described in figure 4.4.

Furthermore, the introduced check can only restrict our choice if other paths
to that neighbor exist. If G were a tree, then there are no nodes between which
there are multiple paths. Thus our new algorithm works equivalently to our
original algorithm from 1 if G is a tree and therefore our new algorithm is also
optimal on trees.

4.3.1 Unnecessary Replica Sites

Having dealt with that problem, we are still left with other adverse effects that
are caused by switching on general graphs. We saw that if a node switches to
another path to reach its new closest replica site, that the earlier path is now left
unused by that and possibly more nodes.

(a) (b)

Figure 4.5

To further illustrate this problem, we might imagine a graph as depicted in
figure 4.5a with the following demands for the nodes:

Node η ω

u 100 50
v 0 0
w 51 0
x 3 0
y 49 0

Algorithm 2 will initially start with node u (step not shown). After that it
will consider the nodes N(Vf ) = N(u) = {v, x} as candidates for the first iter-
ation. We know because of ω(u, f) < η(w, f) and because node u is the only
node with any write demand, that the algorithm will eventually go on to in-
clude node w in Vf . However, while only evaluating v and x, the algorithm
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decides to include x as shown in figure 4.5a because it offers the greater bene-
fit at that moment. The choice of x satisfies the combined demands of x and
y, i.e. η(x, f) + η(y, f) = 52 whereas if node v had been chosen it would only
satisfy w’s demand η(w, f) = 51 < 52 for the same cost. Note that the neither
demand of x nor y alone would have offset the incurred costs of the inclusion of
x. Also note how there did not yet occur any switching up to that point. As
stated before the algorithm will go on to include node w and terminate after the
situation depicted in figure 4.5b is reached. We recognize how upon the inclusion
of w, node y switches to replica site w and therefore redirects the traffic. Now
the replica site w serves its own demand of 51 and y’s demand of 49 whereas
replica site x is left to only serve its own demand of 3. This means that even
though the algorithm already terminated and chose earlier on to include node x
as a replica site, that it would now yield a cost-benefit if node x could be removed
from Vf . Concretely, having x ∈ Vf like in figure 4.5b saves x’s total read costs
of η(x, f) ·c(u, x) = 3 and introduces the costs of ω(u, f) ·c(u, x) = 50. Therefore
if node x were removed from Vf , 47 could be saved from the total cost, yielding
CostG′

f
= 349 compared to CostGf

= 396 resulting from algorithm 2.

We therefore face the problem that the occurrence of switching during later
iterations in algorithm 2 might make entire parts of Gf , that were included earlier
on, obsolete, needlessly increasing the total cost CostGf

.

4.3.2 Early Termination

We stated above how algorithm 2 would inevitably go on to include w because
ω(u, f) < η(w, f). If we now go on to change η(w, f) to 49, the aforementioned
condition no longer holds. This will lead us on to discover a much more severe
problem involving the algorithm failing to discover all nodes that lower the total
cost. Given that assumption, algorithm 2 will terminate after it reaches the state
shown in 4.5a. This yields CostGf

= 442 upon termination whereas the optimal
cost of 349 remains the same. In this particular case, this happens because the
algorithm will never include node v since the demand it carries is not sufficient
to offset the cost of including it.
In a more general setting, we may describe the problem as follows. In every
iteration, as the algorithm tries to grow Vf , it may only know about the demands
that are directly incoming via the respective shortest paths to nodes in Vf as well
as about the effects of switching that may occur as it considers each candidate.
However, it cannot know about the effects of switching that may occur later
on and could therefore miss out on potential future benefits. In the concrete
presented case, the algorithm could not know that the later inclusion of w would
cause y to switch and yield benefits because it never came to consider w as a
candidate since we never had w ∈ N(Vf ).
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Figure 4.6

We use the specific graph shown in figure 4.6 to learn more about the specific
conditions that need to be fulfilled in order for the algorithm to terminate early.
We will again assume that after initialization we have Vf = {u}. In order for that
to be the case, we can merely think of η(u) being large enough. We further assume
that the algorithm will not go on to include any of the neighbors {v, x} and
terminate early. However, the choice of V ′

f = {u, v, w} with E′
f = {{u, v}, {v, w}}

would have been optimal.
Since the algorithm terminates with only Vf = {u} we know that neither of the
neighbors of u, if they were included, could have served enough read demand
such as to offset ω(u). We therefore know that either using {u, v} or {u, x} as
replica sites would have increased the costs for operations with f . V ′

f being the
optimal case shows that after the inclusion of v, node w was viewed as a viable
candidate that, in addition to serving its own demand, could also serve as replica
site for node x when x switches over to w. That being the case, we see that w
chose to reach replica site h(w, f) = u through v right after the initialization
phase because otherwise enough demand would have been routed through x such
as to justify the inclusion of x. We therefore know the following:

(i) γ + δ < α+ β
because p(u,w) = {{u, v}, {v, w}} right after initialization

(ii) α < β + γ + δ
because otherwise v would have been included

We may further assume that no switching occurs during the consideration of
either v or x since they would otherwise have been included.

(iii) γ + δ < β
because v and w do not switch if x were included (stronger (i))

(iv) α < β + δ
because x does not switch if v were included (stronger (ii))
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(v) η(x, f) < ω(u, f) + ω(v, f) + ω(w, f)
because of (iii) and because x was not included

(vi) η(v, f) + η(w, f) < ω(u, f) + ω(x, f)
because of (iv) and because v was not included

(vii) β < α
because x switches to w as soon as w gets included

Having the above as the necessary conditions for the problem of early termination
to occur in the depicted situation, we see that the optimal solution extracts its
cost-benefit from x’s switch to a closer replica site and from the fact that the
read demands of v and w are being served directly.
We can use this knowledge to create a situation with yet another obstacle.

Figure 4.7

We again assume node u’s read demand to be large enough such that it is the
starting node. Further we have η(y, f) = η(w, f) = ω(u, f)− 1 and α arbitrarily
large. We again see that algorithm 2 will just terminate early and will neither
include node v or x. This is because the demand served on the respective path is
too low to offset the additional write costs and because none of the other nodes
would switch, and thereby reinforce, to another path upon inclusion of either v
or x. Thus the cost resulting from algorithm 2 are

CostGf
= (η(w, f) + η(y, f)) · (α+ 1) (4.4)

However the optimal solution would be to either also include {x, y} or {v, w}.
Given the latter as an example for an optimal solution G′

f , the total costs would
be

CostG′
f
= ω(u, f) · (α+ 1) + η(y, f) (4.5)
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Given these costs and necessarily η(y, f) < ω(u, f), we see that, in the graph
shown in figure 4.7, the costs CostGf

resulting from the algorithm will stay
below a factor of 2 times the costs CostG′

f
of an optimal solution.

CostGf

CostG′
f

=
(η(w, f) + η(y, f)) · (α+ 1)

ω(u, f) · (α+ 1) + η(y, f)

=
2 · η(y, f) · (α+ 1)

ω(u, f) · (α+ 1) + η(y, f)

<
2 · η(y, f)
ω(u, f)

<
2 · η(y, f)
η(y, f) + 1

< 2

(4.6)

Thus far, the situation depicted in 4.7 and the occurring problem are relatively
similar to the situation shown before. However, the additional node on the path
between u and w through x now allows us to make the following claim.

Theorem 4.7. For certain types of underlying graphs G algorithm 2 yields a
replication network Gf whose induced cost CostGf

can be arbitrarily larger than
CostG′

f
provided by an optimal replication network G′

f .

Proof. To prove theorem 4.7 we extend the graph from figure 4.7.

Figure 4.8

We now have up to n paths between u and w through xi and yi for i ∈ [n]. We
can follow a similar argument as before in first assuming α to be arbitrarily large
and ∀i ∈ [n] : η(yi, f) = ω(u, f)− 1 and also η(w, f) = ω(u, f)− 1. Additionally,
we again have η(u, f) large enough such that u is chosen as the starting node.
If we didn’t have both xi and yi on their respective path between u and w but
instead a direct edge between u and some yj (similar as before in 4.6), then at
some large enough n the algorithm would have included yj and the other yi with
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i 6= j would switch over to yj thus putting an upper bound on the algorithm’s
worst-case result.
However, in the situation as seen in figure 4.8, we can follow the exact same
reasoning as before for an arbitrarily large n. The algorithm again produced
Gf = ({u}, ∅) whereas an optimal solution could have been provided by G′

f =
({u, v, w}, {{u, v}, {v, w}}). We see how we could cause up to n nodes to switch
if only we grew Gf up to either w or some yi with i ∈ [n]. More plainly, con-
sidering the relationship between the given demands, we can make the following
transformations:

CostGf

CostG′
f

=
(η(w, f) +

∑
i∈[n] η(yi, f)) · (α+ 1)

ω(u, f) · (α+ 1) +
∑

i∈[n] η(yi, f)

=
(η(w, f) + n · η(y1, f)) · (α+ 1)

ω(u, f) · (α+ 1) + n · η(y1, f)

=
(n+ 1) · η(w, f) · (α+ 1)

(η(w, f)− 1) · (α+ 1) + n · η(w, f)

(4.7)

Consequently, for large α and large η(w, f) we have

lim
(α,η(w,f))→(∞,∞)

(n+ 1) · η(w, f) · (α+ 1)

(η(w, f)− 1) · (α+ 1) + n · η(w, f)
= n+ 1 (4.8)

To allow for large η(w, f) and large α without causing the algorithm to choose
another node than u as a start node, we just assume η(u, f) to be even larger
in turn. Nonetheless, we see how, in such a situation, the resulting CostGf

approaches n + 1 times the optimal costs CostG′
f
with n being the number of

additional paths between nodes u and w. Therefore we do not have a fixed
approximation ratio for the costs caused by the resulting Gf from algorithm
2.

Since a situation similar to the one depicted in figure 4.8 might indeed occur
in the real world where lots of redundant connections are very widespread, we
cannot use algorithm 2 on general graphs.
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4.4 GreedyGlobal

The algorithms presented up to now were a very natural way of probing different
techniques to grow Gf on top of a given graph G. However, we clearly identified
limitations to the proposed strategies on general graphs. We noticed that only
being able to reason about the effects of including nodes in N(Vf ) in each iteration
makes it impossible to give reasonable estimations about the consequences to
CostGf

that might or might not have occurred otherwise. Therefore we need
a way to look further than just within N(Vf ). After what we learned in the
subchapter where we described how algorithm 1 might make the wrong choice we
know that we should clearly follow growth directions that form a shortest path.
This consideration leads us to the following algorithm.

Algorithm 3: GreedyGlobal
1 Ef := ∅
2 Vf := ChooseBest(V )
3 G′

f := Gf
4 while true do
5 W := V \ Vf
6 B := N(W ) ∩ Vf
7 foreach bi ∈ B do
8 foreach wj ∈W do
9 Tf := (Vf ∪ nodes(p(bi, wj)), Ef ∪ p(bi, wj))

10 if CostTf < CostG′
f
then

11 G′
f := Tf

12 end
13 end
14 end
15 if Gf 6= G′

f then
16 Gf := G′

f

17 else
18 break
19 end
20 end

The initialization phase is the same as in algorithm 1 and 2. We again try to
grow the graph in a greedy manner. At every iteration, the algorithm evaluates
all possible shortest paths from nodes in Vf to nodes in the rest of the graph and
includes the nodes and edges on the path that yields the greatest cost-benefit.
In line 5 we store all nodes outside of Vf in W . Consequently in line 6 we store
all nodes from Vf that have neighbors outside of Vf in B, i.e. B contains the
nodes on the ”border“ of Vf . In lines 7 to 14 we evaluate every possible shortest
path and include the best path found in that iteration. The above specification
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merely serves as a description as to how the algorithm works while a real-world
implementation could take advantage of several possible optimizations.

4.4.1 Trees

If we think about how this new algorithm works on trees in every iteration we see
how, whenever a path and all its nodes get included, the resulting Gf from that
iteration is similar to the Gf ’s produced by several iterations of algorithm 1 or 2.
However, the other algorithms might also have had some iterations where they
grew Gf along different branches therefore performing the steps in a different
order. Yet including all viable nodes in any order will always produce the same
result on a tree since there are no loops and nodes cannot suddenly switch to a
new replica site on a different branch. Because algorithm 3 simply includes nodes
in a different order but uses the same mechanism to determine the viability of a
node, it therefore produces the same result as algorithms 1 and 2 on trees and is
consequently also optimal thereon.

4.4.2 General Connected Graph

Recalling both the examples from figure 4.5 and 4.8 we see that at least in these
specific cases algorithm 3 would have produced the optimal result albeit with
more computational effort put into a single iteration. This is because at every
iteration algorithm 3 has knowledge of every shortest-path-tree rooted at any of
the nodes in Vf and can reason about including any of those trees’ branches or
parts thereof. It would therefore know that e.g. in the example from 4.5 it could
include nodes v and w since p(u,w) = {{u, v}, {v, w}} is part of the edge set
of the shortest-path-tree rooted at u and it would favor this choice instead of
the inclusion of the unnecessary node x. However, we must keep in mind that
knowledge of this subset of all shortest-path-trees in G is still not sufficient to
reason about all possible effects.

Limitation

If we look at the situation depicted in figure 4.9a where we start with Vf = {u}
right after the initialization of the algorithm, we see that there exist two different
paths to reach node w from node u. Further we have ∀e ∈ E : c(e) = 1. Note
how we only have n− 1 nodes in between u and w on the path on the left hand
side while we have n nodes in between on the right hand side. Since the shortest-
path-tree rooted at u has no knowledge of the edge {w, yn} we can only include
up to n nodes in the first iteration of algorithm 3.
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(a) start (b) wrong (c) end

Figure 4.9

These n nodes could either consist of the nodes on the path on the left hand
side from u up to and including node w or they could consist of the nodes on the
path on the right hand side from u up to and including node yn.
Suppose node u is the only node with any write demand for f and further
ω(u, f) < η(w, f). We also let all the nodes on the right hand side path have the
same read demand, ∀i, j ∈ [n] : η(yi) > 0∧η(yi, f) < ω(u, f)∧η(yi, f) = η(yj , f).
We go on to calculate the costs savings potential if the algorithm decided to in-
clude either of these maximum length paths. We note that since node u is
the only node with write demand and because the two paths are both of cost
c(p(u,w)) = c(p(u, yn)) = n that the incurred write costs would be the same for
both choices. Therefore we only have to compare the possible savings on read
costs. As seen in equation 4.9, the savings upon including the nodes on the right
hand path consist of savings incurred by the switching of w to yn and the fact
that all the nodes yi, for i ∈ [n], can now serve themselves and no longer have to
contact node u.

SavingsRHS = (n− 1) · η(w, f) +
∑
i∈[n]

(i · η(yi, f))

= (n− 1) · η(w, f) + η(y1, f) ·
∑
i∈[n]

i

= (n− 1) · η(w, f) + n · (n+ 1)

2
· η(y1, f)

(4.9)
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Conversely, equation 4.10 shows the savings incurred upon including the nodes
on the path on the left hand side. For ease of calculation we may assume, without
loss of generality, that n is even. These savings consist of node w now being able
to serve its own demand and additionally, half of the nodes on the right hand
path will switch to w and thus save n

2 on average per read access.

SavingsLHS = n · η(w, f) +
∑
i∈[n

2
]

(
n

2
· η(yi, f))

= n · η(w, f) + (
n

2
)2 · η(y1, f)

(4.10)

Now assume we have SavingsRHS < SavingsLHS and the algorithm therefore
decides to include the left hand path as shown in figure 4.9b.

SavingsRHS < SavingsLHS

⇐⇒ (n− 1) · η(w, f) + n · (n+ 1)

2
· η(y1, f)) < n · η(w, f) + (

n

2
)2 · η(y1, f)

⇐⇒ n · (n+ 1)

2
· η(y1, f)) < η(w, f) + (

n

2
)2 · η(y1, f)

⇐⇒ 2n · (n+ 1)− n2

4
· η(y1, f)) < η(w, f)

⇐⇒ n

2
· (1 + n

2
) · η(y1, f)) < η(w, f)

The algorithm will make this choice as long as η(w, f) is more than n
2 · (1 +

n
2 )

times the value of any of the pairwise equal yi’s read demand
Note how under the above condition there is nothing to prevent us from assuming
that ∀i ∈ [n] : ω(u, f) < η(yi, f). This would guarantee that after the inclusion
of w via the left hand path algorithm 3 would continue to include all of the nodes
yi for i ∈ [n] in the following iterations and reach the state depicted in 4.9c.
Obviously, since all of the yi were included anyway, the optimal choice would
have been to choose the right hand path in the first iteration and then go on to
include w in the second iteration right before termination. We call this optimal
result G′

f with V ′
f = {u,w, y1, . . . , yn} and c(E′

f ) = n+1. The algorithm however
provides a solution Gf with Vf = V and c(Ef ) = 2n.

lim
n→∞

c(Ef )

c(E′
f )

= lim
n→∞

2n

n+ 1
= 2 (4.11)

This therefore serves as an example that there exist situations for which algorithm
3 may produce results that are close to twice as costly compared to an optimal
solution.

Note how the algorithm produced Vf = V which is a special case discussed
in subchapter 4.1. In our example, the algorithm did not include the last edge
to prevent a cycle from forming such that Gf became a Minimum-Spanning-
Tree of G. However if one of the other edges e ∈ E would have been a little bit
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costlier, e.g. c(e) = 1+ε, then the resulting Gf would not have been a Minimum-
Spanning-Tree. This could be easily remedied via introducing a check at the end
whether indeed Vf = V and just outputting a Minimum-Spanning-Tree of G as
Gf .

As a side note, for large enough n, the algorithm would still continue to in-
clude many of the yi even if we had ∀i ∈ [n] : η(yi, f) < ω(u, f) since the demand
of multiple nodes yi incoming through a single path could still offset the costs
caused by ω(u, f).

One may also think about several optimizations or additional checks for algo-
rithm 3 to be able to satisfyingly recognize and prevent the displayed behavior.
However, those checks would need to become increasingly more complex if one
could not just simply discard some nodes after an iteration (they may become
useful for later connections or switches) or if one thinks about how loops within
other loops of a graph might behave.
The same counts for fixes to algorithm 2 for the problem presented in subchapter
4.3.1. Such fixes would quickly need to explore all possible paths between nodes
while avoiding loops leading to the effort put into those fixes quickly becoming
exponential in nature and thereby defeating the purpose of finding a reasonable
approximation algorithm.

Upper Bound

We continue to state Gf as the result of algorithm 3 and G′
f as an optimal solu-

tion. With the example just presented above we know that the upper bound for
CostGf

CostG′
f

is surely not lower than 2.

Recalling that an optimal Gf should form a Steiner tree for H(f) ⊆ V on G,
we look back on our mention of [13] in subchapter 3.2. The authors create an
approximated Steiner tree on G for S ⊆ V by always connecting the next closest
vertex remaining in S to the already included vertices via the shortest path. The
resulting tree approximates the sum of the costs of the included edges by a factor
of at most 2 of an optimal Steiner tree. This approach is reminiscent of algorithm
3 in its style and greedy behavior. However, the important difference is that we
do not know H(f) (or S in the authors’ case) beforehand but we try to identify
H(f) and the way its nodes should be connected within G as we go along in the
algorithm. Attempts to adapt the algorithm and proof from [13] for our purposes
sadly weren’t successful.
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We deem that in order for algorithm 3 to give a result with CostGf
higher

than 2 ·CostG′
f
, it would need to include a path P ⊂ E, that makes one or mul-

tiple other paths already included in Gf superfluous. Those other paths would
further need to have a totaling cost larger than c(P ) because we would other-
wise stay within a 2-approximation. We were not able to find such an example,
however we were sadly also not able to come up with a definitive proof that guar-
antees that always

CostGf

CostG′
f

< 2.

Having to consider all possible interactions and how multiple nodes might
interfere with their write demands and how switches might occur at any possible
future point in time presents a considerable challenge in coming up with a proof
in a natural way. However, to conclude we state our intuition as to why we
think the upper bound to our resulting costs might indeed be 2. To this end, we
continue our reasoning from above concerning the mentioned path P . If we can
indeed assume (as is not proven) that the algorithm can only perform worse if
P is included at a point in time where it makes enough other nodes and edges
redundant, then it had to be the case that the possibility of including P only
just appeared after the last iteration. Otherwise, P would already have been
included earlier on as an extension of another path, thus not being able to make
enough other nodes superfluous because they were not yet included. If P only
just appeared as a possibility to be included, then this means that P was not part
of any of the edge sets of any of the shortest-path-trees rooted at any node in Vf .
This would mean that at least one edge e ∈ P would need to have been in a loop
of G but undetected by all shortest-path-trees (like edge {w, yn} in figure 4.9a).
As seen above, it might happen that all nodes within such a loop get included
in Vf but this worst-case is still bounded by an approximation factor of 2. We

therefore believe that indeed
CostGf

CostG′
f

< 2 yet without having a proof to definitely

show it.
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Conclusions and Future Work

In this thesis we tried to come up with a replica placement algorithm that also
considered the spreading of write updates as a criterion. To that end, we first
explored different ways to efficiently distribute updated files in chapter 3. We
then went on and investigated different possible algorithms for replica placement
in chapter 4 that were all focused on greedily growing an appropriate replication
network.

• Simple GreedyNeighbor
This first algorithm follows the natural idea to always include the next
node that yields the greatest cost-benefit. However, the problem discussed
in subchapter 4.2.2 concerning the algorithm making the wrong choice in
some instances left us to abandon this mechanism.

• GreedyNeighbor on Shortest Paths
While this algorithm is an extended version of the one before that fixes the
mentioned problem, it still suffered from not being able to reason about the
switching behavior of nodes not neighboring the already explored area.

• GreedyGlobal
In the end, we presented yet another algorithm that is able to evaluate all
shortest paths extending from the already explored area to the rest of the
graph. This lets us reason about the possible inclusion of all nodes in the
graph. However, the algorithm lacks knowledge of edges that do not lie
on shortest paths. This led to the discovery of a case where the algorithm
gives a result with costs close to 2 times the optimal costs.

While the first two algorithms were failed because they could not efficiently deal
with effects that might or might not occur during the further exploration of yet
undiscovered nodes, the third algorithm did not show any behavior that might
indicate it producing a result with costs larger than 2 times the optimal costs.
In the end, we gave some intuition as to why we think the last algorithm might
indeed never perform worse than in the presented example.

38
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With the ever-growing needs and demands for interconnectivity as well as
with increasing file sizes and new technologies it remains to be seen what pos-
sible mechanisms might be looked into to enable large-scale file sharing. It is
certain that with the popular move to the cloud, even outside the realm of scien-
tific research and read-only datasets, there will need to be new ways to account
for the costs of update propagation

While we can clearly state that the continued search for a proof for the ap-
proximation ratio of algorithm 3 will give a sensible impression how well we might
perform within the confines of the described model, we should also talk about
the limitations of said model. Overall lots of the simplifying assumptions are not
well grounded in reality and it remains to be seen whether investigations into
lifting some of these assumptions get along well with the rest of the presented
theories. The points to be considered include:

• The presented model has no concept of simultaneous accesses or read after
write dependencies. It was shortly mentioned in subchapter 3.3 how a
fixed replication network might be of use to detect simultaneous writes. A
mechanism is needed for this detection as well as a strategy for dealing with
this event.

• In a real-world setting, we would need to account for a much more dynamic
scenario where files are created and deleted and where demands and gen-
eral access patterns change over time. This could be dealt with via the
introduction of some heuristics that periodically resample access patterns
and translate them to demands for specific files.

• The introduction of time allows differentiation in access times and a more
specific notion of bandwidth as edge weights. For example, if nodes are in
geographically different regions, it may be possible to steer away from an
aggressive-copy mechanism as means for update distribution between those
regions and thus save on write costs.

• The fixed replication network Gf uses every node within it as a replica site
for f . This was only possible because we assumed no additional overhead
and merely focused on the induced network costs. Furthermore, not all
nodes might represent systems with enough storage capacity for us to just
assume that we never run out of space. Were this the case, then replica
placement for large read-only datasets were as simple as just storing every-
thing everywhere. This assumption was introduced to allow us to focus on
finding a balance between read and write costs. However, this assumption
cannot hold for every dataset on every set of nodes.
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