
Distributed

 Computing

Evolutionary Methods for Sequences
Bachelor’s Thesis

Tung Nguyen

nguyetun@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Ard Kastrati

Prof. Dr. Roger Wattenhofer

July 31, 2021

Acknowledgements

I would like to thank my supervisor Ard Kastrati for supervising my thesis and his con-
tinuous support throughout the semester. Furthermore, I thank Prof. Roger Wattenhofer
and his Distributed Computing Group at ETH Zürich for giving me the opportunity to
do this exciting thesis. Lastly, I would like to thank my dear friend Dimitri von Rütte for
helping me with process automation by introducing me to shell scripts. This saved me a
lot of time during experimentation.

i

Abstract

Despite the fact that machine learning being a reliable learning and adaptive technology,
these methods however fail at seemingly simple problems such as sequence prediction. We
created a context-free grammar to build a program that generates polynomials based on
this grammar. With a naive polynomial generation algorithm as our starting point, we
implemented a genetic algorithm on top that would predict the polynomial that produces
a sequence of integers that matches the given sequence. Experimental results show that
the evolutionary method clearly outperforms the naive approach and is thus a superior
method for sequence prediction.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 1

2 Background 3

2.1 Context-Free Grammar . 3

2.2 Combinator Expressions . 4

3 Building the program 5

3.1 Non-Evolutionary Generation . 5

3.1.1 The Library . 5

3.1.2 Generate Function . 6

3.1.3 Finding the Sequence . 9

3.2 Evolutionary Generation . 9

3.2.1 Mutation and Crossover . 10

4 Theoretical Approach 13

4.1 Deriving the Probabilities . 13

4.2 Computations . 14

4.2.1 Length 0 polynomials . 15

4.2.2 Length 1 polynomials . 15

4.2.3 Length 2 polynomials . 18

5 Experiments 23

5.1 Non-Evolutionary vs Evolutionary . 23

iii

Contents iv

5.2 Hyperparameter tuning on short polynomials 27

5.3 Hyperparameter tuning on longer polynomials 28

6 Conclusions 32

Bibliography 33

Chapter 1

Introduction

1.1 Motivation

Consider a sequence of numbers starting with 2, followed by 4 and 6. What is the next
number? The answer is not 8 but 14 and the formula to the solution is x3− 6x2+13x− 6.
But if this question is asked to anyone, everyone will answer 8. But why 8?

We know that Machine Learning is one of the technologies that has made the most
impact in recent years. However, machine learning models such as the ones used in deep
learning require a large amount of data and seemingly simple problems as above are already
difficult for them.

Most people would answer that the fourth number followed by 6 is 8, because it is the
most simple answer and if you were asked to give the formula to the solution, again most
people would say 2x due to the fact that 2x is short and easy to write. Note that 2x+x−x
would also be a valid solution, but no one will give such an answer.

Seeing and recognizing simple solutions by removing redundancies or simplifying the
problem is an ability where we humans can perform with ease while machine learning
models mostly struggle to recognize these patterns.

1.2 Contribution

In this thesis we will implement evolutionary methods to search for such sequences. The
focus will only be on simple sequences that can be expressed as polynomials. We start by
making observations supported by theoretical justifications to explore ways to search for
these algorithms. However, the main focus of this thesis is to find general techniques and
observations that can be potentially applied in the future for other types of sequences as
well.

The goal of this thesis is to explore the power of evolutionary method as a form of
meta learning. As stated above, we restrict ourselves to only work with polynomial integer
sequences. We create a context-free grammar and build a program that generates arbitrary
polynomials according to the predefined grammar. This program is then extended to

1

1. Introduction 2

improve the time and efficiency of finding the correct polynomial for the given sequence by
implementing a genetic algorithm. We will make theoretical analysis and approximation
on the runtime and performance and make experiments on various polynomials of different
lengths taken from the OEIS database (On-Line Encyclopedia of Integer Sequences) [1],
which is an online database of integer sequences. Based on the theoretical analysis, we will
conduct experiments to compare the two methods and to find interesting behaviour of the
evolutionary method.

Chapter 2

Background

In order to generate arbitrary polynomials we have to ensure that these expressions are
well-typed (follow the usual mathematical notation) and that they can always be written in
the form anx

n+an−1x
n−1+ . . . +a1x+a0. Factorized polynomials such as (x+1) · (x+2)

are allowed but rational polynomials such as 2
x+1 are not. For this reason, we define a

context-free grammar for polynomials.

2.1 Context-Free Grammar

Recall that a context-free grammar is a formal grammar whose production rules are of the
form A→ α where A is a nonterminal symbol and α a string of terminals and nonterminals.
Note that α can also be empty.

General mathematical expressions can be expressed as a binary expression tree. Con-
sider this simple expression 6 + 9. Clearly, the operator ′+′ requires two arguments and
outputs a result of 15. Note that we can also express the number 9 as another expression
such as 4 + 5 and therefore rewrite our original expression as 6 + (4 + 5). We see that
each argument of a binary operator can also consist of another subexpression. The same
rules also apply to the operations ′−′ and ′·′. We can recursively define each argument as
another expression as long as we want or we can terminate the recursion by setting the
arguments to a single variable x or a constant. However, we have to be more cautious
with the power operation. In order to maintain the structure of well-defined polynomials,
the exponent of a power expression cannot contain a variable. Therefore for the sake of
simplicity we restrict the exponents to constants only although expressions such as x(3+2)

are technically allowed but note that this can be rewritten as x3 · x2.
From this observation we can derive the context-free grammar as follows. Let NT =

{Poly} and T = {Const, Var} be the set of nonterminal and terminal symbols respec-
tively. Const represents the set of natural numbers and Var is a symbol for the variable x.

3

2. Background 4

Here are the production rules for this grammar:

Poly→ (Poly)+ (Poly)

Poly→ (Poly)− (Poly)

Poly→ (Poly) · (Poly)
Poly→ PolyConst

Poly→ Const

Poly→ Var

Const→ {1,...,9} Const2 | {0,...,9}
Const2→ {0,...,9} Const2 | {0,...,9}

(2.1)

2.2 Combinator Expressions

The main idea of this project is based on the principles presented in [2]. Briggs and O’Neill
exploit the power of a strongly typed functional programming language in order to build a
genetic program. Furthermore, they introduced combinator expressions as an alternative
form of representation for the program. Programs written in functional languages such as
Haskell can be simplified to λ-expressions [3] which correspond to combinator expressions.

Consider the function Add in a functional programming language such as Haskell. The
syntax of this function is (Add x y = x + y). In words, the Add function requires two
arguments x and y and returns the sum of these numbers. As in all programming language,
we can assign a type to each expression, namely (Add:Int->Int->Int). However, we can
also assign a type to the function Add 2, which now only requires one argument. So this
function has the type (Add 2:Int->Int). It takes an integer y and returns the value 2 +
y. We could also have a complete function of Add 2 3 which we know has the type (Add
2 3:Int).

Representing expressions in combinator form allows for much easier crossover between
two or multiple expressions because we always maintain the correct type for these expres-
sions. Consider this expression Add (Add 2 3) (Add 6 9). We know that Add 2 and Add
6 have the same type and so do the integers 2, 3, 6 and 9. We can therefore allow us to
swap subexpressions with another of the same type. As an example we can swap Add 2
with Mult 4, 9 with Pow 2 3 and Add with Sub. We then get a new expression
Sub (Mult 4 3) (Add 6 (Pow 2 3)) of the correct type.

Chapter 3

Building the program

3.1 Non-Evolutionary Generation

The idea is to have a basic set of mathematical operations, variable x and constants that
the generate function takes from and builds arbitrary expressions. Prior to the generation,
the length of the generated polynomial is defined. generate takes an object from the set of
nonterminal and/or terminal symbols called library and recursively builds an polynomial
with respect to the length. We will explicitly define the length and other helpful parameters
in the following sections. The full code of this thesis can be found in the Git repository
[4].

3.1.1 The Library

We have learned in the previous chapter that mathematical expressions can be represented
as a binary expression tree. Since we are generating polynomials according to a grammar,
we need a set of symbols that we define as non_terminals and terminals. Recall that
nonterminal symbols are mathematical symbols that require parameters which can again
be defined as a nonterminal or terminal symbols. In our case, the nonterminal symbols
are the basic mathematical operations Add, Sub, Mult and Pow. The terminal symbols
are Var and Const. In summary, the library consists of these two sets non_terminals =
{Add, Sub, Mult, Pow} and terminals = {Var, Const}. Note that these sets remain
unchanged throughout the process of generating polynomials. This will be different in
the evolutionary generation since we are creating a library where the content of this set
changes as we generate more polynomials.

In the actual implementation we used an additional nonterminal symbol NConst that al-
lows us to generate multiple digit numbers by concatenating single digit numbers produced
by the symbol Const with respect to the length of the polynomial.

Example 3.1. For example the number 187 is simply a concatenation of three sepa-
rate digits generated by three Const symbols. In combinator form, we represent 187 as
NConst(1, NConst(8, 7).

5

3. Building the program 6

Figure 3.1: Expression tree for the polynomial (x * 3 - 2) * xˆ2

There are two reasons why we choose this way of implementation. Firstly, this allows us
to generate any integer of arbitrary length. Secondly, we also want to account the number
of digits to the length of the polynomial. The non_terminals set therefore contains five
symbols. This is an implementation detail but necessary to justify the computations in
Chapter 4.

3.1.2 Generate Function

In this section we will describe a naive algorithm to generate arbitrary polynomials. Note
that this approach is a brute-force method and is not expected be very efficient.

In principle, we are building an expression tree in combinator form where each mathe-
matical operation, variable and digit represents a node of this tree and nodes are connected
if they are an argument of a parent node. Figure 3.1 shows an example of an expression
tree that we are creating.

The idea is to create all possible polynomial expressions of a given length with respect
to our grammar and then choose one polynomial uniformly at random. However, this will
be computationally too expensive. We therefore need another approach that bypasses this
problem.

Instead of generating all polynomials, we build only one polynomial by choosing com-
ponents from the expression randomly. With this approach we avoid creating polynomials
that we are not using and

We first will introduce some terminologies that will help understanding the implemen-
tation.

Definition 3.2 (Length). The length of a polynomial is defined as the number of non-
terminal symbols in the combinator representation of the polynomial.

Example 3.3. Consider the polynomial 2 * x + 1. We can represent it in combinator
form as Add(Mult(2, Xx, 1). This polynomial has length 2. Multiple digit number such

3. Building the program 7

as 619 have length 2 because 619 is generated by NConst(6, NConst(1, 9)).

Example 3.4. The polynomial x has length 0, since the only symbol present is Var.
Polynomials such as 6 or 9 also have length 0.

The process of generating an arbitrary polynomial can be roughly described in three
steps:

1. Set the length by counting consecutive coin tosses landing on head.

2. Choose an item from non_terminals uniformly at random if length is not 0, other-
wise choose from terminals.

3. recursively call generate for the arguments (if any) of the item chosen in step 2.

This is a high-level outline of the functionality of generate but we will discuss further
in detail.

In the first step, we set the length by counting consecutive fair coin tosses landing on
heads until the coin lands on tails, which we call the prior [5]2. This is equivalent to
sampling a geometric distribution with probability p = 1

2 . By using a prior ensure that
short polynomials are generated more frequently than longer polynomials. The probability
of generating a polynomial diminishes exponentially with each increasing length.

We will now refer to taking a symbol from non_terminals and terminals as growing
and not growing the tree respectively.

Definition 3.5 (Options). In a binary expression tree, options of is defined as the total
number arguments that do not have any item from non_terminals or terminals assigned
to. In an empty tree, we start with options = 1.

We start growing our tree by picking an item from non_terminals uniformly at random
if we have some length left and then we decrease the length parameter by 1. Otherwise
the item is chosen from terminals. We then keep track of the number of options available
and proceed growing in a preorder traversal order. As long as the length is not 0, we
continuously grow the tree. If length reaches 0, we stop growing and only pick symbols
from terminals when traversing through the remaining leaves. Finally, generate returns
the finished polynomial.

However, there is a problem with this algorithm. Since we are traversing the tree in a
preorder manner, we always choose to grow at the left argument of the node, resulting in an
unbalanced tree. We want that each leaf is chosen to be grown with a uniform probability.
The solution is, that each time we visit a leaf we choose to grow with probability 1

options

and not to grow with probability 1− 1
options .

Lemma 3.6. By choosing each node to grow with probability 1
options we ensure that all

nodes have equal chance to grow.

3. Building the program 8

Proof. Consider an arbitrary state of the function where options = n. Therefore we have
n possible places to grow the tree, assuming we have some length left, i.e. length > 0.

We choose to grow at the node that we are visiting next with probability 1
n , call it noden.

Assume that we do not choose to grow at this node, which happens with probability 1− 1
n .

options is decremented and we traverse to the next node noden−1. Locally, we again
choose to grow with probability 1

n−1 and conversely not to grow with probability 1− 1
n−1 .

However, in order to grow at noden−1 we must have decided not to grow at noden prior.
Let Ei be the events that we choose to grow at nodei with 1 ≤ i ≤ n. We know that
Pr[En] =

1
n . For all i < n the probabilities Ei can be defined recursively as

Pr[Ei] = (1− Pr[En]) · (1− Pr[En−1]) · . . . · 1− Pr[Ei+1] ·
1

i

=
n∏

k=i+1

(1− Pr[Ek]) ·
1

i

=
n− 1

n
· n− 2

n− 1
· . . . · (i+ 1)− 1

i+ 1
· 1
i

=
1

n

We have shown that for any i the event Ei occurs with equal probability among n
nodes, which is 1

n . This concludes our proof.

Here is the pseudocode for generate:

Algorithm 1: generate(length, options)

1 # Initialized as length=generate_coinflips, options=1
2 coin← throw biased coin with probability 1

options of landing heads
3 if coin = heads OR length 6= 0 then
4 item← random element from non_terminals
5 length← length− 1
6 options← add the number of arguments to options− 1
7 item.arg1← generate(length, options)
8 item.arg2← generate(length, options)
9 else

10 item← random element from terminals
11 options← options− 1

12 return item;

We will now show the process of generating a polynomial with an example.

Example 3.7. Let length = 2. Since no item has been chosen, we randomly pick an
element from non_terminals say Add and we decrement length by 1. For the left argument

3. Building the program 9

Algorithm 2: generate_coinflips()
1 coin← make a coin flip
2 return 1+ generate_coinflips() if coin lands on heads else 0

of Add, we throw a biased coin with probability 1
options of landing heads. For this coin, the

probability is 1
2 since we have two empty arguments and thus options = 2. The coin lands

on heads, so we choose another item randomly from non_terminals. The picked item is
Mult and again the length is decremented. Since length is now 0, we are forced to always
choose from terminals for all undefined arguments. The polynomial at the moment is
defined as Add(Mult(None, None), None) where None represents empty arguments. We
replace all empty arguments with a random item from terminals. We end up with a
polynomial like Add(Mult(x, 6), 9) or x * 6 + 9

3.1.3 Finding the Sequence

Given a sequence of numbers, we can let the program try to find the polynomial that
generates the exact sequence. This procedure can be described as follows:

1. We call generate which produces a random polynomial.

2. Check whether the sequence produced by this polynomial matches the given sequence.

3. Repeat the first step until the solution is found.

During this process we will keep track on how many trials generate needs until the
exact solution is found to assess the performance of this algorithm.

Algorithm 3: find(sequence)
1 while solution is not found do
2 length← generate_coinflips()
3 poly ← generate(length, options=1)
4 compare sequence generated by poly with the given sequence
5 if both sequence match then
6 solution found
7 end while
8 return poly

3.2 Evolutionary Generation

Now that we have the foundation of generating polynomials, we can extend the function
generate to not only produce random polynomials but to learn from these and navigate

3. Building the program 10

towards the solution.

The basic idea of evolutionary generation is a genetic algorithm. We create a population
of evolving organisms where each organism represents a possible solution and in our case,
the organisms are polynomials. Among these possible solutions we select the fittest ones
and mix some of these to create a new generation of population, in hope that the next
generation is fitter and therefore closer to the actual solution.

We will use the parameters population_size, tournament_size, mutation_rate
and crossover_rate. The genetic algorithm works as follows:

1. Generate polynomials and add them to the set population the set reaches the size
population_size and evaluate the fitness of each polynomial in this set. We used
mean squared error (MSE). If any of these organisms is a correct solution, we stop.

2. Take the tournament_size fittest polynomials from the population and store them
in the tournament library tournament_set.

3. Create the next generation of population using the polynomials in tournament_set
by applying crossover and mutation to the organisms and evaluate its fitness. Again,
if any of these polynomials is a correct solution, we stop with the procedure.

4. Repeat from step 2 until the solution is found.

Note that since MSE is used as our fitness function, a correct solution will satisfy∑
i

(y
(i)
true − y

(i)
predict)

2 = 0

3.2.1 Mutation and Crossover

We will first provide a possible solution and then explain our approach on how we solve
the problem that arise in the former method.

Step 3 of the algorithm requires the program to select polynomials among the ones in
tournament_set and essentially form offspring [6]. In order to crossover we somehow need
to be able to extract some parts of an already generated polynomial to combine the parts
with another polynomial. A possible approach is to generate all possible subexpressions
of the generated polynomial and store them in the tournament set and simply choose one
subexpression uniformly at random when we crossover. However, we do not know the length
of each subexpression in the tournament set and we do not want combine polynomials that
will overshoot the desired length or even create very big polynomials. We therefore need
a way to only produce polynomials of a given length despite allowing crossovers.

If a polynomial has k nodes in the tree then we will cut this polynomial into k subex-
pressions, where in each subexpression the root node of the subtree is node of the original
tree. These subexpressions are then stored in tournament_nt and tournament_t according
to the type of the root node of the polynomial.

3. Building the program 11

Example 3.8. Consider the polynomial Mult(x, Add(4, 2)). This polynomial is then
cut into the subexpressions Mult(x, Add(4, 2)), Add(4, 2), x, 4 and 2.

Now we have created a new library of already generated polynomials, divided into
terminals and non-terminals. We can reuse Algorithm 1 with slight modifications. Ev-
ery now and then, decided by crossover_rate, instead of only choosing an item from
non_terminals or terminals we allow picking an item from the tournament sets tournament_nt
and tournament_t respectively. However, we do not add the complete new subtree but
only its root and ’ignore’ the child nodes. If we recursively call generate for an argument
that is already defined we now have the options to either keep this node or to mutate it.
Mutating a node simply means to swap the current node with another node taken from
the regular library uniformly at random according to the type (terminal or non-terminal).
This also happens every now and then, decided by mutation_rate.

With this method we can simply stop growing if the desired length is achieved and
crossover will not overshoot the length.

Here is the pseudocode of the evolutionary method:

Algorithm 4: generate_evolutionary(length, options)

1 # Initialized as length=generate_coinflips, options=1
2 coin← throw biased coin with probability 1

options of landing heads
3 if coin = heads OR length 6= 0 then
4 if we decide to crossover then
5 item← random element from tournament_nt
6 if we decide to mutate then
7 change node with another of same type (terminal or non-terminal)
8 else
9 item← random element from non_terminals

10 length← length− 1
11 options← add the number of arguments to options− 1
12 item.arg1← generate(length, options)
13 item.arg2← generate(length, options)
14 else
15 if we decide to crossover then
16 item← random element from tournament_t
17 if we decide to mutate then
18 change node with another of same type (terminal or non-terminal)
19 else
20 item← random element from terminals
21 options← options− 1

22 return item;

3. Building the program 12

Algorithm 5: find_evolutionary(sequence, population_size,
tournament_size, mutation_rate, crossover_rate)
1 while solution is not found do
2 for 1 to population_size do
3 length← generate_coinflips()
4 poly ← generate_evolutionary(length, options=1)
5 compare sequence generated by poly with the given sequence
6 if both sequence match then
7 solution found
8 return poly
9 Compute fitness (MSE) of poly and insert it to population

10 end for
11 Update tournament_set by choosing tournament_size fittest polynomials from population
12 end while

Chapter 4

Theoretical Approach

In this chapter we will set the focus on analyzing the behaviour of non-evolutionary gen-
eration. We try to understand how close the generated polynomial is to the exact solution
regarding the representation and whether we can derive and approximate the average num-
ber of trials needed until generate returns the exact solution. The procedure of computing
the theoretical approximation of the trials needed is explained and important findings and
observations are formulated and justified with mathematical computations.

We consider a polynomial to be found if the object returned by generate produces
the same sequence as the exact solution. Note that the representation does not have to be
congruent as 2x and 2x+ x− x both produce the same sequence of numbers. In order to
be able to estimate the number of trials needed for the given solution, we need to know
the probability such that generate picks the right operations and symbols in the right
order. Therefore computing the theoretical expected value requires knowing with what
probability the searched object occurs.

Because generate randomly picks any arbitrary polynomial we can consider the process
of finding the exact solution as a geometric random variable with probability p. In order
to obtain the expected number of trials needed, we can simply exploit the property of a
geometric random variable and compute 1

p . We will now show how p can be derived and
approximated for any polynomial.

4.1 Deriving the Probabilities

The probability of a given polynomial to be chosen is

p(Poly) = p(length = len(Poly)) · p(NT) · p(T).

p(NT) and p(T) are the probabilities that the symbols from non_terminals and terminals
contained in Poly are being chosen.

We first derive the probability p(length = len(Poly)). Given a polynomial, we can
count the length of this expression by listing all non_terminals items. If we know how
many non_terminals items are required, we know that generatemust achieve this number

13

4. Theoretical Approach 14

of consecutive coin tosses landing on heads. Again, we can consider the consecutive coin
tosses landing on heads as a geometric random variable. In order to achieve k coins landing
on heads we must succeed k times and fail on the k + 1-th try. Therefore, the probability
such that length = k is (1− 1

2)
k · 12 = 1

2k+1

To derive p(NT) and p(T) we will consider the Algorithm 1. Essentially, with slight
abuse of notation we can say that

p(NT) =
∏

itemnt∈Poly
p(itemnt|length, options).

To put it in words, p(NT) is the product of the probabilities that the occurring non-
terminal items itemnt in Poly given the length and options parameters at a specific step
of the algorithm. p(T) is defined analogously.

In lines 4 and 10 we pick a random element from non_terminals and terminals
respectively. The assignment in line 4 happens only if the coin thrown in line 2 lands on
heads. This occurs with probability 1

options . Subsequently, each item from non_terminals
is chosen with probability 1

5 .

Analogously, the assignment in line 10 happens if the coin lands on tails which happens
with probability 1− 1

options . Again, each item from terminals is chosen with probability
1
2 .

Finally, the final probability can be obtained by multiplying the three separate proba-
bilities.

Example 4.1. Consider the polynomial (x + 1) + 2. In combinator form, this polyno-
mial can be expressed as Add(Add(x, 1), 2). We see that this polynomial contains 2
items from non_terminals. So length must be 2 and is achieved by two successive coin
tosses landing on heads and a subsequent failure, which happens with probability 1

22
· 12 = 1

8 .

The outer most Add is chosen with probability 1
5 . This increases our options to 2 and

decreases the length to 1. The inner Add of x and 1 is chosen with probability 1
2 ·

1
5 and

again this increases options to 3 and decreases length to 0. Because length is now 0
we always choose from terminals from this point and omit the coin tosses. Finally, x is
chosen with probability 1

2 and 1 and 2 are chosen with probability 1
2 ·

1
10 each. To obtain

the total probability of occurrence, we multiply everything together which results in

1

8
· 1
5
· 1

2 · 5
· 1
2
· 1

2 · 10
· 1

2 · 10
=

1

320000
.

On average, we would need to do 320000 trials to find this polynomial.

4.2 Computations

In this section we will try to estimate the probability and the expected number of trials for
some simple polynomials of different length and state important observations during the

4. Theoretical Approach 15

computations. For the following subsections we will fix the variable length and therefore
omit the probability of the consecutive coin tosses to achieve the desired length unless
we explicitly state the opposite. Note that any polynomial has infinitely many other
polynomials that are equivalent. We fix the length in order to make the analysis easier
for some polynomials. Since there are infinitely many solutions, we should expect that the
theoretical expected number of trials needed will be greater or equal to the true expected
value. The deviation however will not be large since we are considering cases with large
prior. Polynomials of higher length have much lower prior which will significantly lower
the overall probability. From the theoretical result we can have an idea on how long we
should wait until the program finds a solution.

4.2.1 Length 0 polynomials

There are only two types of length 0 polynomials, namely x and numbers from 0 to 9. We
first consider the latter type. In order to generate a single digit number, we must choose
the item Const when choosing uniformly at random from terminals. Note that because
length is set to 0, generate is forced to take an item from terminals and is not required
to toss a biased coin. Secondly, Const must then generate a digit from 0 to 9. Thus, each
number has a probability of 1

2 ·
1
10 = 1

20 and the expected number of trials needed until we
find a specific single digit number is 20.

For x, generate must only choose the item Var from terminals, so x has a probability
of 1

2 . Again, we need 2 trials on average to obtain the polynomial x.

4.2.2 Length 1 polynomials

We will make a detailed analysis on the single digit number polynomials 0,...,9, x and
some various simple polynomials of length 1. The expected number of trials can still be
computed with high accuracy to the ground truth because we can consider all possible
forms of representation of the sought polynomial. This however will be more difficult if
we do not fix the length variable or consider polynomials of higher lengths. If we limit
the length of the generated polynomials to 1 we allow ourselves to cover all possible forms
because there are infinitely many solutions.

4. Theoretical Approach 16

Consider again the polynomial 0. We count these following forms of this polynomial:

x - x: Sub(x, x)⇒ 1

5
· 1
2
· 1
2
=

1

20

a - a: Sub(a, a)⇒ 1

5
· 1
2
· 1
2
· 1
10

=
1

200

_ * 0: Mult(_, 0)⇒ 1

5
· 1 · 1

2
· 1
10

=
1

100

0 * _: Mult(0, _)⇒ 1

5
· 1 · 9

10
· 1
2
· 1
10

=
9

1000

0ˆa: Pow(0, a)⇒ 1

5
· 1
2
· 1
10
· 1
9
=

9

1000

0 + 0: Add(0, 0)⇒ 1

5
· 1
2
· 1
10
· 1
2
· 1
10

=
1

2000

where a represents a number from 0,...,9 and _ can be any terminal item. The probability
of each case is computed by using the derivation from section 4.1. In order to obtain the
total probability, all probabilities of each cases are added. We therefore get

1

20
+

1

200
+

1

100
+

9

1000
+

9

1000
+

1

2000
=

167

2000

Using this result, the expected number of trials is 2000
167 ≈ 11.976

We will also show the analysis for the polynomial 1. Again, we look at these following
cases:

1ˆa: Pow(1, a)⇒ 1

5
· 1
2
· 1
10
· = 1

100

aˆ0: Pow(a, 0)⇒ 1

5
· 1
2
· 1
10
· = 1

100

xˆ0: Pow(x, 0)⇒ 1

5
· 1
2
· 1
10
· = 1

100

a - b = 1, a > b: Sub(a, b)⇒ 1

5
· 1
2
· 1
10
· 1
2
· 1
10
· 9 =

9

2000

1 + 0: Add(1, 0)⇒ 1

5
· 1
2
· 1
10
· 1
2
· 1
10

=
1

2000

0 + 1: Add(0, 1)⇒ 1

5
· 1
2
· 1
10
· 1
2
· 1
10

=
1

2000

1 * 1: Mult(1, 1)⇒ 1

5
· 1
2
· 1
10
· 1
2
· 1
10

=
1

2000

The expected number of trials is therefore 250
9 ≈ 27.778

This analysis can be done verbatim for any single digit number polynomial. However,
we will show a table where the theoretical result is compared with the actual result pro-
duced by the program. Note that in order to obtain a reasonable average due to the large
variance, we ran the program 1000 times (rounds) to compute the average.

4. Theoretical Approach 17

Polynomial Mean (theor.) Mean (empirical) Standard deviation

0 11.976 11.877 11.701
1 27.778 27.683 28.04
2 133.33 134.176 135.217

For the sake of completeness, we provide a table with the mean and standard deviation
of the polynomials 3,...,9 of length 1. However, we will not show the calculation for each
polynomial as it can be done verbatim.

Polynomial Mean (theor.) Mean(empirical) Standard deviation

3 131.386 134.489 142.859
4 108.433 113.854 112.837
5 131.386 130.414 133.865
6 116.129 117.194 116.96
7 131.386 141.114 144.306
8 102.857 105.077 104.531
9 108.433 106.134 108.78

From the second table we observe that polynomials such as 5 or 7 have a higher average
number of trials than 4 or 8. The difference in expected number is reasonable as some
numbers such as 4 have more divisors, which increases the chance of finding this object
whereas prime numbers like 5 or 7 have less divisors.

Lastly, we provide a table with polynomials where the theoretical result is again com-
pared to the result from the program. We will omit the derivation.

Polynomial Mean (theor.) Mean (empirical) Standard deviation

x 27.692 27.579 28.423
x + 7 100 107.332 101.62702
9x 100 101.144 100.2327
x7 100 100.577 101.4778

We see that the average closely matches the standard deviation. From this observation
we can conclude that the probability p of finding this polynomial is very small. Because
the process of finding a polynomial is equivalent to a geometric distribution, the standard
deviation is

√
1−p
p2

. For small p we have
√

1−p
p2
≈ 1

p , i.e. the standard deviation is almost
equal to the mean.

4. Theoretical Approach 18

4.2.3 Length 2 polynomials

We will step into a territory where the number of representations possible for a polynomial
becomes very large and thus, we cannot cover all cases. However, we can limit ourselves
to only consider forms that may occur frequent because they are easier to find. In this
subsection, we let length to be variable and generated with the aforementioned method.

We will provide the analysis for the 0, 2 * x + 5 and x**5 - x**2.

For the generation of numbers, a verbatim analysis as for length 1 can be performed.
With this analysis we will show how good of an approximation we can achieve.

The zero polynomial 0 of length 2 can occur in one of these forms:

0 * (something)

(something) * 0

0 +- (zero)

(zero) +- 0

(zero)ˆa

(zero) * (something)

(something) * (zero)

where a ∈ {0,...,9}, zero is a placeholder for an expression that evaluates to 0 such as
x - x or 0ˆ8 and something can be an arbitrary expression.

We just need to know the probabilities of something and zero. Since something can
be any expression, the probability of this occurrence is 1. For zero, we can use the results
from the analysis in subsection 4.2.2. Therefore, the probability such that an expression
of length 1 evaluates to 0 is 167

2000 .

We can simply compute the probabilities for each case and sum them up to obtain the

4. Theoretical Approach 19

total probability. To summarize, we have

0 * (something) =⇒ 1

100

(something) * 0 =⇒ 1

100

0 +- (zero) =⇒ 2 ∗ 159

2000

(zero) +- 0 =⇒ 2 ∗ 159

2000

(zero)ˆa =⇒ 1431

200000

(zero) * (something) =⇒ 159

20000

(something) * (zero) =⇒ 159

20000

Again, we obtain the expected number of trials when the take the reciprocal value of the
total probabilility and we get 22.399. Here is the comparison of theoretical computation
with the programs result:

Mean (theor.) Mean (empirical) Standard deviation

22.399 21.806 21.975

As we see, it is a very decent approximation although we left out some edge cases.

Figure 4.1, 4.2 and 4.3 show the behaviour of finding the polynomials 0, 1 and x by
fixing the length variable from 0 to 50. The x-axis shows the length and the y-axis the
average number of trials. All runs were done with 1000 rounds.

It is interesting to see that there are more ways to represent 0 with length 1 than with
length 0. Furthermore, for all graphs there exist a threshold where the result does not
get worse by increasing the length. However, we are not able to justify this behaviour.
Note that this graph shows the average number of trials without the prior. The prior will
regularize the values and the graph would quickly converge to zero.

4. Theoretical Approach 20

Figure 4.1:

Figure 4.2:

Figure 4.3:

4. Theoretical Approach 21

We will now perform the analysis for the polynomial 2 * x + 5 which has a length of
2. Here we note possible forms of this polynomial:

2 * x + 5

x * 2 + 5

5 + x * 2

5 + 2 * x

(x + x) + 5

x + (x + 5)

(x + 5) + x

x + (5 + x)

(5 + x) + x

5 + (x + x)

Note that some forms may look the the same but are different objects due to associativ-
ity. With the derived probabilities, we can simply compute the probability of occurrence
for each form. It is easy to verify that the first four forms p(2 * x + 5), . . . , p(5 + 2 * x)
have a 1

160000 chance each and the last six forms p((x + x) + 5), . . . , p(5 + (x + x)) a
chance of 1

16000 . In total, we get a probability of 4 · 1
320000 · 6 ·

1
32000 = 1

5000 . Although 2 *
x + 5 and x + x + 5 have the same length, the latter form has a higher chance of being
found since generating a specific number reduces the overall probability by a factor of 10.
We note that the algorithm tends to find polynomials with less numbers more frequently

Again, we will compare the theoretical mean with the results from the program:

Mean (theor.) Mean (empirical) Standard deviation

5000 3997.465 3924.3487

We see that the true expected number of trials lies at around 4000. There is a large
deviation in the numbers since we have not covered all possible cases but only the most
significant ones. Nonetheless, this is still a very close approximation and gives a good lower
bound.

Finally, we will look at the polynomial x**5 - x**2. First, notice that this polynomial
in this exact form is not very likely to be found since it has length 2 and two numbers
occur in this form. This would add an additional factor of 1

2 for the length and 1
22
· 1
102

for the two numbers. We could try to reformulate this expression. With simple algebra
we can reformulate x**5 - x**2 to x * (x**4 - x), (x**4 - x) * x and x**5 - (x *
x). We see that we only need to generate one number in each form. In fact, if we run the
program we see that these two forms occur the most frequently. We will now see how good
the approximation is by only considering these two forms.

4. Theoretical Approach 22

Figure 4.4: Expression tree x * (x**4 - x) and (x**4 - x) * x

We first consider the first two forms. Note that these two forms are their respective
commutative counterpart. However, computations show that the probabilities of occur-
rence do not match, i.e. p(x * (x**4 - x)) 6= p((x**4 - x) * x). In fact, we have
p(x * (x**4 - x)) = 1

640000 and p((x**4 - x) * x) = 1
960000 . Note that the expression

tree for (x**4 - x) * x is ’heavy’ in the left subtree, meaning that the tree mostly grows
from the left argument. The combinator form of (x**4 - x) * x is Mult(Sub(Pow(x, 4),
x), x) whereas the combinator form of x * (x**4 - x) is Mult(x, Sub(Pow(x, 4), x).
The reason why this form has a lower probability is because this expression tree has more
consecutive non_terminals nodes than its commutative counterpart. This leads to mul-
tiplying the factors 1

2 ,
1
3 ,

1
4 and so forth because program tries to avoid this imbalance by

throwing a biased coin each time we grow the tree, which is the procedure explained and
proven in Lemma 3.6. Figure 4.4 shows the difference in the tree structure. The blue
arrows this chain of non_terminals.

Lastly, we can compute the probability p(x**5 - (x * x)) which is 1
960000 . By adding

the probabilities together and computing the mean using 1
p we obtain(

1

640000
+

2

960000

)−1
≈ 274′285.714.

Here is a table where we compare the theoretical result with the empirical:

Mean (theor.) Mean (empirical) Standard deviation

274’285.714 219’107.145 231’596.939

Despite only considering very few cases, we see that the theoretical mean is a very close
approximation to the empirical mean. This is because of the prior. Longer polynomials
have an exponentially small probability with each increasing length.

Chapter 5

Experiments

In this section we examine how well our evolutionary method for sequences works by pre-
senting results from three experiments. The first and most extensive experiment compares
the performance of non-evolutionary versus evolutionary method on 18 polynomials. This
experiment will show whether the non-evolutionary method will outperform the naive al-
gorithm and where the limitations of each method are.

The other experiments are on hyperparameter tuning of the evolutionary method on
various polynomials. This part mainly shows the speedup achievable by optimal parameter
choice.

All experiments were done on the Euler Cluster of ETH Zürich [7].

5.1 Non-Evolutionary vs Evolutionary

Let us begin with the comparison of the two methods. We know that the naive approach
randomly samples polynomials from the whole search space until the right solution is found.
Since this is equivalent to a geometric distribution, the chances of finding a solution dimin-
ishes exponentially by increasing the length of the solution. The evolutionary method tries
to combat this problem by making the geometric sampling less ’brainless’. For the runs of
the evolutionary method, we used fixed parameters with the values population_size=1000
tournament_size=5, mutation_rate=0.1 and crossover_rate=0.3. Tables 5.1 and 5.2
show the side by side comparison of the performance on 18 polynomials. Polynomials
marked in bold font are taken from the OEIS database. For all runs we set an upper
bound for the rounds of 500 but we will write how many rounds a run has finished within
24h. Clearly, the more rounds a run has completed the more accurate the results will be.

In Table 5.1 we see that there are many missing entries. This is because the naive
algorithm failed to even complete one round of finding the solution within 24 hours. The
measured time to generate the polynomial and evaluate the sequence that this polynomial
produces with given sequence takes about 0.1 seconds. So even if 107 does not seem large
for computers we still need to wait 277 hours on average. However, we did not try to
implement the program more efficient since this would go beyond the scope of this thesis.

23

5. Experiments 24

Table 5.1: Performance of Non-Evolutionary Method

Polynomial Le
ng
th

Ro
un
ds

M
ea
n
(t
he
or
.)
1

M
ea
n
(e
m
p.
)

St
d
de
vi
at
io
n

Ru
nt
im
e
(h
)2

2 * x + 5 2 500 4’705.882 4’052.994 4’083.584 0.249

x**5 - x**2 3 500 144’000 219’870.258 239’891.549 13.143

(x + 1)(x + 2)(x + 3) 5 — 3.07e+10 — — —

x**3 - 2*x + 5 4 19 5.9e+07 10M 8.8M —

(x + 1)**50 3 78 3.8M 2.5M 2.6M —

69 * (x + 12) 4 — 1.3e+09 — — —

42069 4 — 1.8e+09 — — —

(x + 6)**9 * (x - 6)**9 5 — 6.99e+09 — — —

x**10 - 1 3 500 8.6M 1.6M 1.5M 22.634

(3 * x + 5) * (2 * x - 6) 5 — 3.8e+11 — — —

6 * (x - 2)**5 3 5 4e+08 13M 10M —

x**2 + 1 2 250 14’545 10’408.336 9’882.808 0.316

x**2 - x + 1 3 250 314’181 109’855 114’915 3.264

2 * x * (2 * x - 1) 4 163 3.1M 1.2M 1.3M —

x * (3 * x - 2) 3 150 3.1M 798’278 917’123 14.420

x + x(x - 1)(x - 2)(x - 3) 7 — 3.2e+11 — — —

(3 * x + 1)(3 * x + 2) 5 — 4.8e+08 — — —

6 * x * (x - 1) + 1 4 — 1.3e+09 — — —

1 Lower bound if program does not terminate in reasonable time
2 No entry indicates that the run was killed after 24h

5. Experiments 25

Table 5.2: Performance of Evolutionary Method

Polynomial Le
ng
th

Ro
un
ds

M
ea
n
(e
m
pi
ric
al)

St
d
de
vi
at
io
n

Ru
nt
im
e
(h
)1

2 * x + 5 2 500 1860.392 1’510.417 0.097

x**5 - x**2 3 500 12’227.15 14’485.1 0.734

(x + 1)(x + 2)(x + 3) 5 500 62’253.216 194’144.732 3.961

x**3 - 2*x + 5 4 500 11613.614 7’423.291 0.751

(x + 1)**50 3 60 1.8M 2M —

69 * (x + 12) 4 250 513’863.805 809’991.307 —

42069 4 500 103’475.2 142’460.178 3.541

(x + 6)**9 * (x - 6)**9 5 — — — —

x**10 - 1 3 500 12’823.614 11’236.189 0.705

(3 * x + 5) * (2 * x - 6) 5 100 1’006’117.12 2’683’920 14.442

6 * (x - 2)**5 3 — — — —

x**2 + 1 2 250 2’276.788 1’558.962 0.096

x**2 - x + 1 3 250 5’211.724 3’943.510 0.206

2 * x * (2 * x - 1) 4 250 6’605.176 6’015.75 0.194

x * (3 * x - 2) 3 250 8’722.952 9’939.225 0.274

x + x(x - 1)(x - 2)(x - 3) 7 100 697’872.140 1’622’513 11.676

(3 * x + 1) * (3 * x + 2) 5 100 24’723.460 18’201.35 0.327

6 * x * (x - 1) + 1 4 250 34’695.596 29’490.43 1.052

1 No entry indicates that the run was killed after 24h

5. Experiments 26

Figure 5.1: Convergence of the polynomial 6 * (x - 2)**5 with non-evolutionary method

Figure 5.2: Convergence of the polynomial 6 * (x - 2)**5 with evolutionary method

Note that the naive algorithm found no solution for polynomials of length 5 and longer.
Therefore this length 5 must be the threshold where the brute-forcing fails to succeed.
However, due to beauty of the method with the length we can approximate the average
number of trials by using the techniques from Chapter 4.

Figures 5.1 and 5.2 show the error convergence of the polynomial 6 * (x - 2)**5 for
one round. The dots show the smallest error achieved up to that point. Note that the
x-axis of Figure 5.2 shows the number of generations, where each generation is equivalent
to 1000 trials because we set population_size=1000.

We see that the error of the non-evolutionary method becomes stationary from the
200’000-th trial. On the other hand, the error of evolutionary method faster but still at a
very slow rate. The error remains almost stationary at the 4’000-th generation and moves
by only a little.

5. Experiments 27

In Table 5.2 we now see more results. And if we compare the results from the two tables,
it is easy to see that the evolutionary method clearly outperforms the naive approach.
Astonishingly, polynomials that the non-evolutionary method fails to find are no challenge
to the evolutionary method. For example the polynomial x + x(x - 1)(x - 2)(x - 3)
needed approximately 700’000 trials until one solution was found. This is a speedup of six
orders of magnitude when comparing with the theoretical mean. However, we have two
polynomials where even the evolutionary method fails to complete even one round. One
assumption why these two fail is because of the high degree and length together that makes
it hard to find. High degree polynomials have many local optima and may get stuck there.
Therefore even a mutating the expression tree is not significant enough to ’escape’ from
these local optima.

5.2 Hyperparameter tuning on short polynomials

In this experiment we try to find how mutation and crossover affects the performance
on short polynomials of fixed lengths. The polynomials that were tested are the zero
polynomial 0 of fixed lengths 0 and 1 and 1 and 2 of fixed length 1. All runs in this
experiment were done in 1000 rounds in order to obtain accurate results with low variance.

Tables 5.3, 5.4, 5.5 and 5.6 show the results of changing the mutation- and the crossover
rate. For these experiments we fixed the population and the tournament size to 15 and 10
respectively. Note that these population and tournament size are intentionally set to be
low because these polynomials already have a low mean of around 20 and in order to see
the effect of crossover and mutation, the algorithm needs to create the whole population
before crossover and mutation takes place. Otherwise we would simply stop when the
solution is found.

From these three tables we see that adding mutation and crossover worsens the per-
formance. The entry where mutation and crossover rates are 0 delivers the best results.
This might be because these polynomials already have a high chance of being generated
and adding mutation and crossover is equivalent to adding noise.

Note that the last row in table 5.3 has no result. In not all but most of the cases, the
program simply becomes stuck due to the low diversity in the tournament sets. Therefore
we should avoid a crossover rate of 1.0.

The results from table 5.6 deviate from the other. Here the opposite shows to be
true. We see that a mutation and crossover rate of 1.0 and 0.8 respectively delivers the
best result. We can assume that between a mean of 20 and 130 lies the threshold where
mutation and crossover start to become useful.

5. Experiments 28

Table 5.3: Mutation/Crossover tuning for 0 with length=0 fixed∗

Mutation CrossoverMean Standard deviation Runtime (s)

0.0 0.0 19.535 18.535 1.267

0.1 0.2 21.999 23.143 1.457

0.1 0.4 25.93 31.123 1.672

0.1 0.6 32.814 41.989 2.077

0.1 0.8 58.203 89.452 3.746

0.1 1.0 N/A N/A N/A

* population_size=15, tournament_size=10 fixed

Table 5.4: Mutation/Crossover tuning for 0 with length=1 fixed∗

Mutation CrossoverMean Standard deviation Runtime (s)

0.0 0.0 11.882 12.173 1.707

0.1 0.2 13.381 14.129 3.064

0.1 0.4 14.165 17.53 3.043

0.1 0.6 16.767 22.682 3.543

0.1 0.8 19.671 29.61 3.424

* population_size=15, tournament_size=10 fixed

5.3 Hyperparameter tuning on longer polynomials

This experiment is similar to the previous one however the length of the polynomial is not
fixed. We will examine the effect of crossover and mutation for the polynomials 2 * x +
5 and x**5 - x**2. For these experiments we fixed the population- and tournament size
to 100 and 10 respectively.

Table 5.7 shows the result of a grid-search of the parameters. We see that the best
result is achieved with a mutation rate of 0.4 and a crossover rate of 0.6. Whereas the best
result from table 5.8 is with a mutation- and crossover rate of 0.1 and 0.6 respectively.

Furthermore, we see that even a little amount of mutation can drastically improve the

5. Experiments 29

Table 5.5: Mutation/Crossover tuning for 1 with length=1 fixed∗

Mutation CrossoverMean Standard deviation Runtime (s)

0.0 0.0 28.551 28.016 4.57

0.1 0.2 30.834 29.856 6.609

0.1 0.4 33.227 36.127 7.13

0.1 0.6 42.012 45.586 9.721

0.1 0.8 68.552 106.874 13.617

* population_size=15, tournament_size=10 fixed

Table 5.6: Mutation/Crossover tuning for 2 with length=1 fixed∗

Mutation CrossoverMean Standard deviation Runtime (s)

0.0 0.0 131.656 132.756 18.123

0.2 0.6 103.897 94.173 19.276

0.2 0.8 195.76 331.323 32.461

0.4 0.6 83.523 69.932 14.851

0.4 0.8 123.012 268.39 20.616

0.6 0.6 73.099 59.58 14.124

0.6 0.8 69.329 67.327 13.683

0.8 0.6 69.973 56.024 12.281

0.8 0.8 64.053 68.824 13.011

1.0 0.6 69.839 56.929 13.295

1.0 0.8 55.8 50.228 12.413

* population_size=15, tournament_size=10 fixed

performance and runtime. This difference can be seen by comparing the two entries with
parameters [0.01, 0.4] and [0.0, 0.4]. The runtime is cut down to one fifth and the empirical

5. Experiments 30

mean in the worse run is at 64’000 compared to 19’000 in the run with little mutation.

From this and the previous experiment we can conclude that the parameter choice for
mutation on crossover depends on the polynomial itself. In other words, there exist no set
of values that is optimal for all polynomials. We could further investigate what type of
polynomials tend to work better with a specific set of parameters but this would go beyond
the scope of this thesis.

Table 5.7: Mutation/Crossover tuning for 2 * x + 51

Mutation CrossoverMean Standard deviation Runtime (s)

0.0 0.0 3’550.947 3’575.001 542.442

0.0 0.2 2’096.403 1’986.131 311.3

0.0 0.4 2’004.055 2’097.1 322.183

0.0 0.6 2’601.0 2’798.910 369.932

0.0 0.8 4’733.892 6’497.883 670.234

0.2 0.2 1’608.093 1’520.338 243.161

0.2 0.4 1’190.585 1’089.567 186.565

0.2 0.6 1’208.137 1’119.043 188.838

0.2 0.8 1’469.635 1’637.172 223.641

0.4 0.2 1’695.405 1’690.377 295.340

0.4 0.4 983.574 888.563 156.242

0.4 0.6 948.9 894.386 180.262

0.4 0.8 1077.198 1069.447 198.743

* population_size=100, tournament_size=10 fixed

5. Experiments 31

Table 5.8: Mutation/Crossover tuning for x**5 - x**2∗

Mutation CrossoverMean Standard deviation Runtime (h)

0.0 0.0 172’489.066 172’073.831 18.174

0.005 0.2 26’748.498 36’632.662 3.643

0.01 0.2 23’681.492 35’259.138 3.152

0.05 0.2 15’580.208 18’400.505 1.879

0.1 0.2 13’816.043 15’338.775 5990.072

0.005 0.4 26’130.472 50’121.839 1.663

0.01 0.4 18’769.775 36’252.052 2.863

0.05 0.4 11’709.647 16’266.382 1.548

0.1 0.4 10’206.849 13’488.606 1.351

0.005 0.6 24’481.012 53’003.249 4.818

0.01 0.6 20’034.162 42’828.928 3.662

0.05 0.6 12’334.297 17’357.220 1.819

0.1 0.6 9’603.815 11’911.830 1.351

0.4 0.6 10601.647 13737.221 1.469

0.005 0.8 46’117.016 163’361.233 13.26

0.01 0.8 27’623.236 77’914.140 5.753

0.05 0.8 14’086.166 22’359.067 2.240

0.1 0.8 11’546.916 14’937.217 1.72

0.0 0.2 54’603.291 88’639.632 8.146

0.0 0.4 64’728.996 119’760.309 15.121

* population_size=1000, tournament_size=1 fixed

Chapter 6

Conclusions

In this thesis we have build a fast evolutionary method for predicting sequences. We
described how the naive approach works and how we implemented a genetic algorithm on
top to improve the performance and runtime. Furthermore, we analyzed and predicted the
runtime of the brute-force method based on probabilities. We performed experiments where
we compared the non-evolutionary method with evolutionary. From the results of test on
various polynomials we can conclude that evolutionary method is a far superior method for
sequence prediction. Additionally, the results of experiments on hyperparameter tuning
shows that this algorithm can be fine-tuned to further improve perfomance, however the
optimal parameter choice varies for each polynomial.

In the future, further experiments can be done on more polynomials to examine further
strengths and limitation of the evolutionary method. Moreover, with this thesis we showed
that we can implement a fast method to predict sequence. An interesting idea for further
future work could be to try to apply this method for different types of sequences besides
polynomials such as recursively defined integer sequences.

32

Bibliography

[1] N. J. A. Sloane, “The oeis: A fingerprint file for mathematics,” May 2021.

[2] F. Briggs and M. O’Neill, “Functional genetic programming and exhaustive program
search with combinator expressions,” Aug. 2007.

[3] S. P. Jones, “The implementation of functional programming languages,” 1987.

[4] “Gitlab,” https://gitlab.ethz.ch/disco-students/fs21/sequence-evolution.git.

[5] J. Schmidhuber, “Optimal ordered problem solver,” 2004.

[6] J. R. Koza, “Genetic programming as a means for programming computers by natural
selection,” 1994.

[7] “scicomp,” https://scicomp.ethz.ch/wiki/Euler, Aug. 2014, last accessed 26 July 2021.

33

https://gitlab.ethz.ch/disco-students/fs21/sequence-evolution.git
https://scicomp.ethz.ch/wiki/Euler

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Background
	2.1 Context-Free Grammar
	2.2 Combinator Expressions

	3 Building the program
	3.1 Non-Evolutionary Generation
	3.1.1 The Library
	3.1.2 Generate Function
	3.1.3 Finding the Sequence

	3.2 Evolutionary Generation
	3.2.1 Mutation and Crossover

	4 Theoretical Approach
	4.1 Deriving the Probabilities
	4.2 Computations
	4.2.1 Length 0 polynomials
	4.2.2 Length 1 polynomials
	4.2.3 Length 2 polynomials

	5 Experiments
	5.1 Non-Evolutionary vs Evolutionary
	5.2 Hyperparameter tuning on short polynomials
	5.3 Hyperparameter tuning on longer polynomials

	6 Conclusions
	Bibliography

