
Distributed

 Computing

Graph Algorithms in Harsh
Conditions

Bachelor’s Thesis

André Sousa Anjos
soandre@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Diana Ghinea, Jakub Sliwinski
Prof. Dr. Roger Wattenhofer

August 24, 2021

Acknowledgements

First of all I want to thank Prof. Dr. Roger Wattenhofer for giving me the
chance to write my Bachelor’s Thesis in his department.
I thank my supervisors Diana Ghinea and Jakub Sliwinski for their help, good
ideas and support while working on this thesis.
I thank my family too for their help and support during this whole time.

i

Abstract

In this thesis we look at two interesting graph problems, namely distributed
single-source shortest path and distributed graph coloring. While most works
focus on obtaining fast algorithms, resilience is essential in distributed comput-
ing. Single-source shortest path and (∆ + 1)-graph coloring are already proven
to be feasible under transient faults (self-stabilization). In this thesis, we study
their resilience when byzantine faults may occur in addition to transient faults
(strict-stabilization).
For the single source shortest path problem we prove that achieving strict-
stabilization is impossible, we present a solution that is "almost strict-stabilizing".
To ensure that the byzantine nodes do not fake paths we requires digital signa-
tures.
For the graph coloring problem we present three different solutions which all
satisfy the definition of strict-stabilization. One solution for a central and fair
daemon and two solution for a distributed daemon, a deterministic one and a
more efficient randomized one.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Related work . 2

2 Strict-Stabilization 3

3 Single-Source Shortest Path 4
3.1 Defining the problem . 4

3.1.1 System . 4
3.1.2 Notations . 5
3.1.3 Conditions . 6
3.1.4 Legitimate state . 7

3.2 Difficulties encountered . 7
3.3 No strict-stabilizing algorithm possible 8
3.4 Almost strict-stabilizing algorithm 9

3.4.1 Part of algorithm for Alice 9
3.4.2 Part of algorithm for honest nodes 10

4 Graph Coloring 13
4.1 Defining the problem . 13

4.1.1 System . 13
4.1.2 Notations . 14
4.1.3 Conditions . 14
4.1.4 Legitimate state . 14

4.2 Difficulties encountered . 15
4.3 Fair central daemon . 15

iii

Contents iv

4.4 Distributed daemon . 17
4.4.1 Deterministic algorithm 17
4.4.2 Randomized algorithm . 20

Bibliography 24

Chapter 1

Introduction

Obtaining meaningful results even in the presence of faults is essential in dis-
tributed computing. An example of such failures is given by transient faults,
where the state of any node in a system can be reset at any point in time. An
algorithm that still obtains meaningful outputs under transient faults is called
self-stabilizing, a notion introduced by Edsger W. Dijkstra in [1]. Other failures
that may occur in distributed systems are byzantine faults, where nodes may de-
viate arbitrarily from the steps of the algorithm. Nesterenko and Aurora define
in [2], and also in the paper [3], the notion of strict-stabilization: intuitively, an
algorithm is strict-stabilizing if it obtains meaningful outputs in the presence of
transient faults and of an unbounded number of byzantine nodes.
While classical graph problems are of great interest in distributed computing,
most studies focus in obtaining close-to-optimal results quickly, and not re-
silience. For max matching [3] and edge-coloring [4], strict-stabilizing algorithms
are known. We continue this line of work with two well-known problems: single-
source shortest path and graph coloring.
For the single-source shortest path problem, we require the nodes to obtain a
distance between the shortest distance in the original graph, and the shortest
distance in the subgraph containing honest nodes only. We first show a negative
result: there is no strict-stabilizing algorithm satisfying this definition. On the
positive side, we present an algorithm that achieves a slightly weaker definition of
strict-stabilization: instead of requiring honest (non-faulty) nodes to maintain
their state after a solution is found unless a transient fault occurs, we allow
them to change their state as long as the system still presents a solution to our
single-source shortest path problem.
In the (∆ + 1)-graph coloring we want to achieve a proper coloring so that no
two neighbors have the same time. A negative point is that we cannot guarantee
that nodes with byzantine neighbors will not change their state after reaching
a solution. However, we show that it is possible for all other nodes without a
byzantine neighbor. We present three different algorithms to solve this problem
under different environments. One algorithm which works under a fair central
daemon and two algorithms, a deterministic one and a randomized one, which

1

1. Introduction 2

work under a distributed daemon.

1.1 Related work

There are many works which study self-stabilization or strict-stabilization for dif-
ferent problems. The work [1] of Edsger W. Dijkstra introduces self-stabilization.
Dijkstra presents in this work an self-stabilizing algorithm to solve mutual ex-
clusion. In the works [2] and [3] we find the definition for strict-stabilization
which is stronger than self-stabilization because it is also resilient to byzantine
behavior and not only transient faults. In [3] they present a strict-stabilizing
solution for the maximal matching problem.
A good introduction to the single source shortest path problem can be found
in [5]. The self-stabilizing solution presented uses shared memory between the
nodes in a given graph, as we do in our solution, and weights for the edges.
The paper [6] gives a first idea how to solve the graph coloring problem. They
give a self-stabilizing solution using a root node and a spanning tree of the given
graph. A strict-stabilizing solution for edge-coloring can be found in [4]. They
present a solution where neighbor nodes exchange lists with the colors of their
edges. Then a node v can propose to a neighbor u a color based on the lists of
v and u. Only if both nodes propose and agree on the same color c the edge
between v and u gets color c.

Chapter 2

Strict-Stabilization

Self-stabilization is an exciting fault model in distributed systems. Since self-
stabilization is not resilient to byzantine nodes, but our solutions should also
work for nodes with byzantine behaviors, we decided to solve our problems for
strict-stabilizing algorithms. We use the definition of strict-stabilization from
[2] and [3]: Strict-stabilization combines self-stabilization, which is resilient to
transient faults, with resilience to byzantine faults.
We use the definition of self-stabilization from [1]: A system is self-stabilizing if
regardless of the initial state it is guaranteed to reach a legitimate state. If no
more faults happen the system is guaranteed to remain in that legitimate state.
To be able to talk about self-stabilization we first need to define what is a state
for each problem. A state is composed by the values of the variables of the
honest nodes. Second we need to define the legitimate states. A legitimate state
is a state where the variables need to satisfy some defined properties. When
this is done we can start searching for an algorithm so that when starting from
an arbitrary state the algorithm reaches a legitimate state in a finite amount of
steps.
In a strict-stabilizing environment a state can be manipulated in two ways. One
way are transient faults. These type of faults can change everything in a state,
like change a variable to a new number or delete it completely. So when tran-
sient faults happen the old state changes automatically to a new state. In our
problems we need to guarantee the self-stabilization after the transient faults
stop happening. If they happen we can never guarantee the convergence to a
legitimate state because they could change the state at any point in time. Beside
honest nodes there are also byzantine nodes. These are corrupted nodes, mean-
ing they do not follow the steps of the algorithm correctly and can have arbitrary
behavior. For example they can lie to their neighbors or they can influence their
neighbors to change their variables. With the changes they can trigger they can
force the system to change to a new state. The algorithms we search must then
guarantee that we reach a legitimate state of the problem and that we remain in
this legitimate state if we reach one despite the presence of transient faults and
byzantine nodes in order to satisfy the definition of strict-stabilization.

3

Chapter 3

Single-Source Shortest Path

In this section we are going to talk about a very interesting graph problem namely
finding single-source shortest path in a given Graph G. G consists of different
nodes. Every G has an honest source node, lets call it Alice from now on. Then
there are honest nodes which all execute the same algorithm. Last there are
byzantine nodes, these are corrupted nodes which may deviate arbitrarily from
the steps of the algorithm. The goal is to find the shortest path from all honest
nodes to the source node Alice and the algorithm should satisfy the definition of
strict-stabilization.

3.1 Defining the problem

3.1.1 System

The system consists of a daemon, which is controlled by a central adversary, and
a connected graph G with three types of nodes:

• Honest nodes
All honest nodes execute the same algorithm. They follow the steps of
the algorithm correctly. Their goal is to find their shortest path and their
distance to Alice.

• Byzantine nodes
Byzantine nodes, also called corrupted nodes, are controlled by a central
adversary. They deviate from the protocol, they can act like an honest
node or do something completely different and try to mislead the honest
nodes. The corrupted nodes can always communicate with each other
about everything.

• Source node called Alice

4

3. Single-Source Shortest Path 5

G contains one honest source node. Alice is always honest but has its own
algorithm to execute. Alice is the source node because the other nodes in
G want to find their shortest path to Alice.

The following holds for our system:

• Transient faults exist
This means that every honest node can get its state reset at any time. A
transient fault can erase or change the values of the variables the honest
nodes need to store.

• Asynchronous model
A node only makes a step if it gets activated.

• Asynchronous communication channels
Every two adjacent nodes in G communicate through asynchronous com-
munication channels: this means that any message is eventually delivered,
but within an unknown amount of time.

The solution we present in this section works under a distributed daemon and
under a fair central daemon.
We assume a public key infrastructure providing us with digital signatures for all
the nodes in the graph. This means that all nodes have access to all public keys
and each node has additionally access to its own secret key. Signsk(P) is the
signature for path P with secret key sk. For our proofs we assume that signatures
are perfectly unforgeable and A, the adversary, has access to the secret keys of
the byzantine nodes. Further we assume that the keys of the honest nodes are
not affected by transient faults.
Note that when replacing our ideal signatures with real signatures our results
still hold with high probability, as long as the keys are changed regularly. This
is because our algorithm is meant to run indefinitely, hence even an adversary
with bounded computed power might be able to eventually forge the signatures.

3.1.2 Notations

We use the shared memory model to store the paths to Alice. Each node in the
graph has the following variables.

• Pv,u

To represent the shared memory between the nodes each node v stores a
variable Pv,u for each neighbor u. Node v stores in Pv,u his current shortest

3. Single-Source Shortest Path 6

path to Alice. If a neighbor u wants to know the shortest path from v to
Alice it only has to read the variable Pv,u. Initially Pv,u = ”null”.
For example if v is a neighbor of Alice then it eventually sets
Pv,u = 〈〈HIv, signAlice(HIv)〉||HIu, signv(〈HIv, signAlice(HIv)〉||HIu)〉
for all neighbors u of v, where || denotes the concatenation.

• PN

Each node v stores in PN the current shortest path from the neighbors to
Alice.

• dv

Every node v has a variable dv to store the current shortest distance to
Alice. Initially dv =∞.

We use N(v) to denote the neighborhood of node v.

3.1.3 Conditions

Before we can tackle the problem and start searching for a strict-stabilizing
algorithm we first need to define some conditions under which the algorithm has
to perform and the properties the outputs should satisfy.

• Every two byzantine nodes are adjacent
Since the byzantine nodes are controlled by the adversary they can commu-
nicate with each other. Therefore we can assume that they are connected
with each other.

• Edges in G have cost 1

• dv =∞ if there is no path from an honest node v to Alice

• distance shortest path ≤ output distance ≤ distance of the shortest honest
path
For every honest node the output distance, which is the distance to Alice,
must be in the bounds above. We can not guarantee that the actual shortest
path is found because it could contain a corrupted node and if the corrupted
node does nothing all the time we never find the actual shortest path. Since
the output distance can never be smaller than the actual shortest distance
the distance of the shortest path is the lower bound. As the byzantine
nodes may simply crash, we set the upper bound to the distance of the
shortest honest path, if there is one, else the nodes output ∞.

3. Single-Source Shortest Path 7

3.1.4 Legitimate state

Let H define the subgraph of G that does not contain any corrupted nodes. The
legitimate state for this problem is:

• ∀ honest node v: dG(Alice, v) ≤ dv ≤ dH(Alice, v)
The current distance dv between the honest node v and Alice has to be
between the bounds above. It needs to be less or equal to dH(Alice, v),
which denotes the distance of the shortest honest path in H. It needs also
to be greater or equal to dG(Alice, v), which denotes the actual shortest
path in G. If the distance would be smaller than the lower bound the
distance would not be based on an actual path in G, we cannot have a
better distance than the distance of the shortest path. If the distance is
greater than the upper bound we can always find the smaller distance of
the shortest honest path.

• ∀ honest node v ∈ N(Alice): dv = 1
Every honest neighbor of Alice needs to have output distance 1. This is
the case because every edge in G has cost 1 and all neighbors of Alice need
only one edge to reach Alice.

• dAlice = 0
The distance from Alice to Alice needs to be 0.

3.2 Difficulties encountered

Before presenting the solution, we describe some issues that we have encountered.
We first considered the message passing model. Alice starts sending messages
saying Hi to her neighbors. When an honest node receives a message it creates
a new message by adding a new Hi to the old message. The honest node then
sends the new message to its neighbors. To find the shortest distance to Alice
the honest nodes count the number of Hi’s in the messages they receive and store
the smallest number. The problem of this idea is that the corrupted nodes can
create fake messages of arbitrary distance and mislead the honest nodes.
We prevent such behavior by using digital signatures. Every honest node signs
the new message with his private key before sending it to its neighbors. When
receiving a message each honest node can then verify the message with the public
key from the sender. This way they can be sure that the message is correct and
it came from the right sender. The distance to Alice would be the number
of signatures in the messages. Message signing prevents the corrupted nodes
from creating fake messages because they cannot sign messages for honest nodes
because we assume the signature scheme is unforgeable.

3. Single-Source Shortest Path 8

In the end our solution algorithm uses shared-memory between neighbors instead
of sending the messages. It still uses message signing to prevent the corrupted
nodes from creating arbitrary paths.

3.3 No strict-stabilizing algorithm possible

Before presenting our solution we first prove that achieving the standard strict-
stabilizing definition for the single-source shortest path problem is actually im-
possible. In our proof, we consider three scenarios with three different graphs
that are indistinguishable to an honest node named B.

Theorem 3.1. There is no deterministic algorithm solving the strict stabilizing
single-source shortest path problem.

Proof. Assume there exists a strict-stabilizing deterministic algorithm Λ which
solves the single-source shortest path problem. This means that, if no transient
fault occurs, Λ reaches a legitimate state within a finite amount of time, and the
system remains in that state.
We consider the following scenarios:

• Scenario 1: Graph G1

A

C D

B

All nodes are honest. Nodes C and D have transient faults.

• Scenario 2: Graph G2

A

C D

B

All nodes are honest. Nodes C and D have transient faults such that, they
behave identically to scenario 1.

• Scenario 3: Graph G3

3. Single-Source Shortest Path 9

A

C D

B

All nodes are honest except C and D, which are corrupted. Nodes C and
D act as they have transient faults, they mimic C and D’s behavior from
scenario 1.

The daemon behaves the same in all three scenarios. B’s view is identical in all
three scenarios.
As Λ is strict-stabilizing, at some time k node B in scenario 1 will output distance
4 to node A. The graphs in scenarios 2 and 3 are indistinguishable to the honest
nodes excepting C and D which act the same as nodes C and D from scenario 1.
Hence the executions from scenarios 2 and 3 are identical to the execution from
scenario 1. Therefore the time is the same and at time k node B in scenarios 2
and 3 also outputs distance 4 to node A and Λ never changes its outputs.
However, we obtain a contradiction. The shortest honest path from A to B in
G2 has length 3. Hence, by definition of our legitimate state B should output at
most 3 in scenario 2.

3.4 Almost strict-stabilizing algorithm

In the previous section we proved that there is no strict-stabilizing algorithm. In
this section we relax the definition of strict-stabilization by allowing the honest
nodes to update their state as long as the system is still in a legitimate state
even if they are already in a legitimate state, and we provide an algorithm
satisfying this new relaxed definition. We call the relaxed definition: almost
strict-stabilization.
The solution algorithm consists of two parts. One for the honest source node
Alice and another for all the rest of the honest nodes in graph G.

3.4.1 Part of algorithm for Alice

First, Alice needs to update her shared memory with all neighbors. For this all
the variables PAlice,u for all u in the neighborhood of Alice need to be updated.
In PAlice,u Alice stores the current shortest path to herself. Second, Alice needs

3. Single-Source Shortest Path 10

to update the distance to herself. This is done by setting the variable dAlice to
0.

Algorithm 1: Code for Alice
1 repeat forever
2 foreach u ∈ N(Alice) do
3 PAlice,u := 〈HIu, signAlice(HIu)〉
4 end
5 dAlice := 0

3.4.2 Part of algorithm for honest nodes

Now we talk about the more interesting part of the algorithm. We present the
part of the algorithm for the honest nodes which is almost strict-stabilizing. That
means that they eventually reach a legitimate state.
This is not too bad for us because in our definition of the legitimate state in
section 3.1.4 we want that the distance from an honest node v to Alice is between
some bounds and not always the shortest possible distance. We can not guarantee
that an honest node always finds the actual shortest path to Alice because it
could contain a corrupted node. If this corrupted node in the actual shortest
path never does anything the honest nodes will never find this path. So the
only thing we can guarantee is that the shortest path the honest node v finds
is between the actual shortest path and the shortest honest path of v to Alice,
if v has an honest path. We will see that our algorithm only changes to a new
legitimate state if some honest node v finds a shorter path to Alice. This means
that the new legitimate state is better than the old legitimate state. This is
the reason it is all right for us that we can change to new legitimate states and
only be almost strict-stabilizing instead of fully strict-stabilizing, which is not
possible.
The idea of the algorithm is that the honest node v first checks if there exists a
valid path from a neighbor to Alice. If yes then v adds itself to the shortest path
found and updates its shared memory with all neighbors. Node v also needs to
update his distance to Alice to the shortest distance found. As v executes this
algorithm forever it updates the distance to Alice every time it finds a shorter
path than the current path it has stored.
To check if there is a valid path from a neighbor to Alice an honest node v
can check the shared memory Pu,v for each neighbor u. Node v then stores the
shortest valid path found in PN . The last thing the honest node v needs to do is
to update its shared-memory if it found a new shortest path from a neighbor to
Alice. This is done by updating the variables Pv,u for each neighbors u. Node v
concatenates Hi u to PN and signs everything with its secret key. Last v needs
to update the distance dv to Alice to the shortest distance found.

3. Single-Source Shortest Path 11

We define the function IsV alid to check if a path P is valid as follows:
IsV alid(P = 〈P ′||HIv, σv〉) : σv valid AND IsV alid(P ′);
IsV alid(〈HIv, σAlice〉) = true

Algorithm 2: Code for honest node v 6= Alice
1 repeat forever
2 // Find current shortest path from neighbors to Alice
3 PN := null, dv :=∞
4 foreach u ∈ N(v) do
5 if IsV alid(Pu,v) then
6 if (PN = null) OR (#signatures in Pu,v < #signatures in

PN) then
7 PN := Pu,v := 〈p1, p2〉
8 end
9 end

10 end
11
12 // If there is a path from a neighbor to Alice update Pv,u for each

neighbor u
13 if PN 6= null then
14 foreach u ∈ N(v) do
15 Pv,u := 〈PN ||HIu, signv(PN ||HIu)〉
16 end
17
18 // Update new shortest distance to Alice
19 dv := #signatures in p2
20 end

This concludes our solution algorithm, which is composed of Algorithms 1 and
2, for solving the single-source shortest path problem with the predefined condi-
tions.
The last part in this section is to prove that our solution algorithm is almost
strict-stabilizing for honest nodes.

Lemma 3.2. Eventually every honest node v that has an honest path to Alice
has dv between the distance of the shortest path from v to Alice an the distance
of the shortest honest path from v to Alice.

Proof. If an honest node v has an honest path to Alice the upper bound is
satisfied because the shortest honest path will be found by Algorithm 2 and dv

is set to the distance of the shortest honest path. From line 6 of Algorithm 2
it follows that v only updates its path if it finds a shorter path. Therefore dv

cannot be smaller than the distance of the shortest path between v and Alice.

3. Single-Source Shortest Path 12

If v does not have an honest path, dv is still not smaller than the shortest path,
follows from the fact before.

Lemma 3.3. Every honest neighbor v of Alice has dv = 1.

Proof. This follows from Lemma 3.2 as the shortest and also shortest honest
distance from a neighbor of Alice to Alice is 1.

Lemma 3.4. Alice has dAlice = 0.

Proof. This follows from line 5 of Algorithm 1.

The next result follows immediately from Lemmas 3.2, 3.3 and 3.4.

Lemma 3.5. Eventually our algorithm reaches a legitimate state for honest
nodes.

Finally using the results from above we show that our algorithm is almost strict-
stabilizing.

Theorem 3.6. Our algorithm achieves almost strict-stabilizing single-source
shortest path for honest nodes.

Proof. In Lemma 3.5 we showed that a legitimate state is eventually reached.
To show that we indeed achieve almost strict-stabilization it remains to prove
that once a legitimate state is reached the system reaches another legitimate
state if it is changed.
Assume that after reaching a legitimate state an honest node gets activated. We
denote the first such node by v. This means that v found a shorter path to Alice
and updates its dv. By Lemma 3.2 it follows that the new dv must also be in
bound and the system reaches another legitimate state.

Chapter 4

Graph Coloring

Graph coloring is another very interesting graph problem. In this section the
problem we tackle is to find a coloring in a given graphG so that no two neighbors
have the same color. We want to use at most ∆ + 1 colors, where ∆ is the max
degree in the graph. G consists of two different types of nodes: honest nodes
and byzantine nodes. In addition transient faults can occur at any time. The
goal is to find an algorithm that finds a proper coloring for G and which satisfies
the definition of strict-stabilization.

4.1 Defining the problem

4.1.1 System

The system also consists of a given graph G with two types of nodes:

• Honest nodes
All honest nodes execute the same algorithm. They follow the steps of the
algorithm correctly. The goal is that they find a proper coloring so that
no two neighbors have the same color.

• Byzantine nodes
The byzantine nodes are controlled by the central adversary. They can
deviate from the steps of the algorithm arbitrarily and try to mislead the
honest nodes.

The following holds for our system:

• Transient faults exist
Transient faults can again reset the states of the nodes. They can change
or erase the variables of the nodes, hence also the colors.

13

4. Graph Coloring 14

Also for this problem there is a daemon. In the next sections we will present three
solutions for two different daemons, one for a fair central daemon and two for a
distributed daemon, where one is deterministic and the other is randomized. The
respective definitions of the daemons will follow in the corresponding section. We
also have synchronous communication in our system.

4.1.2 Notations

We use shared memory to store the colors of the nodes. With this method the
nodes can always check the colors of their neighbors.

• Cv

Represents the color of node v.

• Cv,u

Node v stores its color Cv in the variables Cv,u for each u in N(v), the
neighborhood of v, to represent the shared memory.

• d(v)
Defines the degree, number of neighbors, of node v.

• ∆
Defines the degree of graphG. This corresponds to the highest d(v), highest
number of neighbors, in the graph G.

4.1.3 Conditions

For this problem we also define some conditions under which the algorithm has
to perform and the the properties the outputs should satisfy.

• Colors are in the set {1, 2, . . . ,∆,∆ + 1}
We represent the colors by numbers from the set above. If there are ∆ + 1
colors it is always possible to find a proper coloring. This follows from the
fact that every node v has at most ∆ neighbors, hence there is always a
free color for v.
A color c is free for a node v if no neighbor of v has color c.

4.1.4 Legitimate state

For this problem we have a special case for the legitimate state. The corrupted
nodes can always choose the same color as their neighbors and force them to

4. Graph Coloring 15

change their color in order to have a proper coloring. This contradicts the stan-
dard definition of strict-stabilization. The standard definition requires that the
honest nodes do not change their state, which is composed by the color variables.
If the corrupted nodes can always trigger color changes for their neighbors we can
never guarantee that honest nodes with byzantine neighbors reach a legitimate
state and remain there.
Therefore we define the legitimate state only for honest nodes with distance at
least two to byzantine nodes. We define the distance between two nodes as the
length of the shortest path connecting those two nodes.
Let Vd denote the set of honest nodes with distance at least d to a byzantine
node.
The legitimate state for this problem is:

• ∀v ∈ V2 : ∀u ∈ N(v) : Cv 6= Cu, meaning that for all honest nodes in V2
there is no neighbor with the same color. Nodes in V2 do not have conflicts.

• ∀v ∈ V1 : Cv ∈ {1, 2, . . . ,∆,∆ + 1}

4.2 Difficulties encountered

While working on this problem we encountered a few issues which we needed
avoid or solve to be able to find a solution algorithm.
Regardless of the coloring algorithm, there are many scenarios in which adjacent
nodes can become conflicting, meaning that they choose the same color. For
example a transient fault could cause that. We found that fixing such conflicts
is not trivial. We encountered issues caused by symmetry and byzantine nodes.
A solution used in well known algorithms is using an ordering based on ids,
however corrupted parties can cause honest nodes to wait indefinitely.

4.3 Fair central daemon

We are now going to present a solution for a central and fair daemon. A fair
central daemon picks which enabled node should make the next move. We assume
that the daemon is controlled by the adversary. However, the daemon must be
fair: meaning that no enabled node can wait indefinitely until it is activated.
The fact that the fair central daemon chooses exactly one node to make the next
move helps us solving conflicts between neighbors. As mentioned previously
choosing which node should change its color first in a conflict represents an
issue. In the case with a fair central daemon this is already solved because the
daemon chooses which node should make a move.

4. Graph Coloring 16

In our algorithm, each node picks a color only if it is necessary. More specifically,
node v is enabled if one of the following conditions hold:

• Its current color is not valid, meaning not in {1, 2, . . . , d(v), d(v)+1}: either
because of a transient fault or of the initial state.

• It has a conflict.

In either case, when node v is also activated, it picks the lowest free color avail-
able.
Note that in the case of a conflict between two adjacent nodes in V2, only one of
the two conflicting neighbors is activated by the fair central daemon, and hence
the conflict is solved. This guarantees also that no new conflicts are crated
between the nodes in V2 because they only choose free colors.

Algorithm 3: Code for honest node v
1 repeat forever
2 if Cv /∈ {1, 2, . . . , d(v), d(v) + 1} OR v has a conflict then
3 Cv := smallest free color
4 foreach u ∈ N(v) do
5 Cv,u := Cv

6 end
7 end

The last part in this section is to prove that Algorithm 3 is strict-stabilizing for
honest nodes in V2.

Lemma 4.1. If an honest node v is activated then Cv ∈ {1, 2, . . . , d(v), d(v)+1}.

Proof. This follows from lines 2 and 3 from Algorithm 3. If an honest node v is
activated it sets Cv to the smallest free color and as v has d(v) neighbors there
is always a free color for v in {1, 2, . . . , d(v), d(v) + 1}.

Lemma 4.2. Eventually the nodes in V2 do not have any conflicts.

Proof. Assume v from V2 and u, its neighbor from V1, have the same color. Given
that in such a scenario v and u are honest, they both get enabled, because of
line 2 from Algorithm 3. As the daemon is central and fair at least one of the
nodes v and u is activated eventually and in line 3 from Algorithm 3 picks a non
conflicting color. Hence eventually Cv is different from Cu.

The next result follows immediately from Lemmas 4.1 and 4.2.

Lemma 4.3. Eventually Algorithm 3 reaches a legitimate state for nodes in V2.

4. Graph Coloring 17

Finally using the results from above we show that Algorithm 3 is strict-stabilizing
for nodes in V2.

Theorem 4.4. Algorithm 3 achieves strict-stabilizing graph coloring for nodes
in V2.

Proof. In Lemma 4.3 we showed that a legitimate state is eventually reached.
To show that we indeed achieve strict-stabilization it remains to prove that once
a legitimate state is reached the state of the nodes in V2 remains the same unless
a transient fault occurs.
Once a legitimate state is reached, honest nodes, which are not in V2, won’t pick
the same color as their neighbors in V2 by line 3 of Algorithm 3.
Assume that after reaching a legitimate state a node in V2 gets activated. We
denote the first such node by v. By Lemma 4.1 we obtain that v has a conflict
and this contradicts that we are in a legitimate state.

4.4 Distributed daemon

We now change the daemon to a distributed daemon where everything happens
at the same time. We consider a synchronous model, meaning that all nodes can
make a step at the same time. Hence two neighbor nodes of V2 can change their
color at the same time and potentially create new conflicts if they choose the
same color. Another issue with that is if there is a conflict between node v and
node u it could happen that both nodes update their color at the same time and
the conflict does not get solved.

4.4.1 Deterministic algorithm

In this section we present a deterministic algorithm. To fix a conflict it is nec-
essary that the nodes have a setup to break the symmetry. Therefore in this
section we assume that each node v has a unique IDv. The rule is then that
the node with the smaller ID changes first. This is good because then only
one conflicting node changes its color and the conflict is solved. But with this
method another issue arises. If an honest node v has a conflict with a corrupted
neighbor u and IDu < IDv then u can force v to wait infinitely long if u does
not change its color. Our solution for this issue is that each conflicting node only
waits a finite amount of time and if the conflict is still not solved it changes its
color anyway. How long should an honest node wait before changing its color?
Using an a priori defined amount of time could cause honest nodes to change
their color at the same time, and create new conflicts indefinitely. We solve this
issue by assigning each node v an unique amount of time: IDv rounds. IDs are
positive natural numbers.

4. Graph Coloring 18

An honest node v will also change its color if the color is not in {1, 2, . . . , d(v), d(v)+
1}. Node v will always choose the smallest free color available.

Algorithm 4: Deterministic code for honest node v
1 counter := 0
2 repeat forever
3 if Cv /∈ {1, 2, . . . , d(v), d(v) + 1} then
4 Cv := smallest free color
5 end
6
7 if v has a conflict then
8 if IDv is smallest id among conflicting neighbors then
9 Cv := smallest free color

10 foreach u ∈ N(v) do
11 Cv,u := Cv

12 end
13 counter := 0
14 end
15 else
16 counter++
17 if IDv = counter then
18 Cv := smallest free color
19 foreach u ∈ N(v) do
20 Cv,u := Cv

21 end
22 counter := 0
23 end
24 end
25 end

Now we prove that Algorithm 4 is strict-stabilizing.

Lemma 4.5. If an honest node v is activated then Cv ∈ {1, 2, . . . , d(v), d(v)+1}

Proof. If honest node v is activated it sets Cv to the smallest free color and as v
has d(v) neighbors there is always a free color for v in {1, 2, . . . , d(v), d(v)+1}.

Lemma 4.6. Eventually the nodes in V2 do not have any conflicts.

Proof. We consider two cases:
Case 1:
Assume v from V2 and u, its neighbor from V1, have the same color. Given that
in such a scenario v and u are honest, both v and u get enabled, because of line
7 from Algorithm 4. As IDv and IDu are different it follows from line 8 from

4. Graph Coloring 19

Algorithm 4 that the node with the smaller ID will eventually change to a non
conflicting color. If v and u have to wait for other nodes with smaller IDs it
follows from line 17 from Algorithm 4 that eventually v waits for IDv rounds
or u waits for IDu rounds and the node with the smaller ID changes to a non
conflicting color. If it happens that both nodes v and u change their colors at
the same time, because their counters say they should change, it might happen
that they create a new conflict. In this case they will start their counters at the
same time and the node with the smaller ID will then eventually change to a
conflicting color if it waited ID rounds. Hence eventually Cv is different from
Cu.
Case 2:
As the counters are not necessarily synchronized because of transient faults it
might happen that two neighbors change their color at the same time to the
same color and create a new conflict. This cannot happen more than once for a
pair of neighbors from V1. Let k · IDv + tv and k · IDu + tu denote the rounds
when nodes v and u from V1 change their colors, for some variables k, tv and
tu, where tv and tu represent the starting rounds of the counters. From the fact
that k · IDv + tv = k · IDu + tu happens at most once, because these are linear
functions, the scenario above cannot happen more than once.
As in case 1 the conflict eventually gets solved and case 2 can not happen in-
finitely it follows that the nodes in V2 eventually do not have any conflicts.

The next result follows immediately from Lemmas 4.5 and 4.6.

Lemma 4.7. Eventually Algorithm 4 reaches a legitimate state for nodes in V2.

Finally using the results from above we show that Algorithm 4 is strict-stabilizing
for nodes in V2.

Theorem 4.8. Algorithm 4 achieves strict-stabilizing graph coloring for nodes
in V2.

Proof. In Lemma 4.7 we showed that a legitimate state is eventually reached.
To show that we indeed achieve strict-stabilization it remains to prove that once
a legitimate state is reached the state of the nodes in V2 remains the same unless
a transient fault occurs.
Once a legitimate state is reached, honest nodes, which are not in V2, won’t pick
the same color as their neighbors in V2 by lines 4, 9 and 18 of Algorithm 4.
Assume that after reaching a legitimate state a node in V2 gets activated. We
denote the first such node by v. By Lemma 4.5 we obtain that v has a conflict
and this contradicts that we are in a legitimate state.

4. Graph Coloring 20

A negative point for this algorithm is that we cannot say when it will reach a
legitimate state. The only thing we can say is that it will reach a legitimate
state in a finite amount of time. The time however depends on the size of the
IDs and therefore how long the nodes are going to wait before changing their
color anyway. The longer the IDs the longer can the Algorithm 4 need to reach
a legitimate state.

4.4.2 Randomized algorithm

We aim to obtain a better efficiency by using randomization to break the sym-
metry instead of IDs. For this we adapt Algorithm 3 so that it works under a
distributed daemon. There are two main parts which we need to adapt. First
if there is a conflict which node has to change, as we do not have the central
daemon anymore which solves this for us. The second part is how to choose the
new color so that we do not create new conflicts or there is a low probability of
creating new conflicts.
To solve this issues we used randomization. The idea is to have the same rules as
in Algorithm 3 but, instead of choosing the smallest free color, an honest node v is
going to choose a color c uniformly at random from the set {1, 2, . . . , d(v), d(v)+
1}. If c is free then v changes its color to c and if c is taken by a neighbor then
v does noting and waits for the next round.

Algorithm 5: Code for honest node v
1 repeat forever
2 if Cv /∈ {1, 2, . . . , d(v), d(v) + 1} OR v has a conflict then
3 c := random color from {1, 2, . . . , d(v), d(v) + 1}
4 if c is free then
5 Cv := c
6 foreach u ∈ N(v) do
7 Cv,u := Cv

8 end
9 end

10 end

Randomization helps us with solving the conflicts. As both nodes could change
the color at the same time with randomization they will hopefully choose different
free colors or only one node will change its color. What we want now is to find
an upper bound for the expected number of rounds until all honest nodes in V2
find a proper coloring. For this we need to find a lower bound for the success
probability for an honest node v from V2 to be safe in the next round. Safe
means that v has no conflicts in the next round and it will stay without conflicts
because its neighbor nodes will never choose the color of v because it is taken.
We first present a few observations. If color k is the highest free color for v then

4. Graph Coloring 21

it is guaranteed that all colors from k+ 1 to d(v) + 1 are taken. This means that
for each color c from k + 1 to d(v) + 1 there is at least one neighbor node of v
which has color c. There are d(v) + 1− k such nodes. The probability that none
of these d(v) + 1 − k nodes pick color k if v picks k can be lower bounded as
follows:

d(v)∏
i=k

(
1− 1

i+ 1

)
=

d(v)∏
i=k

i

i+ 1

= k

k + 1 ·
k + 1
k + 2 · ... ·

d(v)− 1
d(v) · d(v)

d(v) + 1

= k

d(v) + 1

In the first formula we use i+ 1, where i goes from k to d(v), because we know
that for k to d(v) there is at least one neighbor that has this degree. This follows
from the facts that colors k + 1 to d(v) + 1 are taken and a node u has always
d(u) + 1 colors from which it can choose.
The other k− 1 neighbor nodes of v can have smaller or higher colors than k. If
they have a smaller color than k we can not guarantee that they can not choose
color k because they could still have a higher degree than k. If they have a higher
color than k we know that they can choose color k but we we do not know which
degree they exactly have. Therefore we have to assume that all k − 1 neighbors
could potentially choose color k. For them to choose color k they need at least
degree k− 1. Therefore the probability that none of these k− 1 nodes pick color
k if v picks k can be lower bounded as follows:

k−1∏
i=1

(
1− 1

k

)
=

k−1∏
i=1

k − 1
k

=
(
k − 1
k

)k−1

>
1
e

We use 1
k in the first formula because the k − 1 neighbors have k colors from

which they can choose but color k is already taken by v. The last step follows
from the fact that limk→∞

(
k−1

k

)k−1
= 1

e and it is a decreasing function for
k > 1.
The last observation is that the probability of v to choose a free color is at least
the probability to choose the highest free color k. The probability of v to choose
k is

1
d(v) + 1

4. Graph Coloring 22

Using these observations, we can now compute a lower bound for an honest node
v from V2 to be safe in the next round. The probability to be safe in the next
round is at least the probability to pick a free color times the probabilities that
no neighbor chooses the same color. The probabilities of the nodes in V2 of
picking a color are independent, because if node v chooses color c it does not
effect the probability of the neighbors of v to choose color c as well. With this
fact it follows

P [v is safe in next round] ≥ 1
d(v) + 1 ·

k

d(v) + 1 ·
1
e

≥ 1
(d(v) + 1)2 · e

≥ 1
(∆ + 1)2 · e

The first step follows from the fact that probability of v to be safe is at least the
probability of v being safe if it chooses the highest free color k. Therefore the
probability of v to be safe is at least 1

(∆+1)2·e .

Now we can calculate the number of expected rounds until honest node v of V2
is safe. If p > 1

(∆+1)2·e is the probability that v is safe in the next round then
the expected number of rounds until v is safe is 1

p . Therefore we have

E [# rounds until v is safe] = 1
p

<
1
1

(∆+1)2·e

= (∆ + 1)2 · e

In conclusion (∆ + 1)2 · e is an upper bound for the expected number of rounds
until v is safe.
However what we want is an upper bound for the expected number of rounds
until all nodes in V2 are safe and we have a proper coloring. Let say that n is
the number of honest nodes in V2. Then an upper bound can be composed as
follows. We could say that one node after the other gets safe. For example first
node v gets safe then node u gets safe and so on. From this observation it follows
that

E [# rounds until all nodes in V2 are safe] ≤ E [# rounds until v is safe] · n
< (∆ + 1)2 · e · n

We can conclude that in expected (∆ + 1)2 · e · n rounds all nodes in V2 are safe
and we have a proper coloring for V2.

4. Graph Coloring 23

The last part in this section is to prove that Algorithm 5 is strict-stabilizing for
honest nodes in V2.

Lemma 4.9. If an honest node v is activated it sets Cv to a color from the set
{1, 2, . . . , d(v), d(v) + 1} in expected (∆ + 1)2 · e rounds.

Lemma 4.10. In expectation the nodes in V2 do not have any conflicts within
(∆ + 1)2 · e · n rounds, where n is the number of nodes in V2.

The next result follows immediately from Lemmas 4.9 and 4.10.

Lemma 4.11. In expected (∆ + 1)2 ·e ·n rounds, n denotes the number of nodes
in V2, Algorithm 5 reaches a legitimate state for nodes in V2.

Finally using the results from above we show that Algorithm 5 is strict-stabilizing.

Theorem 4.12. Algorithm 5 achieves strict-stabilizing graph coloring for nodes
in V2.

Proof. In Lemma 4.11 we showed that a legitimate state is reached.
To show that we indeed achieve strict-stabilization it remains to prove that once
a legitimate state is reached the state of the nodes in V2 remains the same unless
a transient fault occurs.
Once a legitimate state is reached, honest nodes, which are not in V2, won’t pick
the same color as their neighbors in V2 by line 4 of Algorithm 5.
Assume that after reaching a legitimate state a node in V2 gets activated. We
denote the first such node by v. By Lemma 4.9 we obtain that v has a conflict
and this contradicts that we are in a legitimate state.

Bibliography

[1] E. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Com-
mun. ACM, vol. 17, pp. 643–644, 1974.

[2] M. Nesterenko and A. Arora, “Tolerance to unbounded byzantine faults,”
21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings.,
pp. 22–29, 2002.

[3] S. Dubois, S. Tixeuil, and N. Zhu, “The byzantine brides problem,” in Fun
with Algorithms, E. Kranakis, D. Krizanc, and F. Luccio, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 107–118.

[4] T. Masuzawa and S. Tixeuil, “Stabilizing Link-Coloration of Arbitrary
Networks with Unbounded Byzantine Faults,” International Journal of
Principles and Applications of Information Science and Technology,
vol. 1, no. 1, pp. 1–13, Dec. 2007. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-01152556

[5] T. C. Huang, “A self-stabilizing algorithm for the shortest path
problem assuming read/write atomicity,” Journal of Computer and
System Sciences, vol. 71, no. 1, pp. 70–85, 2005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000005000139

[6] A. Kosowski and L. Kuszner, “Self-stabilizing algorithms for graph coloring
with improved performance guarantees,” in ICAISC, 2006.

24

https://hal.archives-ouvertes.fr/hal-01152556
https://hal.archives-ouvertes.fr/hal-01152556
https://www.sciencedirect.com/science/article/pii/S0022000005000139

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related work

	2 Strict-Stabilization
	3 Single-Source Shortest Path
	3.1 Defining the problem
	3.1.1 System
	3.1.2 Notations
	3.1.3 Conditions
	3.1.4 Legitimate state

	3.2 Difficulties encountered
	3.3 No strict-stabilizing algorithm possible
	3.4 Almost strict-stabilizing algorithm
	3.4.1 Part of algorithm for Alice
	3.4.2 Part of algorithm for honest nodes

	4 Graph Coloring
	4.1 Defining the problem
	4.1.1 System
	4.1.2 Notations
	4.1.3 Conditions
	4.1.4 Legitimate state

	4.2 Difficulties encountered
	4.3 Fair central daemon
	4.4 Distributed daemon
	4.4.1 Deterministic algorithm
	4.4.2 Randomized algorithm

	Bibliography

