Operating System-Level Load Distribution
for Network Telemetry Data Collection

Master’s Thesis
Eduard Bachmakov
Tutor: Tobias Biihler (ETHZ), Thomas Graf (Swisscom)

Supervisor: Prof. Dr. Laurent Vanbever

March—September 2021

Acknowledgments

I would like to thank all the numerous people for their direct or indirect
contributions to this thesis.

First of all, thank you Thomas, for your mentoring, sharing of your exten-
sive expertise & experience, and for consistently providing valuable feedback.
Thank you to Marco and all the others on the Swisscom side for your con-
tinued advice and support.

On the INSA Lyon side, thank you, Pierre and Alex, especially for joining
me on countless deep dives into various internals.

Finally, on the ETH end, many thanks to Tobias for the tutoring and to
Laurent for offering this opportunity.

Abstract

As networks grow larger, network telemetry data collection becomes both
more of a necessity as well as a challenge scaling with the extent of the net-
work. In order to distribute network telemetry traffic among network teleme-
try collection endpoints, multiple layers of load balancing are used. Targeting
the last layer—from the network interface to the collecting processes—we de-
signed and implemented a system tailored to addressing practical challenges
of running such a collection system while surpassing the existing system in
both usability and performance.

Contents

1 Introduction & Problem Statement

2 Background

2.1 Linux Packet Path & Connection Establishment
2.2 The SO_REUSEPORT Socket Option
2.3 eBPE . ..
2.3.1 Overview
2.3.2 Program Capabilities
2.3.3 BPF APl vsKernel API
2.3.4 Development and Deployment Pipeline
2.3.5 Libbpfo
236 BPFCO-RE
2.4 Related Work o

3 Network Environment & System Setup

3.1 Network Environment
3.2 Dataflow
3.3 Components
3.3.1 HAProxry
3.3.2 Pmacct e
3.3.3 Remaining Components
4 Design
4.1 Requirements
4.2 Overview e e e

10
11
11
12

13
13
14
17
18
18
19

CONTENTS

421 Kernel vs BPF 0. 25

4.3 Detailed Design oo 25
431 Kernelo 26

4.3.2 Interface with Userspace 28

4.3.3 Userspace v i 29

4.4 Behavioral Aspectso 31
4.5 End-to-End 31

5 Evaluation 36
5.1 Performanceo 39

6 Outlook & Future Work 43
7 Summary 45
Bibliography 45
A Looking closer at nfacctd 1
A.1 Execution of a BPF Userspace program I

B Looking closely at reuseport kern VI
B.1 Intermediate Representation VI
B.2 JIT-Compiled Program XI

C BMP Session Handoff Challenges XVII

i

Chapter 1

Introduction & Problem
Statement

Large network operators such as Internet Service Providers (ISPs) or data
center companies manage networks with a large number of network devices.

These devices may be of various makes and models and run a variety of
network protocols. Yet, they collectively maintain distributed state required
for even basic operation. Visibility into this state is essential for the allo-
cation of capacity, fault detection & recovery, and maintenance of business
continuity.

Due to the heterogeneous nature of devices in operation, the operator can
only rely on standardized network telemetry protocols [18]. However, despite
standardization, it is up to the vendor as to which standards to implement,
at which version, and at which level of compliance.! The protocols span
three different perspectives of the network:

Control Plane Most prominently: routing. For example, the BGP Moni-
toring Protocol (BMP) exports internal BGP RIB and peering state,
enriched with peering, routing instance, and route-policy metadata.
This protocol uses TCP as its transport layer. [15]

Forwarding Plane Flow monitoring protocols such as IPFIX provide sum-
marized accounting data on traffic volume with data plane and network
processor dimensions. This protocol uses UDP as its transport layer.

[5, 19]

. and how much to charge for it.

1

CHAPTER 1. INTRODUCTION & PROBLEM STATEMENT

Topology Device properties such as, for example, an enumeration of its
interfaces and their current state, can be described using the YANG
modeling language, according to YANG schema stored on-device in
YANG datastores, and pushed using Netconf or YANG-Push. Netconf
uses TCP as its transport layer. YANG-Push can use TCP or UDP for
its transport layer: UDP for transporting best-effort accounting data
and TCP for transporting essential state changes. ||

Combining this data allows an operator to create near-realtime inferences on
the state of the network as a whole as well as on particular aspects of interest.
For example, augmenting forwarding plane information with BMP-derived
information on BGP communities allows mapping traffic to services, such as
identifying specific MPLS traffic as a specific customer’s VPN traffic.

These protocols typically push data via TCP or UDP to a data collection
system. A network telemetry protocol-dependent combination of collector
daemons is responsible for accepting, validating, filtering, post-processing,
and forwarding the data into a storage system that is shared among all the
collector daemons. This storage system can serve as a data source for an
online analytical processing (OLAP) frontend used by a human operator.
Additionally, it may serve as a uniform data model for automation to be
built upon.

By definition, the network devices feeding the collector daemons are both
numerous and omnipresent throughout the network. With dynamic traffic
allocation/shaping, it is safe to assume that any subset of them is involved
in some flow at some point. Therefore, broad observability can only be
achieved by monitoring the maximal number of devices. In other words, all
devices are expected to push network telemetry. While, conceptually, it only
takes a single collector daemon to collect and organize the incoming data,
doing so poses both scalability and reliability risks, such as overload, lack of
resiliency, network partitions. Thus, without any levels of indirection, this
is a many-to-many actor problem.

One ISP seeking network telemetry protocol spanning and cross-perspective
observability by using this approach is the Swiss national telecommunications
provider Swisscom. This thesis is based on a collaboration of the author with
Swisscom’s Network Analytics Architect Thomas Graf.

In the context of the previously introduced challenges, Swisscom uses multi-
ple load balancing layers to provide an even distribution of load to collector
daemons:

e Anycast, the advertisement of a set of virtual IP addresses (VIPs)

CHAPTER 1. INTRODUCTION & PROBLEM STATEMENT

from multiple, distinct locations in the network, provides a high-level,
geographical partitioning of the network telemetry input streams.

e Equal-cost multi-path (ECMP) routing balances input streams within
a single advertisement region across the available paths from the orig-
inating network device to the VIP.

e On-host balancing distributes the load of receiving and processing the
packet contents among a pool of processes/threads.

This thesis will focus primarily on the on-host load balancing aspect.

After this introductory chapter, chapter 2 describes certain aspects of the
Linux networking stack implementation as well as the extended Berkeley
Packet Filter and its ecosystem necessary to understand some of the core
differentiators of the design. In chapter 3 we introduce both the existing
setup used for network telemetry data collection and the environment in
which it is running. Chapter 4 describes the challenges to be addressed as
well as the design chosen and implemented, while chapter 5 determines its
effectiveness. Competing efforts and steps not (yet) taken make up chapter 6.
Finally, an overall summary concludes the core work in chapter 7.

Chapter 2

Background

The final design (chapter 4) uses some relatively new or less commonly known
functionalities of the Linux networking stack. Here, we present a refresher
on how the Linux kernel processes packets, focused on how new TCP connec-
tions are established. Subsequently, we elaborate on a specific option that
modifies this flow. Finally, we conclude with an introduction to the extended
Berkeley Packet Filter, the core technology enabling our use case.

These concepts are presented mostly independently in this chapter, however,
the design will tie them together.

All references to source files in this and in later chapters are relative to the
Git repository torvalds/linuz.git at tag v5.12 [54].!

2.1 Linux Packet Path & Connection Establishment

While one could argue that the receive path starts with the device interrupt
or within the device-specific driver logic, for most intents and purposes,
it is more useful to visualize the receive path starting at the more generic
abstractions as illustrated in in figure 2.1. Netfilter hooks, which many Linux
users are familiar with, serve as a mental guide in correlating the internal
pipeline stages with the “public APL.”

The socket lookup step will be of particular interest. For IPv4 it comes into
play after the routing decision taken within ip_rcv_finish()? has determined
to locally deliver the packet. ip_local_deliver()” passes it off to the higher

ISpecifically: commit 9f4ad9e425a1d3b6a34617b8ea226d56a119a717.
net/ipv4/ip_input.c:415
3net/ipv4/ip_input.c:240

CHAPTER 2. BACKGROUND

INPUT PATH FORWARD PATH
& Other NF parts Applicatdion Layer | ol rocs
(@D] er Networking
gggigrtsuer}igég Ig—%rtlﬂg clone packet (MmN Pl}?@ﬁ©©©ﬂ IL@W@DQ fimisocks
S5 ookup

[network level

I bridge level

* “security” table left
out for brevity

*“nat” table only consulted
for “NEW” connections

Netwoerk Layer

[_mangle |

fovara

routing
decision

R

[nat |

filter

bridging
decision

one packet

X Layer

(Lim

~ broute

brouting forward forward forward

Figure 2.1: Input and forward path of network packets in the Linux
kernel. Adapted from [15].

layer, e.g., tep_va_rcv()?. The call chain for the TCP socket lookup starting
at that point for both IP protocols is shown in figure 2.2.

2.2 The SO REUSEPORT Socket Option

Linux’s implementation of the POSIX sockets API allows the use of socket
options (set via the setsockopt(2) system call [33]) to modify the default
behavior offered by the kernel. Starting with version 3.9, the kernel supports
the SO REUSEPORT option [34, 25].

When enabled, this allows the calling process’s user ID to create multiple
sockets bound to the same combination of IP address and TCP/UDP port.
One software product advertising its use for throughput improvements and
latency reduction is the NGINX HTTP server [21]. Some of the perfor-
mance gains of using the option (as opposed to multiple threads accepting
on a shared socket) stem from increased parallelism due to lack of lock con-
tention during socket /file descriptor allocation and within the accept queue
operations (see inet_csk_accept()”).

“net/ipvd/tcp _ipv4.c:1924
®net/ipv4/inet _connection sock.c:463

CHAPTER 2. BACKGROUND

netfipva/icp_ipvd.c

net/ipv6/icp_ipvé.c

eUipvé/inet_hashtables. {h.c}

net/ipv6/inet6_hashtables. {

__inet6_lo

h

ookup_skb

Figure 2.2: Function call hierarchy during TCP socket lookup with
source file location. The common path is to look up the socket in
(IP, port)-indexed hashmaps for every new TCP segment received.
Specific types of eBPF programs can hook into this lookup. Notation:

caller — callee.

Under the hood,

e in the case of TCP transport, each incoming connection is assigned a
SO _REUSEPORT enabled socket only once during connection estab-

lishment while

e in the case of UDP transport, each incoming datagram is assigned to a
SO _REUSEPORT enabled socket whenever it is received—statelessly.

The actual assignment decision is based on a hashed 5-tuple of the incoming
packet.® This socket option extends the regular socket lookup call chain as

depicted in figure 2.3. Three new paths are added:

1. Pure SO REUSEPORT based selection selection as described above.

2. Opportunistic selection using a classical BPF program, which falls back

on #1 if unsuccessful [34].

3. Exact selection using an extended BPF program.

Snet/core/sock reuseport.c:288

CHAPTER 2. BACKGROUND

net/ipv4/inet_hashtables. {h,c} net/ipv6/inet6_hashtables.{c,h}

inet6_lookup_listener
inet6_lookup_run_bpf

inet6_lhash2_lookup

lookup_reuseport

@ inet_lookup_run_bpf
lookup_reuseport

reuseport_select_sock

run_bpf_filter

net/core/filter.c

bpf_prog_run_save_cb
__bpf_prog_run_save_cb bpf_run_sk_reuseport
BPF_PROG_RUN

Figure 2.3: Function call hierarchy during TCP socket lookup with
enabled SO REUSEPORT socket option. Continuation of figure 2.2.
run_bpf_filter() is the entry point into a classical BPF program path
while bpf_run_sk_reuseport() is the extended BPF equivalent. Nota-
tion: caller — callee.

CHAPTER 2. BACKGROUND

2.3 eBPF

The extended Berkeley Packet Filter (eBPF) is a Linux kernel subsystem
allowing developers and administrators to create programs that attach at
pre-defined hooks in the kernel. At the lowest level, these programs are
strings of bytecode instructions targeting the eBPF virtual machine. The
restricted instruction set, the constrained execution environment, and the
in-kernel eBPF Verifier effectively create a sandboxed environment for safe

execution.
eBPF was developed as an extension of the Berkeley Packet Filter (BPF)
[36] in 2014 [12]. In newer literature, “eBPF” is also used to refer to the

ecosystem as a whole.

A note on terminology: The term “BPF” will refer to the extended Berkeley
Packet Filter exclusively. When a distinction becomes necessary it will re-
ferred to as “eBPF” while the classical Berkeley Packet Filter will be called
“cBPF”.

2.3.1 Overview

A BPF program is a collection of logic that can be attached to specific
points in the kernel’s control flow. Many hooks covering many use cases are
available. These include traffic classification on qdiscs, function tracing on
syscall /kernel function entry, and socket selection on the networking receive
path.

Conceptually, a BPF program can be thought of as a function with a single
argument, the context. At the time of its invocation, there is no other state
(such as global variables). All a program can do is operate on the data
provided in the context, use immediate values, and call BPF helpers.

BPF helpers are functions specifically created for use by BPF programs.
They cover a broad collection of functionality, including obtaining random
values, invalidating hashes on socket buffers, setting socket options, obtaining
user/kernel stacks, or sending messages to userspace via DebugF'S [31].

BPF programs keep state by utilizing BPF maps. These maps form a family
of in-kernel data structures, ranging from generic arrays and hash maps to
attachment point-specific, custom data structures that can be read from and
written to using specific BPF helpers. These maps are also accessible from
userspace via file descriptors. Thus, they form the primary means of com-
munication between a live BPF program and the corresponding userspace
peer.

CHAPTER 2. BACKGROUND

BPF programs and maps are reference-counted and deleted once no longer
used. Persistence and sharing can be achieved by pinning them to a path
on BPFFS (“BPF File System”), thereby creating pseudo-files. These can be
used by other processes to obtain references to the BPF objects.

To ensure safety and security, BPF programs are checked by the BPF Verifier
at load time. As one part of its duties, it ensures memory safety, limits
instruction count, and verifies guaranteed termination [37]. Specific examples
illustrating verification and its challenges regarding safety are presented in

[50]-

2.3.2 Program Capabilities

A BPF program is associated with a single BPF Program Type. The program
type determines multiple aspects of execution. These include

e the set of BPF instructions/opcodes the program is allowed to use.
This is verified by the BPF Verifier during loading.

e the set of BPF helpers the program is allowed to call. This is verified
by the BPF Verifier during loading.

e the points at which the program can be attached. This is verified in
the context of the system call attaching the program.

For example, a SK_ REUSEPORT program cannot directly access socket
buffer (“skb”) data via the BPF LD ABS and BPF LD IND BPF in-
structions (representing direct and indirect packet access) while a program
of type SOCKET FILTER can do so.” A concise description of a selected
set of BPF program types is available in [16].

Kernel 5.12.0 supports 30 different BPF Program Types.®

2.3.3 BPF API vs Kernel API

It is often desirable to expose only a limited subset of kernel-internal data
structures to BPF programs to prevent dangerous modifications or informa-
tion leaks. This is done via the use of per-program type context structures
[19]. The following is an example of this mechanism regulating access to
socket buffer (“skb”) data.

"kernel /bpf/verifier.c:8367
8include/uapi/linux/bpf.h:177

CHAPTER 2. BACKGROUND

const struct bpf_verifier_ops sk_filter_verifier_ops = {
.get_func_proto = sk_filter_func_proto,
.is_valid_access = sk_filter_is_valid_access,
.convert_ctx_access = bpf_convert_ctx_access,
.gen_ld_abs = bpf_gen_ld_abs,

Listing 2.1: Verifier options for SOCKET FILTER BPF programs.

The BPF PROG_TYPE macro ties struct __sk_buff on the BPF side to
struct sk_buff as the kernel internal structure for SOCKET FILTER pro-
grams.” Upon program loading, the BPF Verifier uses program type specific
validation and rewriting functions to convert from one to the other. Listing
2.1 shows the actual mapping of these functions for our example program
type.'" Here, sk_filter_is_valid_access() is responsible for ensuring that the
BPF program is allowed to access the remote port but disallowed from in-
specting the timestamp. For accesses found valid, bpf_convert_ctx_access()
“parses” access to the context and rewrites the addresses and/or offsets to
ones which are valid in the backing struct sk_buff.

2.3.4 Development and Deployment Pipeline

Between conception and execution, a BPF program potentially traverses a
multitude of stages:

1. Business logic is written in a higher-level language such as (a restricted
version of) C.}

2. Using LLVM’s Clang compiler, C code is compiled into LLVM Inter-
mediate Representation (IR).

3. The LLVM BPF backend compiles this IR into BPF assembly or di-
rectly into an ELF object file.

4. A BPF loader reads the ELF object and creates the associated data
structures on the running kernel via a series of calls to the bpf() system
call. It also resolves references to these data structures within the
actual program. [5]

%include/linux/bpf_types.h:5

Ynet /core/filter.c:9833

"Even higher level abstractions are possible as well. For example, bpftrace provides a
custom AWK inspired language tailored to dynamic tracing [43].

10

CHAPTER 2. BACKGROUND

5. The actual loading of the program, triggered by bpf (BPF_PROG_LOAD, .. .),
features a mandatory program verification step in which the in-kernel
BPF Verifier establishes various safety properties such as termination,
memory safety, etc. [32]

6. A program that passes the BPF Verifier may optionally be compiled
just-in-time, targeting the underlying hardware architecture. [10]

7. A loaded program is represented by a file descriptor which then may
be used to attach it to the respective hook.

2.3.5 Libbpf

libbpf is a C library developed as part of the Linux kernel source tree [55].
It provides an extensive API to represent BPF programs, maps, and other
associated objects. It also implements a BPF program loader, including
diagnostic self-tests and extensive error report and handling options.

2.3.6 BPF CO-RE

In Linux, a dynamic executable using shared libraries requires the dynamic
loader to resolve symbol references and perform relocation. While this con-
stitutes additional complexity, it does allow the decoupling of components.
With the appropriate precautions for maintaining ABI compatibility, these
components can evolve independently.

The BPF equivalent of this functionality is BPF CO-RE (“Compile Once—
Run Everywhere”) [39]. The core idea revolves around enabling portability
of compiled BPF programs across kernel versions. With its fast pace of
development and the immense configuration space, kernel compatibility is all
but guaranteed. For example, memory layout changes may be introduced by
a different kernel configuration enabling an optional feature which, in turn,
causes the addition of feature-specific fields in commonly used structures.
Listing 2.2 contains an illustration of this.

A combination of three components can address these situations: a kernel
that is compiled with BTF information'? encoding its data structures, the
ELF binary that is compiled with BTF information symbolically expressing
data access, and a BPF loader that is able to perform relocations using

2BPF Type Format (BTF) is an efficient format for debug metadata, comparable with
DWAREF.

11

=

O © 0D U WN

CHAPTER 2. BACKGROUND

struct sock {

struct sock_common _sk_common;

[...]
int sk_forward_alloc;
#ifdef CONFIG_NET_RX_BUSY_POLL
unsigned int sk_11_usec;
unsigned int sk_napi_id;
#endif
int sk_rcvbuf;
};

Listing 2.2: Example of the configuration dependent memory layout
problem. If a hypothetical BPF accessing sock->sk_rcvbuf was
compiled against a kernel configured with NET RX BUSY POLL
enabled, the relative offset would no longer be correct if run on kernel
with NET RX BUSY POLL disabled. In this case, the in-kernel
verifier would reject the program at load time.

BTF information by resolving the latter using the former. This enables a
large degree of kernel version-independence for deployment purposes for the
compiled BPF ELF binary.

2.4 Related Work

In the proposed kernel patch Socket migration for SO REUSEPORT Ku-
niyuki Iwashima proposes a mechanism that migrates established, but not yet
accepted TCP connections to other SO REUSEPORT-enabled sockets. [24]

Public prior art on the specific implementation chosen in chapter 4 appears
to be absent, which proved a challenge during implementation.'® However,
the fact that this functionality was created and merged into the upstream
Linux kernel itself is strong circumstantial evidence that these applications
exist somewhere. One possible explanation is that the programs using this
functionality are locked away in internal corporate code repositories.

More generic loadbalancers using BPF do exist and enjoy popularity in the
“cloud native” space, with Cillium 23] being a prominent example.

13 A search on sourcegraph.com, a service that provides usable code search for 1.2 million
public Github repositories, finds no results for the regular expression “\bsk_reuseport/\w”
when filtering out kernel-internal self-tests and libbpf support for this BPF program type.
These strings correspond to ELF section prefixes that libbpf uses to determine the BPF
program type, a common pattern. For “\bsk_lookup/\w,” there is only one single result:
part of a demo used during the 2020 eBPF Summit.

12

Chapter 3

Network Environment &
System Setup

With the need for network telemetry data collection and aggregation es-
tablished back in chapter 1, we can now proceed to look at the high-level
constraints which a solution enabling such collection would need to obey. In
this chapter, we describe the network environment in which we operate, the
data collection flow, and the setup of the existing prototype systems.

3.1 Network Environment

Swisscom maintains an internal, isolated network segment called the Swiss-
com IETF interoperability lab, depicted visually in figure 3.1. The topology
of this environment is explained in great detail in [16]. For our purposes,
we focus on the node labeled ietf-internal. It acts as a host for network
telemetry data collection and is already configured as the target endpoint in
all applicable network devices within the lab for both the BMP and IPFIX
protocols.

From a practical perspective, this means there is a steady stream of TCP
connection requests and UDP datagrams aimed at this host at any given
time.

13

CHAPTER 3. NETWORK ENVIRONMENT & SYSTEM SETUP

ietf-internal (Collector)
MGMT: 10.212.252.10

Erona

“~ Ospirent

AS65536
daisy-11 (PE) daisy-12 (PE) daisy-13 (PE) daisy-14 (PE)

ipf-zbl1843.+-daisy-52 (RRIASBR)
NGNIT. 10.515

Lo: 198.51.100:

18452
52

192.0.2.0/25 (VLAN 500)

FITT

ipf-zbl1843r-daisy-61 (PE)
MGMT: 10.215.184 61
Lo: 198.51.10061

VRF-A10, RD 64499:11

VRF-B10, RD 64499:41
VRF-C10, RD 64499:71

ipf-zbl1843-r-daisy-62 (PE)
MGMT: 10.215.18462
Lo: 198.51.10062

61 AS65537

161

VRF-A10, RD 64499:12

VRF-B10, RD 64499:42

VRF-C10, RD 64499:72

62 AS65538

pkabisdsdaioy T (PE)
MGMT: 10.215.184.71
Lo: 198.51.10071

VRF-A20, RD 64499:21

VRF-B20, RD 64499:51
VRF-C20, RD 64499:81

iptabliadzcdaiy T2 (PE)
MGMT: 10.215.18472
Lo: 198.51.10072

71 AS65539

17
VRF-A20, RD 64499:22 | | 172

VRF-B20, RD 64499:52
VRF-C20, RD 64499:82

72 Asessao MOMT 1021

ipf-zbl1843-r-daisy-81 (PE)
§ A
0: 198.51.10081

181
VRF-A30, RD 64499:31

VRF-B30, RD 64499:61

VRF-C30, RD 64499:91

81 AS65541

ipfzbl1843r-daisy 52 (°E)
MGMT: 10.215.18452
Lo: 198.51.10082

VRF-A30, RD 64499:32

VRF-B30, RD 64499:62
VRF-C30, RD 64499:92

82 Ase5542

182

ipf-zbl1843r-daisy-53 (CE)
MGMT: 10.215.18453

203.0.113.252

203.0.113.253)

Ospirent

192.0.2.128/25 (VLAN 500)

ipf-zbl1843r-daisy-54 (CE)

ipfz2bl1843c-daisy S5 (CE)
MGMT: 10.215.184; 5

MGMT: 10.215.184;

ipf-zbl1843r-daisy-56 (CE)

ipf-zbl1843r-daisy-51 (CE)
MGMT: 10.215.184;

MGMT: 10.215.18451

153 154 155 156 151
AS65000 'AS65000 @ 'AS65000 @ AS65000 AS65000
203.0.113.254 203.0.113.248 203.0.113.250 ~ y 203.0.113.244 203.0.113.246
Cisco Cisco Juniper
CSR1000V XRv9000 Frrouting X5

203.0.113.255 203.0.113.249) 203.0.113.251 203.0.113.245 203.0.113.247

Ospirent Ospirent

Figure 3.1: Topology of the Swisscom IETF interoperability lab. The
collector daemons’ host is located towards the top-center of this dia-
gram.

3.2 Dataflow

From an end-to-end perspective, network devices send network telemetry
data using various protocols such as BMP or IPFIX to well-known, internal
static IP addresses. The resulting TCP and UDP traffic is routed to network
hosts running collector daemons using anycast. These collector daemons
combine the network telemetry streams into messages, as shown in listing
3.1. These messages are then published to a message broker, which (after an
optional post-processing step) relays them to a storage system. This storage
system can be queried live, e.g., by a network operator, or offline, e.g., by
batch reporting or automation. Figure 3.2 summarizes the overall setup.

Combining the network telemetry streams at the individual collector level is
a fundamental design decision of this system. This decision

e enables resource efficiency gains by distributing most of the computa-
tion across an arbitrary number of nodes close to the network telemetry
sources,

e resolves per-source data completeness questions by enforcing that ei-

14

CHAPTER 3. NETWORK ENVIRONMENT & SYSTEM SETUP

1 A

2 "event_type": "purge",

3 "label": "sgs01ro1010o0lt",

4 "comms": "60633:100_60633:265_60633:1001_60633:1032_64497
— :1528_64499:6000",

5 "ecomms": "RT:12429:20000001_RT:60633:1100001715",

6 "peer_ip_src": "138.187.57.53",

7 "src_comms": "60633:100_60633:204_60633:1004_60633:1020_60633
— :1034_60633:10004_60633:10031_60633:10044",

8 "src_ecomms": "RT:12429:30000001 _RT:12429:32100001 _RT
— :65511:1581 _RT:65511:881581",

9 "iface_in": 33,

10 "iface_out": 47,

11 "mpls_vpn_rd": "2:4200005685:11",

12 "ip_src": "85.3.167.134",

13 "net_src": "85.3.164.0",

14 "ip_dst": "195.186.219.32",

15

16 %

Listing 3.1: A (truncated,) combined telemetry message. Values in
lines 4, 5, 7, 8, 11, and 13 originate from control plane telemetry.
Values in lines 9, 10, 12, and 14 originate from forwarding plane
telemetry. Values in lines 2, 3, and 6 represent metadata added by
the collector daemon upon collection.

15

CHAPTER 3. NETWORK ENVIRONMENT & SYSTEM SETUP

on premises
Network Device

Collector

Message Broker

(Processor) ! Data Storage

premises

operator

Figure 3.2: End-to-end data flow from the network device to the user’s
screen.

16

CHAPTER 3. NETWORK ENVIRONMENT & SYSTEM SETUP

ther all messages received by the storage system are complete in rela-
tion to all perspectives, or entirely absent, and

e cnables data aggregation of different collection protocols and perspec-
tives at data-collection time, thus reducing the amount of data having
to be ingested by the message broker.

A possible alternative approach would have been to merge the data late
within the storage system (possibly even in a batch processing setting). In
such a setting, the collector daemon would merely enrich the incoming infor-
mation with collection-related metadata, convert it into a compatible mes-
sage format and then forward it. One benefit of this approach would be
a greater degree of flexibility in the analysis, as the pristine, original mes-
sages would be available for processing without the need to distribute new
aggregation rules to all collector daemons. The drawback is that none of the
benefits of the the original decision are realized.

3.3 Components

On the host, the incoming network telemetry is forwarded to the collec-
tor daemons (instances of nfacctd, a part of pmacct) by a loadbalancer
(HAProxy). Figure 3.3 zooms in on this sub-aspect.

Operator network

Collector Host

IPFIX for 1,3

BMP for 1,3

BMP for 2

Figure 3.3: Network telemetry flow. Network devices send traffic to a
single endpoint per protocol, pointing at either an HAProxy instance
or a nfacctd instance acting as a proxy. Static mapping from the net-
work telemetry source’s IP address to a nfacctd backend is responsible
for load balancing.

17

CHAPTER 3. NETWORK ENVIRONMENT & SYSTEM SETUP

3.3.1 HAProzxy

HAProxy is a free and open source software loadbalancer and proxy for
HTTP and TCP [51]. It terminates the TCP connection from the network
telemetry sender and forwards the payload to the network telemetry col-
lector daemons. The core benefit it provides is that the forwarding logic
is configurable. This allows us to map specific network telemetry senders
to specific network telemetry collector daemons without changing neither
sender nor collector daemon configuration. While the amount of configura-
tion work is comparable for the initial setup, any incremental changes are
vastly simplified.

In the context of network telemetry collection within our environment, the
HAProxy was configured using static configuration. It was set up to route to
a static set of backends (i.e., IP address:port combinations), each represent-
ing a collector endpoint on the local host. A static lookup table (technically:
an HAProxy ACL) is used to inspect the network telemetry source’s address
and to determine the backend to route to.

The maintenance effort of keeping these two mappings current was considered
a major pain point.

3.3.2 Pmacct

The pmacct project consists of a family of related software tools and daemons
for the purpose of collecting, aggregating, and exporting network telemetry
[35]. Onme of the components of the software suite is the nfacctd daemon
which collects IPFIX telemetry (the “nf” prefix refers to NetFlow, a prede-
cessor to IPFIX).

There are multiple instances of nfacctd running on ietf-internal, each acting
in one of two capacities:

1. as actual collector daemons, processing, aggregating, and forwarding
the network telemetry data, specifically BMP (via their BMP plugins)
and IPFIX, or

2. as UDP load balancers, simply directing incoming UDP traffic to one of
the instances running as actual collector daemons (see previous point).

In the latter mode it makes use of two additional lookup tables

1. to tag incoming packets based on their source addresses, and

18

CHAPTER 3. NETWORK ENVIRONMENT & SYSTEM SETUP

2. to forward tagged packets to collector daemons with the corresponding
tag.

The first of these tables was considered another major pain point.

As configured in the environment, the daemon combines/aggregates both
telemetry types and feeds the resulting messages to a message broker.

3.3.3 Remaining Components

The later parts of the pipeline have little influence on this thesis but help
illustrate the entirety of the setup: Apache Kafka [2] serves as the message
broker while Apache Druid |!] is responsible for storage. Imply Pivot |22]
provides a web-based user interface for ad-hoc reporting and analysis of the
collected data.

19

Chapter 4

Design

Bearing in mind the available options and the context of the destination
environment, we designed and implemented an extension to the pmacct-
based collection system from chapter 3.

4.1 Requirements

As the deployment target of the solution is an existing environment carrying
customer data, the system is subject to a diverse set of requirements. Some
are core functional requirements imposed by the problem statement, while
others account for challenges network engineers, network operators, and sys-
tem administrators face in the pursuit of meeting service level agreements
safely and reliably.

Device scoped, cross-protocol balancing. First and foremost, all net-
work telemetry streams of the same origin must be balanced to the same des-
tination, i.e., collector daemon. Due to the diversity of the network telemetry
protocol stack, this is required across all transport protocols. In practice, a
single network device must establish its BMP session with the same collector
daemon process to which it is sending its IPFIX datagrams. Otherwise, their
data cannot be correlated and/or aggregated.

Stable, persistent balancing. Individual collector daemon failures
must not cause dissociation of the incoming network telemetry streams.
Failover behavior must be identical between all transport protocols, despite
the sticky nature of TCP connections.

20

CHAPTER 4. DESIGN

Fault isolation. Individual collector daemon failures must not exhibit neg-
ative side effects on other collector daemons. If running near capacity in
configurations without load shedding, a single failure would shift the load
across non-failing instances, thereby bringing them into a state of overload,
resulting in cascading failures affecting the whole system.

Use of existing tools (pmacct). The pre-existing collection pipeline re-
lies on software from the pmacct project to perform the actual ingestion,
aggregation, and export. Furthermore, any changes to the system must re-
main compatible and not lose existing functionality.

Restart stability. With multiple collector daemons per host active at any
time, coordination and interaction become relevant. Consider the case of a
software update to the collector daemon binary requiring a restart thereof.
A synchronized restart of all running collector daemon processes is not only
challenging to coordinate with a conceptually unbound number of collector
daemons, but also introduces safety and reliability issues. Should the up-
dated version prove broken, the rollback process is bound to increase down-
time. This is also the case in the context of cascading failures triggered
by load spikes common during the initial startup phase of processes. It is
thus necessary to avoid unnecessary coupling of collector daemon process
lifetimes, allowing the administrator to launch or terminate them one at a
time.

Unified handling of TCP & UDP. One of the core value propositions of
the collector daemon is to aggregate disparate network telemetry protocols.
As these protocols use different transport protocols (TCP for BMP, UDP for
IPFIX), there is a corresponding need to handle these uniformly.

Stable programming interface. As there is no guarantee that all col-
lector daemon hosts will run the same versions of the dependency stack,
using a stable interface is the first prerequisite for stable and maintainable
operation. Requiring source code changes on each (re-)deployment is not
deemed acceptable.

Stable binary interface. By extension of the previous point, even a re-
compilation without any actual changes introduces friction and constitutes a
moving part liable to breakage (at 3 am on a Sunday morning in particular).

21

CHAPTER 4. DESIGN

Low configuration overhead. Provisioning configuration derived from
the ever-changing device inventory or network topology of a large network
operator is a difficult task. This creates high deployment and maintenance
burdens on operators, especially in setups without centralized network con-
trollers maintaining globally consistent models but rather traditional dis-
tributed protocols (hopefully) reaching eventual consistency. Minimizing
the amount of configuration necessary to start and operate the system and,
in particular, allowing for agnosticism regarding the identity and location of
network telemetry originators avoids this set of problems entirely.

Performance parity. Any solution addressing the challenges above should
not consume more system resources than the existing HAProxy based sys-
tem.

4.2 Overview

Given the constraints listed in section §4.1, the SO REUSEPORT option, as
described in section §2.2, offers a compelling starting point. With all collector
daemons binding to the same IP:port pairs (per network telemetry protocol),
this establishes load balancing without the use of intermediaries such as a
reverse proxy. Unfortunately, simply enabling this socket option does not
allow the customization of the mapping determining how connections/UDP
datagrams are actually distributed across the participating sockets. This
causes two distinct issues:

1. It is impossible to ensure that both TCP traffic and UDP traffic origi-
nating from the same network telemetry source are assigned to sockets
associated with a single collector daemon process since the protocol
field serves as an input to the hashing function.

2. It is impossible to ensure that single protocol traffic originating from
the same network telemetry source is assigned to the socket associated
with the correct collector daemon process, as the network telemetry
protocols allow for the use of ephemeral source ports. A trivial example
of this situation is the restart of the BMP daemon on a network router
resulting in a different TCP source port.

The most straightforward approach to address these issues would be to cus-
tomize the hashing algorithm used to locally assign TCP connections/UDP

22

CHAPTER 4. DESIGN

datagrams to sockets. By using only the network telemetry source’s IP ad-
dress as an input to the hashing function, cross-protocol traffic would be
consistently hashed to the same sockets. Yet, more problems surface:

1. It is impossible to avoid race conditions influencing the final hash val-
ues. TCP connections are distributed among all available sockets dur-
ing connection setup. Assuming that there is little control over the
rate and timing of incoming connections unless the startup is perfectly
synchronized, the assignment will not be balanced. The situation is
even worse upon disruption of the steady operating state: If a single
collector daemon process out of IV dies, all connections associated with
the socket are reset. If the network telemetry sources attempt to set
up new connections before the offending collector daemon process is
restarted, it may happen that these are established with one of the re-
maining N — 1 processes. This both increases the load on the existing
processes and starves the restarted one of work.

2. The assignment target itself remains unstable. The flow hash indexes
into a sequence of sockets albeit the ordering on that sequence is not
guaranteed even if the index itself was stable. Even if the sequence
was guaranteed to be in insertion order, this would result in a cross-
protocol race condition, unless there was an avenue to impose a partial
order on the TCP-UDP socket pair creation at all times.

Furthermore, there is no standardized facility to customize the inputs to the
used hashing function. The only way to accomplish this is to modify the
logic in place and release a new, deployment-internal kernel version. As per
subsequent section 4.2.1, this is rather undesirable.

However, with our newly gained background in BPF from section §2.3, we
now have an additional API available to us to resolve these shortcomings. In
particular, in Linux 4.19 Martin KaFai Lau implemented the BPF program
type SK_REUSEPORT [26]. A BPF program of this type attaches to a
SO _REUSEPORT-enabled socket. It is run whenever a new TCP connec-
tion targeting the bound address is being set up or when a UDP packet for
said address is received. SK_REUSEPORT programs are able to inspect the
contents of the socket buffer that triggered its execution in the first place
and must decide whether a connection is established or reset instead (in case
of UDP: whether the datagram is processed or dropped). Furthermore, it
is also able to assign the incoming connection/datagram to a socket. With
this building block, we are now able to resolve the roadblocks enumerated
previously.

23

CHAPTER 4. DESIGN

This is not the only option, however. One alternative, even more generic
approach is the creation of a BPF program of type SK_LOOKUP. First in-
troduced into Linux 5.9, it allows for yet more programmability of the lookup
procedure. In fact, the illustrating example was to map an IP range onto a
single socket [17]. SK_LOOKUP programs do have significant drawbacks,
however:

1. The attachment point for SK _ LOOKUP is a network namespace rather
than a socket. This incurs additional administrative overhead in the
case of creating custom namespaces for the collector daemon to run
in, as well as the difficulties of lifecycle management thereof. While
attaching to the initial /root namespace is possible, doing so breaks
any veneer of isolation and reduces the composability of deployment.
Any misconfiguration or bugs may now affect overall host health rather
than being confined to the collector daemon, especially since a BPF
program attached to the initial namespace will outlive the processes
originally attaching it.

2. Having been introduced in kernel release 5.9 (October 2020) only com-
paratively recently, this BPF program type was not available on the
kernels deployed on the collector machines which were running release
4.18 (first released in August 2018). We are not aware of any backports
to 4.18 either.

In contrast, XDP (eXpress Data Path) represents an option engaging at the
earliest point in the packet processing pipeline (c.f. section §2.1). Before
any further processing, or even the allocation of a socket buffer (“skb”), the
XDP BPF program would inspect the raw data from the device driver!
and determine whether to pass it to an AF_XDP socket in userspace or to
disregard it by passing it back into the pipeline [20]. Aside from the natural
complexity of implementing a (partial) userspace networking stack, XDP is
not subject to any netfilter processing or queuing disciplines, creating yet
more administrative difficulty.

With this landscape of approaches in mind, we designed and implemented
a solution built upon the first viable choice: a SK_ REUSEPORT BPF pro-
gram.

LCertain devices/drivers feature offload support XDP [41]. In this case, the program
is run even earlier.

24

CHAPTER 4. DESIGN

4.2.1 Kernel vs BPF

Much of the same functionality can also be achieved by creating Linux kernel
modules or implementing the changes in-place in a locally maintained fork of
the Linux kernel source tree. While this method allows for the maximal free-
dom in choice of design and/or a custom tailoring most precisely matching
the requirements, there are significant downsides to this approach.

A kernel fork, however minimal, introduces a high burden in both upfront
cost and ongoing maintenance cost. Unless there already is an established
process of handling custom patches in place, at the very least this implies
setting up dedicated software build pipelines that patch the changes into
incoming distribution kernel updates. Associated manual conflict resolu-
tion would further aggravate the situation, as there are no promises of code
compatibility between releases or even revisions’. Major changes requiring
a rebase might end up incurring complexity equivalent to a rewrite from
scratch. Modified kernels further require an additional stage release qualifi-
cation pipeline. In the case of a security update, this introduces a previously
unnecessary tradeoff between release safety and security.

For production machines in particular, additional kernel updates consume
precious error budget and make it harder to maintain service level objectives.

Worse still, with little chance of the upstream Linux developer community
accepting environment-tailored changes into the main branch, this malaise
is potentially perpetual.

In environments with requirements on code provenance/signing—possibly
certified by another party—custom kernel code is likely entirely untenable.

Thus, writing and maintaining actual kernel code is prohibitively costly given
the availability of any alternatives.

4.3 Detailed Design

With the design space explored, we can take a closer look at the implemented
approach. It consists of three parts: the kernel side implemented in BPF,
the userspace side as an extension to nfacctd, and the BPF maps serving as
an interface between them. In the following, each will be covered in its own
subsection.

2In kernel version 5.12.1, “5” is the major release, “12” is the minor release, and “1” is
the revision.

25

CHAPTER 4. DESIGN

struct sk_reuseport_md {
/*
* Start of directly accessible data. It begins from
* the tcp/udp header.
*/
__bpf_md_ptr(void *, data);
__bpf_md_ptr(void *, data_end);
/*
* Total length of packet (starting from the tcp/udp
— header).

*/

__u32 len;

__u32 eth_protocol;

__u32 ip_protocol; /* IP protocol. e.g.
<~ IPPROTO_TCP, IPPROTO_UDP */

__u32 bind_inany; /* Is sock bound to an INANY
<~ address? */

__u32 hash; /* 4 hash of the packet /4

— tuples */

Listing 4.1: Context of a SK__REUSEPORT BPF program. Some
comments have been omitted for brevity.

For the rest of this section, we will primarily describe TCP without (signif-
icant) loss of generality. Except when called out explicitly, replacing “con-
nection” with “datagram” and “once, on establishment” with “per packet”
effectively describes the UDP equivalent.

4.3.1 Kernel

Within the BPF program itself, three core pieces of functionality are needed:
source IP address based hashing, socket lookup, and feedback to the kernel
networking stack on whether to establish or drop the connection.

For SK_REUSEPORT programs, the available context® (listing 4.1) does
not expose network and transport protocol metadata directly. While we can
access (see section 2.3.3) parts of the socket buffer through the data member,
the accessible range starts only at the transport layer header. Therefore
we cannot directly inspect properties such as the source IP address of the
incoming connection request. However, as per this program’s protocol,® it

3include/uapi/linux/bpf.h:4521
“net/core/filter.c:10161

26

CHAPTER 4. DESIGN

can retrieve this data via the skb_load_bytes_relative() BPF helper. With its
help, we read an IPv4 header’s length of bytes from BPF_HDR_START_NET (i.e.,
the start of the network header) thereby granting us access to the source IP
address after all.

The hashing function itself is virtually unchanged from the one in the tradi-
tional path. The function used by IPv4/AF INET, inet_ehashfn()’, is a thin
wrapper around the Jenkins hash function®. Since we cannot call arbitrary
functions from BPF programs, and as this particular function is not exposed
through a BPF helper, the implementation itself was lifted from the Linux
source tree. One of the inputs to the hash function, the seed, provides an
additional benefit when exported into userspace: It enables the creation of
tools that can simulate the traffic allocation. By extracting the hash func-
tion setup into a standalone helper that has access to the seed, an operator
can easily inspect the current address-to-process mapping. As a corollary,
the operator can manipulate the value currently in use to conduct debugging
or simulate failure conditions.

The return value of a SK_REUSEPORT program is a verdict on whether
or not to accept the connection. This provides the API necessary to cir-
cumvent all race conditions of SO REUSEPORT, as there now is an option
to reject specific connection attempts until the software stack is in a ready
state. Thus, we can introduce the notion of a fired number of hash buckets,
i.e., number independent of the number of sockets actually bound to our
address. While implementing failover support might appear opportune here,
the BMP protocol would make this difficult at higher levels of the stack, see
appendix C.

Each participating collector daemon process’s socket is registered in a custom
lookup table. A special BPF helper, bpf_sk_select_reuseport(), can access
this table using an array index and (via side-effect) establish the association
between the currently handled connection and the target socket. If the hash
indexes into a row that is empty, i.e. not backed by a corresponding socket,
the collector daemon associated with that row is considered temporarily
unavailable. These connections are rejected.

Due to a lack of use cases within our environment, support for IPv6 was not
implemented. Attaching the BPF program to AF _INET6 sockets will hash
octets 4-7 of IPv6 source address, breaking the balancing for the general
case.

Some parameters of the program, such as the bucket count and the hash

®net/ipv4/inet_hashtables.c:31
Sinclude/linux/jhash.h

27

CHAPTER 4. DESIGN

seed, always require values. For simplicity, these are initialized on the first
run. The program is available for inspection in [4]7 or, in inlined form, in
appendix B.

4.3.2 Interface with Userspace

BPF maps are the core mechanism to share data between the kernel and
userspace. In total, we make use of four maps:

nonce is a 1 x 1 array that contains a value initialized at startup. Despite
its name, it is is closer to a seed and serves as an input to the Jenkins
hash function as implemented by the kernel®. It must be shared among
all processes balancing the same load.

size is a 1 x 1 array that contains that contains the intended number of pro-
cesses balancing the same load. It must be shared among all processes
balancing the same load.

tcp balancing targets & udp balancing targets are maps of type
REUSEPORT SOCKARRAY. They are populated with the refer-
ences to all the listening sockets of all processes balancing the same
load. They must be shared among all these processes. Our implemen-
tation uses one for TCP and one for UDP. The use of two separate
maps is not strictly necessary. Instead, the respective sockets could
be packed into a single map and accessed via somewhat more involved
index calculation. One implementation could do the hash calculation
using keyrcp := h (ipg.) mod size, and keyypp := keypcp + size
while ensuring that the map has at least 2 size capacity.

Listing 4.2 demonstrates how maps are defined, using tcp balancing targets
as an example.

Since all maps must be shared, a sharing mechanism is needed. One option is
to have only the chronologically first collector daemon process load the maps
and distribute the file descriptors to the other processes using Unix Domain
Sockets. This would require implementing something akin to a client-server
service and/or a peer-to-peer consensus algorithm. There is a much simpler
alternative, however: BPF Object Pinning. This allows us to use a filesystem
path for map sharing.

reuse/reuseport _kern.c
%include/linux/jhash.h:63

28

CHAPTER 4. DESIGN

struct {
__uint (type, BPF_MAP_TYPE_REUSEPORT_SOCKARRAY);
__type (key, u32);
__type(value, u64);
__uint (max_entries, MAX_BALANCER_COUNT);
__uint (pinning, LIBBPF_PIN_BY_NAME);
} tcp_balancing_targets SEC(".maps");

Listing 4.2: Definition of the tcp balancing targets map. For map
type of REUSEPORT SOCKARRAY, key and value size are fixed.
As it is an array-type map, key is simply an array index. wvalue is a
kernel address of the socket structure. When inspected from userspace,
these values are replaced by socket cookies to prevent leakage of
kernel addresses. max_entries is the upper bound on the row number
(MAX BALANCER_COUNT is a compile time constant supplied
by the operator). Finally, pinning instructs libbpf to pin the map into
BPFFS.

Using pinning as the mechanism provides a major beneficial side effect. With
references to maps exposed in BPFFS, they can now easily be inspected,
manipulated, and deleted using bpftool [30]. This empowers an operator to
create appropriate monitoring or conduct debugging if necessary. It also
relieves the userspace component of the system from handling the rarest and
most complicated edge cases. The drawback is that these references are now
shared system resources that can experience various failures. An actual, real-
life example would be the occurrence of naming collisions caused by multiple
collector daemons reusing the same pin paths.

Unlike maps, the BPF program itself is not pinned in BPFFS. Each collector
daemon loads a new program on startup (presumably identical to the last).
This also serves as an implicit update mechanism that does not require the
creation and inspection of version metadata.

The map definitions are available for inspection in [4]°.

4.3.3 Userspace

To make use of the presented load balancing mechanism, all of pmacct’s
daemons in scope need to implement the following functionality:

1. The socket that will receive traffic from the targeted network telemetry

“reuse/reuseport _kern.c

29

CHAPTER 4. DESIGN

protocol needs to be SO REUSEPORT enabled. This is done using
setsockopt() [33].

2. The ELF binary file representing the BPF program needs to be opened
and loaded into memory. Libbpf provides the BPF object abstraction
for this.

3. The BPF Object needs to be configured. This includes setting the pin
path and its prefix in particular.

4. References to the BPF maps need to be acquired. Depending on
whether a map’s pin path already contains a reference to an exist-
ing map, either that map needs to be opened or a new map has to be
created.

5. The BPF program needs to be relocated to work with the running
kernel and map references within the instruction streams need to be
resolved.

6. The BPF program needs to be loaded into the kernel.

7. The loaded BPF program needs to be attached to the socket. This is
done using setsockopt(). If the socket is in state LISTEN already, it
will no longer receive additional connections.

8. This socket now needs to be inserted into the respective REUSE-
PORT SOCKARRAY map.

If these steps are executed successfully, the collector daemon will then receive
traffic for the configured fraction of all possible source IP addresses.

This is only a high-level overview of the steps involved. A more detailed
description of what happens at the system level is available in section §A.1.

To enable and make use of this functionality, pmacct receives three new
configuration options:

reuseport hashbucket count is the option that declares the how many
collector daemons the operator intendeds to use to balance the load.
In the case where the corresponding BPF maps already exist, it also
serves as a sanity check preventing mismatching configuration between
multiple collector daemons.

reuseport hashbucket index specifies which bucket the process setting
this value represents. Values are in [0, reuseport hashbucket count — 1).

30

CHAPTER 4. DESIGN

reuseport bpf prog specifies the filesystem path at which the ELF bi-
nary containing the BPF program can be found.

The functionality described in this section was implemented for pmacct’s
nfacctd and its BMP plugin. As a result of the implementation, pmacct
gained a dependency on libbpf > 0.4.0.

The changes to pmacct are available for inspection in [3].

4.4 Behavioral Aspects

Since each collector daemon is configured independently, a risk of incompat-
ible configuration arises. The three configuration options can be partitioned
into two groups: quasi-static and dynamic. For the former, a meaningful
value needs to be set once and rarely—if ever—changed. This is the case
for the path to the BPF ELF binary as well as for the daemon’s own bucket
number; while any number of daemons may be running at any time, each
has its own configuration file specifying its bucket number. This is not the
case for the total number of buckets, however. Scaling this number up (or
down) may be needed periodically due to organic changes in network device
deployments. Since changes to this setting affect all concurrently running
collector daemons, additional sanity checks were implemented to verify con-
sistency. As a result, to change the total number of buckets intentionally, all
collector daemon processes need to be terminated and the map be deleted.
Otherwise, the number has to be changed imperatively from outside pmacct
(e.g., using bpftool).

There can only be one SK_ REUSEPORT BPF program per reuseport group
(i.e., the set of sockets binding to the same IP:port combination), with the
most recently attached one winning out [31]. Attaching the program on
reuseport group with unsuspecting members will thus result in a “hostile
takeover,” starving them of new TCP connections/UDP packets. While un-
likely to happen by accident, it may be considered surprising behavior, espe-
cially during migrations from “just” SO REUSEPORT to the BPF program
presented here.

4.5 End-to-End

So far, most aspects of the design have been described in isolation. In this
section, we will illustrate their interaction in chronological order using the

31

CHAPTER 4. DESIGN

following scenario: In an initially empty world, a single collector daemon
starts up and accepts an incoming TCP connection.

While “maps”, “ebpf”, and “kernel” are drawn as three separate systems in
the following figures, this was done for illustrative purposes only. They are
all part of the Linux kernel.

At some point during its startup phase, nfacctd starts initializing the socket.
After enabling the SO REUSEPORT option, the daemon can now bind the
socket to the desired address (figure 4.1).

nfacctd0 i ’ map i ’ ebpf I ’ kernel I ’ 192.0.2.1:*

I I I I I
| |
! setsockopt(SO REUSEP@RT)

Figure 4.1: End-to-end: Prerequisites. A collector daemon
(“nfacctd0”) configures its socket. The raw IP address represents a
(currently idle) client.

nfacctd now starts initializing the BPF related components (figure 4.2). This
is accomplished primarily by the use of the bpf() system call APT [32]. It
creates the maps it uses to keep state and to communicate with userspace,
and resolves references to them within the instruction of the BPF program.
After successfully loading the program into the kernel, it attaches it to the
socket. The core functionality is now ready to be used, but, in its current
state, would reject all ingress as destinations have yet to be configured.
To alleviate that nfacctd now inserts its own socket as a target into the
tep balancing targets map and puts the socket into the listening state. The
setup is now complete. An in-depth description of these steps can be found
in section §A.1.

Let us consider the situation of a network telemetry source attempting to
connect to the configured endpoint on the host running nfacctd (figure 4.3).
After receiving the TCP packet, the kernel eventually determines that this
packet is destined for local delivery and the control flow reaches the socket
lookup procedures. It finds a SK__ REUSEPORT program attached and calls
the program. The program then inspects the headers and computes a hash
based on the IP source address. It looks up the number of nfacctd daemons

32

CHAPTER 4. DESIGN

nfacctd0 i ’ map ' ’ ebpf I ’ kernel . ’ 192.0.2.1:*

I
|

I I
| |
L bpf(BPE_MAP_CREATEY), bpf(BPF_PROG_LOAD). |.. >
|
|
|
|

DA A 1
| |
| |

setsockopt(SO_ATTACH_REUSEPORT_EBPF) >
} H

e e
| I
| |
| |

map[0] := self ol }
I |
|

A |

}
|
|

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I |

Figure 4.2: End-to-end: Setup. All BPF initialization is contained in
this phase. After the self-registration in the socket lookup, there are
no more BPF-specific actions to be taken from the userspace program.

33

CHAPTER 4. DESIGN

among which to balance, and determines the target hash bucket implicitly
setting the target socket during the lookup. In this case, the socket in the
target bucket belongs to our originally nfacctd instance (“nfacctd0”). Since
the lookup succeeded, the BPF program instructs the kernel to continue with
the handshake.

nfacctd0 i ’ map | ’ ebpf I ’ kernel I ’ 192.0.2.1:*

|
! SYN!

sk_reuseport_select
sock()

A

H ¢ # of balancers?

I

|

}

i h(192.0.2.1)
} mod N ==0
|

|

|

|

|

|

-

< lookup map[0

*socket >

LISYN/ACK

accept()

Figure 4.3: End-to-end: Receiving a connection. During socket alloca-
tion, the BPF program is executed to determine the target socket. In
this case, this was successful, and the connection setup was permitted
to proceed (final ACK not shown).

With the connection established, actual communication no longer involves
anything BPF related (figure 4.4).

34

CHAPTER 4. DESIGN

nfacctd0 i ’ map i ’ ebpf ' ’ kernel ' ’ 192.0.2.1:* I

loop 1
i read()

Network telemet&)
I

Figure 4.4: End-to-end: Regular data flow.

35

Chapter 5

Evaluation

With both high-level design and low-level implementation details fresh in
our minds, we can now evaluate the system in light of the requirements
established earlier in section §4.1.

Device scoped, cross-protocol balancing. By balancing based only on
the IP source address, while disregarding transport layer type and metadata,
we were able to ensure that any network telemetry from that address is routed
to the same collector daemon. This requirement was met.

It should be noted that there is a major simplifying assumption at play: all
applicable network telemetry is sent using the same interface. While this
is guaranteed to be true in the targeted deployment scenario, this is not a
universal truth. If this assumption were to be invalidated, there would be
at least two possible approaches to addressing the resulting gap. First, one
could introduce one additional layer in indirection: a map from source IP
address to device ID. In this setup, the BPF program would do a map lookup
to retrieve the device ID and then hash that ID to determine the target
socket. Secondly, the BPF could inspect the unencrypted packet payload
itself to find common identifiers. The former option requires the creation
and maintenance of the mapping, while the latter requires additional packet
dissecting logic per supported network telemetry protocol.

Stable, persistent balancing. The balancing mechanism itself is not
dependent on whether a balancing target exists (i.e., a collector daemon has
registered its socket). By simply rejecting those connections and implicitly

36

CHAPTER 5. EVALUATION

communicating to the network telemetry source to retry, we avoid moving
sticky connections to other collector daemons. This requirement was met.

Fault isolation. The logic of the previous requirements can be extended
to this requirement: by rejecting connections/packets in failure cases rather
than shifting them to other collector daemons we prevent overload and cas-
cading failures. This also works in the case where the root cause of failure is
on the other side: should a network telemetry source send a packet of death,
that source will not be passed around until all collector daemons are in a
crash-loop. This requirement was met.

Use of existing tools (pmacct). The userspace logic is entirely contained
within pmacct. This requirement was met.

Restart stability. As previously elaborated, both the hashing and the
set of slots for balancing targets are stable and independent. Thus, any
participating collector daemon can start/stop/crash at any time in any order.
This requirement was met.

That said, the isolation is not perfect. The BPF program itself is a shared
resource. If a misconfigured collector daemon were to replace the BPF pro-
gram with one that always rejects all connections and packets, this would
constitute a denial-of-service against that host’s collector daemons. This
situation can be prevented by isolating the act of program loading into a
separate, tightly controlled program. Collector daemons would be able to
attach/detach existing programs at will, but not attach entirely unacceptable
ones. However, with all collector daemons having to run as the same user
ID as per SO REUSEPORT’s security model, some trust is fundamentally
required.

Unified handling of TCP & UDP. There is only a single BPF pro-
gram that can be attached to both SOCK STREAM and SOCK DGRAM
sockets. The userspace logic itself is entirely protocol agnostic as well. This
requirement was met.

Stable programming interface. eBPF is a well-established subsystem
of the Linux kernel and has been around for over seven years, and Linux’s
mantra of “don’t break userspace” needs no introduction. The additional
dependency on pmacct, libbpf, is self-contained and can be bundled when

37

CHAPTER 5. EVALUATION

targeting sufficiently old systems (in fact, that is how pmacct was compiled
on the IETF Lab machine). This requirement was met.

Stable binary interface. Quoting the relevant official documentation’s
answer in its entirety,

Q: Does BPF have a stable ABI?

A: YES. BPF instructions, arguments to BPF programs, set of
helper functions and their arguments, recognized return codes
are all part of ABI. However there is one specific exception to
tracing programs which are using helpers like bpf probe read|()
to walk kernel internal data structures and compile with kernel
internal headers. Both of these kernel internals are subject to
change and can break with newer kernels such that the program
needs to be adapted accordingly. [27]

This requirement was met.

Low configuration overhead. We added three configuration options to
pmacct, two of which are only relevant during the first setup. In return, this
rendered obsolete

e the entirety of HAProxy server configuration,

any lookup tables providing routing information to the above,

a dedicated configuration for a nfacctd instance serving as the UDP
loadbalancer,

e any tagging rules classifying the input for the above,

lookup tables mapping tags to collector daemon endpoints, and

e any processes required to update any of the above.

Best of all, enabling network telemetry on new network devices no longer
requires any configuration changes on the collector daemons’ hosts. This
requirement was met.

38

CHAPTER 5. EVALUATION

5.1 Performance

It is now time to look at the last item on our list of requirements, perfor-
mance.

The existing, HAProxy-based deployment is not documented to have reached
a saturation point or overload point attributable to the proxy with respect to
a maximum number of connections or packets per second. Rather, the col-
lector daemons themselves have already been established to be the limiting
factor according to company internal benchmarks. In this context, the im-
provements to the parts of the pipeline that are traversed before the collector
daemon reads from a socket are of limited use to the overall system.

As for nfacctd itself—as the cost of running the additional userspace code
is only paid once during startup—a negative change in the saturation or
overload characteristics is unlikely.

To measure resource usage, we ran both the existing HAProxy-based system
as well as the BPF based one for one hour each while a BMP load gener-
ator [53] was simulating 512 clients. Each system was configured with two
collector daemons performing actual data aggregation and forwarding. This
likely represents an edge case of maximal usage savings, assuming that the
number of deployed HAProxy and nfacctd-as-a-loadbalancer instance scales
sublinearly with the number of nfacctd instances acting as collector daemons.

The test itself ran in a virtual machine configured with 8 Intel Xeon E5-2620
v4 cores at 2.10GHz and 64GB of RAM. The operating system was CentOS
Linux 8 with Linux kernel version 4.18.0-240.22.1.el8 3.x86 64 (unmodified
distribution version). nfacctd was based on commit 056ef7e in [3].

All processes of each system were started in a cgroup with the cpu accounting
and memory controllers [28, 29] enabled. The raw numbers were collected by
a script that would read out the total usage numbers from the cpuacct.stat
and memory.stat pseudo-files of that cgroup every (wall clock) second.

The resulting measurements are depicted in figure 5.1 for CPU usage and
in figure 5.2 for memory usage. We can see that, while the memory usage
pattern does not show visible differences, there is a significant reduction of
CPU usage throughout the operating period. In total, we save about one-
fifth of CPU usage (table 5.1). The reduction in time spent in kernel mode
should prove particularly beneficial on shared hardware.

39

CHAPTER 5. EVALUATION

Proxy-based BPF-based
250 250

— 200 A 200 A

n

@

£ 150 150 A

&)

&0

&

= 100 100

-]

&

“ 504 user 50 - user

sys sys
0 T T T 0 T T T
0.0 0.5 1.0 0.0 0.5 1.0
Time (normalized) Time (normalized)

Figure 5.1: Comparison of CPU utilization between the existing sys-
tem and the one described in this thesis. Benchmark timestamps are
normalized to 1. A value of 1000 corresponds to the full utilization of
one CPU core for the duration of one second.

Measure Proxy BPF A

user 56957 48387 —-17%
system 66 388 55319 —20%
total 123345 103706 —19%

Table 5.1: Raw, total, cumulative CPU usage of two representative
benchmark runs. Units are USER__HZ (Y/100s on this system).

The slow ramp-up on the proxy-based setup is due to an artificial limitation
of the rate of creation of BMP clients, spreading that process over the course
of one minute. Without this slowdown, on every attempt,

e a large number of connections would fail to be established (> 50%
failure rate; no retries) and

e an HAProxy worker would terminate due to a segmentation fault.

In a company-internal review of this observation, this behavior was classified
as a known issue. In contrast, there was no corresponding issue in the BPF-
based setup, causing the vertical, initial spike.

40

CHAPTER 5. EVALUATION

Proxy-based

BPF-based

15.0 15.0
12.5 1 12.5 1

= 10.0 1 10.0

<

o 7.51 7.5 7

80

8

= 5.0 MEM cache 50 MM cache
954 [unevictable 95 4 [unevictable

| W RSS | mmm RSS

0.0 - 0.0 -

0.0

0.5

1.0

Time (normalized)

0.0

0.5

1.0

Time (normalized)

Figure 5.2: Comparison of RAM utilization between the existing sys-
tem and the one described in this thesis. The median usage amounts
to 14.0 GB for the proxy-based setup and 13.9 GB for the BPF-based
one. The metrics are stacked, but the cache/unevictable metrics are
trumped by the resident set size. Benchmark timestamps are normal-

ized to 1.

41

CHAPTER 5. EVALUATION

In both setups, a large usage spike after the midpoint of the benchmark can
be observed. It consumes an additional 2-3 GB of memory, saturates at
least one CPU core, and appears during every single run, lasting for 15-20
seconds. Given our cgroup-based measuring setup, by process of elimination,
it must originate in nfacctd, however, we were unable to determine the root
cause. We do not believe it has any impact on our conclusions.

While the proxy-based setup runs two additional process trees (HAProxy &
nfacctd-as-a-proxy), this is hardly visible. Spot checks indicated that they
take up less than 150 MB RSS total, a non-zero, but otherwise negligible
overhead.

We can therefore conclude that this last requirement was met as well.

42

Chapter 6

Outlook & Future Work

pmacct upstreaming. With the value of this work demonstrated in chap-
ter 5 for Swisscom, it would be a logical next step to lower the barrier of
usage for other interested parties. One of the hurdles is that these prospec-
tive users have to run a patch set on top of pmacct, which can be removed by
integrating the change in upstream pmacct. We anticipate this to be a design
challenge: As the first integration of a BPF program into the pmacct code-
base, major decisions will have to be taken regarding API design. As shown
in chapter 4, the interfacing of the BPF program and the userspace part
(i.e., pmacct) is highly dependent on the BPF map definitions. Generalizing
our implementation such that other BPF programs (and, more interestingly,
other types of BPF programs) can be substituted with the right abstractions
requires careful thinking.

A first step could be to only offer the program itself, as written, as a singular
feature. With the program’s behavior well understood and the integration
points clear, the remaining challenge would be focused on productionization,
e.g., monitoring, optionality (i.e., being able to enable/disable the function-
ality per network telemetry protocol), etc.

Third-party integrations. Within the scope of this thesis, two collector
daemons received BPF program support. This coverage can be extended
further. In fact, work is already underway for the out-of-tree C-Collector for
UDP-notif library |11] which implements support for the (current draft of)
the UDP-Notif protocol |56].

43

CHAPTER 6. OUTLOOK & FUTURE WORK

Extended performance analysis. It is possible to profile BPF programs
using bpftool [30]. Doing so requires the availability of hardware performance
counters which were not exposed in the virtual machine in the IETF lab
environment. With deployment in production targeting bare metal, this
should become feasible.

Cross-platform considerations. In its current form, the eBPF program
is limited to Linux as its operating environment. While some eBPF porting

work to FreeBSD was done in [18], there is no indication of general availabil-
ity. However, in May 2021 Microsoft announced work on a Microsoft Win-
dows implementation of BPF [35, 52]. Should support for SK_ REUSEPORT

type BPF programs be introduced, this would allow for cross-platform sup-
port from a single codebase.

Code simplification. Kernel version 5.13 introduces a facility to expose
kernel functions to BPF without creating custom BPF helper functions [13].
If this were to be applied to the hashing function used in our BPF program,
the program would be significantly simplified (c.f. appendix B).

44

Chapter 7

Summary

Network telemetry data collection is a basic requirement in modern networks.
As we have shown throughout this work, it features some unique challenges
due to the distributed nature of the problem and the specific requirements
imposed on the data routing that need to be accounted for and handled
explicitly.

In this thesis, we designed and implemented a system addressing these chal-
lenges and requirements. We extend our target environment’s existing net-
work telemetry collection infrastructure to support in-kernel loadbalancing,
utilizing the Linux kernel’s eBPF subsystem for assigning TCP connection
and UDP datagram to collection endpoints according to our own business
logic. In effect, we introduced device scoped, cross-protocol balancing of
network telemetry streams across an arbitrary number of collection end-
points, enabling reliable network monitoring by ensuring robust correlation
of network telemetry data at the collection endpoint. Our implementation
requires less maintenance effort and much less configuration overhead than
the previously existing architecture.

We evaluated this implementation and established that it not only covered
and met all imposed requirements, but also performed more efficiently than
the previously existing system.

45

Bibliography

1

2]

3]

4]

[5]

[6]

7]

8]

APACHE SOFTWARE FOUNDATION. Apache druid. https://druid.
apache.org/. [Online; accessed September 2021]. 19

APACHE SOFTWARE FOUNDATION. Apache kafka. https://kafka.
apache.org/. [Online; accessed September 2021]. 19

BacaMAkoOv, E. pmacct (branch “reuse”). https://github.com/
eduarrrd/pmacct/tree/reuse. [Online; accessed September 2021]. 31,

39

Bacumakov, E. reuseport. https://github.com/eduarrrd/
reuseport. [Online; accessed September 2021]. 28, 29

BAUER, L., AND CREQUY, A. Exploring bpf elf load-
ers at the bpf hackfest. https://kinvolk.io/blog/2018/10/
exploring-bpf-elf-loaders-at-the-bpf-hackfest/, October 2018.
[Online; accessed September 2021]. 10

BERNASCHI, M., CASADEI, F., AND TASsOTTI, P. Sockmi: a solu-
tion for migrating tcp/ip connections. In 15th EUROMICRO Interna-
tional Conference on Parallel, Distributed and Network-Based Process-
ing (PDP’07) (2007), pp. 221-228. XX

CHENG, Y., CHU, J., RADHAKRISHNAN, S., AND JAIN, A. Tcp
fast open. RFC 7413, RFC Editor, December 2014. http://www.
rfc-editor.org/rfc/rfc7413.txt. XVIII

CLAISE, B., TRAMMELL, B., AND AITKEN, P. Specification of the ip
flow information export (ipfix) protocol for the exchange of flow informa-
tion. STD 77, RFC Editor, September 2013. http://wuw.rfc-editor.
org/rfc/rfc7011.txt. 1

46

https://druid.apache.org/
https://druid.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://github.com/eduarrrd/pmacct/tree/reuse
https://github.com/eduarrrd/pmacct/tree/reuse
https://github.com/eduarrrd/reuseport
https://github.com/eduarrrd/reuseport
https://kinvolk.io/blog/2018/10/exploring-bpf-elf-loaders-at-the-bpf-hackfest/
https://kinvolk.io/blog/2018/10/exploring-bpf-elf-loaders-at-the-bpf-hackfest/
http://www.rfc-editor.org/rfc/rfc7413.txt
http://www.rfc-editor.org/rfc/rfc7413.txt
http://www.rfc-editor.org/rfc/rfc7011.txt
http://www.rfc-editor.org/rfc/rfc7011.txt

BIBLIOGRAPHY

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

CLEMM, A., AND VoIT, E. Subscription to yang notifications for
datastore updates. RFC 8641, RFC Editor, September 2019. http:
//www.rfc-editor.org/rfc/rfc8641.txt. 2

CORBET, J. A jit for packet filters. https://lwn.net/Articles/
437981/, April 2011. |Online; accessed September 2021|. 11

CORBET, J. Tcp connection repair. https://lwn.net/Articles/
495304/, May 2012. [Online; accessed September 2021]. XIX

CORBET, J. DBpf: the universal in-kernel virtual machine. https:
//lun.net/Articles/599755/, May 2014. [Online; accessed September
2021]. 8

CORBET, J. Calling kernel functions from bpf. https://lwn.net/
Articles/856005/, May 2021. [Online; accessed September 2021|. 44

CRIU TEeEAM. Checkpoint/restore in userspace (criu). https://criu.
org/Main_Page. [Online; accessed September 2021|. XX

ENGELHARDT, J. File:netfilter-packet-flow.svg — wikimedia commons,
the free media repository. https://commons.wikimedia.org/w/index.
php7title=File:Netfilter-packet-flow.svgkoldid=564855543,
2019. [Online; accessed September 2021]. 5

FLEMING, M. A thorough introduction to ebpf. https://lwn.net/
Articles/740157/, December 2017. [Online; accessed September 2021].
9

GRrAF, T., LUCENTE, P., Francois, P., AND Gu, Y. Bmp (bgp
monitoring protocol) seamless session. Internet-Draft draft-tppy-bmp-
seamless-session-00, IETF Secretariat, February 2021. https://www.
ietf.org/archive/id/draft-tppy-bmp-seamless-session-00.txt.
XVIII

HAYAKAWA, Y. ebpf implementation for freebsd. In BSDCan 2018. The
BSD Conference, 2018. 44

HoOFSTEDE, R., CELEDA, P., TRAMMELL, B., DRAGO, I., SADRE,
R., SPEROTTO, A., AND PRrRAS, A. Flow monitoring explained: From
packet capture to data analysis with netflow and ipfix. IEEE Commu-
nications Surveys & Tutorials 16, 4 (2014), 2037-2064. 1

47

http://www.rfc-editor.org/rfc/rfc8641.txt
http://www.rfc-editor.org/rfc/rfc8641.txt
https://lwn.net/Articles/437981/
https://lwn.net/Articles/437981/
https://lwn.net/Articles/495304/
https://lwn.net/Articles/495304/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/856005/
https://lwn.net/Articles/856005/
https://criu.org/Main_Page
https://criu.org/Main_Page
https://commons.wikimedia.org/w/index.php?title=File:Netfilter-packet-flow.svg&oldid=564855543
https://commons.wikimedia.org/w/index.php?title=File:Netfilter-packet-flow.svg&oldid=564855543
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://www.ietf.org/archive/id/draft-tppy-bmp-seamless-session-00.txt
https://www.ietf.org/archive/id/draft-tppy-bmp-seamless-session-00.txt

BIBLIOGRAPHY

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

HoILAND-JORGENSEN, T., BROUER, J. D., BORKMANN, D,
FASTABEND, J., HERBERT, T., AHERN, D., AND MILLER, D. The
express data path: Fast programmable packet processing in the operat-
ing system kernel. In Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies (New York,
NY, USA, 2018), CoNEXT ’18, Association for Computing Machinery,
pp- 54-66. 24

HuTcCHINGS, A. Socket sharding in nginx release 1.9.1. https:
//www.nginx.com/blog/socket-sharding-nginx-release-1-9-1/,
May 2015. [Online; accessed September 2021|. 5

IMPLY CORPORATION. Imply pivot. https://imply.io/. [Online;
accessed September 2021|. 19

ISOVALENT. Cilium. https://cilium.io/. |Online; accessed Septem-
ber 2021]. 12

IwasHIMA, K. [rfc patch bpf-next 0/8] socket migration for
S0__reuseport. https://lore.kernel.org/lkml/20201117094023.
3685-1-kuniyu@amazon.co.jp/, 2020. [Online; accessed September
2021]. 12

KERRISK, M. The so reuseport socket option. https://lwn.net/
Articles/542629/, March 2013. [Online; accessed September 2021]. 5

Lau, M. K. [patch bpf-next 0/9] intro-
duce bpf map type reuseport sockarray and
bpf prog type sk reuseport. https://lore.kernel.org/netdev/
20180808075917.3009181-1-kafai@fb.com/, 2018. [Online; accessed
September 2021]. 23

Linux KERNEL CONTRIBUTORS. Bpf design q&a. https://www.
kernel.org/doc/Documentation/bpf/bpf_design_QA.rst, 2021. [On-
line; accessed September 2021|. 38

LINUX KERNEL CONTRIBUTORS. Cpu accounting controller.
https://www.kernel.org/doc/html/latest/admin-guide/
cgroup-vl/cpuacct.html, 2021. [Online; accessed September
2021]. 39

Linux KERNEL CONTRIBUTORS. Memory resource controller.

https://www.kernel.org/doc/html/latest/admin-guide/
cgroup-vl/memory.html, 2021. [Online; accessed September 2021]. 39

48

https://www.nginx.com/blog/socket-sharding-nginx-release-1-9-1/
https://www.nginx.com/blog/socket-sharding-nginx-release-1-9-1/
https://imply.io/
https://cilium.io/
https://lore.kernel.org/lkml/20201117094023.3685-1-kuniyu@amazon.co.jp/
https://lore.kernel.org/lkml/20201117094023.3685-1-kuniyu@amazon.co.jp/
https://lwn.net/Articles/542629/
https://lwn.net/Articles/542629/
https://lore.kernel.org/netdev/20180808075917.3009181-1-kafai@fb.com/
https://lore.kernel.org/netdev/20180808075917.3009181-1-kafai@fb.com/
https://www.kernel.org/doc/Documentation/bpf/bpf_design_QA.rst
https://www.kernel.org/doc/Documentation/bpf/bpf_design_QA.rst
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cpuacct.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cpuacct.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/memory.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/memory.html

BIBLIOGRAPHY

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

LiNuX KERNEL DOCUMENTATION. BPFTOOL-PROG(8), kernel
5.12 ed., June 2021. 29, 44

THE LINUX MAN-PAGES PROJECT. BPF-HELPERS(7) Linux Program-
mer’s Manual, 5.12 ed., March 2021. 8

THE LINUX MAN-PAGES PROJECT. BPF(2) Linux Programmer’s Man-
ual, 5.12 ed., March 2021. 11, 32

THE LINUX MAN-PAGES PROJECT. GETSOCKOPT(2) Linuzx Program-
mer’s Manual, 5.12 ed., March 2021. 5, 30

THE LINUX MAN-PAGES PROJECT. SOCKET(7) Linux Programmer’s
Manual, 5.12 ed., March 2021. 5, 6, 31

LUCENTE, P., ET AL. pmacct. http://www.pmacct.net/. [Online;
accessed September 2021|. 18

McCCANNE, S., AND JACOBSON, V. The bsd packet filter: A new
architecture for user-level packet capture. In USENIX winter (1993),
vol. 46. 8

MILLER, D. S. Bpf verifier overview. https://www.spinics.net/
lists/xdp-newbies/msg00185.html, 2017. [Online; accessed Septem-
ber 2021]. 9

MONNET, Q. Implementing ebpf for windows. https://lwn.net/
Articles/857215/, June 2021. [Online; accessed September 2021|. 44

NAKRYIKO, A. Bpf portability and co-re. https:
//facebookmicrosites.github.io/bpf/blog/2020/02/19/
bpf-portability-and-co-re.html, February 2020. [Online; ac-
cessed September 2021]. 11

NASEER, U., NiccorLiNi, L., PANT, U., FRINDELL, A., DASINENI,
R., AND BENSON, T. A. Zero downtime release: Disruption-free load
balancing of a multi-billion user website. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communica-
tion on the Applications, Technologies, Architectures, and Protocols for
Computer Communication (New York, NY, USA, 2020), SIGCOMM
’20, Association for Computing Machinery, pp. 529-541. XIX

RED HAT CUSTOMER CONTENT SERVICES. A guide to configuring
and managing networking in Red Hat Enterprise Linux 8, Chapter 52.

49

http://www.pmacct.net/
https://www.spinics.net/lists/xdp-newbies/msg00185.html
https://www.spinics.net/lists/xdp-newbies/msg00185.html
https://lwn.net/Articles/857215/
https://lwn.net/Articles/857215/
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

Understanding the e BPF networking features in RHEL, 8 ed., May 2019.
24

RESCORLA, E. The transport layer security (tls) protocol version 1.3.
RFC 8446, RFC Editor, August 2018. http://www.rfc-editor.org/
rfc/rfc8446.txt. XVIII

ROBERTSON, A.; ET AL. bpftrace. https://github.com/iovisor/
bpftrace. [Online; accessed September 2021]. 10

Sampic, T., ROSENSTHIEL, A., HuaNG, A., Francois, P.
AND FRENOT, S. C-collector for udp-notif. https://github.com/

insa-unyte/udp-notif-c-collector. |Online; accessed September
2021]. 43

SCUDDER, J., FERNANDO, R., AND STUART, S. Bgp monitoring
protocol (bmp). RFC 7854, RFC Editor, June 2016. http://www.
rfc-editor.org/rfc/rfc7854.txt. 1, XVII

SGIER, L. Visualizing bgp rib changes into forwarding plane by lever-
aging bmp and ipfix. Master’s thesis, ETH Zurich, Zurich, 2020-10.
13

SITNICKI, J. [patch bpf-next v5 00/15] run a bpf program on
socket lookup. https://lore.kernel.org/netdev/20200717103536.
397595-1-jakub@cloudflare.com/, 2020. [Online; accessed Septem-
ber 2021]. 24

SonG, H., QIiN, F., MARTINEZ-JULIA, P., CIAVAGLIA, L., AND
WANG, A. Network telemetry framework. Internet-Draft draft-ietf-
opsawg-ntf-07, IETF Secretariat, February 2021. https://www.ietf.
org/archive/id/draft-ietf-opsawg-ntf-07.txt. 1

STAROVOITOV, A. [patch net-next 0/2| bpf: allow extended bpf
programs access skb fields. https://lore.kernel.org/netdev/
1426213271-8363-1-git-send-email-ast@plumgrid.com/, 2015.
[Online; accessed September 2021]. 9

STAROVOITOV, A. Safe programs, the foundation of bpf (ebpf sum-
mit 2020). https://youtu.be/AV8xY318rtc, November 2020. [Online;
accessed September 2021]. 9

TARREAU, W., ET AL. Haproxy. https://www.haproxy.org/. [Online;
accessed September 2021|. 18

50

http://www.rfc-editor.org/rfc/rfc8446.txt
http://www.rfc-editor.org/rfc/rfc8446.txt
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://github.com/insa-unyte/udp-notif-c-collector
https://github.com/insa-unyte/udp-notif-c-collector
http://www.rfc-editor.org/rfc/rfc7854.txt
http://www.rfc-editor.org/rfc/rfc7854.txt
https://lore.kernel.org/netdev/20200717103536.397595-1-jakub@cloudflare.com/
https://lore.kernel.org/netdev/20200717103536.397595-1-jakub@cloudflare.com/
https://www.ietf.org/archive/id/draft-ietf-opsawg-ntf-07.txt
https://www.ietf.org/archive/id/draft-ietf-opsawg-ntf-07.txt
https://lore.kernel.org/netdev/1426213271-8363-1-git-send-email-ast@plumgrid.com/
https://lore.kernel.org/netdev/1426213271-8363-1-git-send-email-ast@plumgrid.com/
https://youtu.be/AV8xY318rtc
https://www.haproxy.org/

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

THALER, D., AND GADDEHOSUR, P. Making ebpf work on win-
dows. https://cloudblogs.microsoft.com/opensource/2021/05/
10/making-ebpf-work-on-windows/, May 2021. |[Online; accessed
September 2021]. 44

ToLrLiNI, M. bmp scenarios. https://github.com/marcotollini/
bmp_scenarios. |Online; accessed September 2021]. 39

TORVALDS, L., ET AL. Linux kernel. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
9f4ad9e425a1d3b6a34617b8ea226d56a119a717, 2021. 4

WANG, N., ET AL. libbpf. https://github.com/1ibbpf/libbpf. [On-
line; accessed September 2021]. 11

ZHENG, G., ZHOouU, T., GRAF, T., FrRANCOIS, P., AND LUCENTE, P.
Udp-based transport for configured subscriptions. Internet-Draft draft-
ietf-netconf-udp-notif-03, IETF Secretariat, July 2021. https://www.
ietf.org/archive/id/draft-ietf-netconf-udp-notif-03.txt. 43

51

https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/
https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/
https://github.com/marcotollini/bmp_scenarios
https://github.com/marcotollini/bmp_scenarios
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9f4ad9e425a1d3b6a34617b8ea226d56a119a717
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9f4ad9e425a1d3b6a34617b8ea226d56a119a717
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9f4ad9e425a1d3b6a34617b8ea226d56a119a717
https://github.com/libbpf/libbpf
https://www.ietf.org/archive/id/draft-ietf-netconf-udp-notif-03.txt
https://www.ietf.org/archive/id/draft-ietf-netconf-udp-notif-03.txt

Appendix A

Looking closer at nfacctd

A.1 Execution of a BPF Userspace program

The following listings are traces of a cold start of nfaced’s BMP plugin con-
taining the additional functionality. In particular, we are looking at invo-
cations of the bpf() system call from start until nfacctd starts accepting
connections.

We initialize the process by setting the SO REUSEPORT on the socket
represented by file descriptor 14. This will be the listening socket for network
telemetry.

setsockopt (14, SOL_SOCKET, SO_REUSEPORT, [1], 4) = 0

Upon opening of the BPF ELF binary, libbpf analyzes the contents and
extracts information about the programs it contains and maps it defines.
This happens entirely in userspace within the execution of the calling thread.
The first system interaction we see is libbpf performing a load of a trivial
BPF program as sanity check to ensure basic BPF functionality is available
with this kernel.

bpf (BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_SOCKET_FILTER,

< insn_cnt=2, insns=0x7fd3aeb4c280, license="GPL",

— log_level=0, log_size=0, log_buf=NULL, kern_version=

— KERNEL_VERSION (O, O, 0), prog_flags=0, prog_name="",

— prog_ifindex=0, expected_attach_type=

<~ BPF_CGROUP_INET_INGRESS, prog_btf_£fd=0,

— func_info_rec_size=0, func_info=NULL, func_info_cnt=0,
< line_info_rec_size=0, line_info=NULL, line_info_cnt=0},
— 120) = 15

APPENDIX A. LOOKING CLOSER AT NFACCTD

Since this was successful, libbpf now loads the BTF debug information about
our program and maps into the kernel. The program source line annotations
in the listings in appendix B are synthesized from this information.

(The maps and program loads are, again, probes determining whether the
kernel supports specific features; in this case: global data sections.)

bpf (BPF_BTF_LOAD, {btf="
— \237\353\1\0\30\0\0\0\0\0\0O\O\20\0\O\O\20\0O\ONO\5\O\O\O\1
— \O\O\O\O\O\ON\1" ..., btf_log_buf=NULL, btf_size=45,
— btf_log_size=0, btf_log_level=0}, 120) = 15

bpf (BPF_BTF_LOAD, {btf="
— \237\353\1\0\30\0\0\0\0\0\0\0000\0O\O\0O0O00O\O\O\O\t
— \0\0\O0\1\0\0\O\O\O\O\1"..., btf_log_buf=NULL, btf_size
— =81, btf_log_size=0, btf_log_level=0}, 120) = 15

bpf (BPF_BTF_LOAD, {btf="
— \237\353\1\0\30\0\0\0\0\0\0\08\0O\0O\08\O\O\O\t
— \0\0\0\0\0O\O\O\O\ONO\N1"..., btf_log_buf=NULL, btf_size
— =89, btf_log_size=0, btf_log_level=0}, 120) = 15

bpf (BPF_BTF_LOAD, {btf="\237\353\1\0\30\0\0\0\0\O\O\O\E£\O\O\O\TE
— \0\0\O0\7\0\0\0O\1\0\0\0O\O\O\O\N20" ..., btf_log_buf=NULL,
— btf_size=43, btf_log_size=0, btf_log_level=0}, 120) = -1
— EINVAL (Invalid argument)

bpf(BPF_BTF_LOAD, {btf="
— \237\353\1\0\30\0\0\0\0\0\0\0000\0O\O\0O0O00O\O\O\O\t
— \0\0\O0\1\0\0\O\O\O\O\1"..., btf_log_buf=NULL, btf_size
— =81, btf_log_size=0, btf_log_level=0}, 120) = 15

bpf (BPF_BTF_LOAD, {btf="\237\353\1\0\30\0\0\0\0\0O\O\O$\5\0\0$

— \5\0\0r\5\0\0\0\0\0O\O\5\0\0\4" ..., btf_log_buf=NULL,
— btf_size=2734, btf_log_size=0, btf_log_level=0}, 120) =
— 15

bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_ARRAY, key_size=4,
<~ value_size=32, max_entries=1, map_flags=0, inner_map_fd
— =0, map_name="", map_ifindex=0, btf_£fd=0, btf_key_type_id
— =0, btf_value_type_id=0}, 120) = 16
bpf (BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_SOCKET_FILTER,
insn_cnt=5, insns=0x7fd3ae54cO0Ob0, license="GPL",
log_level=0, log_size=0, log_buf=NULL, kern_version=
KERNEL_VERSION(O, O, 0), prog_flags=0, prog_name="",
prog_ifindex=0, expected_attach_type=
BPF_CGROUP_INET_INGRESS, prog_btf_£fd=0,
func_info_rec_size=0, func_info=NULL, func_info_cnt=0,
line_info_rec_size=0, line_info=NULL, line_info_cnt=0},
120) = 17
bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_ARRAY, key_size=4,
— value_size=4, max_entries=1, map_flags=0x400 /% BPF_F_222
— %/, inner_map_£fd=0, map_name="", map_ifindex=0, btf_fd
— =0, btf_key_type_id=0, btf_value_type_id=0}, 120) = 16

AU

II

APPENDIX A. LOOKING CLOSER AT NFACCTD

With these support operations completed for us, we can now deal with the
BPF maps, starting with tcp balancing targets. Since this map is intended
to be pinned at a custom path in BPFFS, we first try to find it there. Since
that proved unsuccessful, we then create it from scratch and pin it to the
intended path. Note that the btf fd argument explicitly ties the map to the
freshly loaded BTF debug information.

(The program load command is probing the kernel for support for the prog name
and map_name attributes.)

bpf (BPF_OBJ_GET, {pathname="/sys/fs/bpf/pmacct/
<~ tcp_balancing_targets", bpf_£fd=0, file_flags=0}, 120) =
— -1 ENOENT (No such file or directory)
bpf (BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_SOCKET_FILTER,
insn_cnt=2, insns=0x7fd3ae54bf00, license="GPL",
log_level=0, log_size=0, log_buf=NULL, kern_version=
KERNEL_VERSION (O, O, 0), prog_flags=0, prog_name="test",
prog_ifindex=0, expected_attach_type=
BPF_CGROUP_INET_INGRESS, prog_btf_£fd=0,
func_info_rec_size=0, func_info=NULL, func_info_cnt=0,
line_info_rec_size=0, line_info=NULL, line_info_cnt=0},
120) = 16
bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
key_size=4, value_size=8, max_entries=128, map_flags=0,
inner_map_fd=0, map_name="tcp_balancing_t", map_ifindex
=0, btf_fd=15, btf_key_type_id=7, btf_value_type_id=11},
120) = 16
bpf (BPF_OBJ_PIN, {pathname="/sys/fs/bpf/pmacct/
< tcp_balancing_targets", bpf_fd=16, file_flags=0}, 120) =
— 0

USRI

(SIS
(SN
—
(SIS

This process is repeated for each of the remaining three maps:

bpf (BPF_OBJ_GET, {pathname="/sys/fs/bpf/pmacct/
<~ udp_balancing_targets", bpf_fd=0, file_flags=0}, 120) =
— -1 ENOENT (No such file or directory)

bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
— key_size=4, value_size=8, max_entries=128, map_flags=0,
< inner_map_fd=0, map_name="udp_balancing_t", map_ifindex
— =0, btf_fd=15, btf_key_type_id=7, btf_value_type_id=11},
— 120) = 17

bpf (BPF_OBJ_PIN, {pathname="/sys/fs/bpf/pmacct/
< udp_balancing_targets", bpf_£fd=17, file_flags=0}, 120) =
— 0

bpf (BPF_OBJ_GET, {pathname="/sys/fs/bpf/pmacct/size", bpf_£fd=0,

— file_flags=0}, 120) = -1 ENOENT (No such file or
— directory)

III

APPENDIX A. LOOKING CLOSER AT NFACCTD

bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_ARRAY, key_size=4,
<~ value_size=4, max_entries=1, map_flags=0, inner_map_£fd=0,
< map_name="size", map_ifindex=0, btf_£fd=15,
— btf_key_type_id=7, btf_value_type_id=7}, 120) = 18

bpf (BPF_OBJ_PIN, {pathname="/sys/fs/bpf/pmacct/size", bpf_£fd
< =18, file_flags=0}, 120) = 0

bpf (BPF_OBJ_GET, {pathname="/sys/fs/bpf/pmacct/nonce", bpf_£fd
— =0, file_flags=0}, 120) = -1 ENOENT (No such file or
< directory)

bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_ARRAY, key_size=4,
~ value_size=4, max_entries=1, map_flags=0, inner_map_£fd=0,
< map_name="nonce", map_ifindex=0, btf_£fd=15,
<~ btf_key_type_id=7, btf_value_type_id=7}, 120) = 19

bpf (BPF_OBJ_PIN, {pathname="/sys/fs/bpf/pmacct/nonce", bpf_=£fd
< =19, file_flags=0}, 120) = 0

All user-defined maps are now present. However, there is one more map that
is implicitly created during BPF ELF binary compilation. That map is then
frozen to prevent modifications using the BPF MAP FREEZE command
(enum identifier 161¢).

bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_ARRAY, key_size=4,
— value_size=8, max_entries=1, map_flags=0x480 /% BPF_F_222
— %/, inner_map_£fd=0, map_name="reusepor.rodata",
— map_ifindex=0, btf_£fd=15, btf_key_type_id=0,
<~ btf_value_type_id=50}, 120) = 20

bpf (BPF_MAP_UPDATE_ELEM, {map_£fd=20, key=0x7fd3ae54c0d0, value
— =0x7fd3b5437000, flags=BPF_ANY}, 120) = 0

bpf (0x16 /* BPF_?22? x/, 0x7fd3aeb54c010, 120) = 0

At this point, we load the BPF program itself. libbpf performs any applicable
CO-RE relocation, resolves references to maps with the previously obtained
file descriptors, and actually performs the loading. Unfortunately, strace in-
correctly identifies the program type as FLOW DISSECTOR. The program
itself works correctly, however. Note that the CGROUP _INET INGRESS
attachment point is misleading for SK_ REUSEPORT type programs. It is
simply the symbolic name of the enum value 0.

(The loading of the CGROUP _SOCK BPF program is part of the feature
detection for ezpected attach type field in the system call argument.)

bpf (BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_CGROUP_SOCK,
insn_cnt=2, insns=0x7fd3aeb4bf60, license="GPL",
log_level=0, log_size=0, log_buf=NULL, kern_version=
KERNEL_VERSION(O, O, 0), prog_flags=0, prog_name="",
prog_ifindex=0, expected_attach_type=

AR

v

APPENDIX A. LOOKING CLOSER AT NFACCTD

BPF_CGROUP_INET_SOCK_CREATE, prog_btf_£fd=0,
func_info_rec_size=0, func_info=NULL, func_info_cnt=0,
line_info_rec_size=0, line_info=NULL, line_info_cnt=0},
120) = 21

bpf (BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_FLOW_DISSECTOR,
insn_cnt=144, insns=0x7fd3a810b5b0, license="GPL",
log_level=0, log_size=0, log_buf=NULL, kern_version=
KERNEL_VERSION (4, 18, 0), prog_flags=0, prog_name="
_selector", prog_ifindex=0, expected_attach_type=
BPF_CGROUP_INET_INGRESS, prog_btf_fd=15,
func_info_rec_size=8, func_info=0x7fd3a80£f9210,
func_info_cnt=1, line_info_rec_size=16, line_info=0
x7fd3a8109d70, line_info_cnt=45}, 120) = 21

AU

AU

In a next step libbpf attempts to bind the metadata map to the program to
prevent deletion caused by a zero reference count. On the target machine
this BPF system call command is supported by neither strace nor the kernel
itself.

bpf (BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_ARRAY, key_size=4,
— value_size=32, max_entries=1, map_flags=0, inner_map_fd

~ =0, map_name="", map_ifindex=0, btf_£fd=0, btf_key_type_id
— =0, btf_value_type_id=0}, 120) = 22
bpf (0x23 /* BPF_?22? x/, 0x7fd3aeb54be60, 120) = -1 EINVAL (

— Invalid argument)

nfacctd now reads the size map to inspect if it is already set—which is not
the case—and intializes accordingly.

bpf (BPF_MAP_LOOKUP_ELEM, {map_fd=18, key=0x7fd3aeb4c4b4, value
s =0x7fd3ae54c4c0}, 120) = 0

bpf(BPF_MAP_UPDATE_ELEM, {map_fd=18, key=0x7fd3ae54c4b4, value
— =0x7fd3aeb4cd4cO0, flags=BPF_ANY}, 120) = 0

Now, nfacctd can attach the BPF program to the socket.

setsockopt (14, SOL_SOCKET, SO_ATTACH_REUSEPORT_EBPF, [21], 4) =
— 0

Finally, nfacctd registers itself in the first hash bucket for incoming TCP
traffic.

bpf(BPF_MAP_UPDATE_ELEM, {map_fd=16, key=0x7fd3ae54c4f0, value
— =0x7fd3ae54c610, flags=BPF_ANY}, 120) = O

(The remaining program execution does no longer involve BPF'.)

Appendix B

Looking closely at
reuseport kern

reuseport _kern is the name of BPF ELF binary. The actual program is
simply named _ selector(). For brevity, the program was re-compiled without
the code paths used for diagnostics and debugging.

B.1 Intermediate Representation

Lines starting with semicolons are the original C code and correspond to the
intermediate representation of the BPF byte code in subsequent lines. For
nested logic (e.g., a memory load within a switch statement), the line may
be repeated multiple times.

enum sk_action _selector(struct sk_reuseport_md * reuse) :
; enum sk_action _selector(struct sk_reuseport_md *reuse) {
0: (bf) r6 = ri
1: (18) r2 = map[id:1214]
; switch (reuse->ip_protocol) {
3: (79) r1 = *(u6b4 *)(r6 +8)
4: (61) r1 = *(u32 *)(r1l +536)
5: (54) w1l &= 65280
6: (74) wi >>= 8
; switch (reuse->ip_protocol) {

7: (15) if rl1 == 0x6 goto pc+4
8: (b7) r0 =0
9: (65) if r1 !'= 0x11 goto pc+151

10: (18) r2 = mapl[id:1215]
12: (7b) *(u64 *) (r10 -40) = r2

VI

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

13: (bf) r3 = ri0

14: (07) r3 += -24
; bpf_skb_load_bytes_relative(reuse, O, &ip, sizeof (struct
< iphdr), (u32)BPF_HDR_START_NET);
15: (bf) ri1 r6
16: (b7) r2 = 0
17: (b7) rd4 = 20
18: (b7) r5 =1
19: (85) call sk_reuseport_load_bytes_relative#5774496
; const u32 *balancer_count = bpf_map_lookup_elem(&size, &zero)
—
20: (18) r1 = map[id:1216]
22: (18) r2 map[id:1274]1[0]+0
24: (07) rl1 += 272
25: (61) 10 *(u32 *) (r2 +0)
26: (35) if r0 >= 0xl goto pc+3
27: (67) r0 <<= 3
28: (0f) r0 += ri
29: (05) goto pc+l
30: (b7) r0 =0
31: (bf) r8 = 10

+ 0o

; if (!balancer_count || *balancer_count == 0) { //
— wuninitialized by userspace
32: (15) if r8 == 0x0 goto pc+2
; if (!'balancer_count || *balancer_count == 0) { //

— wuninitialized by userspace
33: (61) r1 = x(u32 *)(r8 +0)

; if (!balancer_count || *balancer_count == 0) { //
— wuninitialized by userspace
34: (55) if r1 != 0x0 goto pc+10

; bpf_map_update_elem(&size, &zero, balancer_count, BPF_ANY);
35: (18) r8 = mapl[id:1274][0]+4
37: (18) r1l = map[id:1216]
39: (18) r2 = map[id:1274]1[0]+0
41: (18) r3 = map[id:1274][0]+4
43: (b7) r4 = 0
44: (85) call array_map_update_elem#124624
45: (bf) r1 = ri10

46: (07) rl1 += -24
; key = hash(__builtin_bswap32(ip.saddr)) % *balancer_count;
47: (61) r7 = *(u32 *)(r1 +12)
; n = bpf_map_lookup_elem(&nonce, &zero);
48: (18) r1 = map[id:1217]
50: (18) r2 map[id:1274]1 [0]+0
52: (07) r1 += 272
53: (61) roO *(u32 *) (r2 +0)
54: (35) if r0 >= 0xl goto pc+3

+

VII

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

55: (67) r0 <<= 3
56: (0f) r0 += ri
57: (05) goto pc+1
58: (b7) r0 = 0
59: (bf) r9 = r0

60: (b7) r2 =0
; if (no== 0) {
61: (15) if r9 == 0x0 goto pc+78

62: (dc) r7 = be32 r7

; if (xn == 0) {
63: (61) r0 = *(u32 *)(r9 +0)
; if (xn == 0) {
64: (55) if r0 != 0x0 goto pc+2

; *n = bpf_get_prandom_u32();
65: (85) call bpf_user_rnd_u32#13456
; *n = bpf_get_prandom_u32();
66: (63) *(u32 *)(r9 +0) = ro0
; initval += JHASH_INITVAL + (3 << 2);
67: (07) r0 += -559038725
68: (18) ri1 O0xff£c0000
70: (bf) r3 r0
71: (5f) r3 &= ri
; static inline __u32 rol32(__u32 word, unsigned int shift) {

< return (word << (shift & 31)) | (word >> ((-shift) & 31))

= ; }
72: (77) r3 >>= 18
73: (bf) r2 = 10
74: (B67) r2 <<= 14
75: (4f) r2 |= r3
; static inline u32 rol32(__u32 word, unsigned int shift) {

< return (word << (shift & 31)) | (word >> ((-shift) & 31))

— 5 }
76: (bf) r4d = r2
77: (67) rd4 <<= 11
; __jhash_final(a, b, c);

78: (87) r2 = -r2
79: (18) r3 = 0xffe00000
81: (bf) r5 = r2

82: (5f) r5 &= r3
; static inline __u32 rol32(__u32 word, unsigned int shift) {

< return (word << (shift & 31)) | (word >> ((-shift) & 31))

— ; }
83: (77) rb >>= 21
; __jhash_final(a, b, c);
84: (1f) r4 -= r5
; a = ip + initval;
85: (bf) r3 = r0

VIII

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

3

86: (0f) r3 += r7
__jhash_final(a, b, c);
87: (af) r3 ~= r2

88: (0f) r3 += r4

89: (18) r4 = Oxfffff£f80
91: (bf) r5 = r3

92: (5f) r5 &= r4

static inline
< return (word << (shift & 31)) |

— ; 1
93: (77) rb >>= 7
94: (bf) r7 = r3
95: (67) r7 <<= 25
96: (4f) r7 |= r5
__jhash_final(a, b, c);
97: (bf) r4d = r3
98: (af) r4 ~= ro0
99: (1f) r4 -= r7
100: (18) r5 = O0xffff0000
102: (bf) r0 = r4d
103: (5f) r0 &= rb

static inline
< return (word << (shift & 31)) |

__u32 rol32(__u32 word,

— ; }
104: (77) r0 >>= 16
105: (bf) r7 = r4d
106: (67) r7 <<= 16
107: (4f) r7 |= r0
__jhash_final(a, b, c);
108: (bf) r5 = r4d
109: (af) r5 ~= r2
110: (1f) r5 -= r7
111: (18) r2 = 0xf0000000
113: (bf) r0 = 15
114: (5f) r0 &= r2

static inline
<« return (word << (shift & 31)) |

__u32 rol32(__u32 word,

— ; }
115: (77) r0 >>= 28
116: (bf) r7 = r5
117: (67) r7 <<= 4
118: (4f) r7 |= r0
__jhash_final(a, b, c);
119: (bf) r2 = r5
120: (af) r2 ~= r3
121: (1f) r2 -= r7
122: (bf) r3 = r2
123: (56f) r3 &= ri

static inline

IX

u32 rol32(__u32 word,

_u32 rol32(__u32 word,

unsigned int shift) {
(word >> ((-shift) & 31))

unsigned int shift) {

(word >> ((-shift) & 31))

unsigned int shift) {

(word >> ((-shift) & 31))

unsigned int shift) {

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

>

— return (word << (shift & 31))

— ; }
124: (77) r3 >>= 18
125: (bf) r1 = r2
126: (67) r1l <<= 14
127: (4f) rl |= r3
__jhash_final(a, b, c);
128: (af) r2 ~= r4
129: (1f) r2 -=r1
130: (18) r1 = Oxffffff00
132: (bf) r3 = r2
133: (5f) r3 &= ri

static inline

__u32 rol32(__u32 word,
< return (word << (shift & 31))

(word >> ((-shift) & 31))

unsigned int shift) {
(word >> ((-shift) & 31))

— 5 }
134: (77) r3 >>= 8
135: (bf) r1l = r2
136: (67) rl <<= 24
137: (4f) r1 |= r3
__jhash_final(a, b, c);
138: (af) r2 = rb
139: (1f) r2 -= ri1
key = hash(__builtin_bswap32(ip.saddr)) % *balancer_count;
140: (61) r1 = *(u32 *)(r8 +0)
key = hash(__builtin_bswap32(ip.saddr)) 7 *balancer_count;
141: (bf) r3 = r2
142: (67) r3 <<= 32
143: (77) r3 >>= 32
144: (55) if rl != 0x0 goto pc+2
145: (ac) w3 "= w3
146: (05) goto pc+l
147: (3f) r3 /= ri1
148: (2f) r3 *= ri1
149: (1f) r2 -= r3
key = hash(__builtin_bswap32(ip.saddr)) % *balancer_count;
150: (63) *(u32 *)(r10 -28) = r2
151: (bf) r3 = ri10
key = hash(__builtin_bswap32(ip.saddr)) % *balancer_count;
152: (07) r3 += -28
if (bpf_sk_select_reuseport(reuse, targets, &key, 0) == 0) {
153: (bf) r1l = r6
154: (79) r2 = *x(u64 x) (r10 -40)
165: (b7) r4 = 0
156: (85) call sk_select_reuseport#5773424
157: (bf) r1 = 10
158: (b7) r0 = 1
if (bpf_sk_select_reuseport(reuse, targets, &key, 0) == 0) {
159: (15) if r1l == 0x0 goto pc+il
160: (b7) r0 = 0

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

N
161: (95) exit

B.2 JIT-Compiled Program

Lines starting with semicolons are the original C code and correspond to the
x86-64 machine code in subsequent lines. For nested logic (e.g., a memory
load within a switch statement), the line may be repeated multiple times.

enum sk_action _selector(struct sk_reuseport_md * reuse) :
Oxffffffffc03e07fc:
; enum sk_action _selector(struct sk_reuseport_md *reuse) {

0: nopl 0x0 (%rax,%rax,1)
5: push %rbp
6: mov %rsp,hrbp
9: sub $0x28 ,%rsp
10: push %hrbx
11: push %r13
13: push %hrid
15: push %rlb
17: pushq $0x0
19: mov Y%rdi,%rbx
lc: movabs $0xffff8d38ee573800 ,%rsi
; switch (reuse->ip_protocol) {
26: mov 0x8 (%rbx) ,%rdi
2a: mov 0x218 (%rdi) ,%edi
30: and $0xf£f00 ,%edi
36: shr $0x8 ,%edi
; switch (reuse->ip_protocol) {
39: cmp $0x6 ,%rdi
3d: je 0x0000000000000055
3f: xor %eax ,heax
41: cmp $0x11 ,%rdi
45: jne 0x000000000000028d
4b: movabs $0xffff8d38ee576800 ,%rsi
55: mov %rsi,-0x28 (%rbp)
59: mov %rbp ,hrdx
5c: add $Oxffffffffffffffe8 ,rdx

5 bpf_skb_load_bytes_relative(reuse, 0, &ip, sizeof (struct
< iphdr), (u32)BPF_HDR_START_NET);

60: mov %rbx ,%hrdi

63: Xor Yesi,hesi

65: mov $0x14 ,%ecx

6a: mov $0x1,%r8d

70: callg Oxffffffffd117d1b4

XI

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

; const u32 *balancer_count = bpf_map_lookup_elem(&size, &zero)
—
75: movabs $0xffff8d2a9d2cb200 ,%rdi
7f: movabs $0xffffa5a506278000 ,%rsi
89: add $0x110,%rdi
90: mov 0x0 (%rsi) ,%eax
93: cmp $0x1 ,%rax
97: jae 0x00000000000000a2
99: shl $0x3,%rax
9d: add Y%rdi,%rax
al: jmp 0x00000000000000a4
a2: Xor heax ,heax
ad: mov brax,hrild
; if (!'balancer_count || *balancer_count == 0) { //
— wuninitialized by userspace
a7: test %rid ,%hri1d
aa: je 0x00000000000000b5
; if (!'balancer_count || *balancer_count == 0) { //
— wuninttialized by userspace
ac: mov 0x0(%r14d) ,%edi
; if (!'balancer_count || *balancer_count == 0) { //
— wuninttialized by userspace
bO0: test Y%rdi,%rdi
b3: jne 0x00000000000000e4
; bpf_map_update_elem(&size, &zero, balancer_count, BPF_ANY);
b5: movabs $0xffffab5a506278004 ,%r14
bf: movabs $0xffff8d2a9d2cb200,%rdi
c9: movabs $0xffffa5a506278000 ,%rsi
d3: movabs $0xffffab5a506278004 ,%rdx
dd: Xor hecx ,hecx
df : callg OxffffffffdOc19bed
e4: mov %rbp ,hrdi
e7: add $Oxffffffffffffffe8,%rdi

; key = hash(__builtin_bswap32(ip.saddr)) % *balancer_count;
eb: mov Oxc (%rdi) ,%r13d

; n = bpf_map_lookup_elem(&nonce, &zero);
ef: movabs $0xffff8d2a9d2c8000 ,%rdi
f9: movabs $0xffffab5a506278000,%rsi

103: add $0x110,%rdi

10a: mov 0x0 (%rsi) ,heax
10d: cmp $0x1 ,%rax

111: jae 0x000000000000011c
113: shl $0x3,%rax

117: add %rdi,%rax

11a: jmp 0x000000000000011e
11c: xor %eax ,heax

1le: mov Srax ,hrlb

XII

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

121: xor %esi,hesi

; if (n == 0) {

123: test %r15,%r15

126: je 0x0000000000000228
12c¢: bswap %r13d

; if (*n == 0) {
12f: mov 0x0(%r15) ,%eax

; if (#n == 0) {

133: test Y%rax ,lhrax
136: jne 0x0000000000000141

; *n = bpf_get_prandom_u32();
138: callg OxffffffffdObfe9a4

; *n = bpf_get_prandom_u32();
134d: mov %eax ,0x0 (%r1b)

; initval += JHASH_INITVAL + (3 << 2);
141: add $o0xffffffffdeadbefb,%rax
147 mov $0xff£fc0000,%edi
14c: mov Yrax ,%rdx
14f: and Y%rdi,%rdx

; static inline __u32 rol32(__u32 word, unsigned int shift) {
<~ return (word << (shift & 31)) | (word >> ((-shift) & 31))

— ; }
152: shr $0x12,%rdx
156: mov Yrax ,hrsi
159: shl $0xe ,%hrsi
154d: or %rdx ,hrsi

; static inline u32 rol32(__u32 word, unsigned int shift) {

< return (word << (shift & 31)) | (word >> ((-shift) & 31))

= ; }
160: mov %rsi,hrcx
163: shl $0xb ,%rcx
; __jhash_final(a, b, c);
167: neg hrsi
16a: mov $0xffe00000 ,%edx
16f: mov %rsi,%hr8
172: and Yrdx ,%r8

; static inline __u32 rol32(__u32 word, unsigned int shift) {
— return (word << (shift & 31)) | (word >> ((-shift) & 31))

= 5 }

175: shr $0x15,%r8
; __jhash_final(a, b, c);
179: sub %r8 ,%rcx

; a = ip + initval;

17c: mov Srax ,lhrdx
17f: add %r13,%rdx
; __jhash_final(a, b, c);
182: Xor Shrsi,lhrdx
185: add Y%rex ,hrdx

XIII

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

188: mov $0xfffff£f80 ,%ecx
184d: mov Y%rdx ,%hr8
190: and hrex ,hr8

; static inline __u32 rol32(__u32 word, unsigned int shift) {
< return (word << (shift & 31)) | (word >> ((-shift) & 31))

- ; }

193: shr $0x7 ,%r8
197: mov Y%rdx ,%hr13
19a: shl $0x19,%r13
19e: or %r8 ,%r13

; __jhash_final(a, b, c);
lal: mov %rdx ,hrcx
lad: xor Yrax ,hrcx
1a7: sub %ri13,%rcx
laa: mov $0xf£f££f0000,%r8d
1b0: mov Y%rcx ,hrax
1b3: and %r8,%rax

; static inline __u32 rol32(__u32 word, unsigned int shift) {
<~ return (word << (shift & 31)) | (word >> ((-shift) & 31))

— ; }

1b6: shr $0x10,%rax
1ba: mov Y%rex ,%hrl3
1bd: shl $0x10,%r13
1cil: or hrax,hrl3
; __jhash_final(a, b, c);
1c4d: mov Y%rex ,hr8
1c7: Xor %rsi,hr8
lca: sub %r13,%r8
lcd: mov $0xf0000000 ,%esi
142: mov %hr8,%rax
1d5: and %rsi,lhrax

; static inline u32 rol32(__u32 word, unsigned int shift) {

< return (word << (shift & 31)) | (word >> ((-shift) & 31))

— ; }
148: shr $0x1c,%rax
l1dc: mov %r8,%r13
1df: shl $0x4 ,%r13
l1e3: or Yrax ,%hrl3
; __jhash_final(a, b, c);
le6: mov %r8 ,%rsi
1e9: xor Yrdx ,%hrsi
lec: sub %r13,%rsi
lef: mov %rsi,fhrdx
1£2: and Y%rdi,%rdx

; static inline __u32 rol32(__u32 word, unsigned int shift) {
< return (word << (shift & 31)) | (word >> ((-shift) & 31))

— ; }
1£f5: shr $0x12,%rdx
1£f9: mov Yrsi,fhrdi

XIV

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

1fc: shl $0xe ,%hrdi
200: or Y%ordx ,%rdi
; __jhash_final(a, b, c);
203: Xor %rex ,hrsi
206: sub Y%rdi,%rsi
209: mov $OxXffEffff00 ,%edi
20e: mov Y%rsi,%hrdx
211: and Y%rdi,%rdx

; static inline __u32 rol32(__u32 word, unsigned int shift) {
<~ return (word << (shift & 31)) | (word >> ((-shift) & 31))

— 3 }
214: shr $0x8 ,%rdx
218: mov Y%rsi,fhrdi
21b: shl $0x18,%rdi
21f: or Y%rdx ,%hrdi
; __jhash_final(a, b, c);
222: xor %r8,%rsi
225: sub Y%rdi,%hrsi
; key = hash(__builtin_bswap32(ip.saddr)) % *balancer_count;
228: mov 0x0(%r14d) ,%edi
; key = hash(__builtin_bswap32(ip.saddr)) % *balancer_count;
22c: mov Y%rsi,%rdx
22f: shl $0x20,%rdx
233: shr $0x20,%rdx
237: test Y%ordi ,%rdi
23a: jne 0x0000000000000240
23c: Xor Y%edx ,hedx
23e: jmp 0x0000000000000255
240: push hrax
241: push hrdx
242: mov Y%rdi ,%rii
245: mov Y%rdx ,%rax
248: Xor %hedx ,hedx
24a: div hril
24d: mov Yrax ,hril
250: pop hrdx
251: pop hrax
252: mov %ril,%rdx
255: push hrax
256: mov Yordx ,%ri1l
259: mov Y%rdi,%rax
25c¢c: mul hril
25f : mov Yrax ,%hrdx
262: pop hrax
263: sub %rdx ,hrsi
; key = hash(__builtin_bswap32(ip.saddr)) % *balancer_count;
266: mov %esi,-0xlc (%rbp)
269: mov %rbp ,hrdx
; key = hash(__builtin_bswap32(ip.saddr)) % *balancer_count;

XV

APPENDIX B. LOOKING CLOSELY AT REUSEPORT KERN

26c:

; if

270:
273:
277:
279:
27e:
281:

286:
289:
28b:

28d:
28e:
290:
292:
294 :
295:
296:

add

$Oxffffffffffffffed ,%rdx

(bpf_sk_select_reuseport (reuse, targets, &key, 0) ==

mov
mov
Xor
callq
mov
mov

%rbx ,%hrdi

-0x28 (%rbp) ,krsi
Y%ecx ,hecx
Oxfffffff£fd117cd84
Y%rax,hrdi

$0x1 ,%eax

(bpf_sk_select_reuseport (reuse, targets, &key, 0) ==

test
je
Xor

pop
pop
pop
pop
pop
leaveq
retq

%rdi,%hrdi
0x000000000000028d
heax ,heax

%hrbx
%hrilb
hrid
%hr13
%hrbx

0)

0)

XVI

Appendix C

BMP Session Handoft
Challenges

Our design has no provisions for dynamically moving traffic from one collec-
tor daemon (“monitoring station” in BMP parlance) to another, neither for
failover nor for live re-balancing. One of the consequences is that it relies
on manual actions performed by the administrator to change the number of
collectors. This is motivated by the high degree of implicit state present in
the BMP session design. Effectively, the application layer protocol is tightly
coupled to the transport protocol.

As specified in section 3.3 of its RFC [15], the lifetime of the BMP session is
tied to the lifetime of the TCP connection itself. As the protocol is purely
unidirectional (section 3.2 of the RFC), each new BMP session establishment
is usually followed by a high traffic burst due to the mandatory initial export
of all of the router’s BGP RIBs.

This is problematic in multiple ways. First, this behavior does not account
for (short) network interruptions, and triggers costly state snapshot trans-
fers even when they provide no new information relative to already buffered,
incremental messages. Second, there is no inherent concept of session mi-
gration from one monitoring station to another on the same host.! Finally,
there is the issue of resources. Given that the load profile shows up to an
80x difference in message rates between the initial burst and the steady-
state operation, it can be tempting to provision for a non-peak load. This
effectively amounts to an over-subscription of computing resources, a high-

Note that we are not addressing IP mobility here. Its challenges are similar in kind,
but larger in degree and with fewer options to address them.

XVII

APPENDIX C. BMP SESSION HANDOFF CHALLENGES

risk situation in the face of host isolation or reboots. While CPU access can
be throttled, running out of memory is much more difficult to handle. Al-
though the instantaneous impact can be spread by rate-limiting TCP connec-
tion establishment, this proportionately reduces the value of near-realtime
monitoring.

We will elaborate on multiple, partially composable ways to address some of

these limitations. Each of these covers at least one of four aspects relevant
for correct operation:

1. The router-internal state.

2. The state of the TCP connection, as seen by the router and the moni-
toring station host.

3. The state of the socket on the monitoring station, separately from (2).

4. The state of the monitoring station itself, which is necessary to cor-
rectly interpret an incoming BMP message. (Initially created by the
router’s state dump.)

Opportunistic session resumption. One option that is light on seman-
tic changes is to stretch the definition of session termination by introducing
the concept of session resumption. [17] is a proposal to do just that, built
on TCP Fast Open (TFO) [7] and a timeout-based opportunistic resump-
tion. The synchronization on session identity introduced by the notion of
resumption is implicitly resolved through the TFO cookie.

This approach addresses the issue of short network interruptions and is fully
compatible with our SO _REUSEPORT & BPF based design as well since
the socket lockup and connection establishment are independent in this re-
gard. TLS 1.3’s 0-RTT data [12] could be used in a similar way at a higher
layer, instead, should TFO not be available (or in addition if encryption was
desired).

However, this approach will not help with issues arising from the lifecycle of
the process acting as the monitoring station, such as a restart.

BMP protocol changes. The state dump following every new BMP ses-
sion establishment is inherent to the protocol as there is no way for the
monitoring station to indicate whether this state dump is desired. Intro-
ducing this capability both at initiation time and at arbitrary points during

XVIII

APPENDIX C. BMP SESSION HANDOFF CHALLENGES

the session lifetime constitutes another option. Here, the monitoring station
could ensure that state dumps are only triggered as a last resort.

This approach requires additional monitoring station-side logic in determin-
ing correct message ordering. In the original protocol, this sequencing was
implicit through the use of in-order, reliable message delivery. Conceptually,
this can be thought of as using TCP sequence numbers imposing the order-
ing. Since the BMP message sequence is no longer confined to a single TCP
connection, but allowing for possible arbitrary “resumptions,” it is now up to
the monitoring station to determine whether it has built up enough internal
state to interpret the message correctly (or whether to request a new state
dump). In terms of functionality, this supersedes the TFO approach. The
shortened handshake of TFO may still be considered desirable though.

This option is fully compatible with our SO REUSEPORT & BPF based
design and should be backward compatible with BMP clients running the
original protocol version.

Client-based socket migration. No changes to the protocol are neces-
sary when using socket migration. In this approach, whenever a monitoring
station is scheduled for shutdown, e.g., for an update to the BMP server
binary, it would send the file descriptor referencing the established socket to
another monitoring station over Unix Domain Socket for it to take over.

One example socket migration scheme in use is described in detail in [10].
These schemes, however, impose much additional complexity on the imple-
mentation intricacies of the monitoring station. For example, the migra-
tion target monitoring station has obtained enough state from the migration
source to correctly interpret the new messages within a BMP session it has
not established itself.

Another limiting factor is that these schemes are usually cooperative. If
the main process terminates suddenly, there is nothing left to execute the
migration.

This approach is fully compatible with our SO REUSEPORT & BPF based
design as the established socket is functionally independent of the listening
one. However, additional work would be necessary to ensure a synchronized
failover covering both transport protocols.

Host-based socket migration Socket migration can also be partially
offloaded from the application to the host. Using the TCP connection repair
mechanism |1 1], sockets can be created with a custom initial state rather

XIX

APPENDIX C. BMP SESSION HANDOFF CHALLENGES

than by traversing the TCP state machine while consuming random inputs
(e.g., the initial sequence numbers). With the monitoring stations doing
periodic check-pointing to a shared medium, it could be possible to recover
the state even in the context of sudden termination, thus effectively creating
transparent failover. The Checkpoint/Restore In Userspace (CRIU) project
is an example user of this mechanism |11]. A host-boundary crossing scheme
is described in [6].

We were unable to determine compatibility with our SO REUSEPORT &
BPF based design.

Completely custom approach. Rather than relying on the kernel at all,
the last approach would use XDP to filter the relevant TCP segments and
pass them up to userspace to handle and implement arbitrary business logic,
effectively replacing our design in the process. However: with great power
comes great responsibility.

XX

	Introduction & Problem Statement
	Background
	Linux Packet Path & Connection Establishment
	The SO_REUSEPORT Socket Option
	eBPF
	Overview
	Program Capabilities
	BPF API vs Kernel API
	Development and Deployment Pipeline
	Libbpf
	BPF CO-RE

	Related Work

	Network Environment & System Setup
	Network Environment
	Dataflow
	Components
	HAProxy
	Pmacct
	Remaining Components

	Design
	Requirements
	Overview
	Kernel vs BPF

	Detailed Design
	Kernel
	Interface with Userspace
	Userspace

	Behavioral Aspects
	End-to-End

	Evaluation
	Performance

	Outlook & Future Work
	Summary
	Bibliography
	Looking closer at nfacctd
	Execution of a BPF Userspace program

	Looking closely at reuseport_kern
	Intermediate Representation
	JIT-Compiled Program

	BMP Session Handoff Challenges

