
Distributed

 Computing

BERT is Robust! A Case Against
Synonym-Based Adversarial Examples

in Text Classification
Master’s Thesis

Jens Hauser

jehauser@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Zhao Meng, Damián Pascual
Prof. Dr. Roger Wattenhofer

September 29, 2021

Acknowledgements

I would like to thank my supervisors, Damián Pascual and Zhao Meng, for pro-
viding valuable ideas and suggestions and advising me in writing this thesis and
the paper that comes with it. The outcome of this thesis is not what we initially
intended. Therefore, I would also like to thank you for having been flexible about
this work’s direction and outcome.

I would also like to thank Prof. Dr. Roger Wattenhofer for making this
thesis possible in the first place and for providing feedback during my mid-term
presentation that was essential for the continuation of this thesis.

i

Abstract

In this thesis, we investigate four word substitution-based attacks on BERT. We
combine a human evaluation of individual word substitutions and a probabilis-
tic analysis to show that between 96% and 99% of the analyzed attacks do not
preserve semantics, indicating that their success is mainly based on feeding poor
data to the model. To further confirm that, we introduce an efficient data aug-
mentation procedure and show that many successful attacks can be prevented
by including data similar to the adversarial examples during training. Compared
to traditional adversarial training, our data augmentation procedure’s per epoch
computation time is around 30 times shorter, and we achieve better robustness on
two out of three datasets. An additional post-processing step reduces the success
rates of state-of-the-art attacks below 4%, 5%, and 8% on three datasets. Finally,
by looking at more reasonable thresholds on constraints for word substitutions,
we conclude that BERT is a lot more robust than research on adversarial attacks
suggests.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Contributions . 2

2 Related Work 3

2.1 Adversarial Attacks . 3

2.2 Adversarial Defense . 3

2.3 Criticism on Attacks in NLP . 4

3 Background 5

3.1 BERT . 5

3.1.1 Architecture . 5

3.1.2 Input Tokenization . 5

3.1.3 Pre-Training . 6

3.1.4 WordPiece . 7

3.2 Metrics for Word and Sentence Similarity 7

3.2.1 Counter-fitted Word Vectors 7

3.2.2 Universal Sentence Encoder 8

3.3 Adversarial Examples . 8

3.3.1 History of Adversarial Attacks 9

3.3.2 Adversarial Examples in Text Classification 10

3.3.3 Examples of Attacks . 11

4 Setup 14

4.1 Datasets . 14

4.2 Implementations . 14

iii

Contents iv

4.3 Starting Point . 15

5 Observations 16

5.1 Word Frequencies . 16

5.1.1 Word Associations with Wrong Label 17

5.2 Similarity of original and perturbed words 18

5.3 Sentence Similarity . 19

5.4 BERT Word-Embeddings . 20

5.4.1 Comparison to Robust Model 22

6 Quality of Adversarial Examples 23

6.1 Human Evaluation . 23

6.1.1 Voter Agreement . 24

6.1.2 Probabilistic Estimation of Valid Attacks 25

6.1.3 Metrics vs. Human . 27

7 Adversarial Defense 28

7.1 Defense Procedure . 28

8 Results 30

8.1 Effect of Defense Procedure . 30

8.1.1 Adjusted Thresholds . 32

8.1.2 Comparing data augmentation with adversarial training . 32

9 Conclusion 35

9.1 Limitations . 35

9.2 Conclusion . 35

Bibliography 37

A Appendix A-1

A.1 Details for human evaluation . A-1

A.2 Number of versions in post-processing A-1

A.3 Defense Procedure WordNet . A-3

A.4 Baseline for post-processing . A-4

Contents v

A.5 BERT-Embeddings . A-5

A.6 Sentence Simlarity Examples . A-7

A.7 Randomly Sampled Adversarial Examples A-8

Chapter 1

Introduction

Recent research in computer vision [1, 2] and speech recognition [3] has shown
that neural networks are vulnerable to changes that are imperceptible to hu-
mans. These insights led to extensive research on attacks for creating so-called
adversarial examples, inputs designed explicitly to fool a machine learning model.
Looking for similar issues in Natural Language Processing (NLP) is natural, and
researchers proposed several different attacks over the last years. However, con-
trary to computer vision, adversarial examples in NLP are not invisible, as dis-
crete characters or words have to be exchanged. This results in a situation where
the line between adversarial examples and nonsensical inputs becomes blurry,
as it is unclear how much change is acceptable. Ideally, we would like to learn
from the mistakes made on adversarial examples to improve future generations
of models. However, to do so, we need high-quality adversarial examples. This
leads to the question: How useful are current attacks? Do they reveal issues in
models, or are they just introducing nonsense?

In this thesis, we show that despite the general consensus that textual ad-
versarial attacks should preserve semantics, current attacks are mainly designed
to find as many adversarial examples as possible and neglect the importance of
preserving semantics. We combine a human evaluation with a simple probabilis-
tic analysis to show that between 96% and 99% of the adversarial examples on
BERT [4] created by four different state-of-the-art attack methods do not preserve
semantics. Additionally, we propose a two-step procedure consisting of data aug-
mentation and post-processing for defending against adversarial examples. While
this sounds contradictory at first, the results show that we can eliminate a large
portion of the successful attacks by simply including data similar to the adver-
sarial examples and further detect and revert many of the remaining adversarial
examples in a post-processing step. Both steps combined allow to eliminate up
to 95% of the adversarial examples. Compared to traditional adversarial train-
ing strategies for defending against adversarial examples, our data augmentation
procedure results in a speedup of almost 30x per epoch of training while achieving
better robustness on two out of three datasets.

1

1. Introduction 2

1.1 Contributions

1. We show that most word substitutions introduced by current state-of-the-
art attacks do not preserve semantics. The indications from analyzing word
counts, word and sentence similarities, and word-embeddings are supported
by a human evaluation with 6000 assessments on 800 word substitutions
performed by four attacks.

2. Using the results from the human evaluation on individual word substitu-
tions, we perform a probabilistic analysis to conclude that 96% to 99% of
the adversarial examples do not preserve semantics.

3. We introduce a two-step defense procedure consisting of data augmentation
and post-processing, capable of preventing up to 95% of the attacks. Our
data augmentation procedure is efficient and effective. Compared to current
adversarial training strategies, we achieve a speedup of almost 30x per
epoch and better robustness on two out of three datasets.

Chapter 2

Related Work

2.1 Adversarial Attacks

Adversarial examples have been studied at least since 2004 [5] and started to
get considerably more attention in 2013 when it was shown that neural networks
are also susceptible to these kind of attacks [1]. Early work mostly focused on
computer vision [2] and speech recognition [6]. Adversarial examples in the text
domain were first introduced in [7]. In the following years, a range of different
attacks have been proposed. [8] use a population-based optimization algorithm
for creating adversarial examples, while [9] use Metropolis-Hastings [10, 11]. Fur-
ther word substitution-based attacks were proposed in [12, 13, 14] and [15]. These
attacks are discussed in more detail in Section 3.3.3.

2.2 Adversarial Defense

The most successful methods for defending against adversarial examples in the
image domain rely on incorporating adversarial examples during training [16].
Some papers introducing textual adversarial attacks try to do the same [8, 12].
However, due to the high cost of running the attacks, they cannot create suf-
ficiently many adversarial examples and achieve only minor improvements in
robustness. [17] suggest the Synonym Encoding Method (SEM), a method that
uses an encoder that maps clusters of synonyms to the same embedding. This
method works well but also limits the expressiveness of the network. [18] propose
a method for fast adversarial training called Fast Gradient Projection Method
(FGPM). However, their method is limited to models with non-contextual word
vectors as input, because the algorithm depends on being able to take the gra-
dient of the model with respect to counter-fitted [19] GloVe vectors [20]. On
BERT, [21] use a geometric attack that allows for creating adversarial examples
in parallel and therefore leads to faster adversarial training. Another line of work
is around certified robustness through Interval Bound Propagation [22, 23], but
these approaches currently do not scale to large models and datasets.

3

2. Related Work 4

2.3 Criticism on Attacks in NLP

There is little work criticizing or questioning current synonym-based adversarial
attacks in NLP. [24] present four categories of constraints that adversarial exam-
ples in NLP should follow: semantics, grammaticality, overlap, and non-suspicion
to human readers. In a human case study, they find that adversarial attacks of-
ten do not preserve semantics, are suspicious to readers, and contain grammatical
errors. As a result of this analysis, they propose to increase thresholds on fre-
quently used metrics for similarity of word embeddings and sentence embeddings
to higher values.

Chapter 3

Background

This chapter provides the required background on BERT and adversarial exam-
ples and explains the four attacks used in this work in detail.

3.1 BERT

BERT [4] stands for Bidirectional Encoder Representations from Transformers.
As the name suggests, BERT is based on Transformers [25]. Compared to the
previously used recurrent neural networks, Transformers allow for better model-
ing of long-range dependencies and improved parallelization, making it possible
to pre-train models in a self-supervised manner on large amounts of data. When
BERT was introduced, it obtained new state-of-the-art results on eleven natural
language processing tasks.

3.1.1 Architecture

BERT consists of multiple Transformer blocks stacked on top of each other. In ev-
ery Transformer block, there is a multi-headed self-attention module followed by
a traditional feed-forward neural network (see Figure 3.1 taken [25]). There exist
two architectures that differ in their size. BERTBASE consists of 12 Transformer
blocks with 12 attention heads each and a hidden state size of 768, resulting in a
total of 110 million parameters. BERTLARGE consists of 24 Transformer blocks
with 16 attention heads each and a hidden state size of 1024, resulting in a total
of 340 million parameters. For computational reasons, we use BERTBASE in this
thesis.

3.1.2 Input Tokenization

BERT can take either a single sentence as input, or a pair of sentences (e.g. Ques-
tion, Answer). The input is encoded using WordPiece [26] (see Section 3.1.4) with
a vocabulary of 30’000 tokens. The first token of every input sequence is always

5

3. Background 6

Figure 3.1:
Transformer block

Figure 3.2: Token, segment, and postition embeddings are
added to form BERT’s input representation.

a special classification token ([CLS]). Two sentences are separated by a [SEP]
token. Additionally, a learned embedding is added to every token to indicate
whether it belongs to sentence A or sentence B. The final input representation
for a token is constructed by summing the token embedding from the WordPiece
embedding, the learned embedding for indicating the sentence and an additional
positional embedding. This is shown in Figure 3.2 (taken from [4]).

3.1.3 Pre-Training

During pre-training, BERT is trained on 2’500 million words from English Wiki-
pedia, and another 800 million words from BooksCorpus [27]. The pre-training
procedure is conceptually simple. The model is solving two different tasks si-
multaneously: Next Sentence Prediction (NSP) and Masked Language Modeling
(MLM). For the MLM task, 15% of the tokens are selected at random, of which
80% are replaced with the [MASK] token, 10% with a random token, and the re-
maining 10% are unchanged. The model then tries to predict the selected words.
The reason why not all of the selected words are masked is that the [MASK] to-
ken does not appear during fine-tuning, and the authors wanted to mitigate that
mismatch. Because the model can take both right and left context into account
when solving that task, it is called a bidirectional model. The NSP task consists
of predicting whether sentence B follows sentence A in the original text or not.
For this, 50% of the time B is the actual next sentence, and 50% of the time it is
a random sentence from the corpus. This is done with the objective of creating
a model that understands the relationship of sentences.

The pre-trained BERT can be fine-tuned for a wide range of tasks such as
question answering or text classification with just one additional output layer.
For text classification, the representation of the [CLS] token in the last layer is
fed into the output layer for classification.

3. Background 7

3.1.4 WordPiece

WordPiece [26] is a sub-word segmentation algorithm. Originally introduced for
Asian languages, which often have few spaces, the idea is to segment rare or very
long words into multiple tokens. With this approach, an infinite set of words can
be represented with a finite vocabulary. The algorithm for producing the tokens
works as follows:

1. Initialize the vocabulary of tokens with all the basic Unicode characters.

2. Build a language model on the training data with the vocabulary from 1.

3. Combine the two tokens from the vocabulary which increase the likelihood
on the training data the most when the combined token is added to the
vocabulary.

4. Go to step 2 until a predefined number of tokens are in the vocabulary or
the likelihood increase in step 3 falls below a given threshold.

This procedure results in a vocabulary in which frequently used words are repre-
sented with their own token. Rare words, on the other hand, have to be combined
out of multiple tokens. This is shown in the following example, where the abbre-
viation “NLP” is split:

- NLP is fun! → [nl, ##p, is, fun, !]

3.2 Metrics for Word and Sentence Similarity

As we will see shortly, synonym-based attacks on text are usually constrained in
what words they can choose as substitutes. Common constraints are the cosine
similarity between counter-fitted word vectors and the cosine similarity between
sentence embeddings from the Universal Sentence Encoder.

3.2.1 Counter-fitted Word Vectors

Many popular methods for finding static word-representations rely on the as-
sumption that semantically similar or related words appear in similar contexts.
However, such methods will generally fail to tell synonyms from antonyms. For
example, words like east and west, or good and bad often appear in the same con-
text, which means these methods will produce similar word vectors for such words.
Counter-fitted word vectors [19] are specifically designed to alleviate these prob-
lems. Starting from an existing vocabulary of word vectors V = {v1,v2, ...,vN},
the counter-fitted word vectors V ′ = {v′1,v′2, ...,v′N} are created by running

3. Background 8

stochastic gradient descent (SGD) on an objective function consisting of three
terms. Given sets of synonym pairs S and antonym pairs A, the antonym repel
term

AR(V ′) =
∑

(u,w∈A)

max(0, cos(v′u,v
′
w)), (3.1)

where cos(·, ·) denotes cosine similarity, pushes antonyms towards a cosine simi-
larity of 0. The synonym attract term

SA(V ′) =
∑

(u,w∈S)

max(0, 1− cos(v′u,v
′
w)), (3.2)

on the other hand, brings synonyms closer by pushing them towards a cosine
similarity of 1. The third term is for vector space preservation and attempts to
preserve the semantic information contained in the original vectors:

VSP(V, V ′) =
N∑
i=1

∑
j∈N(i)

max(0, cos(vi,vj)− cos(v′i,v
′
j)), (3.3)

where N(i) denotes a predetermined neighborhood of the i-th word vector in the
original vector space. The final cost function is a weighted combination of the
three terms:

C(V, V ′) = k1AR(V ′) + k2SA(V ′) + k3VSP(V, V ′), (3.4)

where k1, k2 and k3 ≥ 0 are hyperparameters. Counter-fitted word vectors achieve
state-of-the art performance on SimLex-999 [28], a dataset designed to measure
semantic similarity between words.

3.2.2 Universal Sentence Encoder

The Universal Sentence Encoder (USE) [29] is a model for encoding sequences of
variable length into fixed size embedding vectors of dimension 512. The procedure
is straightforward, the input sequence is tokenized and fed into a deep averaging
network (DAN) [30] which outputs a 512 dimensional vector. The DAN is trained
using multi-task learning to be as general purpose as possible. The tasks include
SkipThought [31], a conversational input-response task, and a classification task.
Semantic similarity between two input sequences s and s′ is measured by the
cosine similarity of their encodings.

3.3 Adversarial Examples

An adversarial example is an input to a machine learning model that an attacker
has intentionally designed to cause the model to make a mistake. Usually, for a

3. Background 9

Figure 3.3: An adversarial example created with FGSM (adapted from [2]).

classifier f : X → Y, this is done by starting from some correctly classified input
x ∈ X , and searching for a small perturbation η, such that f(x) 6= f(x + η).
This is what is called an untargeted attack because the attacker does not care
about the new label, except that it should be different from the correct label.
In a targeted attack, the attacker is searching for a perturbation η, such that
f(x + η) = y, where y ∈ Y is the target label.

Besides the distinction between targeted and untargeted, there are two main
types of attacks: white-box attacks and black-box attacks. In a white-box attack,
the attacker knows the exact details of the model, including architecture and
all the weights. In a black-box attack, the attacker has no knowledge about
the model or its internals and is only allowed to query the model with inputs.
Usually, it is expected that the model returns confidence scores. All attacks used
in this thesis are untargeted black-box attacks.

3.3.1 History of Adversarial Attacks

The study of adversarial examples dates back to 2004 [5] and started to get more
attention in 2013, when it was shown that neural networks are also prone to
such attacks [1]. Early work focused mainly on image classifiers and white-box
attacks. The Fast Gradient Sign Method (FGSM) [2] is the most illustrative and
simple version of such an attack. Given a neural network with parameters θ, an
input x with label y, and the cost function J(θ,x, y) used to train the model,
the perturbation η is found as

η = ε · sign(∇xJ(θ,x, y)). (3.5)

FGSM changes every pixel exactly by the value of ε, if ε is small enough, this
is imperceptible to the human eye. An example of such an attack is shown in
Figure 3.3. Since then, attacks which keep the total perturbation even smaller
by making the size of the perturbation pixel-dependant have been introduced

3. Background 10

Original Text Very much enjoyed it! Our waitress was very at-
tentive and friendly.

100% positive

Adversarial Example Awfully much enjoyed it! Our waitress was very
beware and empathy.

66% negative

Original Text Pretty awesome place. Great pools and kid
friendly.

100% positive

Adversarial Example Kinda glamorous place. Whopping pools and kid
friendly.

69% negative

Original Text Food is terrible. Simple as that. Service is decent
though.

100% negative

Adversarial Example Nutritious is egregious. Simple as that. Service is
decent though.

83% positive

Table 3.1: Adversarial examples created with TextFooler (hand-picked).

[16, 6]. While the size of the perturbation for FGSM is defined according to ε,
other attacks use an explicit constraint on ‖η‖2 or ‖η‖∞.

3.3.2 Adversarial Examples in Text Classification

While you can perturb an image in a way which is imperceptible for humans by
slightly changing pixel values, creating an adversarial example for text always
means changing, adding or deleting at least one letter or symbol. Nevertheless,
in the last years much research has been dedicated towards finding adversar-
ial examples in NLP and they can generally be classified into three categories:
character-level attacks, word-level attacks, and sentence-level attacks. As the
names suggest, character-level attacks generate adversarial examples by chang-
ing individual characters of the original text, word-level attacks change whole
words and sentence-level attacks work by paraphrasing sentences. In this work,
we focus on word-level attacks. Table 3.1 shows some word-level adversarial ex-
amples. Note that these examples are hand-picked and not representative of the
overall quality.

Formally, for a classifier f : S → Y and some correctly classified input s ∈ S,
a textual adversarial example is an input s′ ∈ S, such that f(s) 6= f(s′), and
sim(s, s′) ≥ tsim, where sim(s, s′) ≥ tsim is a constraint on the similarity of
s and s′. For text classification, s = {w1, w2, ..., wn} is a sequence of words.
Common notions of similarity are the cosine similarity of counter-fitted word
vectors, which we will denote as coscv(wi, w

′
i) or the cosine similarity of sentence

embeddings from USE, which we will denote as cosuse(s, s′). Note that this is a
slight abuse of notation since s and s′ are just sequences of words. The notation
should be interpreted as follows: We first apply USE to s and s′ to get two

3. Background 11

sentence vectors and then calculate the cosine similarity. The same holds for
coscv(wi, w

′
i), where we first get the counter-fitted word vectors of wi and w′i.

Also, note that whenever we talk about the cosine similarity of words, it refers
to the cosine similarity of words in the counter-fitted embedding. Similarly, USE
score refers to the cosine similarity of sentence embeddings from the USE.

3.3.3 Examples of Attacks

We use four different attacks for our experiments. All of them are based on the
idea of exchanging words with other words of similar meaning. The attacks con-
sist of two main steps: First, the words are ranked according to their importance,
determining the order of replacement. One word at a time, the words are then
replaced with another word from a given candidate set until the prediction of the
model changes. We call such a word substitution a perturbation. In the following,
for the four attacks used in this work, we explain the methods used to rank the
words by importance, how the candidate set of replacement words is constructed,
and which constraints exist.

TextFooler

For a given input sequence s = {w1, w2, .., wn}, TextFooler [13] estimates the
importance of a word wi by the change in prediction resulting from deleting that
word. Formally an importance score Iwi is calculated as

Iwi =

{
fy(s)− fy(s\wi

) if f(s) = f(s\wi
) = y

(fy(s)− fy(s\wi
)) + (fŷ(s\wi

)− fŷ(s)) if f(s) = y, f(s\wi
) = ŷ ,

(3.6)
where fy represents the prediction score of a classifier f for the label y, s\wi

=
{w1, .., wi−1, wi+1, .., wn} and ŷ 6= y. The candidate set of replacement words
is built from the 50 nearest neighbors with cosine-similarity ≥ 0.5 in a counter-
fitted word embedding. The candidate set is then filtered for words with the same
part-of-speech (verb-noun swaps are allowed), and a custom set of stop-words,
constructed from NLTK and spaCy, is filtered out. Finally, the remaining words
are checked for cosuse(s, s′) ≥ 0.878,1 and the one which changes the prediction
the most is chosen as a replacement. However, this constraint on the USE score
is not checked between the current perturbed text s′ and the original text s, but
instead between the current perturbed text s′ and the previous perturbed version
s′′. This means that by perturbing one word at a time, the effective USE score
between s and s′ can be a lot lower than the threshold suggests.

1The official value is 0.841 on the angular similarity between sentence embeddings, which
corresponds to a cosine similarity of 0.878

3. Background 12

Probability Weighted Word Saliency (PWWS)

PWWS [12] uses a slightly different word ranking algorithm compared to TextFooler.
The word importance ranking is calculated as

Iwi = fy(s)− fy(swi→[unk]) (3.7)

where swi→[unk] = {w1, .., wi−1, unk, wi+1, .., wn} and [unk] is the out-of-vocabulary
token. In contrast to TextFooler, PWWS also takes the impact of the synonyms
into account when determining the word replacement order. The final score func-
tion for determining the replacement order is given as:

H(s, wi, w
∗
i) =

exp(Iwi)∑n
j=1 exp(Iwj)

·∆f∗i , (3.8)

where ∆f∗i = fy(s) − fy(swi→w∗i
) is the change in confidence for the true label

when word wi is replaced with synonym w∗i . WordNet2 synonyms are used to
build a candidate set Li and w∗i is choosen as the word from that set which
changes the prediction the most:

w∗i = arg max
w′i∈Li

(
fy(s)− fy(swi→w′i

)
)

(3.9)

There are no constraints, except that stopwords are filtered out using NLTK.

BERT-Attack

A shortcoming of traditional synonym-based attacks like TextFooler or PWWS
is that they do not take the context into account when building their candidate
set. This can lead to problems if a word is polysemic, i.e., has multiple meanings
in different contexts. Many attacks also do not take part-of-speech into account,
which leads to unnatural and semantically wrong sentences. BERT-based attacks
claim to produce more natural text by relying on a BERT masked language model
(MLM) for proposing the set of candidate words. A prominent example of such
an attack is BERT-Attack [14]. BERT-Attack calculates the importance scores
similar to TextFooler, but instead of deleting words, BERT-Attack replaces the
word for which the importance score is calculated with the [MASK] token:

Iwi = fy(X)− fy(swi→[mask]) (3.10)

The candidate set Li is constructed from the top 48 predictions of the masked
language model and the replacement word is chosen as the word which changes
the prediction the most, subject to cosuse(s, s

′) ≥ 0.2. Stopwords are filtered out
using NLTK.

2https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

3. Background 13

BAE

BAE corresponds to BAE-R in [15]. Similar to BERT-Attack, BAE is an attack
based on a MLM. The word importance is estimated as the decrease in probability
of the correct label when deleting a word, similar to TextFooler. BAE uses the
top 50 candidates of the MLM to build the candidate set and tries to enforce
semantic similarity by requiring cosuse(s, s

′) ≥ 0.936.

Chapter 4

Setup

4.1 Datasets

For our experiments, we use three different text classification datasets: AG
News,1 IMDB,2 and Yelp.3 On Yelp, we only use the examples consisting of
80 words or less. Statistics of the three datasets are displayed in Table 4.1.

Dataset Labels Train Test Avg Len

AG News 4 120’000 7’600 43.93
Yelp 2 199’237 13’548 45.69
IMDB 2 25’000 25’000 279.48

Table 4.1: Statistics of the three datasets.

AG News [32] is a topic classification dataset. It is contructed out of titles and
headers from news articles categorized into the four classes “World”, “Sports”,
“Business”, and “Sci/Tech”.

Yelp [32] is a binary sentiment classification dataset. It contains reviews from
Yelp, reviews with one or two stars are considered negative, reviews with three
or four stars are considered positive.

IMDB is another binary sentiment classification dataset. It contains movie
reviews labelled as positive or negative.

4.2 Implementations

We use bert-base-uncased from HuggingFace Transformers4 for all our experi-
ments. For the implementations of TextFooler, PWWS, BERT-Attack, and BAE

1https://huggingface.co/datasets/ag_news
2https://huggingface.co/datasets/imdb
3https://huggingface.co/datasets/yelp_polarity
4https://huggingface.co/transformers/

14

https://huggingface.co/datasets/ag_news
https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/yelp_polarity
https://huggingface.co/transformers/

4. Setup 15

Dataset Clean
Acc. (%)

Attack Success Rate (%)

TextFooler PWWS BERT-Attack BAE

AG News 94.57 84.99 64.95 79.43 14.27
Yelp 97.31 90.47 92.23 93.47 31.50
IMDB 93.77 98.16 98.70 99.03 57.13

Table 4.2: Attack success rates of the different attacks on fine-tuned BERT
models.

we use TextAttack [33].5 The adapted attacks with custom thresholds are also
implemented using the TextAttack library. For adversarial training, we adapt
the code from [34].

4.3 Starting Point

We fine-tuned BERT for two epochs on AG News, Yelp, and IMDB with a learn-
ing rate of 2e-5. On AG News and Yelp, we used a batch size of 32, on IMDB
a batch size of 8. To evaluate the attacks, we randomly sampled 1000 examples
from each test-set for running the attacks.

The clean accuracies of our fine-tuned models, and the attack success rates
of the different attacks are shown in Table 4.2. Is is worth noting that the
average sequence length in IMDB is around six times longer compared to AG
News and Yelp, which makes IMDB easier to attack. To see this, take an attack
without constraint on the sentence similarity (PWWS for example). Assuming a
maximum replace rate of 0.4, the number of potential adversarial examples for a
input sequence of length l is (0.4 · l)|C|, where |C| is the size of the candidate set.

5https://textattack.readthedocs.io/en/latest/

https://textattack.readthedocs.io/en/latest/

Chapter 5

Observations

The following chapter provides insights into why the attacks succeed and moti-
vates why it is worth taking a closer look at the quality of adversarial examples
through a human evaluation. We look into word frequencies, word and sentence
similarity scores, and word-embeddings inside BERT.

5.1 Word Frequencies

For every word substitution, we count the number of occurrences of the original
word and the attack word in the training set. We then calculate the median
number of occurrences in the training set for original and attack words for every
dataset and attack.

Dataset Word
Median occ. in training data

TextFooler PWWS BERT-Attack BAE

Ag News original 736 889 585 617
attack 18 24 344 4

Yelp original 4240 5715 4521 4601
attack 19 13 3398 44

IMDB original 1362 1598 1408 1221
attack 47 66 1016 23

Table 5.1: Median word occurrences of original words and attack words in train-
ing set

Table 5.1 shows the results. In general, the attack words appear less often in
the training set than the original words. The difference is significant for three out
of four attacks, indicating that these attacks introduce words that humans would
rarely use. However, if a word barely appears during fine-tuning, it is no surprise
that the model does not know how to interpret that word for the particular task.
BERT-Attack acts differently in that regard, we believe that this results from
a combination of having to choose from candidates of a MLM and having weak

16

5. Observations 17

Dataset Attack
argmaxi fi(w) 6= ytrue (%)

Original Word Attack Word

AG News

TextFooler 32.69 75.37
PWWS 39.96 83.94

BERT-Attack 34.08 77.09
BAE 47.34 90.69

Yelp

TextFooler 27.21 55.40
PWWS 25.44 66.24

BERT-Attack 24.73 64.45
BAE 23.97 58.13

IMDB

TextFooler 30.75 58.52
PWWS 32.27 65.20

BERT-Attack 29.78 63.73
BAE 32.56 54.88

Table 5.2: Percentage of times that a word has higher relative frequency in a
class other then the ground truth class.

constraints. An attack that has to choose from a set of similar words (whether
that is synonyms or words retaining high sentence similarity) is more likely to
choose an uncommon word.

5.1.1 Word Associations with Wrong Label

For a classification problem with K classes, let us define the relative frequency
of a word w in class i ∈ {1, ...,K} as

fi(w) =

∑
v∈Vi [w == v]

|Vi|
, (5.1)

where Vi is the corpus of all the words in class i and

[w == v] =

{
1 if w = v

0 otherwise.
(5.2)

For a word w from an input sequence labeled as ytrue, Table 5.2 shows the per-
centage of times that arg maxi fi(w) 6= ytrue if w is an original word and the
percentage of times that arg maxi fi(w) 6= ytrue if w is an attack word. While it
is not uncommon for the original word to occur more often in one of the other
classes, the attack words are significantly more often associated with another
class. This raises the question whether there is some justification in the model’s
decision to change its prediction. After all, for a simpler model based on word
statistics, we would not be surprised about a change in prediction if sufficiently
many words are exchanged with words that appear more often in other classes.

5. Observations 18

-1.0 -0.5 0.0 0.5 1.0

TextFooler
-1.0 -0.5 0.0 0.5 1.0

PWWS
-1.0 -0.5 0.0 0.5 1.0

BERT-Attack
-1.0 -0.5 0.0 0.5 1.0

BAE

Distribution of word cosine similarities on Yelp

-1.0 -0.5 0.0 0.5 1.0

TextFooler
-1.0 -0.5 0.0 0.5 1.0

PWWS
-1.0 -0.5 0.0 0.5 1.0

BERT-Attack
-1.0 -0.5 0.0 0.5 1.0

BAE

Distribution of word cosine similarities on AG News

-1.0 -0.5 0.0 0.5 1.0

TextFooler
-1.0 -0.5 0.0 0.5 1.0

PWWS
-1.0 -0.5 0.0 0.5 1.0

BERT-Attack
-1.0 -0.5 0.0 0.5 1.0

BAE

Distribution of word cosine similarities on IMDB

Figure 5.1: Distribution of cosine similarities of words for the different attacks
and datasets.

5.2 Similarity of original and perturbed words

Section 5.1.1 showed that the words introduced by the attacks often occur more
frequently in classes different from the ground truth class. This indicates that
the meaning of these words is different from the original words. Therefore, we
analyzed cosine similarities between original and attack words in a counter-fitted
vector space. As described in Section 3.2.1, such a vector space is specifically
designed to pull synonyms towards a cosine similarity of 1 and antonyms towards
a cosine similarity of 0.

Figure 5.1 shows the distributions of cosine similarities between original and
attack words for the different attacks on AG News, Yelp, and IMDB. Except for
TextFooler, which has a constraint that the attack word needs to have at least
a cosine similarity of 0.5 with the original word, all attacks have a large portion
of perturbations where the cosine similarity is around 0. For BERT-Attack,
this is not surprising, as there exists no constraint on the cosine similarity and
only a lenient constraint on the sentence similarity. However, PWWS chooses
its candidate set from WordNet synonyms, and BAE has a constraint on a high

5. Observations 19

0.0 0.2 0.4 0.6 0.8 1.0

TextFooler
0.0 0.2 0.4 0.6 0.8 1.0

PWWS
0.0 0.2 0.4 0.6 0.8 1.0

BERT-Attack
0.0 0.2 0.4 0.6 0.8 1.0

BAE

Local Use Scores Yelp

0.0 0.2 0.4 0.6 0.8 1.0

TextFooler
0.0 0.2 0.4 0.6 0.8 1.0

PWWS
0.0 0.2 0.4 0.6 0.8 1.0

BERT-Attack
0.0 0.2 0.4 0.6 0.8 1.0

BAE

Local Use Scores AG News

0.0 0.2 0.4 0.6 0.8 1.0

TextFooler
0.0 0.2 0.4 0.6 0.8 1.0

PWWS
0.0 0.2 0.4 0.6 0.8 1.0

BERT-Attack
0.0 0.2 0.4 0.6 0.8 1.0

BAE

Local Use Scores IMDB

Figure 5.2: Distribution of cosine similarities from USE embeddings around
replaced words, with a window size of 11.

sentence similarity. This shows that choosing from a set of synonyms might still
result in perturbations that are semantically different. The reason is that words
can be polysemantic. An example is “terrific”; looking up synonyms for terrific
yields both “horrible” and “awesome”. Clearly, for a given context, only one of
them is a suitable synonym. The results strongly indicate that PWWS relies
heavily on such “false” synonyms. Furthermore, the results obtained from BAE
also show that a high sentence similarity score does not necessarily require a high
cosine similarity on the word level.

5.3 Sentence Similarity

While we have just seen that a high sentence similarity is no guarantee for a
high word similarity, ideally, an adversarial example should also have a high sen-
tence similarity to the original text. We measure sentence similarity scores by
calculating the cosine similarity from USE-embeddings, the most frequently used
metric to constrain attacks on text. However, attacks have different implemen-

5. Observations 20

tations of that constraint. The constraint can be applied to a fixed-size window
around the replaced word (TextFooler and BAE) or to the whole input sequence
at once (BERT-Attack). Furthermore, when perturbing multiple words of an
input sequence, it can be applied between the current version and the original
text (BERT-Attack and BAE) or between the current version and the perturbed
version in the previous step (TextFooler). To compare scores across the different
implementations, we computed sentence similarity scores with a window size of
11 and compared them to the original text.

Figure 5.2 shows the distribution of cosine similarities between USE-embed-
dings from the original text and adversarial example for the four attacks. It
can be seen that BAE is the only attack that properly restricts the sentence
similarity scores because it uses both a fixed window size and compares to the
original text. On the other hand, the sentence similarity scores of TextFooler,
PWWS, and BERT-Attack are almost the same, even though PWWS does not
use such a constraint, BERT-Attack only requires a cosine similarity of 0.2, and
TextFooler requires a cosine similarity of 0.88. This shows that the implementa-
tion in TextFooler, which always compares to the previous version, is a lot weaker
than it looks at first sight.

For an idea about what different values of sentence similarity correspond to,
Table A.4 in the Appendix shows examples of text fragment pairs with USE
scores from 0.29 to 0.99.

5.4 BERT Word-Embeddings

As explained in Section 3.1.2, BERT’s initial embedding is constructed by sum-
ming positional, token and sentence embedding. For every token, this results
in a vector vinit ∈ R768. This representation is then passed through the 12
Transformer layers of BERT and in every layer we obtain a new representation
vi ∈ R768, where i ∈ {1, ..., 12} denotes the layer. To compare embeddings from
the original text and adversarial examples, we need a word-level representation
because a word consisting of one token can be replaced with a word consisting of
multiple tokens and vice versa. We obtain the word representation by averaging
the token representations of all tokens in word. In the following, we call this a
word embedding.

To better understand how BERT interprets the words introduced by the at-
tacks, we feed 300 pairs of [original text, adversarial example] through the network
and compute the cosine similarity between the word embeddings of the words in
the original text and the words in the adversarial example in every layer. This
results in a distribution of cosine similarities for every layer. We can split the
distribution into unchanged words (the same in original text and adversarial ex-
ample) and changed words. To have a reference, we further exchanged the attack

5. Observations 21

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C

o
si

n
e

S
im

il
a
ri

ty

Normal Words

Closest Words

Attack Words

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
si

n
e

S
im

il
a
ri

ty

Attack Words

Random Words

[MASK] Token

Figure 5.3: Cosine similarities between BERT word embeddings from words in
adversarial examples (or [MASK] and random references) and words in original
text.

words with:

1. a completely random word

2. the [MASK] token

3. the closest neighbor of the original word in a counter-fitted embedding

This results in five cosine similarity distributions in every layer. Figure 5.3 shows
them for TextFooler on AG News. Results from the other attacks can be found in
the appendix. We show the range from 25th to 75th percentile with the median
as a thick line for every class of word-pairs. It can be observed that the cosine
similarity between original and attack words is significantly lower than the co-
sine similarity between the original word and the closest neighbor. Further, it
can also be seen that the attack words strongly affect the word embeddings of
the unchanged words, especially from layer 9 to layer 12. The most interest-
ing observation is that the cosine similarity between the original words and the
[MASK] token is similar to that between the original and attack word for the
first ten layers. We would expect the [MASK] token to be neutral. It is a token
that does not occur during fine-tuning and does not carry any information for
the classification task. There are two potential explanations for this:

1. The model does not know how to interpret the attack words.

2. The model interprets the words correctly, but there is a significant semantic
difference between original and attack word.

The last layers form the basis for the classification layer, therefore the crossing
of the lines from [MASK] tokens and random words with the attack words is

5. Observations 22

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C

o
si

n
e

S
im

il
a
ri

ty

Normal Words

Closest Words

Attack Words

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
si

n
e

S
im

il
a
ri

ty

Attack Words

Random Words

[MASK] Token

Figure 5.4: Cosine similarities between words in adversarial examples (or
[MASK] and random references) and words in original text in a robust model.

likely attributed to the overall different classification of the adversarial example
compared to when the attack words are replaced with a random word or the
[MASK] token.

5.4.1 Comparison to Robust Model

Figure 5.4 shows the same analysis (with the same adversarial examples) on a
model trained using adversarial training according to [21]. While the distribution
for the attack words is still below the distribution for the closest words from a
counter-fitted embedding, the overall trend shows much higher cosine similari-
ties. We can also see that the embeddings of the unchanged words are almost
not affected at all. However, the random words also obtain a much higher cosine
similarity with the original words. It appears that at least partially, the robust-
ness does not come from a better understanding of the input, but simply from
being less susceptible to change.

Chapter 6

Quality of Adversarial Examples

The previous chapter showed that attacks often use words that barely occurred
during training and appear more frequently in other classes. Further, we observed
that BAE, BERT-Attack, and PWWS often use words with low cosine similarity
to the original word. These observations raise doubts about the validity of ad-
versarial examples, but they do not allow for a final conclusion. To truly judge
the quality of the adversarial examples, we need human opinions. Therefore, we
conducted a human evaluation on word substitutions performed by the different
attacks. In the following, we call such a word substitution a perturbation. A
probabilistic analysis is then used to generalize the results on perturbations to
attacks.

6.1 Human Evaluation

For the human evaluation, we relied on labor crowd-sourced from Amazon Me-
chanical Turk. We limited our worker pool to workers in the United States and
the United Kingdom who completed over 5000 Human Intelligence Tasks (HITs)
with over 98% success rate. We collected 100 pairs of [original word, attack word]
for every attack and another 100 pairs for every attack where the context is in-
cluded with a window size of 11. For the word-pairs, inspired by [24], we asked
the workers to react to the following claim: “In general, replacing the first word
with the second word preserves the meaning of the sentence.” For the words with
context, we presented the two text fragments on top of each other, highlighted
the changed word, and asked the workers: “In general, the change preserves the
meaning of the text fragment.” In both cases the workers had seven answers
to choose from: “Strongly Disagree”, “Disagree”, “Somewhat Disagree”, “Neutral”,
“Somewhat Agree”, “Agree”, “Strongly Agree”. We convert these answers to a scale
from 1-7, where higher is better. Every word-pair was judged by ten workers, the
words with context were scored by five workers each.

Table 6.1 shows the results of this human analysis. Contrary to what is
suggested in papers proposing the attacks, our results show that humans generally

23

6. Quality of Adversarial Examples 24

Task Metric
Attack

TextFooler PWWS BERT-Attack BAE

Avg. (1-7) 3.88 3.83 2.27 1.64
Word-Similarity Above 5 (%) 22 21 4 0

Above 6 (%) 7 6 4 0

Avg. (1-7) 3.47 2.70 2.55 1.85
Text-Similarity Above 5 (%) 24 13 7 3

Above 6 (%) 12 6 3 2

Table 6.1: Average human scores on a scale from 1-7 and the percentage of scores
above 5 and 6 (corresponding to the answers “Somewhat Agree” and “Agree”) for
the different attacks and when the words where shown with (text similarity) or
without (word similarity) context.

tend to disagree that the newly introduced word preserves the meaning. This
holds for all attacks and regardless of whether we show the word with or without
context. We believe this difference is mainly due to how the text is shown to
the judges and what question is posed. For example, asking “Are these two text
documents similar?” on two long text documents that only differ by a few words
is likely to get a higher agreement because the workers will not bother going
into the details. Therefore, we believe it is critical to show the passages that are
changed.

Regarding the different attacks, it becomes clear from this evaluation that
building a candidate set from the first 48 or 50 candidates proposed by a MLM
does not work without an additional constraint on the word similarity. The idea
of BERT-based attacks is to only propose words that make sense in the context,
however, fitting into the context and preserving semantics is not the same thing.
The results on BAE further make it clear that a high sentence similarity according
to the USE score is no guarantee for semantic similarity. PWWS and TextFooler
receive similar scores for word similarity, but the drop in score for PWWS when
going from word similarity to text similarity indicates that while the synonyms
retrieved from WordNet are usually related to the original word, the relation is
often wrong in the given context. TextFooler receives the highest scores in this
analysis, but even for TextFooler, just 22% and 24% of the perturbations were
rated above 5, which corresponds to “Somewhat Agree”.

6.1.1 Voter Agreement

To measure voter agreement, we calculate the average number of workers who
voted within ±1 of the mean score for a perturbation. For the words with context,
this is 3.57 workers out of 5. For the words without context, this is 6.78 out of
10.

6. Quality of Adversarial Examples 25

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Th

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
ro

b
ab

il
it

y
of

V
al

id
A

tt
ac

k
TextFooler

PWWS

BERT-Attack

BAE

Figure 6.1: Probability that an attack is valid according to our probabilistic anal-
ysis, for the different attacks and for different thresholds on what is considered a
valid perturbation.

6.1.2 Probabilistic Estimation of Valid Attacks

The human evaluation is based on individual perturbations. A successful attack
usually changes multiple words and therefore consists of multiple perturbations.
This begs the question: How many of the successful attacks are actually valid
attacks? To answer this question we need to define the expressions valid attack
and valid perturbation.

Definition 6.1 (Valid Perturbation). A valid perturbation is a perturbation that
receives a human score above some threshold Th.

Definition 6.2 (Valid Attack). A valid attack is an attack consisting of valid
perturbations only.

Sensible values for Th are in the range 5-6, which corresponds to “Somewhat
Agree” to “Agree”. In order to get an estimate for the percentage of valid attacks,
we perform a simple probabilistic analysis. Let Aval, Pval and Ai

val denote the
events of a valid attack, a valid perturbation and a valid attack consisting of
exactly i perturbations. Further, let p(i) denote the probability that an attack
perturbs i words. Using that notation, we can approximate the probability that

6. Quality of Adversarial Examples 26

0.5 0.6 0.7 0.8 0.9 1.0

Cosine Similarity of Words

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
P

ro
b

.
of

va
li

d
p

er
t

0.80 0.84 0.88 0.92 0.96 1.00

USE Score

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
.

o
f

va
li
d

p
er

t

Figure 6.2: The probability that a perturbation is considered valid by a human,
as a function of cosine similarity of words (left) and USE score (right). Thuman

is set to 5, i.e. an average score of 5 is required to be considered valid.

a successful attack is valid as

p(Aval) =

N∑
i=1

p(i)p(Ai
val)

≈
N∑
i=1

p(i)p(Pval)
i,

(6.1)

where N is the maximal number of allowed perturbations. With the data from
Amazon Mechanical Turk and the collected adversarial examples, we can get an
unbiased estimate for this probability as

p̂(Aval) =
N∑
i=1

p̂(i)

(
count[Sh ≥ Th]

npert

)i

, (6.2)

where Sh is the average score of the workers for a perturbation, npert is the
total number of perturbations analyzed by the workers for any given attack, and
p̂(i) can be estimated using counts. The results of this analysis are shown in
Figure 6.1 as a function of the threshold Th. It can be seen that if we require
an average score of 5 for all perturbations, we can expect around 4% of the
successful attacks from TextFooler to be valid, slightly less for PWWS, below 2%
for BERT-Attack, and just around 1% for BAE. In other words, between 96% and
99% of the successful attacks can not be considered valid according to the widely
accepted requirement that adversarial examples should preserve semantics.

This analysis assumes that perturbations are independent of each other, which
is not true because every perturbation impacts the following perturbations. Nev-
ertheless, we argue that this approximation tends to result in optimistic estimates
on the true number of valid attacks for the following reasons: 1) When an at-
tack is already almost successful, all attacks except for PWWS try to maximize

6. Quality of Adversarial Examples 27

0.5 0.6 0.7 0.8 0.9

Cosine-Similarity of Words

0.80

0.85

0.90

0.95

U
S

E
S

co
re

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.3: Probability that an attack is valid according to our probabilistic
analysis as a function of both USE score and cosine similarity of words

sentence similarity on the last perturbation, making the last perturbation gener-
ally weaker. 2) We strongly assume that in a sentence with multiple changes, a
human is generally less likely to say that the meaning is preserved, even if the
individual perturbations are considered valid.

6.1.3 Metrics vs. Human

Figure 6.2 shows the probability that a perturbation is considered valid (for
Th = 5) as a function of cosine similarity of words and as a function of USE
score. The plots are based on the 400 words with context from the different
attacks which were judged by humans. We use left-aligned buckets of size 0.05,
i.e., the probability of a valid perturbation for a given cosine similarity x and
metric m ∈ {coscv(·, ·), cosuse(·, ·)}, is estimated as

p̂(Pval) =
count[(Sh ≥ Th) ∧ (m ∈ [x, x + 0.05))]

count[m ∈ [x, x + 0.05)]
. (6.3)

It can be observed that there is a strong positive correlation between both metrics
and the probability that a perturbation is considered valid, confirming both the
validity of such metrics and the quality of our human evaluation. However, the
exact probabilities have to be interpreted with care, as the analysis based on one
variable does not consider the conditional dependence between the two metrics.

A two-dimensional analysis shows a more accurate picture and is displayed in
Figure 6.3. We used buckets of size 0.1× 0.1 and required at least 10 datapoints
in a bucket, hence the dark areas for very high sentence similarity and in the
bottom right corner.

Chapter 7

Adversarial Defense

We have shown that current attacks use lenient constraints and, therefore, mostly
produce adversarial examples that should not be considered valid, but finding the
right thresholds on the constraints is difficult. [24] try to find these thresholds
by choosing the value where humans “Agree” (on a slightly different scale) on av-
erage and find thresholds of 0.90 on the word similarity and 0.98 on the sentence
similarity score. However, this misses all the perturbations which were considered
valid by the workers at lower scores (compare Figures 6.2 and 6.3). In the follow-
ing, we introduce a defense procedure which shows that even for low thresholds,
it is possible to avoid many adversarial examples. The procedure shows that
the success of adversarial examples is mainly based on the discrepancy between
training data and adversarial examples.

7.1 Defense Procedure

Our procedure consists of a gradient based data augmentation procedure followed
by a post-processing step.

Data Augmentation

1. Initialize thresholds trr ∈ (0, 100] for the maximal percentage of words to
augment, and tcv ∈ (0, 1) for a threshold on cosine similarity of words.

2. During training, for every input s in a batch, the importance score of a word
w consisting of tokens vj ∈ R768 in BERT’s initial embedding is estimated
as

Iw =
∑
vj∈w

vj · ∇vjL(θ, s, y), (7.1)

where θ are the parameters of BERT, L is the loss function and y is the la-
bel. The trr percent of words with highest importance score are determined
and the union of the words considered as stop-words by the four attacks is
filtered out.

28

7. Adversarial Defense 29

3. Then, for every word marked as important according to 2., a candidate
set C = {w′1, ..., w′n} is built out of the 50 nearest neighbors in a counter-
fitted embedding with cosine similarity greater than tcv. To account for
the fact that all attacks tend to favor words with low cosine similarity, the
replacement w′i ∈ C for the original word w is chosen with probability:

p(w′i) =
1− coscv(w,w′i)∑

w′i∈C
1− coscv(w,w′i)

. (7.2)

The augmented batch is then appended to the original batch, increasing
the batch size by a factor of two.

The data augmentation procedure makes the model more robust against at-
tack words with cosine similarity greater tcv. If we expect BERT to be robust
against these kinds of replacements, this is the least we should do. Otherwise,
we cannot expect the model to generalize to the attack’s input space, which is
significantly larger than the input space during fine-tuning.

The second step is a post-processing step based on ensembling. This step
builds on the robustness to random substitutions obtained from data augmenta-
tion.

Post-processing

1. For every text that should be classified, N versions are created where trr
percent of the words (which are not stop-words) are selected uniformly
at random and are exchanged by another uniformly sampled word from a
candidate set C consisting of the 50 nearest neighbors with cosine-similarity
above tcv.

2. The outputs of the model (logits) are added up for the N versions and
the final prediction is made according to the maximum value. Formally, let
lj(s) denote the value of the j-th logit for some input s. Then the prediction
ypred is made according to

ypred = arg max
j

N∑
i=1

lj(si). (7.3)

This procedure can be applied for any threshold tcv ∈ (0, 1), but it only makes
sense if we expect an attack to use the same or a higher threshold. We always set
tcv to the same value as the attack uses. Further, we set trr = 40 and N = 8 in
all our experiments, and we use the same thresholds for both data augmentation
and post-processing.

Chapter 8

Results

8.1 Effect of Defense Procedure

Our defense procedure is not expected to have a big impact against attacks
which introduce mostly words with cosines similarities ≤ tcv. Hence we modify
all attacks with the constraint coscv(wi, w

′
i) ≥ 0.5 ∀i and ran the attacks on the

following models: A model trained normally (Method N), a model trained using
our data augmentation procedure (DA), and a model trained using data augmen-
tation where our post-processing method is applied (DA + PP). Additionally, we
provide a baseline for our post-processing procedure by instead masking 5% of
all tokens with the [MASK] token (DA + MA5; see Appendix A.4) and we show
the impact of applying the post-processing step without data augmentation (N
+ PP). The modified attacks are denoted as PWWS′ and BERT-Attack′. We
leave BAE′ out of this analysis because its attack success rate drops almost to
zero after introducing the constraint on the cosine similarity of words.

The results are displayed in Table 8.1 and show that up to two-thirds of the
attacks can be prevented using data augmentation. This indicates that adver-
sarial examples for text classification are closely related to the data on which
the model is fine-tuned. The attacks create examples that are out-of-distribution
with respect to the training data. When we include similar data during training,
the attack success rates drop substantially. Using our post-processing procedure,
between 70% and 92% of the remaining attacks can additionally be reverted,
resulting in attack success rates below 5% on AG News and Yelp. On IMDB,
the attack success rates remains slightly higher, which is expected due to the
longer input sequences. Nevertheless, for TextFooler, this corresponds to pre-
venting over 94% of all successful attacks on every dataset. Compared to the
mask-baseline, our post-processing procedure can revert significantly more at-
tacks while having a smaller impact on the clean accuracy. Further, we can see
that the post-processing step should always be preceded by data augmentation.
While applying post-processing in isolation still reverts many attacks, the clean
accuracy drops significantly, especially on AG News and IMDB.

Table 8.1 also shows that with the constraint on cosine similarity of words

30

8. Results 31

Dataset Method Clean
Acc. (%)

Attack Success Rate (%)

TextFooler PWWS′ BERT-Attack′

AG News

N 94.57 84.99 16.38 20.72
DA 94.82 52.37 10.73 18.61

DA+PP 93.84 ± 0.07 3.93 ± 0.41 2.55 ± 0.31 3.73 ± 0.29
DA+MA5 93.72 ± 0.12 14.11 ± 0.48 4.61 ± 0.41 7.52 ± 0.48
N+PP 87.89 ± 0.16 10.32 ± 0.48 5.0 ± 0.31 5.59 ± 0.36

Yelp

N 97.31 90.47 33.26 49.53
DA 97.10 29.79 10.52 16.49

DA+PP 96.59 ± 0.06 4.37 ± 0.39 2.54 ± 0.15 4.86 ± 0.33
DA+MA5 95.40 ± 0.10 10.23 ± 0.59 4.62 ± 0.36 7.38 ± 0.38
N+PP 94.50 ± 0.08 6.07 ± 0.47 5.22 ± 0.48 7.35 ± 0.61

IMDB

N 93.77 98.16 65.77 88.44
DA 94.21 48.31 29.49 40.91

DA+PP 92.59 ± 0.06 5.81 ± 0.45 4.53 ± 0.26 7.83 ± 0.37
DA+MA5 92.49 ± 0.12 12.05 ± 0.87 8.36 ± 0.36 13.0 ± 0.64
N+PP 88.35 ± 0.09 10.52 ± 0.46 9.3 ± 0.39 13.3 ± 0.55

Table 8.1: Effectiveness of defense procedure for different attacks modified with
constraint on cosine-similarity of words.

added, TextFooler is by far the most effective attack, at least before post-processing.
There is a simple reason for this, TextFooler already has that constraint and is
the only attack out of the four to choose its candidate set directly from the
counter-fitted embedding used to calculate the cosine similarity. On the other
end of the spectrum, BAE′’s attacks success rate drops to 0.32% on AG News,
0.41% on Yelp, and to 3.07% on IMDB. This is because the intersection of the set
of words proposed by the MLM, the set of words with cosine similarity greater
than 0.5, and the set of words keeping the USE score above 0.936 is small and
leaves the attack not much room. A similar observation can be made for PWWS′

and BERT-Attack′, although not as pronounced.

However, there is one more reason why TextFooler is more effective compared
to the other attacks, despite an additional constraint on the USE score. While
attacking a piece of text, this constraint on the USE score is not checked between
the current perturbed text s′ and the original text s, but instead between the
current perturbed text s′ and the previous perturbed version s′′. This means
that by perturbing one word at a time, the effective USE score between s and
s′ can be a lot lower than the threshold suggests, as we have seen in Section
5.3. When discussing the effect of raising thresholds to higher levels, we do so by
relying on TextFooler as the underlying attack because it is the most effective,
but we adjust the constraint on the USE score to always compare to the original
text. We believe this is the right way to implement this constraint, and more
importantly, it is consistent with how we gathered data from Amazon Mechanical
Turk.

8. Results 32

Dataset Method
Attack Success Rate (%)

TFcv50 TFuse88
cv50 TFuse85

cv70 TFuse90
cv70 TFuse90

cv80

AG News
Normal 88.79 24.95 22.52 11.63 7.51
DA 55.58 16.11 10.79 7.12 4.50

DA+PP 4.49 ± 0.39 3.31 ± 0.28 2.07 ± 0.16 1.91 ± 0.17 0.99 ± 0.17

Yelp
Normal 91.40 49.22 42.59 25.18 11.09
DA 38.46 13.74 10.34 7.78 2.87

DA+PP 5.04 ± 0.35 3.9 ± 0.34 2.12 ± 0.21 2.28 ± 0.17 0.71 ± 0.13

IMDB
Normal 98.38 82.51 79.16 61.77 42.76
DA 51.58 37.95 28.51 24.73 19.48

DA+PP 5.81 ± 0.26 5.78 ± 0.4 3.56 ± 0.32 3.14 ± 0.28 2.67 ± 0.16

Table 8.2: Effectiveness of defense procedure for different combinations of thresh-
olds.

8.1.1 Adjusted Thresholds

Table 8.2 shows the results of our defense procedure when the thresholds on
TextFooler are adjusted. We use the same abbreviations as in Section 8.1 for
the different methods. For the attacks, TFuseY

cvX corresponds to TextFooler with
coscv(wi, w

′
i) ≥ 0.X ∀i and cosuse(s, s

′) ≥ 0.Y . A special case is TFcv50, which
corresponds to TextFooler without the constraint on the USE score.

Comparing the results of TFcv50 with the results from TextFooler in Table
8.1 confirms that the original implementation of the USE constraint only had a
small impact. TFuse88

cv50 is TextFooler with the same constraints as in the original
implementation, but without allowing to drift away from the original text as
discussed above. This already decreases the attack success rate significantly.
Using data augmentation, we can decrease the attack success rates from 84.99
to 16.11 on AG News, from 90.47 to 13.74 on Yelp, and from 98.16 to 37.95
on IMDB. This shows that by preventing TextFooler from using that little trick
and some data augmentation, we can decrease the attack success rate to values
far from the ones suggested in their paper. When increasing the thresholds on
the constraints (compare to Figure 6.2 and 6.3 to see that these are still not
particularly strong constraints), it becomes even more evident that BERT is a
lot more robust than work on attacks suggests. Especially if we allow for post-
processing.

8.1.2 Comparing data augmentation with adversarial training

While adversarial training provides the model with data from the true distribu-
tion generated by an attack, our data augmentation procedure only approximates
that distribution. The goal is to trade robustness for speed. However, it turns
out that our procedure can even be superior to true adversarial training in some

8. Results 33

Dataset Method Clean
Acc. (%)

Time (h:min)
/ Epochs

Attack Success Rate (%)

TextFooler PWWS′ BERT-Att.′

AG
News

Normal 94.57 0:19 / 2 84.99 16.38 20.72
DA 94.82 5:33 / 12 52.37 10.73 18.61
ADV 92.83 160:15 / 12 34.54 6.50 9.38

ADVnaive 94.26 45:14 / 2 56.20 12.50 17.44

Yelp

Normal 97.31 0:32 / 2 90.47 33.26 49.53
DA 97.10 9:08 / 12 29.79 10.52 16.49
ADV 95.94 107:56 / 5 59.52 14.64 25.52

ADVnaive 96.65 56:53 / 2 95.12 33.09 47.61

IMDB

Normal 93.77 0:17 / 2 98.16 65.77 88.44
DA 94.21 5:31 / 12 48.31 29.49 40.91
ADV 92.001 – / 31 75.31 – –

ADVnaive 93.16 34:19/ 2 100.00 62.75 88.79

Table 8.3: Comparison of data augmentation and adversarial training.

cases. We compare to two different strategies for adversarial training. ADVnaive

denotes the simplest procedure for adversarial training in text classification: col-
lect adversarial examples on the training set and then train a new model on the
extended dataset consisting of both adversarial examples and original training
data. We used TextFooler to collect these adversarial examples. On the complete
training set, this resulted in 103’026 adversarial examples on AG News, 179’335
adversarial examples on Yelp, and 23’831 adversarial examples on IMDB. For
a more sophisticated version for adversarial training, we follow [21] by creating
adversarial examples on-the-fly during training. We denote this method as ADV
(corresponds to ADV in their paper).

A comparison of the results is shown in Table 8.3. Interestingly, ADVnaive

did not result in an improvement on Yelp and IMDB. We hypothesize that this
is because Yelp and IMDB are easier to attack, resulting in weaker training data
for the extended dataset. For example, 26% of the created adversarial examples
on Yelp differ by only one or two words from the original text, on AG News this
holds for just 11% of the adversarial examples. Furthermore, the average word
replace rate on Yelp is 16% compared to 24% on AG News. When the adversarial
examples differ only by a few words from the original text, instead of getting more
robust, the model overfits to the training data. On IMDB, this problem is even
more extreme, and we did not manage to train a model according to [21], hence
we used the available results from their paper. That trade off between robustness
and overfitting when training many epochs is likely the reason why we achieve
better robustness compared to adversarial training on two out of three datasets.
To be fair, it must be mentioned that we only trained ADV until convergence on
AG News and restricted the training to 5 epochs on Yelp due to computational

1Results taken from [21].

8. Results 34

constraints. Overall, lower computation time is precisely the biggest advantage of
our method. Considering that the training data increases by a factor of two, the
overhead per epoch is only around 50% compared to normal training. Compared
to ADV, we reach a speedup per epoch of almost 30x.

Chapter 9

Conclusion

9.1 Limitations

In practice, the post-processing step cannot be decoupled from a black-box at-
tack. It would be interesting to see how successful an attack is when the whole
system, including post-processing, is regarded as a single black-box model. We
hypothesize that it would remain challenging because the attacker can rely much
less on its search method for finding the right words to replace.

The method is also not applicable if a deterministic answer is required. How-
ever, in many applications such as spam filters or fake news detection, we are only
interested in making a correct decision as often as possible while being robust to
a potential attack.

9.2 Conclusion

Using a human evaluation, we have shown that most perturbations introduced
through adversarial attacks do not preserve semantics. This is contrary to what
is generally claimed in papers introducing these attacks. We believe the main rea-
son for this discrepancy is that researchers working on attacks pay more attention
to reaching high attack success rates compared to creating semantic preserving
adversarial examples. However, in order to find meaningful adversarial examples
that could help us better understand current models, we need to get away from
that line of thinking. We believe a 10-20% attack success rate with valid ad-
versarial examples and a good analysis of them is much more valuable than an
80-90% attack success rate by introducing nonsensical words. We hope this work
encourages researchers to think more carefully about appropriate perturbations
to text which do not change semantics.

Our results on data augmentation show that a significant amount of adversar-
ial examples can be prevented when including perturbations during training that
could stem from an attack. It is debatable whether changing 40% of the words
with a randomly chosen word from a candidate set still constitutes a valid input,

35

9. Conclusion 36

but this is only necessary because the attacks have that amount of freedom. The
more appropriate the allowed perturbations for an attack, the more appropriate
is our data augmentation procedure, which can easily be adapted for other can-
didate sets (see also Appendix A.3 with results for the WordNet candidate set
used in PWWS). Compared to adversarial training, our method scales to large
datasets and multiple epochs of training while achieving remarkable robustness,
making it an excellent baseline defense method for researchers working on new
attacks and defenses. The post-processing step completes our defense procedure
and shows that attacks can largely be prevented in a probabilistic setting without
a severe impact on the clean accuracy. In practice, this means that most attacks
can at least be detected. Whether or not this two-step procedure will prevent
the same amount of attacks when the whole model is considered a probabilistic
black-box is up for future investigation.

Bibliography

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in ICLR, Y. Bengio
and Y. LeCun, Eds., 2014.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR, Y. Bengio and Y. LeCun, Eds., 2015.

[3] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted attacks
on speech-to-text,” in IEEE Security and Privacy Workshops (SPW), 2018.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in NAACL-
HLT, 2019.

[5] N. Dalvi, P. Domingos, S. Sanghai, and D. Verma, “Adversarial classifica-
tion,” in Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, 2004, pp. 99–108.

[6] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). IEEE,
2017, pp. 39–57.

[7] N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting adversarial
input sequences for recurrent neural networks,” in MILCOM IEEE Military
Communications Conference, 2016.

[8] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-
W. Chang, “Generating natural language adversarial examples,” in EMNLP,
2018.

[9] H. Zhang, H. Zhou, N. Miao, and L. Li, “Generating fluent adversarial ex-
amples for natural languages,” in ACL, 2019.

[10] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,” The
journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[11] W. K. Hastings, “Monte carlo sampling methods using markov chains and
their applications,” 1970.

[12] S. Ren, Y. Deng, K. He, and W. Che, “Generating natural language adver-
sarial examples through probability weighted word saliency,” in ACL, 2019.

37

Bibliography 38

[13] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is bert really robust? a strong
baseline for natural language attack on text classification and entailment,”
in AAAI, 2020.

[14] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, “Bert-attack: Adversarial attack
against bert using bert,” in EMNLP, 2020.

[15] S. Garg and G. Ramakrishnan, “Bae: Bert-based adversarial examples for
text classification,” in EMNLP, 2020.

[16] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in International Conference
on Learning Representations, 2018.

[17] X. Wang, Y. Yang, Y. Deng, and K. He, “Adversarial training with fast gra-
dient projection method against synonym substitution based text attacks,”
in UAI, 2021.

[18] X. Wang, Y. Yang, Y. Deng, and K. He, “Adversarial training with fast gra-
dient projection method against synonym substitution based text attacks,”
in AAAI, 2021.

[19] N. Mrkšić, D. Ó. Séaghdha, B. Thomson, M. Gasic, L. M. R. Barahona, P.-
H. Su, D. Vandyke, T.-H. Wen, and S. Young, “Counter-fitting word vectors
to linguistic constraints,” in NAACL-HLT, 2016.

[20] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation,” in EMNLP, 2014.

[21] Z. Meng, Y. Dong, M. Sachan, and R. Wattenhofer, “Self-supervised con-
trastive learning with adversarial perturbations for robust pretrained lan-
guage models,” arXiv preprint arXiv:2107.07610, 2021.

[22] R. Jia, A. Raghunathan, K. Göksel, and P. Liang, “Certified robustness to
adversarial word substitutions,” in EMNLP-IJCNLP, 2019.

[23] P.-S. Huang, R. Stanforth, J. Welbl, C. Dyer, D. Yogatama, S. Gowal,
K. Dvijotham, and P. Kohli, “Achieving verified robustness to symbol sub-
stitutions via interval bound propagation,” in EMNLP-IJCNLP, 2019.

[24] J. Morris, E. Lifland, J. Lanchantin, Y. Ji, and Y. Qi, “Reevaluating adver-
sarial examples in natural language,” in EMNLP Findings, 2020.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS, 2017.

[26] M. Schuster and K. Nakajima, “Japanese and korean voice search,” in 2012
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012, pp. 5149–5152.

Bibliography 39

[27] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler, “Aligning books and movies: Towards story-like visual expla-
nations by watching movies and reading books,” in Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), 2015, pp. 19–
27.

[28] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Evaluating seman-
tic models with (genuine) similarity estimation,” Computational Linguistics,
vol. 41, no. 4, pp. 665–695, 2015.

[29] D. Cer, Y. Yang, S. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant,
M. Guajardo-Cespedes, S. Yuan, C. Tar, B. Strope, and R. Kurzweil, “Uni-
versal sentence encoder for english,” in EMNLP, E. Blanco and W. Lu, Eds.,
2018.

[30] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, “Deep un-
ordered composition rivals syntactic methods for text classification,” in Pro-
ceedings of the 53rd annual meeting of the association for computational
linguistics and the 7th international joint conference on natural language
processing (volume 1: Long papers), 2015, pp. 1681–1691.

[31] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba,
and S. Fidler, “Skip-thought vectors,” in Advances in neural information
processing systems, 2015, pp. 3294–3302.

[32] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” NeurIPS, 2015.

[33] J. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi, “Textattack:
A framework for adversarial attacks, data augmentation, and adversarial
training in nlp,” in EMNLP System Demonstrations, 2020.

[34] Z. Meng and R. Wattenhofer, “A geometry-inspired attack for generating
natural language adversarial examples,” in COLING, 2020.

Appendix A

Appendix

A.1 Details for human evaluation

We relied on workers with at least 5000 HITs and over 98% success rate. For
the word-pairs, we showed the workers 100 pairs of words in a google form.
In order to ensure a good quality of work, we included some hand designed
test cases at several places and rejected workers with strange answers on these
word-pairs. These test-cases were [good, bad], [help, hindrance] (expected answer
“Strongly Disagree” or “Disagree”) and [sofa, couch], [seldom, rarely] (expected
answer “Strongly Agree” or “Agree”). In a first test run, surprisingly many workers
agreed on antonyms like good and bad, which is why we additionally included a
note with an example and emphasized that this is about whether the meaning is
preserved and not about whether both words fit into the same context. Workers
were paid 2.0$ for one HIT with 100 pairs and 4 test-cases. For the words
with context, we used the amazon internal form because it allowed for a clearer
presentation of the two text fragments. We always presented 5 pairs of text
fragments in one HIT and rejected workers that submitted the hit within less
than 60s to ensure quality. Workers were paid 0.5$ for one HIT with 5 pairs.
Screenshots of the two forms can be found in Figure A.1.

A.2 Number of versions in post-processing

Creating N verions during post-processing increases the effective batch size dur-
ing inference by a factor of N . Hence creating as few versions as possible is
desirable for keeping the inference time low. In order to understand the impact
of the number of versions N created during the post-processing step, we can
make the following analysis: Let us consider the augmented inputs as instances
of a discrete random variable X. For x ∈ X and a classification problem with
K classes, let lcorrect(x) denote the value of the logit corresponding to the cor-
rect label and lj(x) denote the value of the j-th logit corresponding to a wrong
label, such that j ∈ {1, ...,K − 1}. We are only interested in the differences

A-1

Appendix A-2

Figure A.1: Screenshot of the human evaluation used to evaluate words with
context (left) and screenshot of the Google form used to evaluate similarity of
words (right).

gj(x) = lcorrect(x)− lj(x). Ideally, we would like to make a decision based on the
expectations of gj(X). An attack should be reverted if and only if

E[gj(X)] =
∑
x∈X

gj(x)pX(x) ≥ 0 ∀j, (A.1)

where pX(x) = 1
|X| . Because we cannot enumerate over all instances x, we

approximate this with sums over just N instances

N∑
i=1

gj(xi)

N
≥ 0 ∀j. (A.2)

These are unbiased estimates of the expectations in (A.1) for any choice of N .
By multiplying with N and plugging in the definition of gj(x), it can be verified
that a decision based on (A.2) reverts the same attacks as a decision based on
(7.3). The expectation estimates become more and more accurate as we increase
N . Since we are making a discrete decision based on whether the expectations
are ≥ 0, the estimate is more likely to be correct with more samples. If we assume

Appendix A-3

Dataset Number
of Versions

Reverted Attacks (Mean ± Std) (%)

TextFooler PWWS′ BERT-Attack′

AG News

4 92.13 ± 0.65 75.39 ± 3.35 78.7 ± 1.94
8 92.49 ± 0.79 76.27 ± 2.87 79.94 ± 1.54
16 92.81 ± 0.53 78.24 ± 1.95 80.17 ± 0.85
32 92.97 ± 0.24 76.57 ± 1.61 81.07 ± 0.88

Yelp

4 83.94 ± 1.49 74.31 ± 3.28 68.56 ± 3.02
8 85.33 ± 1.32 75.88 ± 1.4 70.5 ± 1.97
16 85.81 ± 1.26 76.37 ± 1.88 70.81 ± 1.12
32 86.26 ± 0.74 76.96 ± 0.79 71.31 ± 2.16

IMDB
4 87.2 ± 1.13 84.19 ± 1.43 80.36 ± 1.27
8 87.96 ± 0.92 84.62 ± 0.88 80.85 ± 0.91
16 87.86 ± 0.77 85.2 ± 0.68 82.09 ± 0.78

Table A.1: Effectiveness of post-processing for different number of versions.

that the true expectation is positive in most cases, this means we can generally
expect a higher number of reverted attacks for higher N . Being more precise
on the estimate also means we generally tend to make the same decision every
time on the same example, therefore reducing the variance in the reverted attack
rate. Table A.1 shows results on reverted attacks for 4, 8, 16 and 32 versions
(4,8, and 16 on IMDB because of memory constraints) and generally confirms
this. However, the results are already quite good with just four versions, so this
is a trade-off between speed and accuracy, as creating N versions increases the
batch size during inference by a factor N .

A.3 Defense Procedure WordNet

One could argue that the success rates of PWWS and BERT-Attack in Section 8.1
are artificially kept low by introducing a new constraint on the cosine similarity,
therefore shrinking the candidate sets of PWWS and BERT-Attack. We choose
that candidate set in our defense procedure with the results from Chapter 6 in
mind, where TextFooler receives the best scores. Furthermore, having a flexible
threshold on the cosine similarity of words allows for adjusting the size of the
candidate set as needed. However, our procedure can also be adapted to other
candidate sets. To show this, we propose a WordNet variant designed for the
candidate set of PWWS. The changes are the following:

- In step 3. of the Data Augmentation procedure, a candidate set is built out
of all synonyms from WordNet, and a replacement is sampled uniformly at
random. We denote the new data augmentation procedure as DAwn.

- In step 1. of the post-processing procedure, the candidate set again con-
sists of all synonyms from WordNet. We denote the new post-processing

Appendix A-4

Dataset
Clean Acc. (%) Attack Success Rate (%)

N DAwn DAwn + PPwn N DAwn DAwn + PPwn

AG News 94.57 94.99 94.40 ± 0.05 64.95 27.61 1.49 ± 0.21
Yelp 97.31 97.26 96.95 ± 0.04 92.23 29.33 4.84 ± 0.43
IMDB 93.77 94.34 92.85 ± 0.04 98.70 51.91 3.85 ± 0.28

Table A.2: Attack success rates of PWWS applied to a normal model, a model
trained using WordNet data augmentation and a model trained using WordNet
data augmentation with additional post-processing.

Dataset Method Clean
Acc. (%)

Reverted Attacks (Mean ± Std) (%)

TextFooler PWWS′ BERT-Attack′

AG News

MA5 93.62 73.05 ± 0.92 57.06 ± 3.82 59.6 ± 2.6
MA10 92.14 72.13 ± 1.5 57.55 ± 2.77 58.59 ± 2.53
MA20 87.30 65.02 ± 1.77 54.02 ± 2.99 52.99 ± 2.41
MA30 76.25 55.64 ± 1.62 47.84 ± 3.45 46.55 ± 3.16

Yelp

MA5 95.19 65.67 ± 1.97 56.08 ± 3.45 55.25 ± 2.1
MA10 93.98 68.93 ± 1.29 59.02 ± 2.39 56.31 ± 1.78
MA20 90.53 69.0 ± 1.66 57.75 ± 1.67 55.75 ± 1.65
MA30 86.91 67.44 ± 1.04 56.37 ± 2.49 53.94 ± 0.79

IMDB

MA5 92.47 75.05 ± 1.8 71.65 ± 1.2 68.22 ± 1.55
MA10 89.90 71.99 ± 0.77 69.64 ± 1.16 64.39 ± 1.16
MA20 83.51 65.93 ± 0.85 64.19 ± 1.39 57.55 ± 0.65
MA30 78.76 62.17 ± 0.62 62.58 ± 0.54 53.8 ± 1.14

Table A.3: By masking random tokens instead of exchanging words, many at-
tacks can be reverted. However, the clean accuracy drops.

procedure as PPwn

We sample uniformly at random to get a better coverage of the WordNet syn-
onyms. Note that directly applying (7.2) would not work because the cosine
similarity of words from WordNet can be below zero. The results of this adjusted
procedure, with PWWS as the attacker, are shown in Table A.2. It can be seen
that our procedure works equally well for a different candidate set and reduces
the attack success rate of PWWS significantly.

A.4 Baseline for post-processing

Instead of replacing words with other words in Step 2 of our defense procedure,
one could also think of other ways of perturbing the adversarial examples to flip
the label back to the correct one. To show that our method is superior to simple
perturbations, Table A.3 shows the results of a baseline procedure in which we

Appendix A-5

replace randomly chosen words with the [MASK] token. MAx to a procedure in
which we replace x percent of the words with the [MASK] token. It can be seen
that indeed a large portion of attacks can be prevented using that procedure.
However, it only works with small percentages of masked words. When more
words are masked, the clean accuracy drops substantially. This is contrary to our
procedure, in which we exchange 40% of the words with just a minimal decrease
in accuracy. We included the best performing version, MA5, as a baseline in the
main part of this thesis.

A.5 BERT-Embeddings

Figures A.2, A.3, and A.4 show the results for the analysis in Section 5.4 with
adversarial examples from PWWS, BERT-Attack, and BAE.While the individual
plots all look slightly different, the general conclusions remain the same.

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
si

n
e

S
im

il
a
ri

ty

Normal Words

Closest Words

Attack Words

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
si

n
e

S
im

il
a
ri

ty

Attack Words

Random Words

[MASK] Token

Figure A.2: Analysis from Section 5.4 with adversarial examples from PWWS.

Appendix A-6

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C

o
si

n
e

S
im

il
a
ri

ty

Normal Words

Closest Words

Attack Words

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
si

n
e

S
im

il
a
ri

ty

Attack Words

Random Words

[MASK] Token

Figure A.3: Analysis from Section 5.4 with adversarial examples from BERT-
Attack.

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
si

n
e

S
im

il
a
ri

ty

Normal Words

Closest Words

Attack Words

0 1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
si

n
e

S
im

il
a
ri

ty

Attack Words

Random Words

[MASK] Token

Figure A.4: Analysis from Section 5.4 with adversarial examples from BAE.

Appendix A-7

A.6 Sentence Simlarity Examples

Table A.4 shows text fragments from original text and adversarial examples,
extracted with a window size of 11, and the corresponding USE-Score. If there
are less than 11 words, the window was extracted at the beginning or end of an
adversarial example.

Orig. Fragment a lil landy and youll be set USE: 0.29Adv. Fragment a noo melendez and theres was determining

Orig. Fragment I felt the entire experience was deceptive USE: 0.41Adv. Fragment I cru the holistic expertise was underhand

Orig. Fragment experience was deceptive misleading and manipulative
of people in a compromised USE: 0.51Adv. Fragment expertise was underhand fooling and cunning of pueblo
in a prevented

Orig. Fragment and another 23 to get open and end up paying 180
USE: 0.61Adv. Fragment and another 23 to acquired inaugural and completion

up revenues 180

Orig. Fragment a Service Representative. When finally served she told
us in fact USE: 0.70Adv. Fragment a Serves Representative. When arguably working she
spoken us in doing

Orig. Fragment But it was still good Sarah was our waitress and did
USE: 0.75Adv. Fragment But it was albeit satisfactory Rebeca was our waitress

and has

Orig. Fragment joke. Maybe its because I live in Fountain Hills They
shouldn’t USE: 0.80Adv. Fragment laughter. Maybe its because me reside in Fountain Hills
They shouldn’t

Orig. Fragment and the butchers have no clue. They are not at all
USE: 0.85Adv. Fragment and the butchers have no conundrum. They are not at

all

Orig. Fragment place was on very high cosy at first but sweltering the
USE: 0.90Adv. Fragment place was on very high lounging at first but sweltering

the

Orig. Fragment was and nothing was labeled. Even the bars were tough
to USE: 0.95Adv. Fragment was and nothing was labeled. However the bars were
tough to

Orig. Fragment is that Paris is a good hotel and there service was USE: 0.99Adv. Fragment is that Paris is a decent hotel and there service was

Table A.4: Text fragments for different values of USE scores. Created with
TextFooler.

Appendix A-8

A.7 Randomly Sampled Adversarial Examples

Tables A.5, A.6, A.7, and A.8 on the following pages show two randomly sampled
adversarial examples from all four attacks on Yelp and AG News. Note that they
are not hand-picked and not adjusted in any way. Capitalization has no impact
since we use an uncased model.

Original Text The owners are very rude.. food is OK..not the
best

100% negative

Adversarial Example there games are very friendly.. food is OK..not
the bad

50% positive

Original Text Everything about these subs are great: the meat,
the toppings, and even the bread is delicious! Its
worth a trip just to read the signs and bumper
stickers.

100% positive

Adversarial Example information about these subs are great: the meat,
the toppings, and even the bread is edible! Its
worth a trip just to read the signs and bumper
stickers.

72% negative

Original Text Had a great time. Great service. Too bad its in
Snobdale I mean Scottsdale. Some 60+ old man
killed it for me while he was attempting to hit on
me in front of his wife and my husband and son.
Can’t wait for the Gilbert location to open (where
we live) to get away from the Scottsdale vide!!!

73% positive

Adversarial Example Had a good time. Great service. Too bad its in
Snobdale I mean Scottsdale. Some 60+ old man
killed it for me while he was attempting to hit on
me in front of his wife and my husband and son.
ma wait for the Gilbert location to open (where
we live) to get away from the Scottsdale vide!!!

50% negative

Original Text Food was ok, but very rude staff here, never com-
ing back again

100% negative

Adversarial Example Food was ok, but very bourne staff here, fully
coming back again

96% positive

Table A.5: Randomly sampled adversarial examples on Yelp. Attacker from top
to bottom: BERT-Attack, BERT-Attack, BAE, BAE

Appendix A-9

Original Text Great fish tacos! 100% positive

Adversarial Example Overwhelming fish blocking! 98% negative

Original Text I took my wife, daughter - 7, son - 3, and mother-
in-law (not by choice - lol) and we had a great
time. The kids loved looking in the stores at all
the different and somewhat authentic items. My
daughter really enjoyed the gold mine tour and
my sun loved the train ride. A definite must see if
you want a taste of a mining town in the old west.

100% positive

Adversarial Example I fired my wife, daughter - 7, son - 3, and mother-
in-law (not by choice - thats) and we received a
gargantuan time. Both kids loved attempt in the
stores at all the other and somewhat veritable is-
sues. My daughter really enjoyed the gold mine
roving and my sun loved the train ride. A clearer
must see if you want a taste of a mining town in
the old occidental.

53% negative

Original Text Recently Else’s menu has changed for the better.
The food is out of this world, and I’m actually
craving those spicy shrimps. The price is unbeat-
able and the drinks are great (great drink specials
too).\nIt’s the best to be for good food, great con-
versation and atmosphere.

100% positive

Adversarial Example Recently Else’s menu has changed for the better.
The food is out of this humanity, and I’m actually
craving those spicy shrimps. The price is unbeat-
able and the drinks are great (great drink specials
too).\nIt’s the unspoilt to be for good food, bully
conversation and atmosphere.

59% negative

Original Text I’ve tried this place three times now. Sorry, but
there won’t be a fourth. Hard to understand
the menu. We love fun rolls. I think pictures
would help. The food is just not good. Maybe
a smaller menu with great items would help this
place. I dunno. Ambiance is eh. Doesn’t feel very
Japanese or anything really.

100% negative

Adversarial Example I’ve tried this place three times now. Sorry, but
there won’t be a fourth. Hard to understand the
menu. We dear fun rolls. I think pictures would
help. The nutrient is just not skilful. Maybe a
smaller menu with great items would help this
place. I dunno. Ambiance is eh. Doesn’t feel
very Japanese or anything really.

68% positive

Table A.6: Randomly sampled adversarial examples on Yelp. Attacker from top
to bottom: TextFooler, TextFooler, PWWS, PWWS

Appendix A-10

Original Text 2 U.S. Factory Growth Eases NEW YORK
(Reuters) - Expansion in the U.S. factory sector
slowed in August as higher costs for energy and
raw materials squeezed manufacturers, a report
showed on Wednesday, but analysts said growth
remained relatively robust.

100% Business

Adversarial Example U.S. it Growth Eases NEW europe (Reuters) -
Expansion in the U.S. factory sector slowed in
August as higher costs for energy and raw ma-
terials squeezed manufacturers, a report showed
on Wednesday, but analysts said growth remained
relatively robust.

66% Sci/Tech

Original Text Lions have their work cut out for them against
Manning You see it every time Indianapolis Colts
quarterback Peyton Manning steps to the line of
scrimmage before taking the snap. It #39;s like
he #39;s going through his own little workout rou-
tine.

98% Sports

Adversarial Example she have their work split out for them against
scheduling You see it every time Indianapolis
Colts manning prescription policy falls to the line
of scriminger before hitting the snap. It #39;s
like he #nut;s it through his own little workout
routine.

52% Business

Original Text Semiconductor Manufacturing to Boost Capacity
by Half (Update2) Semiconductor Manufacturing
International Corp., China #39;s biggest supplier
of made-to-order chips, said its factory capacity
will rise by more than half in the second half as
the company brings more plants on line.

53% Sci/Tech

Adversarial Example Semiconductor Manufacturing to Boost Capacity
by Half (Update2) Semiconductor Manufacturing
International Corp., eries #39;s biggest supplier
of made-to-order chips, said its factory capacity
will rise by more than half in the second half as
the company brings more plants on line.

82% Business

Original Text Faces From The 1929 Crash NEW YORK - The
people who will forever be associated with the
Great Crash of 1929 were all white, male and
wealthy, but their occupations and ethics varied
considerably.

79% Business

Adversarial Example Faces From The 1929 Crash NEW YORK - The
people who will forever be associated with the relli
Crash of 1929 were all white, male and ish, but
their occupations and ethics varied considerably.

63% World

Table A.7: Randomly sampled adversarial examples on AG News. Attacker from
top to bottom: BERT-Attack, BERT-Attack, BAE, BAE

Appendix A-11

Original Text 2 Ex-Officers Nabbed in Venezuela Slaying Na-
tional Guard troops arrested two brothers Friday
in connection with a state prosecutor’s killing, just
days after two suspects in the car bombing case
were shot dead by police, authorities said.

100% World

Adversarial Example 2 Ex-Officers Arrested in Chavez Whack National
Guard troops arrested two brothers Friday in con-
nection with a state prosecutor’s whack, just days
after two suspects in the car raiding case were shot
dead by police, authorities said.

35% Business

Original Text Manchester United admits paying 11m to trans-
fer middle-men The role of agents in multimillion-
pound football transfer deals came under fresh
scrutiny yesterday after Manchester United re-
vealed payments of 11m to middle-men for their
help in signing players.

98% Sports

Adversarial Example Cheshire United understands paying 11m to
transfer middle-men The functionality of agents
in multimillion-pound football transfer deals came
under fresh scrutiny yesterday after Manchester
United illustrated payments of 11m to middle-
men for their subsidized in subscription gamers.

55% Business

Original Text UN Council Votes Ivory Coast Arms Embargo
(Reuters) Reuters - The U.N. Security Council
on\Monday imposed an immediate arms embargo
on Ivory Coast and\voted to punish key govern-
ment and rebel leaders with\additional sanctions
next month.

100% World

Adversarial Example UN Council Votes Ivory seashore sleeve Embargo
(Reuters) Reuters - The U.N. Security Council
on\Monday imposed an immediate arms embargo
on Ivory seashore and\voted to punish key govern-
ment and rebel leaders with\additional sanctions
next month.

54% Sci/Tech

Original Text Cox Communications forms committee to advise
on buyout Cox Communications Inc. #39;s board
of directors has formed a special committee of in-
dependent directors to consider Cox Enterprises
Inc. #39;s proposal to take the company private
in a $8 billion stock buyout.

100% Business

Adversarial Example cyclooxygenase Communications forms commit-
tee to advise on buyout cyclooxygenase commu-
nicating Inc. #39;s board of directors has formed
a special committee of freelancer directors to con-
sider coxswain Enterprises Inc. #39;s proposal to
take the company private in a $8 billion old-hat
buyout.

73% Sci/Tech

Table A.8: Randomly sampled adversarial examples on AG News. Attacker from
top to bottom: TextFooler, TextFooler, PWWS, PWWS

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Adversarial Attacks
	2.2 Adversarial Defense
	2.3 Criticism on Attacks in NLP

	3 Background
	3.1 BERT
	3.1.1 Architecture
	3.1.2 Input Tokenization
	3.1.3 Pre-Training
	3.1.4 WordPiece

	3.2 Metrics for Word and Sentence Similarity
	3.2.1 Counter-fitted Word Vectors
	3.2.2 Universal Sentence Encoder

	3.3 Adversarial Examples
	3.3.1 History of Adversarial Attacks
	3.3.2 Adversarial Examples in Text Classification
	3.3.3 Examples of Attacks

	4 Setup
	4.1 Datasets
	4.2 Implementations
	4.3 Starting Point

	5 Observations
	5.1 Word Frequencies
	5.1.1 Word Associations with Wrong Label

	5.2 Similarity of original and perturbed words
	5.3 Sentence Similarity
	5.4 BERT Word-Embeddings
	5.4.1 Comparison to Robust Model

	6 Quality of Adversarial Examples
	6.1 Human Evaluation
	6.1.1 Voter Agreement
	6.1.2 Probabilistic Estimation of Valid Attacks
	6.1.3 Metrics vs. Human

	7 Adversarial Defense
	7.1 Defense Procedure

	8 Results
	8.1 Effect of Defense Procedure
	8.1.1 Adjusted Thresholds
	8.1.2 Comparing data augmentation with adversarial training

	9 Conclusion
	9.1 Limitations
	9.2 Conclusion

	Bibliography
	A Appendix
	A.1 Details for human evaluation
	A.2 Number of versions in post-processing
	A.3 Defense Procedure WordNet
	A.4 Baseline for post-processing
	A.5 BERT-Embeddings
	A.6 Sentence Simlarity Examples
	A.7 Randomly Sampled Adversarial Examples

