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Abstract

Brain decoding is the process of inferring external stimuli from observed brain
activities. Recent research has shown the possibility of decoding a fMRI scan into
a vector embedding of the word that the scanned subject is reading. We argue
that the vector embedding is noisy with information irrelevant to semantics, thus
hindering the brain decoding performance. Therefore in this work we aim to
directly classify a fMRI scan as a word within a pre-defined vocabulary, for which
we propose a neural-network-based model. Besides, we consider a more realistic
setup in which we train and evaluate our decoder model with data from multiple
subjects, unlike most existing works merely considering the same subject in both
phases. We explore various methods to improve the performance of our brain
decoder model. Our complete model achieves 4.22% Top-1 and 12.87% Top-5
accuracy in the mentioned challenging setup, outperforming existing baselines.
Moreover, we further validate the design of our classication-based decoder model
combined with the direct classification task by testing variations to both our
model and the evaluation task. In the end, we study the contribution of our data
and show the potential room for improvement to our brain decoder model with
extra data from different subjects.
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Chapter 1

Introduction

Due to the rapid development of brain imaging techniques, it may be possible
to infer people’s perception from the scans of their brains, the process of which
is also called brain decoding. To give a more formal definition, the brain decod-
ing task aims at inferring the external stimuli from given brain activities. The
brain decoding ability has significant applications in various fields, such as med-
ical assistance to patients with language disabilities and consumer study which
aims at understanding what customers are thinking or noticing. In related re-
search works, brain decoding related to language always attracts attention since
language plays an important role for communications between people and the
external world. Some researchers like Pereira et al. [1] and Sun et al. [2] have
shown the possibility of decoding the vector representations of a word read by
a person from the functional Magnetic Resonance Imaging (fMRI) scans of the
brain during the reading process. They show that the inferred representations of
given scans tend to be more similar to the the actual vector embeddings of the
corresponding words than to other words. In these works, they simply build infer-
ential models based on ridge regression or multi-layer perceptrons (MLPs) with
a heavy reliance on subject-specific data pre-processing approaches and carefully
designed feature selection methods.

In this work, we use a more demanding setup, which we call direct classifica-
tion, to figure out how precisely we can decode brain activities to the correspond-
ing word stimuli. In this direct classification task, we aim at directly classifying a
given fMRI scan as a word within a pre-defined vocabulary rather than compar-
ing pairwise similarities between predictions of word representations and actual
word embeddings. Moreover, we attempt to generalize brain decoding among
different subjects, i.e. we use data from multiple subjects for model training and
evaluation. This is a well-known difficult problem since the subjects are naturally
different and thus have various numbers of voxels in their unaligned fMRI scans.
On one hand this challenging setup requires a model with strong generalizabil-
ity without subject-specific pre-processing. On the other hand, it also allows us
to utilize much larger amount of data and train a model with higher capacity
compared to studies that only focus on a specific subject.
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1. Introduction 2

Based on the above setup, we present a neural-network-based brain decoder
model that maps fMRI scans to the corresponding word stimuli. We discard
subject-specific pre-processing approaches and only align the fMRI scans of all
subjects based on the external knowledge of Regions of Interest from [3]. We
validate our model and explore various approaches to improve its performance in
the direct classification task. Then we demonstrate the performance of our best
model in both the direct classification task and the classical pairwise classification
task from Pereira et al. [1]. Furthermore, we experiment with variated setup
combining pairwise classification and direct classification to further validate our
design choices. In the end, we further study the contribution of data from the
perspective of subject and Regions of Interest.



Chapter 2

Related Works

Decoding words from records of brain activities has been an eye-catching problem
among researchers since the seminal work fromMitchell et al. [4]. Recently, a wide
range of research works have attempted to solve the brain decoding problem from
various perspectives. As mentioned in introduction, Pereira et al. [1] presented
a decoder model based on ridge regression to infer word representations of the
stimuli given fMRI scans. Palutucci et al. [5] proposed a model capable of zero-
shot learning, i.e. learning about unseen classes in the training phase. Besides,
some researchers focus on brain decoding for different language units. Wehbe
et al. [6] studied decoding methods for text passages. Sun et al. [2] explored
sentence decoding with distributed representations. Moreover, some researches
applied brain decoder as a tool for brain science study. For example, Just et al. [7],
Huth et al, [8] and Handjaras et al. [9] mainly focus on studying how language
is processed in the brain with the aid of brain decoders. Some researchers also
applied brain decoder models for languages in the field of Natural Language
Processing (NLP). Gauthier and Levy [10] improved Transformer [11] on NLP
tasks by enhancing the model’s latent representations with decoded fMRI scans.
Some researchers also showed interests in decoding other forms of brain signals in
addition to fMRI. Muttenthaler et al. [12] applied EEG features to tune attention
weights.

Note that most related works train and evaluate the decoder model with fMRI
scans from the same subject, as the misalignment of scans from different subjects
hinders cross-subject evaluation. Some researchers like Van et al. [13] and Nas-
tase et al. [14] studied this problem and proposed to solve the problem with
algorithmic approaches. In our case we mainly adopt the data-driven approach
to generalize brain decoding among different subjects.
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Chapter 3

Dataset and Evaluation Setup

In this work, we aim to build a decoder that maps fMRI scans of brain activities
to the corresponding text stimuli presented to subjects. Consequently we need
relevant data and appropriate methods to evaluate the performance of such a
decoder, which will be introduced in detail in this chapter.

3.1 Dataset

Our study is based on the dataset provided by Pereira et al. [1]. The dataset
consists of fMRI scans of 15 different subjects. Each subject is scanned with an
fMRI machine whilst reading 180 different English words. During the experiment,
as is depicted in Figure 3.1, each word is presented to the subject under 3 different
paradigms, which serve as supporting context to ensure that subjects are focusing
on specific semantic meanings of the words while being scanned. The 3 paradigms
are word clouds, sentences and images. Therefore, there are 540 fMRI scans of
word stimuli in total per subject, one scan for each paradigm and word.

Figure 3.1: Illustration of the dataset from Pereira et al. [1]. The word Bird is
supported with sentences, images and word clouds respectively, so are Wash and
Unaware.
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3. Dataset and Evaluation Setup 5

Moreover, 8 out of the 15 subjects took additional scans while reading 384
sentences from 96 different passages in a different dataset. 6 out of the 15 subjects
also took extra scans while reading another 243 sentences from 72 passages. More
details can be found in the original paper [1].

In our study we focus on text stimuli in the form of single words and thus
mainly utilize scans of words in the dataset. Meanwhile, we also do some explo-
ration on leveraging the scans of sentences as auxiliary data, e.g. using this data
for pretraining the decoder model in an unsupervised manner.

3.2 Evaluation Task

As we have mentioned in the related works section, in most previous works like
Pereira et al. [1], the brain decoder is designed in a regression-based manner that
trains the model to generate a vector representation of the text stimuli. Then
pairwise classification or similarity ranking based classification are applied to
evaluate the performance of the model. Pereira et al. [1] mainly investigate the
use of GloVE embeddings [15] as the prediction target and observe the pairwise
classification accuracy for evaluation. As shown in Figure 3.2, for every pair of
words in the dataset, they compute the cosine similarity between model predicted
vectors and ground truth GloVE embedding vectors. If the similarity between
the predicted vectors and the corresponding ground truth vectors is higher than
the alternative ones, the classification is deemed correct. In this case, the random
baseline accuracy is 50%.

Figure 3.2: Pairwise Classification Process in Pereira et al. [1].

There are some obvious drawbacks in the above evaluation method. To begin
with, GloVE vector representations also involve information irrelevant to seman-
tics like frequency of words. Hence, the model is required to fit noisy representa-
tions for brain decoding. Furthermore, Gauthier and Ivanova’s research [16] also
shed light on the fact that such evaluation techniques might “fail to distinguish be-
tween representations drawn from models optimized for very different tasks”. For
example, even if we train the model to decode brain scans into vector represen-
tations from models for fields like machine translation and sentimental analysis,
we can still obtain results close to the one in Pereira et al. [1]. Consequently we
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propose to use direct classification as an alternative evaluation approach.

Figure 3.3: Proposed Direct Classification Approach

In direct classification, as is depicted in Figure 3.3 we build a decoder that
takes fMRI scans as input and predicts the probability distribution of the word
stimuli over the entire vocabulary in our dataset. In this way we can effectively
figure out the exact word presented to the subject during fMRI scan. No irrel-
evant textual information is involved in the model. In the meantime, it is also
apparently more challenging a task than pairwise classification, since the random
baseline of Top-1 accuracy in this case is 1 over the vocabulary size, which is
0.6% in our case. In order to better indicate the model performance, we also
report Top-5 accuracy as a referential score.

3.3 Data Splitting

Apart from the new evaluation task setup, we also consider a new data-splitting
scenario. Previous works like Sun et al.[2] tend to split their data in an intra-
subject way, which means training and testing with data from the same subject.
This ensures data consistency in both training and testing phase. However, this
is also quite an expensive approach for practical applications. In the intra-subject
setting, when it comes to brain decoding for a new unseen subject, a new training
set with sufficient data must be prepared so as to train a personalized brain
decoder. Nevertheless, recording large amount of fMRI scans could be costly and
time-consuming. According to Pereira et al. [1], it takes at least four hours to
retrieve fMRI scans of 180 words per subject. Meanwhile, the limited amount of
data that can be recorded for a single subject could possibly become a bottleneck
in decoder model training. Consequently, designing decoder models that can work
for unseen subjects without requiring a new large training set is obviously more
practical and advisable.

In this work, we mainly consider a inter-subject data splitting approach fol-
lowing leave-one-out strategy for our evaluation. Suppose the total number of
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subjects in the dataset is n, which is 15 in our case:

1. We first train the decoder model with all the fMRI scans from n−1 subjects

2. We perform evaluation with data from the remaining target subject.

3. In order to incorporate the advantage of the intra-subject approach, we
continue to finetune the pretrained model with a certain proportion of data
from the target subject.

4. Afterwards we run additional evaluation on the remaining test data from
the target subject.

5. Repeat 3 and 4 in a cross-validation manner over the same target subject.

The above process is repeated over all n subjects. We perceive the leave-
one-out evaluation on a certain subject as the validation experiment. Then we
adjust model structure, tune hyper-parameters and run ablation study based on
the validation result. Eventually the other n− 1 leave-one-out evaluations serve
as the final test.

In this setup, we simulate the practical scenario where we apply the decoder
model to a new subject with only data from seen subjects for training and limited
amount of new data for finetuning. Additionally, inter-subject data splitting
allows us to utilize much more data than a pure intra-subject approach, which
makes it possible to build models with greater capacity to learn general features
among subjects. Moreover, subject-specific data pre-processing is no longer an
issue for the decoder model. However, it also makes the decoding task more
challenging due to the lack of alignment among fMRI scans of different subjects.

3.4 Data Alignment among Subjects

In the dataset, every single fMRI scan is stored as a 3D array of size 88×128×85,
which covers the entire head of the subject. However, only about 20% of the
voxels contain valid information and the rest are zero padding. If we simply feed
the entire array to the decoder model, the computational cost would be rather
high with a low information density in the input. A common preprocessing
approach is to keep only the informative voxels. According to Gorden et al. [3],
the fMRI scan can be divided into different Regions of Interest (ROIs). These
ROIs are associated with various functions of the brain, especially the ones related
to language and perception. The dataset also provides an atlas from Gorden et
al. [3] for the ROI partition. Hence, we only retrieve voxels from the ROIs as
they are most relevant to our task.
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In the meantime, since the subjects have different sizes of brains and ROIs,
there is no spatial alignment of data across subjects. The number of voxels and
spatial coordinates of voxels of the same ROI are different across subjects. There-
fore, we perform zero padding to ROIs until the same ROIs across subjects have
the same size. More specifically, in order to preserve more spatial information,
the padding is done on each individual slice of the ROIs along the z-axis. Take
the i-th ROI for instance, we first figure out the maximum number of z-axis slices
niz and the highest number of voxels inside a slice niv among all subjects. Then
we pad the i-th ROIs of all subjects with zero respectively until they all reach
the size niv×niz. In the end we flatten and concatenate all the ROIs of different
sizes, transforming the fMRI scan into a vector of size 65730× 1 to be the input
of the decoder model. We follow the same alignment approach for all our models
in the following sections.



Chapter 4

Brain Decoding Model

In order to decode text stimuli from the fMRI scans of human brain activities,
we build a decoding model based on modern deep learning techniques. As shown
in Figure 4.1, our complete model is implemented in the form of a classifier and
mainly consists of fully connected layers.

Figure 4.1: Architecture of the full model. In the figure, blue trapezoids represent
fully connected layers and purple rectangles represent vectors flowing through the
model. The dimensions of the vectors are shown.

As we have discussed in the Dataset and Evaluation Setup Chapter, the fMRI
input data are fed into the model as vectors of size 65730× 1 after alignment of

9



4. Brain Decoding Model 10

ROIs among subjects. Then two fully connected layers are applied to progres-
sively extract intermediate representations of the fMRI input. Moreover, there
are two extra fully connected layers projecting intermediate representations back
to the space of higher dimension to reconstruct the fMRI input. In the end,
the output layer for classification with softmax activation is aimed to produce a
vector of size 180× 1, which is the size of the vocabulary in our dataset. In the
output vector, the i-th element oi represents the predicted probability ypred,i of
the fact that the i-th word in the vocabulary is the correct text stimulus. All
fully connected layers except for the classification output layer are followed by
batch normalization, Leaky ReLU activation (negative slope=0.3) and Dropout
(rate=0.4).

During model training, We apply a cross entropy loss on the output layer,
which can be computed as the following:

Lclass = −
v∑
i

ytrue,i · log(ypred,i) (4.1)

Where v represents vocabulary size and ytrue is the one-hot vector represen-
tation of the ground truth word stimulus.

To begin with, we run initial experiments with a simpler baseline model,
which only involves one hidden layer projecting fMRI input of size 65730 × 1
to intermediate representation of size 2000× 1. Then the classification layer di-
rectly takes the intermediate representation as its input. Figure 4.2 illustrates
the structure of baseline model.

Figure 4.2: Architecture of the baseline model.

Furthermore, we apply various extensions to the baseline model so as to im-
prove model performance. We also run an ablation study to evaluate the impact
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of these extensions on model performance. Based on the experiment results, we
eventually select the best model as is depicted in Figure 4.1.

4.1 FMRI Reconstruction

Since the classification is based on the latent vector extracted from fMRI input,
enhancing the quality of this intermediate representation should contribute to
the accuracy of classification. Therefore we apply an autoencoder structure to
enhance the training signal as a regularizer. If we perceive the projection layers
between fMRI input and intermediate representation as the brain decoder, then
by mirroring this decoder, we can have an encoder to reconstruct the fMRI input.
A reconstruction term in the following form can be added to the overall loss
function:

Lrec = 1− cosine_similarity(xout, xin) = cos (xout, xin) (4.2)

Where xout refers to the reconstructed fMRI vector, xin represents the input
fMRI scan and cos() is short for cosine distance.

Note that mean squared error (MSE) loss is another popular choice for au-
toencoder models. Besides, when implementing the autoencoder model, sharing
weights between encoder and decoder is also a common approach, as it halves
the required number of parameters compared to the original setup. Therefore We
also conduct experiments to evaluate the effect of the above two variations. Re-
sults indicate that keeping cosine distance loss and independent weights between
encoder and decoder are the best for our model. More details will be elaborated
in the chapter of ablation study.

4.2 Finetuning with Additional Data

After fixing the model architecture and training, we aim to further improve model
performance by finetuning the model with additional data from the target sub-
ject. In this way the model can learn some subject specific features to help with
further predictions.

Since we do not have any additional dataset of fMRI scans related to word
stimuli, we have to split the data from the target subject. In our setting, we
finetune the model with 510 fMRI scans of 170 words, and the remaining 30 scans
of 10 words are used for evaluation after finetuning. In this way, the model will
not “see” data of test words from the target subject during the finetuning phase.
Based on the same model checkpoint pretrained on 14 subjects, we run 18-fold
cross-validation of finetuning experiments using different 10 words respectively
for evaluation. In order to understand whether the finetuning approach genuinely
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contributes to model performance, we report and compare both Top-1 and Top-5
accuracy of the 18 folds before and after finetuning.



Chapter 5

Ablation Study

As is mentioned before, we evaluate our models following the leave-one-out strat-
egy and repeat the process for each subject. During our ablation study, we only
use M15 as the validation subject, i.e. we train the model on the other 14 sub-
jects and evaluate on M15 in the direct classification task. In most cases of the
study we use all data from M15 for evaluation. Only when it comes to finetuning
experiments do we further split the data of M15 and perform cross-validation
evaluation.

5.1 Baseline Model

To begin with, we consider the baseline model which has only one fully connected
layer. When training the model, we apply the Adam optimizer [17] with initial
learning rate 1e-3, which further decays by factor 0.3 for every 10 epochs. We
train the model for 100 epochs with early stopping monitoring the train loss and
save the result. In Table 5.1, we report the evaluation result on M15. In order
to account for the randomness of the initialization of the model, we run each
experiment over 5 random seeds and report the mean and the standard deviation
of the evaluation results. The same applies to following sections.

Model Top-1 Acc. Top-5 Acc.
Base 5.89% ± 0.39% 17.78% ± 0.23%

Table 5.1: Ablation Study: Result of baseline model

In our setting, the random baseline Top-1 accuracy of direct classification is
0.6%, which is about one-tenth of our baseline model. According to this result,
training on different subjects did improve model performance on the validation
subject, which indicates the possibility of inter-subject generalization for brain
decoding.

13
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5.2 FMRI Reconstruction

As mentioned previously, in order to enhance the intermediate representation of
our model, we apply the autoencoder structure and add a cosine distance term of
input and reconstructed fMRI to the loss fuction. The evaluation result is shown
in Table 5.2.

Model Top-1 Acc. Top-5 Acc.
Base 5.89% ± 0.39% 17.78% ± 0.23%
+ Reconstruction. 6.26% ± 0.44% 17.93% ± 0.71%

Table 5.2: Ablation Study: Result of fMRI Reconstruction

Judging from the result, fMRI reconstruction effectively regularizes the train-
ing signal and improves the average Top-1 accuracy in the direct classification
task. On top of that, we further explore variations of the autoencoder model as
we have mentioned.

Autoencoder Variation Top-1 Acc. Top-5 Acc.
cos loss + share weight 5.41% ± 0.44% 15.59% ± 0.46%
cos loss + independent 6.26% ± 0.44% 17.93% ± 0.71%
mse loss + independent 5.78% ± 0.61% 16.52% ± 0.55%

Table 5.3: Experiments with variations of autoencoder

As shown in Table 5.3, we test different combinations of the reconstruction
loss and autoencoder structure. When applying a cosine distance loss and an au-
toencoder with independent weights, we achieve both the best Top-1 and Top-5
accuracy. We argue that although sharing weights between the encoder and the
decoder of the model can significantly reduce the number of model parameters
and thus avoid overfitting, it simultaneously limits the flexibility of the model.
Besides, the MSE loss emphasizing voxel-wise matching between input and recon-
structed fMRI might also be too strict for the autoencoder, as our ultimate goal
is to decode fMRI signal into word stimuli rather than perfectly reconstructing
the input. Consequently, we stick to independent weights and cosine distance
loss for the autoencoder extension in further tests.

5.3 Finetuning with Additional Data

In this experiment, we first train our model with 14 subjects’ data following the
same setting as in the fMRI reconstruction experiment. Subsequently we finetune
the saved checkpoint in an 18-fold cross-validation manner with data from target
subject M15. In the finetuning phase we apply another Adam optimizer [17] with
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fixed learning rate 1e-5. Each finetuning experiment lasts for 20 epochs without
early stopping. Complete results are shown in Table 5.4

test word Before Finetune After Finetune
Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc.

0:10 0.0667 0.3333 0.1000 0.3333
10:20 0.0000 0.1000 0.1000 0.2000
20:30 0.0000 0.1000 0.0333 0.0667
30:40 0.1667 0.2333 0.1333 0.3333
40:50 0.1333 0.2667 0.1000 0.3000
50:60 0.0667 0.2000 0.1000 0.2333
60:70 0.0000 0.2000 0.1000 0.2667
70:80 0.0333 0.1000 0.0667 0.1667
80:90 0.0333 0.0667 0.0333 0.1333
90:100 0.0333 0.1667 0.1000 0.2667
100:110 0.0667 0.1667 0.1000 0.2667
110:120 0.1000 0.1333 0.0000 0.2333
120:130 0.0667 0.3333 0.1000 0.1667
130:140 0.1000 0.1333 0.1333 0.3333
140:150 0.1000 0.1667 0.0667 0.1000
150:160 0.0333 0.1000 0.0333 0.1333
160:170 0.0667 0.1333 0.0333 0.2667
170:180 0.1333 0.2333 0.1333 0.2000

arith_mean 0.0667 0.1759 0.0815 0.2222
geo_mean 0.0160 0.1600 0.0471 0.2048

Table 5.4: Ablation Study: Finetuning experiments on target subject M15

Each row of the table represents the result of a certain fold of the finetuning
experiment. The first column “test word” indicates the zero-based index range
(left inclusive and right exclusive) of the evaluation words in the vocabulary. The
following columns report direct classification accuracy on fMRI scans of the 10
evaluation words before and after finetuning for comparison. Take the first row
for instance, we use fMRI scans of first ten words in the vocabulary for evaluation
and finetune the pretrained model with fMRI scans of the remaining 170 words.
Before finetuning, our model achieves 6.67% Top-1 accuracy and 33.33% Top-5
accuracy on the first ten words. After finetuning Top-1 accuracy is elevated to
10.00%. The last two rows compute the arithmetic mean and geometric mean of
accuracy over the 18 folds.

Judging from the results, finetuning improves direct classification accuracy
in most folds of the experiment. The average accuracy over 18 folds increase
significantly after finetuning, which validates our finetuning approach. In spite
of the fact that data for finetuning are associated with words different from the
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ones for evaluation, it still contributes to model performance by adapting the
model to the target subject.

5.4 Regions of Interest

We have exploited the knowledge of Regions of Interest (ROIs) for data alignment.
Since we are partitioning the fMRI scans into ROIs according to the atlas from
Gordon et al [3], it is natural to consider processing each ROI with an independent
small fully connected layer and then concatenate their ouputs. Compared to our
original approach which processes the concatenated ROI input with a single fully
connected layer, the new setting significantly reduces the number of parameters
in the model. We experiment with this idea using a variated baseline model as
shown in Figure 5.1.

Figure 5.1: Architecture of the model with separated fully connected layers for
each ROI.

Since the 333 ROIs vary in size after padding across subjects, their corre-
sponding fully connected layers should also produce output of diffrent sizes. Here
we compute the output size per ROI as the following:

OutputSize = max(1, dInputSize
k

e) (5.1)

Where k is a hyper-parameter to control the size of the hidden layer. We test
different values of factor k and show corresponding results in Figure 5.2.

As we can see from the figure, top-1 accuracy is always lower than 5%, which
is much lower than the baseline 5.89%. When the factor k is larger than 10,
top-1 accuracy goes below 4%. On the other hand, even though we attempt to
increase the number of model parameters by reducing the value of k to 1, i.e.
producing intermediate representation of the same size as the input, the baseline
model still significantly outperforms the new model. In this case, we suppose that
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Figure 5.2: Model performance with different values of k

processing each ROI separately might result in the loss of inter-ROI information,
thus having poorer performance than the baseline model. Hence, we discard this
approach in further experiments.

5.5 Unsupervised Pretraining

As mentioned in dataset section, Pereira et al [1] provides additional fMRI scans
of subjects reading sentences rather than words. Our model can not decode the
complete sentence from a single fMRI scan. However, we can utilize this addi-
tional data exclusively on the fMRI reconstruction task. Therefore we pretrain
our model in an unsupervised manner with the autoencoder extension and recon-
struction loss Lreg as the only target of optimization. Then we continue to do
supervised training on the word dataset with both reconstruction loss and cross
entropy loss as usual. We expect the unsupervised pretraining on the sentence
dataset to help the model learn general features relevant to languages, leading
it to a better starting point for further supervised training. Nevertheless, as is
shown in Table 5.5, the unsupervised pretraining approach does not appear to
be effective. In the best result we can obtain, the average Top-5 accuracy is
slightly improved compared to the case without pretraining. In the meantime,
however, the average top-1 accuracy decreases to 5.96%. Considering that the
unsupervised pretraining does not make significant contribution, we decide not
to keep this phase in further experiments.
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Model Top-1 Acc. Top-5 Acc.
Base 5.89% ± 0.39% 17.78% ± 0.23%
+ Reconstruction. 6.26% ± 0.44% 17.93% ± 0.71%
+ Pretraining. 5.96% ± 0.58% 18.15% ± 0.70%

Table 5.5: Ablation Study: Result with unsupervised pretraining

5.6 Mean Regularization

In order to further enhance the intermediate representation of our decoder model,
we come up with mean regularization. Ideally, the model should generate the
same output as well as intermediate representations for fMRI scans of the same
word even if the scans are from different subjects and different paradigms. In
other words, the model is supposed to focus on extracting the word exposed to
the scanned subject regardless of the subject-specific physiological information.
Hence, we compute the mean of the intermediate representation for each word
over all subjects as the reference. Then, inspired by the triplet loss from [18], we
add the following term as a regularizer to our loss function:

Lmean =
v∑
i

cos (h
(l)
i , h̄

(l)
i )−

v∑
j 6=i

cos (h
(l)
i , h̄

(l)
j )

 (5.2)

Where h̄(l)i is the mean of the intermediate representations for the i-th word
at layer l of the model across all subjects and h(l)i is the predicted intermediate
representation of the i-th word at layer l.

In this study, we use mean regularization on the sole intermediate repre-
sentation of the baseline model. At the beginning of the training phase, the
intermediate representation retrieved by the model is not particularly informa-
tive. Therefore we initially train without mean regularization. After the training
converges, we compute the mean representation for each word, and continue the
training with mean regularization until early stopping occurs. Then we update
the mean representation and repeat the same process iteratively.

Table 5.6 shows the results of 5 iterations of mean regularization on the base-
line model. The first row marks model performance after initial training without
mean regularization. After adding mean regularization, the top-5 accuracy de-
creases significantly, neither is the top-1 accuracy improved. Besides, due to the
fluctuation of accuracy, it is difficult to determine the appropriate number of
iterations. Therefore, we decide to keep the model simple and do not go further
with mean regularization.
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Iteration Top-1 Acc. Top-5 Acc.
0 5.93% ± 0.33% 17.96% ± 0.48%
1 5.41% ± 0.54% 16.48% ± 1.14%
2 5.63% ± 0.88% 16.70% ± 1.06%
3 5.78% ± 0.11% 16.85% ± 1.61%
4 5.22% ± 0.87% 16.56% ± 0.60%
5 5.96% ± 0.54% 16.67% ± 0.47%

Table 5.6: Ablation Study: Result with mean regularization

5.7 MLP-Mixer

When seeking for further improvement to the architecture of our model, we are
inspired by MLP-Mixer (“Mixer” for short), a recent work from Google [19].
The Mixer is a model based exclusively on multi-layer perceptrons (MLPs) for
computer vision. The model mainly consists of the following components:

1. Given an input image, split the image into S patches of the same size.

2. Project each patch to a desired dimension C with a fully connected layer
and obtain the input table X ∈ RS×C .

3. Process X with Mixer layer which mainly consists of two types of MLPs.
A channel-mixing MLP takes individual rows of the input table as input,
and a token-mixing MLP processes each column of the input table. The
detailed structure is depicted in Figure 5.3. In this way, the model retrieves
information from different spatial locations and from different channels re-
spectively.

4. Perform Global Average Pooling to the output of the Mixer layer and further
projection for classification.

As we have mentioned in the Regions of Interest section, our approach pro-
cessing each ROI with independent fully connected layers might lead to the loss
inter-ROI information. In this case, if we treat the 333 ROIs in our input as the
patches in the Mixer model, the token-mixing approach inside the Mixer archi-
tecture might potentially fix our problem since it allows communication across
ROI patches. To adapt the Mixer model to our dataset and task, we need to
modify the patch projector, as the ROIs in our input data vary in size. Here we
propose the following two approaches to solve this problem:

1. Similar to our old approach, we use independent linear projector for each
ROI and project all ROIs to the same dimension C. In this case our input
table for the Mixer will be of the size 333× C.
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Figure 5.3: Architecture of Mixer figured in [19]

2. Similar to the original setting of the Mixer, We directly split our input
vector into N patches of the same size. In this case we can apply the
original patch projector in the Mixer to process each patch. After patch
projection our input table will be of the size N × C.

Model Top-1 Acc. Top-5 Acc.
Base 5.89% ± 0.39% 17.78% ± 0.23%
Mixer + Split 5.96% ± 0.22% 17.44% ± 0.86%
Mixer + ROI <=3.30% <= 10.56%

Table 5.7: Ablation Study: Result with MLP-Mixer. Mixer + ROI refers to
our first approach that applies independent projectors per ROI. Mixer + Split
represents our second approach that directly splits input vector into patches.

We show the experiment results with both two approaches in Table 5.7. When
applying the first approach with independent ROI projectors, we experiment with
various combinations of parameters and always have top-1 accuracy below 3.5%
and top-5 accuracy below 11%, which is significant inferior to the baseline model.
We further inspect the sizes of all ROIs and notice that the mean and standard
deviation of ROI sizes are 197 ± 161. Therefore we assume that the huge variance
in sizes of ROIs is the major limitation in this setting, as it is difficult to determine
a suitable dimension for ROI projection.

Besides, with the second approach, the best result is similar to the baseline
model, which is obtained with parameters N = 1, C = 1024. Note that the
Mixer model only performs well when the number of patches N is 1, where we
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actually do not split the input vector. In this case the Mixer model degenerates
to stacked MLPs with Skip-Connections to some extent. As we increase the
number of patches, the model performance drops significantly. Considering that
we already outperform the baseline with the autoencoder extension, we decide to
stay with our original model which is simpler and also effective.



Chapter 6

Results

As presented in the ablation study, both fMRI reconstruction and finetuning with
additional data elevate direct classification accuracy on validation subject M15.
Therefore we keep the above extensions to our model and proceed to the final test
on the other 14 subjects following the same leave-one-out strategy. In addition,
we also run extra experiments with various adaptations to our model in order to
compare with existing works and further validate our approach.

6.1 Direct Classification

To begin with, we present the Top-1 and Top-5 direct classification accuracy of
our model on all 14 test subjects in Figure 6.1 and Figure 6.2.

Figure 6.1: Top-1 accuracy of direct classification task on 14 test subjects

22
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Figure 6.2: Top-5 accuracy of direct classification task on 14 test subjects

Note that each orange point in both figures represents the arithmetic mean
over the results of the 18-fold finetuning experiments on a certain test subject.
The blue points are the corresponding intermediate results before finetuning for
comparison. We can clearly see that finetuning improves model performance for
all 14 test subjects. Before finetuning, the average top-1 and top-5 accuracy
over 14 tests are 2.62% and 9.76%, which are elevated to 4.22% and 12.87%
respectively after finetuning.

In order to compare our model with existing works, we also consider three
other baselines. We first take into account the model from Pereira et al [1], which
is based on ridge regression and predicts embeddings of word stimuli. We will
refer to it as the Universal Decoder in the following sections. In order to perform
direct classification with Universal Decoder, we do nearest neighbour search for
the model output among the GloVe embeddings of all 180 words in our vocab-
ulary. Other settings are the same as the original work. Then we experiment
with XGBoost [20], a popular regularizing gradient boosting framework perform-
ing classification based on decision trees. We apply XGBoost after performing
dimensionality reduction with Principal Component Analysis (PCA). At last we
evaluate the VQ-VAE model [21] which performs discrete representation learning
and therefore might be capable of separating fMRI scans based on their encoded
words.

As a result, in the direct classification task, the Universal Decoder achieves
0.94% average Top-1 accuracy and 4.5% average Top-5 accuracy over 14 test
subjects. The performance of XGBoost with PCA is close to the random base-
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line (0.6% for Top-1 and 2.8% for Top-5 accuracy), which is the worst among
all compared models. The VQ-VAE model has Top-1 accuracy around 1% and
Top-5 accuracy close to 5%. Note that our model significantly outperforms the
others even without finetuning, which indicates that our model is more capable
of generalizing to unseen subjects. Moreover, when exposed to partial data of the
target subject in the finetuning phase, our model has sufficient capacity to adapt
to the subject and thus boost its performance. With the good performance on
the difficult but more realistic direct classification task, our model shows certain
potential of applying brain decoding in a real life scenario.

6.2 Pairwise Classification

In order to further validate the adaptability of our model, we also run extra exper-
iments that adapt neural models to the pairwise classification task from Pereira
et al [1]. To be more specific, we replace the final layer for classification with a
linear layer of output size 300, which is the dimension of GloVe embedding used
in Pereira et al. [1]. Now that the neural models are adapted to regression-based
decoders, we need a new loss function for training. In the pairwise classification
task, we expect to increase the similarity between predicted output and ground-
truth embedding while keeping the output away from the embedding of other
words. Therefore, inspired by the triplet loss [18] again, we apply the following
loss in the regression-based model and refer to it as the pairwise loss:

Lpw =

v∑
i

cos (ytrue,i, ypred,i)−
v∑

j 6=i

cos (ytrue,j , ypred,i)

 (6.1)

Where ytrue,i refers to the pretrained 300-dim GloVe embedding of the i-th
word from [15] and ypred,i is the model predicted embedding of the i-th word.

We report the pairwise accuracy of our model on all 14 test subjects in Fig-
ure 6.3. Similar to the results of direct classification, finetuning also improves
pairwise accuracy for our model on all 14 test subjects. The mean pairwise
accuracy of our model over 14 subjects before finetuning is 70.88%, which is
further improved to 74.63% by finetuning on the target subject. The Universal
Decoder’s accuracy is slightly lower than 70%. As for the adapted VQ-VAE, it is
obviously inferior to the other two models with mean pairwise accuracy around
65%. Judging from the comparison, our model has satisfying adaptability to
regression-based tasks like pairwise classification and therefore still outperforms
classical methods.
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Figure 6.3: Pairwise accuracy of pairwise classification task on 14 test subjects

6.3 Variations

In this section we run additional experiments on our model with variations in
the training phase and the evaluation task so as to further validate our design
choices.

As mentioned above, we perform direct classification with the regression-
based Universal Decoder via nearest neighbour search (NNS) in our vocabulary.
This is also the exact brain decoding process with regression-based models. On
the other hand this variation can also be applied to our model. In this case
our model will be trained to produce vector representations and evaluated by
direct classification via NNS. In order to train such a neural model, we can take
into consideration the pairwise loss from the previous section or the MSE loss, a
popular choice for classical regression models. We experiment with both options
and present the average results over all 14 test subjects in Table 6.1.

In the table, the first row is the result of our model in default setting for direct
classification task, i.e. training the model to produce a probability distribution
over the vocabulary with a cross entropy loss and then doing direct classification
according to the predicted probability. This result has been presented in the
direct classification section of this chapter. In contrast to the default setting,
the regression-based decoder always has inferior performance no matter which
loss we use to train the model. Such a decoder turns out to be less accurate
and effective as it has to decode brain activity indirectly relying on the word
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Variation Before Finetune After Finetune
Top1-acc Top5-acc Top1-acc Top5-acc

Cross Ent. + Direct clf. (Prob) 2.62% 9.76% 4.22% 12.87%
MSE + Direct clf. (NNS) 1.16% 5.34% 1.60% 6.61%

Pairwise + Direct clf. (NNS) 1.97% 8.12% 2.64% 10.29%

Table 6.1: Average results over 14 tests comparing various combinations of loss
function and evaluation task on our model. Direct clf. (Prob) here refers to the
direct classification based on the predicted probability as in our original model.

embedding. This validates our design choice in classification-based decoder and
the evaluation task.

Besides, when training the regression-based model with the pairwise loss, the
result is obviously better than the one with MSE loss, which validates the ap-
plication of pairwise loss. This is expected since MSE loss requires the model
to learn to fit the entire GloVe representation in all dimensions, while the pair-
wise loss mainly focuses on similarity among representations, which is naturally
suitable for the classification task based on similarity.

Finally, putting the results of the three variations together, we can notice the
trend that the more relying on GloVe embedding the setting is, the poorer per-
formance the model tends to have. To some extent this supports our hypothesis
that vector representations like GloVe are noisy. It also sheds light on the neces-
sity of a more independent setting like our default direct classification without
GloVe embedding.
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Contribution of Data

In this chapter, in order to further improve the performance of our model, we
study the contribution of data from various perspectives. To begin with, we
attempt to figure out the importance of each Region of Interest (ROI) inside
the fMRI scan to the decoder model. Subsequently we compare data of the
15 subjects and study the similarities among subjects. The purpose of such
studies is to help us find out and discard the least contributive data from two
dimensions when training the decoder model for a specific target subject. In this
way we expect to improve model performance by reducing the noises that the
model learns. Furthermore, we also experiment with a simple data augmentation
approach that aims to enhance the quality of our training data.

7.1 Model Attribution to Regions of Interest

We need an appropriate metric to evaluate the importance of each ROI during
brain decoding. Here we adopt the data-driven approach and mainly refer to
methods that attribute the prediction of a deep neural model to the input fea-
tures. The quantified attribution result can be a reasonable importance metric.
According to Sundararajan et al. [22], Integrated Gradients (IG) is a simple yet
powerful axiomatic attribution method requiring no modification to the model.
Given a deep network, the IG is defined as the path integral of the gradients
along the straight-line path from a baseline input vector x′ (zero by default) to
the input vector x at hand. The Captum library [23] provides a convenient im-
plementation of IG computation for PyTorch-based models, with which we can
compute the IG of each dimension of the input. In our case, considering the
high-dimensional input, we do not focus on the importance of any single feature
but rather the ROI-level importance. Therefore we further compute the average
IG over all dimensions of a ROI (ROI-IG) as its importance metric.

Similar to the ablation study, we use the data from M15 as the input to
compute ROI-IGs with our complete model trained on the other 14 subjects. In
the end we sum the ROI-IGs over all samples of M15 to get the final importance
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estimations of all ROIs. As shown in Figure 7.1, some ROIs have significantly
low ROI-IGs compared to others and thus are considered less contributive.

Figure 7.1: ROI-IG of the validation subject M15

Subsequently, we run a series of experiments in which we remove different
numbers of the least contributive ROIs in our data based on the ROI-IG ranking,
and then train and evaluate new models with input of reduced size from scratch.
For comparison, we also conduct experiments in which ROIs are removed ran-
domly. Top-1 and Top-5 accuracy of the evaluation on subject M15 are shown in
Figure 7.2 and 7.3.

In general, the performance of our model is not improved no matter how
many ROIs we remove in either orders. After removing more than 150 ROIs, the
classification accuracy drops significantly. Note that removing ROIs randomly
does not always lead to poorer performance than removing the same number of
ROIs according to the importance ranking as expected. This might indicate the
joint importance of ROIs with low ROI-IGs or the necessity of a more refined
importance metric for our dataset. Based on the current result, we stick to using
all ROIs for our model.

7.2 Reducing Training Subjects

Since we do not benefit from reducing ROIs, we consider approaches to remove
the least contributive training samples to our model. As we all know, subjects
are naturally different from each other. Although we have aligned the fMRI
scans of different subjects to some extent, there is still much subject-specific
physiological information within the data. Consequently, we aim to analyze the
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Figure 7.2: Top-1 accuracy of removing different number of ROIs according to
importance

Figure 7.3: Top-5 accuracy of removing different number of ROIs according to
importance
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Subject Indices of Predominant Clusters
P01 12, 1, 0
M02 6, 8, 3
M03 11, 0, 9
M04 9, 1, 0
M05 2, 3, 0
M06 7, 0, 8
M07 8, 0, 1
M08 4, 13, 10
M09 8, 0, 3
M10 0, 8, 1
M13 0, 8, 3
M14 8, 0, 1
M15 14, 1, 3
M16 0, 8, 3
M17 5, 8, 13

Table 7.1: Predominant clusters of data of each subject

similarities among subjects. With this knowledge, when given a target subject,
we can exclusively use the data of the most similar subjects for decoder model
training so that the model can stay more focused on language-related features.

To begin with, we perform k-means clustering with all data from the 15 sub-
jects to check the hypothesis that there are similarities among data distribution
patterns of our subjects. We naturally use 15 as the pre-defined number of clus-
ters. According to the result, most data from the same subject falls into 1-3
particular clusters. Due to space limitation we only show the indices of 3 pre-
dominant clusters per subject in Table 7.1, which are sorted according to the
number of samples in the cluster in descending order. It is easy to notice the
overlaps among the predominant clusters of different subjects. Besides, some sub-
jects with similar predominant clusters obtain similar results when used as the
target subject in the direct classification task. For example, our model achieves
the same top-1 accuracy 1.48% in the tests with M13 and M16 respectively. The
above results support our similarity hypothesis to some extent.

To quantify the similarity between two subjects, we compute the mean of
the pairwise Euclidean distances of the 540 fMRI pairs, each of which consists of
two fMRI scans recorded under the same paradigm with the same word stimulus
from the two target subjects respectively. Here we also use M15 as the validation
subject and rank the other training subjects according to their similarities to
M15. Based on this ranking we run subject removing experiments similar to the
previous ROI study, i.e. we remove different numbers of subjects when training
new models, and then evaluate with the data from M15. We compare three
different orders of subject removing, including random order, removing the least
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similar subjects first and removing the most similar subjects first. Finally, we
report the Top-1 and Top-5 accuracy in Figure 7.4 and 7.5.

Figure 7.4: Top-1 accuracy on M15 of removing different numbers of training
subjects

We can observe that both Top-1 and Top-5 accuracy decrease as the number
of removed subjects increases. The trends of accuracy descending in all the three
ways of subject removal are similar. In general removing training subjects cannot
help the model improve its performance. Besides, removing the least similar
subjects during training does not inevitably lead to better model performance
then removing in other orders. It indicates that data from training subjects
with low similarities to the target subject might still contribute to the model
performance. Moreover, judging from the above results, extra data from more
subjects might potentially further improve the performance of our model.

7.3 Simple Data Augmentation

Since we do not have extra data for model training, we turn to data augmentation
methods. In consideration of the particular data alignment approach and our
limited understanding of brain activities, we simply try an intuitive augmentation
approach. Given an aligned fMRI scan x1, we randomly sample another scan x2
with the same word stimulus label in the training set regardless of the subject
and the paradigm. Then we generate augmented data xnew as the following:
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Figure 7.5: Top-5 accuracy on M15 of removing different numbers of training
subjects

xnew = (1− ε)x1 + εx2 (7.1)

Where ε ∈ [0, 1] is the weight of the sampled scan. We do not rule out the
case where x1 == x2 since it preserves a proportion of the original input when ε
is not zero.

We consider both fixed and random values of ε, train our model with the
augmented data and evaluate on the validation subject M15. Results are shown
in Table 7.2. When using random ε, we achieve 5.96% top-1 accuracy, which is
better than using other fixed values. However it fails to outperform the default
setting without data augmentation (ε = 0). Therefore we do not keep this sim-
ple augmentation approach. On the other hand, since the performance of our
model also does not decrease significantly with the processed data, the linear
combinations of ROIs possibly can still preserve major features related to the
word stimuli. On top of that, more carefully designed data augmentation ap-
proaches to extract these features and denosie might potentially further improve
the current brain decoding method.
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ε Top-1 Acc. Top-5 Acc.
0 6.26% ± 0.44% 17.93% ± 0.71%
0.3 5.78% ± 0.61% 17.89% ± 0.83%
0.5 5.30% ± 0.42% 17.37% ± 1.04%
0.7 5.52% ± 0.54% 16.89% ± 0.82%

random 5.96% ± 0.38% 17.59% ± 0.61%

Table 7.2: Results of data augmentation with different weights ε
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Conclusions

In this work we have presented a neural-network-based brain decoder model that
maps fMRI scans to the corresponding word stimuli. Furthermore, in order to
improve the brain decoder model, we explore a few methods among which fMRI
reconstruction and target subject finetuning show positive results. On top of
that, our model outperforms existing work with 74.63% pairwise accuracy in
the pairwise classification task as well as 4.22% Top-1 and 12.87% Top-5 accu-
racy in the direct classification task. Moreover, we further justify the design of
classication-based decoder combined with direct classification task for evaluation,
as our model in this setting outperforms all variated regression-based alternatives,
proving to be more efficient and accurate for brain decoding. In the end, we study
the contribution of data from the perspectives of subject and Regions of Interest,
which shows the potential room for improvement to our brain decoder method
with extra data from different subjects.
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