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Abstract

This thesis improves the robustness of the pretrained language model BERT against word
substitution-based adversarial attacks by leveraging self-supervised contrastive learning
with adversarial perturbations. One advantage of our method compared to previous
works is that it is capable of improving model robustness without using any labels.
Additionally, we also design an adversarial attack for word-level adversarial training on
BERT. The attack is efficient, allowing adversarial training for BERT on adversarial
examples generated on the fly during training. Experimental results on four datasets
show that our method improves the robustness of BERT against four different word
substitution-based adversarial attacks. Furthermore, to understand why our method can
improve the model robustness against adversarial attacks, we study vector representations
of clean examples and their corresponding adversarial examples before and after applying
our method. As our method improves model robustness with unlabeled raw data, it opens
up the possibility of using large text datasets to train robust language models.
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Chapter 1

Introduction

1.1 Background and Motivation

Pretrained language models such as BERT have had a tremendous impact on various
NLP tasks. Despite their superior performance on downstream tasks, researchers have
demonstrated that these models are still vulnerable to adversarial attacks, which fool
the model by adding imperceptible-to-human perturbations to the model inputs [1, 2, 3],
such as synonym substitution for words in the input sentence as shown in table 1.1.

A prevailing method to improve the model robustness against adversarial attacks
is adversarial training [4]. In adversarial training, each batch of data is augmented
by adding corresponding adversarial examples of the same batch. These adversarial
examples are fed into the model for training along with the original samples.

In NLP, adversarial training in the input space is hard, as existing natural language
adversarial attacks are too slow to generate adversarial examples on the fly during train-
ing [2, 3, 5]. Due to the limitations of attack speed, it is common practice to use pre-
generated adversarial samples in training, which does not make effective use of adversarial
training as the adversarial samples never change as the robustness of the model increases.
Although there has been previous work exploring efficient input space adversarial training
for NLP [6], few have paid attention to input space adversarial training for modern pre-
trained language models like BERT. Furthermore, unlike computer vision, where one can
use standard datasets consisting of tens of millions of images (for example, ImageNet [7])
for adversarial training, NLP tasks typically have much fewer labeled examples, making
it harder to improve the robustness of NLP models with adversarial training.

Contrastive learning, which was first proposed to improve model performance on
various downstream vision tasks [8, 9, 10], has gained attention from the NLP community.
Recent works in NLP have shown that contrastive learning can help improve downstream
text classification performance [11, 12]. While the goal of contrastive learning is to make
the vector representations of similar examples closer, recent development in computer
vision has indicated that it is beneficial to use adversarial perturbations to create "hard"
positives [13], which are similar to the original examples in the input space, but in the
meantime are dissimilar in the vector space.

1



1. Introduction 2

Original

(Negative) It has a stunning lack of even rudimentary traces of realism . almost
every war movie cliche appears in this film and is done badly. on the
other hand , i wouldn’t have watched it to the end if it hadn’ t been so
remarkably bad that it amused me.

Adversarial

(Positive) It has a stunning lack of even joyless traces of realism . almost every
war movie cliche appears in this film and is done erroneously. on the
other hand , i wouldn’t have watched it to the end if it hadn’ t been so
remarkably bad that it flabbergasted me.

Table 1.1: An adversarial sample generated by adding imperceptible-to-human perturba-
tions to the model inputs. Blue words in the original example are replaced by red words
in the adversarial example. In this example, the model is fooled by making synonym
substitutions for words, and it mistakes a negative sample for a positive one.

However, generating such examples for natural language is hard, due to the discrete
nature of human languages and the inefficiency of existing natural language adversarial
attacks. Additionally, most existing natural language adversarial attacks are designed
for supervised classification tasks. Therefore, how to design an adversarial attack for
contrastive learning in NLP is still unclear. A recent work [14] leverages adversarial
perturbations during contrastive learning for conditional text generation. However, their
work neither address general natural language understanding tasks, nor does their work
pay attention to robustness against attacks. Hence, how to combine adversarial pertur-
bations with contrastive learning to improve robustness for general NLP understanding
tasks remains an open problem. Furthermore, it remains unclear whether this approach
is really effective in improving the robustness of NLP models, especially pre-trained lan-
guage models.

1.2 Objective and Contributions

In this thesis, our objective is to improve the robustness of pretrained language models
against adversarial attacks by combining contrastive learning with adversarial perturba-
tions. We do this by creating an efficient adversarial attack for BERT that allows us to
generate word-level adversarial attack samples on the fly in training. Our attack is effi-
cient in that it is capable of generating multiple adversarial examples in parallel, while
previous attack typically generates adversarial examples one by one [2, 3, 5]. Experi-
mental results show that our method can improve the robustness of pretrained language
models without looking at the labels.



1. Introduction 3

Our contributions in this thesis can be summarized as follows:

1. We improve the robustness of the pretrained language model BERT against word
substitution-based adversarial attacks by leveraging self-supervised contrastive learn-
ing. Experiments show that our method improves model robustness even without
accessing the annotated labels.

2. We create an efficient way to perform adversarial attacks. It can be used not
only in self-supervised contrastive learning, but can also be extended to supervised
tasks, enabling word-level adversarial training on BERT. Instead of conducting
adversarial training on pre-generated adversarial examples, we conduct adversarial
training by generating the adversarial examples on the fly for each batch.

3. Furthermore, our study on the vector representations of clean examples and their
corresponding adversarial examples explains why our method improves model ro-
bustness.

4. We give future directions for NLP contrastive learning. While previous work for
NLP contrastive learning focuses on in-domain setting, where researchers use the
same datasets during contrastive pretraining and downstream fine tuning, our ex-
periments in Section 5.4 show that using out-of-domain datasets also improves
model robustness on downstream tasks. Therefore, future work on self-supervised
contrastive learning can generalize to large-scale datasets like BookCorpus [15].



Chapter 2

Related Work

2.1 Adversarial Attacks and Robustness

Researchers have proposed various natural language adversarial attacks. For instance, [1]
fool a machine reading model by adding adversarial sentences to the original contexts. [2]
propose a word-level adversarial attack using a genetic algorithm. To improve model ro-
bustness against natural language adversarial attacks, a kind of defense is to recognize
and block the adversarial examples [16, 17, 18]. However, these methods rely heavily
on how accurate the defense can identify the adversarial examples. Besides, identify-
ing the adversarial examples during inference time also brings additional computational
overheads. Other researchers have resorted to learning robust vector representations of
texts. [19] obtain robust word embeddings by optimizing within a convex hull in the
vector space.

Another method to improve model robustness is adversarial training, which has been
success in the image domain [4]. However, previous works on adversarial training for
natural language mostly focus on perturbations on the vector space, while actual ad-
versarial attacks create adversarial examples by changing natural language symbols. For
example, [20] and [21] improve model generalization ability by adversarial training on the
word embedding space, without mentioning model robustness. However, they either ig-
nore model robustness, or only test the model robustness against the adversarial dataset
ANLI, without paying attention to actual adversarial attacks. Other works conduct ad-
versarial training in the word space [2, 5]. Still, they can only do adversarial training on
a limited number of pre-generated adversarial examples due to the low efficiency of the
attacks. A recent work [6] conducts adversarial training efficiently in the word space, but
their method is limited to traditional non-contextualized models.

The work in this thesis is different from previous works of natural language adver-
sarial training. On the one hand, as opposed to previous works, which are supervised,
we propose a self-supervised learning scheme to improve the robustness of pretrained
language models. On the other hand, while previous works mostly focus on adversarial
training in the embedding space, we conduct efficient adversarial training with pretrained
language models on the word level.

4
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2.2 Contrastive Learning

The main goal of contrastive learning is to make the representation space of similar sam-
ples closer to each other, while enlarge the distance between dissimilar ones. Contrastive
learning has been successful in the computer vision domain. [8] propose SimCLR as a
framework for contrastive learning, which outperforms previous works of self-supervised
learning on ImageNet. However, SimCLR requires a large batch size to achieve high per-
formance, which requires high demands on computing resources. To address this problem,
[9] propose another framework MoCo. MoCo does not rely on a large batch size, but can
achieve similar or even higher performance than SimCLR. [22] further add supervised
signals to contrastive learning, reaching new state-of-the-art with various architectures
on image classification tasks. Recently, [13] demonstrate that by using adversarial signals
during contrastive learning, the models can obtain robustness against image adversarial
attacks.

In NLP, previous works on contrastive learning mainly focus on improving the model
generalization ability. [11] improve the performance of BERT on various downstream un-
derstanding tasks by using back-translation [15] and easy-data-augmentation [23] with
contrastive learning. [12] further boost the performance of RoBERTa by adding super-
vised signals during fine tuning on downstream tasks. Similarly, [24] achieve comparable
performance to supervised methods by using self-supervised contrastive learning. Re-
cently, [14] tackle the "exposure bias" problem in text generation by adding adversarial
signals during contrastive learning.

Despite that these works have demonstrated the usefulness of contrastive learning
in NLP applications, none of them address the robustness of NLP models, particularly
pretrained language models, against natural language adversarial attacks. In this the-
sis, we focus on improving the robustness of pretrained language models against word
substitution-based adversarial attacks. We present the details of our method in Section 3.



Chapter 3

Methodology

3.1 Background and Objective

Imagine we have a batch of N examples: {(X1, y1), (X2, y2), . . . , (Xn, yN )}, where X =
{w1, w2, . . . , wL} is an example consisting of L words, y is the corresponding label, and
i is the index to the examples. Let Xi be the current input to encoder f(·), c(·) be the
softmax classification layer, and a(·) be a natural language adversarial attack, we have:

X ′i = a(Xi) (3.1)
hi = f(Xi) (3.2)
h′i = f(X ′i) (3.3)
ŷi = c(hi) (3.4)
ŷ′i = c(h′i) (3.5)

where hi,h
′
i ∈ Rd are fixed-size representations of Xi and X ′i, and ŷi and ŷ

′
i are predicted

labels of Xi and X ′i, respectively.

Assuming the attack successfully fools the model, we have ŷi 6= ŷ′i. Our assumption
is that although Xi and X ′i are very similar to each other on the word level, the distance
of their representations hi and h′i are large such that the softmax classifier c(·) predicts
Xi and X ′i to be of different classes.

Hence, to obtain a robust model against adversarial attacks, we need to optimize the
encoder such that hi and h′i become similar to each other. We achieve this goal by con-
ducting self-supervised contrastive learning with adversarial perturbations, during which
we use an attack that aims to create adversarial examples maximizing the contrastive
loss. We present the details in Section 3.2

6
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Figure 3.1: An illustration of our method. Examples of the color or character are consid-
ered a pair of positive examples. (a) Before contrastive learning: the original examples
can be represented in the vector space. (b) By using the contrastive loss as the objective,
we create adversarial examples, which are similar to the corresponding clean examples on
the word level. However, the representations of the adversarial examples may be distant
from their corresponding clean examples. (c) After contrastive learning: the represen-
tations of clean examples and their corresponding adversarial examples are closer, while
the distances between dissimilar examples become larger.

3.2 Self-Supervised Contrastive Learning with Adversarial
Perturbations

Following previous works on self-supervised contrastive learning [8, 11], we formulate
our learning objectives as follows. Consider Xi as the current input, we first obtain an
augmentation of Xi by transformation t(·):

Xi+n = t(Xi) (3.6)

We call Xi and Xi+n a pair of positive examples. All other examples in the same batch
are considered negative examples of Xi and Xi+n. We then have:

hi = f(Xi) (3.7)
hi+n = f(Xi+n) (3.8)
zi = g(hi) (3.9)

zi+n = g(hi+n) (3.10)

where hi,hi+n ∈ Rd are representations of Xi and Xi+n, respectively. And g(·) is another
MLP mapping h to z ∈ Rc.

In our experiments, we use the attack described in Section 3.3 or back-translation [15]
for augmentation t(·). The contrastive learning objective for Xi and Xi+n is:
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Figure 3.2: An illustration of one iteration in Geometry Attack for contrastive loss. Refer
to Section 3.3 for details.

`i = − log
exp(sim(zi, zi+n)/τ)∑2n

k=1 1k 6=0 exp(sim(zi, zi+k)/τ)
(3.11)

where τ is the temperature parameter, and sim(·, ·) is the similarity function. In this
paper, we use cosine similarity. Following [8], we conduct contrastive learning on z
instead of h to prevent the contrastive learning objective from removing information
useful for downstream tasks.

[8] shows that a large batch size helps achieve a high performance. That is because as
shown in 3.11, large batch size implies more dissimilar samples. Our experiments in sec-
tion 5.7 indicates the same conclusion. However, due to the large amount of parameters
of pre-trained language models such as BERT, using large batch size is very demanding
on computational resources. To solve this problem, we try to follow another framework
MoCo [9].

Consider X1, ..., Xm as the current batch and X ′1, ..., X
′
m as the augmentation ob-

tained by 3.6. MoCo uses encoder g(f(·)) and momemtum encoder g′(f ′(·)). For each
sample Xi, we then have:

zi = g(f(Xi)) (3.12)
z′i = g′(f ′(Xi)) (3.13)

To enlarge the amount of dissimilar samples, MoCo uses a queue whose size is independent
of batch size. In each iterator, z′1, ...,z′m are added to the queue, and at the same time, the
oldest m elements are removed from the queue. The structure of the MoCo framework is
shown in Figure 3.3. MoCo successfully reduces the memory requirement by maintaining
this queue, where each element qi is gradient-free. At the end of each iteration, MoCo
updates each parameter θ′j in g′(f ′(·)) with momentum:
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𝑧!

𝑋"# , 𝑋$# , ……
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similarity

contrastive loss

gradient

Figure 3.3: The structure of the MoCo framework [9]. MoCo maintains a queue q1, ..., qn,
where each element is gradient-free, to get rid of the limitation of batch size.

θ′j = kθj + (1− k)θ′j (3.14)

where θj is the corresponding parameter from g(f(·)) and k is the momentum coefficient.
The contrastive learning objective for each sample Xi is:

`i = − log
exp(sim(zi, z

′
i)/τ)∑n

j=1 exp(sim(zi, qj)/τ)
(3.15)

where n is the size of the queue, and τ is the temperature parameter.

By optimizing Equation 3.11 and 3.15, the goal is to maximize the similarity of
representations between similar pairs of examples, while minimizing the similarity of
representations between dissimilar examples. We use the geometry-inspired attack de-
scribed in Section 3.3 to create pairs of examples that are similar on the word level, but
at the same time are distant from each other in the representation space.

Figure 3.1 is an illustration of how we conduct self-supervised contrastive learning
with adversarial signals. In Figure 3.1 (a), we have the representations of the original
examples (circles) in the vector space. Each individual example is labeled by a different
color. Figure 3.1 (b) illustrates that the adversarial examples (triangles) are distant from
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This movie is interesting. This movie is interesting.

This movie is interesting.
attractive
amusing
……

This movie is amusing.

Figure 3.4: An simple example of attack.

the corresponding original examples in the vector space. In Figure 3.1 (c), clean examples
and their corresponding adversarial examples are closer to each other, while at the same
time distancing from other examples.

3.3 Geometry Attack for Contrastive Loss

We describe in this section how we create adversarial examples for contrastive loss during
self-supervised contrastive learning (see Figure 3.1 (b)). Inspired by [25], who leverage
geometry information to generate natural language adversarial examples for text clas-
sification tasks, we also use geometry information to create adversarial examples for
contrastive loss. Specifically, our attack creates adversarial examples which maximize
the contrastive loss in Equation 3.11 and 3.15.

The intuition of our attack is that we repeatedly replace words in the original texts
such that in each iteration, the replaced word increases the contrastive loss as much as
possible. To be specific, consider an example Xi, we then have:

1. Solve the gradients of `i with respect to input word embeddings of Xi. For words
tokenized into multiple tokens, we take the average of the gradients of the tokens.
In this step we want to understand which word has the most influence in computing
`i.

2. Suppose we choose word wt in step 1. In this step, we use a pre-trained BERT
to choose for wt the most probable candidates to replace it in the original texts.
We have the candidates set = {wt1 , wt2 , · · · , wtT }. Since the candidates selected by
BERT tend to be grammatically correct, rather than semantically similar, we follow
the work [26] and filter out semantically different words from the candidates set
by discarding candidate words of which the cosine similarity of their embeddings
between the embeddings of wt is below a threshold ε.

3. Solve the gradients of `i with respect to zi. In this step, we know to which direction
we should move zi to increase the contrastive loss `i. We have the gradient vector
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vzi = ∇zi`i.

4. Replace wt with words in the candidates set, then we have following text vectors:
{zi1 , zi2 , · · · , ziT }. We then have delta vector rij = zij − zi. The projection of
rij onto vzi is: pij =

rij ·vzi

||vzi ||
. We select the candidate word wtm , where m =

argmaxj ||pij ||. In other words, wtm results in the largest projection pim onto vzi .

5. Replace wt with wtm inXi, then we have zi ← zim . Repeat step 1-4 for N iterations,
where N is a hyperparameter of our method. We expect `i to increase in each
iteration.

Algorithm 1 Geometry Attack for Contrastive Loss
1: Input: Example Xi = {w1, w2, . . . , wL}, encoder f and MLP g
2: Output: Adversarial example X ′i
3: Initialize X ′i ← Xi, zi ← g(f(Xi))
4: for iter = 1 to N do
5: calculate `i using Equation 3.11
6: vzi ← ∇zi`i
7: E ← BertEmbeddings(X ′i) = {e′1, e′2, . . . , e′L}
8: G← ∇E`i = {g′1, g′2, . . . , g′L}
9: t← argmaxt ||g′t||

10: C ← BertForMaskedLM({w1, · · · , wt−1, [MASK], wt+1, · · · , wL})
11: C ← Filter(C) // construct candidates set C = {wt1 , wt2 , · · · , wtT }
12: for each wtj ∈ C, 1 ≤ j ≤ T do
13: X ′ij ← {w1, · · · , wt−1, wtj , wt+1, · · · , wL}
14: zij ← g(f(X ′ij ))
15: rij ← zij − zi
16: pij ←

rij ·vzi

||vzi ||
17: end for
18: m← argmaxj ||pij ||
19: X ′i ← X ′im
20: zi ← zim
21: end for

Figure 3.4 is a simple example of our attack. In step 1, we select the word interesting
which has the greatest impact on contrastive loss. In step 2, we create candidates set
[attractive, amusing, ......] for the word interesting. In step 3, 4 and 5, we choose
the candidate amusing to replace the word interesting. Figure 3.2 illustrates how we
use geometry information to choose a word from the candidates set, in which we have
two candidates and we prefer to choose the one with the larger projection. This attack
can be easily implemented in a batched fashion, making it possible for us to generate
adversarial examples on the fly during training. Algorithm 1 is the pseudocode of our
Geometry Attack for contrastive loss.
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3.4 Geometry Attack for Adversarial Training

To create adversarial examples on the fly during adversarial training, we apply the similar
idea described in Section 3.3, that is using geometry information. In adversarial learning,
our geometric attack can be more effective because at this point we have the information
of labels and are no longer under the condition of self-supervised settings. Algorithm 2
is the pseudocode of our Geometry Attack for adversarial attack.

Algorithm 2 Geometry Attack for Adversarial Training
1: Input: Example Xi = {w1, w2, . . . , wL}, encoder f and classifier g
2: Output: Adversarial example X ′i
3: Initialize X ′i ← Xi, zi ← f(Xi), ci ← g(zi)
4: calculate loss `i
5: E ← BertEmbeddings(X ′i) = {e′1, e′2, . . . , e′L}
6: G← ∇E`i = {g′1, g′2, . . . , g′L}
7: T ← indices of top-k ||g′t||
8: for each t ∈ T do
9: C ← BertForMaskedLM({w1, · · · , wt−1, [MASK], wt+1, · · · , wL})

10: C ← Filter(C) // construct candidates set C = {wt1 , wt2 , · · · , wtT }
11: bi ← DeepFool(zi, g)
12: vzi ← bi − zi
13: for each wtj ∈ C, 1 ≤ j ≤ T do
14: X ′ij ← {w1, · · · , wt−1, wtj , wt+1, · · · , wL}
15: zij ← f(X ′ij )
16: rij ← zij − zi
17: pij ←

rij ·vzi

||vzi ||
18: end for
19: m← argmaxj ||pij ||
20: X ′i ← X ′im
21: zi ← zim
22: if g(f(X ′i)) 6= g(f(Xi)) then
23: break
24: end if
25: end for

Compared to Algorithm 1, we make following changes to transfer the method de-
scribed in Section 3.3 to adversarial training settings.

MLP g(·): With label information, MLP g(·) in 3.9 becomes a classifier whose output
dimension depends on dataset statistics.

Terminate Condition: Due to the lack of label information, in self-supervised con-
trastive learning, we use the parameter N for a fixed number of attack iterations. In
adversarial training, this parameter is still retained, but with the label information, we
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can check whether the attack is successful at the end of each iteration, and end the loop
once the predicted label changes.

Word Selection: In self-supervised contrastive learning, we select a most important
word in each iteration, which consists of a forward calculation and a backward gradient
calculation. To further speed up, this step only be processed once before the attack loop
in adversarial training, and select the top-k most important words at once.

Direction vzi: Follows [25], we leverage the DeepFool algorithm [27] to get the nearest
point bi on the decision boundary and then compute direction vzi which originates from
the sentence vector zi to bi. This method is more efficient than the corresponding step
in self-supervised contrast learning because it utilizes label information.



Chapter 4

Experimental Details

4.1 Datasets

We apply our method on four classic text classification datasets: AG News, Yelp, IMDB,
and DBpedia. The statistics of each dataset is shown in Table 4.1. In our work, the
maximum sequence length is set to 128 for AG News and DBpedia, 256 for Yelp and
512 for IMDB. To save time during evaluating the model robustness against attacks, we
randomly select a part of the test examples in each dataset for evaluation. To be specific,
we select 1,000 samples from IMDB, 2,000 samples from Yelp, and 5,000 samples from
DBpedia. We use all 7,600 samples from the AG News test set for evaluation. When
training models, we randomly split the train data to train dataset and validation dataset
with the ratio of 0.8.

Dataset Labels Avg Len Train Test

AG’s News 4 44 120K 7.6K

IMDB 2 292 25K 25K

DBPedia 14 67 560K 70K

Yelp 2 177 560K 38K

Table 4.1: Statistics of the datasets.

AG’s News1 [28] Topic classification dataset with four types of news articles: World,
Sports, Business and Science/Technology.

IMDB2 [29] Binary sentiment classification dataset on positive and negative movie re-
views.

Yelp3 [28] Yelp review dataset for binary sentiment classification. Following [28], reviews
1https://huggingface.co/datasets/ag_news
2https://huggingface.co/datasets/imdb
3https://huggingface.co/datasets/yelp_polarity
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with star 1 and 2 are considered negative, and reviews with star 3 and 4 are considered
positive.

DBpedia4 [28] Topic classification dataset with 14 non-overlapping classes. Both content
and title fields are used in our work.

4.2 Evaluation Settings

To understand how our self-supervised learning scheme improves the robustness of pre-
trained language models, we conduct the following experiments on each downstream
tasks in our evaluation:

FT We fine tune a pretrained BERT model on the corresponding downstream dataset.

BTCL+FT We use back-translation as the transformation t(·) in Equation 3.6 for self-
supervised contrastive learning. We fine tune the model on the same dataset after con-
trastive learning.

ADCL(ADMoCo)+FT We first conduct contrastive learning using our Geometry At-
tack for contrastive loss (see Section 3.3) as transformation t(·). ADCL uses Equation
3.11 as contrastive loss, while ADMoCo uses Equation 3.15. The model is then fine-
tuned on the same dataset.

ADV We directly conduct adversarial training. Note that our adversarial training is
different from previous works [5, 2], which merely fine tune the model on a fixed number
of pre-generated adversarial examples. Our adversarial training scheme is similar to [4],
where adversarial examples are generated on the fly for each batch during training.

ADCL(ADMoCo)+ADV We first conduct adversarial contrastive learning. We then
do adversarial training on the same dataset.

4.2.1 Adversarial Attacks

We use four word substitution-based natural language adversarial attacks, TextFooler,
PWWS, BAE-R and Geometry Attack, to evaluate the robustness of the models. The
first three attacks are selected from recent work. We consider the attack speed and the
attack success rate when selecting attack algorithms.

TextFooler [26] TextFooler ranks the importance of measuring the decrease of true
class probability after deleting words from the original texts. It builds a candidate set by
leveraging the similarity of word embeddings. Finally, TextFooler selects the word which
gives the least confidence in the true class label.

4https://huggingface.co/datasets/dbpedia_14

https://huggingface.co/datasets/dbpedia_14
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PWWS [5] By computing word saliency scores, PWWS first creates adversarial examples
by first selecting words from the original texts for replacement. It then selects a word
from the synonym candidate set by considering the change of true class probability.

BAE-R [30] BAE-R obtain token importance scores by using the same technique as
TextFooler. The candidate set for replacement is obtained by leveraging a masked lan-
guage model. The attack selects the candidate word resulting in the maximum decrease
of true class probability. We note that BAE-R is weak, as observed before in [31].

Geometry Attack As described in Section 3.4. Instead of using word saliency scores as
in the original work [25], we solve gradients of loss for computing the word importance.
We apply the same strategy for creating the candidate set {wt1 , wt2 , · · · , wtT } as in [26]
instead of using a synonym candidate set. Refer to Section 3.4 for more details.

4.3 Implementation Details

In this thesis, we use PyTorch Lightning5 and HuggingFace Transformers6 in our im-
plementation. We use implementations from TextAttack7 for TextFooler, PWWS and
BAE-R. We use BERT as the encoder f(·), and the representation of the [CLS] symbol
in the last layer is used for h. g(·) is a two-layer MLP in self-supervised contrastive
learning, of which the output size c is 128. g(·) uses Tanh as activation function in the
output layer. We use FP16 in training step to reduce GPU memory usage, and use
FusedAdam from DeepSpeed8 as the optimizer. We enable DeepSpeed ZeRO Stage 2 to
further speed up training.

4.3.1 Contrastive Learning

For Geometry Attack for constrative loss, to reach a balance between attack success
rate and efficiency, the maximum number of iterations N is set to 10 for AG News,
DBpedia and Yelp, and 15 for IMDB dataset. We do not perturb words which were
already perturbed in previous iterations. For an example Xi = {w1, w2, . . . , wL}, at
most min{N, 0.2 · L} words can be perturbed. For each word wt, 1 ≤ t ≤ L, the upper
limit of the candidate set size T is set to 25. For the parameter τ in contrastive loss
function, we set it to 0.5 in Equation 3.11 and 0.7 in Equation 3.15. Due to the various
maximum lengths in downstream datasets and GPU memory limits, we use different
batch sizes for different datasets. Besides, due to the various size of train datasets and
time limits, we use different epochs for different datasets. More details are shown in table
4.2.

5https://www.pytorchlightning.ai/
6https://huggingface.co/transformers/
7https://textattack.readthedocs.io/en/latest/index.html
8https://www.deepspeed.ai/

https://www.pytorchlightning.ai/
https://huggingface.co/transformers/
https://textattack.readthedocs.io/en/latest/index.html
https://www.deepspeed.ai/
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All experiments on ADCL are conducted on 8 RTX TITAN, while all experiments
on ADMoCo are conducted on 8 RTX 2080Ti. Section 5.1 shows ADMoCo helps get
higher performance even though the batch size is much more smaller. In ADMoCo, the
momentum coefficient is set to 0.999 for all datasets, and the queue size is set to 32768
for AG News, DBpedia, 16384 for Yelp, and 4096 for IMDB.

Dataset Epochs
Batch Size GPUs

ADCL ADMoCo ADCL ADMoCo

AG’s News 15 1024 256 8 RTX TITAN 8 RTX 2080Ti

IMDB 15 192 32 8 RTX TITAN 8 RTX 2080Ti

DBPedia 5 1024 256 8 RTX TITAN 8 RTX 2080Ti

Yelp 5 448 128 8 RTX TITAN 8 RTX 2080Ti

Table 4.2: Epochs, batch size and hardware settings for ADCL and ADMoCo. Refer to
section 4.2 for more details about ADCL and ADMoCo.

4.3.2 Fine Tuning

During fine-tuning, we train the model for 2 epochs with 32 batch size for AG News
and DBpedia, 3 epochs with 32 batch size for Yelp, and 4 epochs with 16 batch size for
IMDB. The learning rate is set to 2e − 5 and is adjusted using linear scheduling. All
experiments are conducted on 2 RTX 2080Ti.

4.3.3 Adversarial training

For adversarial training, the number of training epochs is set to 3 with first half epoch
of fine tuning. We set the batch size to 32 for AG News, DBpedia and Yelp, 16 for
IMDB. The adversarial samples are generated on the fly in each batch during training.
To be detail, (1) our algorithm only generate adversarial samples for samples whose labels
are correctly classified, (2) all adversarial samples are used no matter they successfully
attack the model or not. For the Geometry Attack in adversarial training, at most
min{N, 0.4 · len(Xi)} words can be perturbed in an example where N is set to 50 for
all datasets. The upper limit of the candidate set size is set to 25. All experiments are
conducted on 2 RTX 2080Ti.



Chapter 5

Results

5.1 In-Domain Analysis

For the in-domain setting, we conduct adversarial/back-translation contrastive learning
and adversarial training/fine tuning on the same dataset. We then evaluate the robust-
ness of the models against the four attacks mentioned in Section 4.2.1. To measure the
robustness of each model, we report attack success rates and percent of words replaced
in the adversarial examples. To prevent the model accuracy on clean examples from
confounding the results, we define the success rate of an attack on all correctly classified
examples in the test set.

Table 5.1 shows the results our in-domain experiments. For each dataset, we use the
same perturbation budget across different settings. Note that although the replacement
rates vary across different settings of the same dataset, the perturbation budget for the
same attack is the same in these settings. By using the same perturbation budget,
we ensure that the success rates of the attacks provide us with a fair evaluation of
the robustness of the model [6, 5, 25]. We nevertheless show the replacement rates in
Table 5.1 for further reference.

A first observation from Table 5.1 is that merely fine tuning on clean examples results
in the most vulnerable model. For example, the success rate of the Geometry Attack for
AG News dataset is 86.2% in the FT setting. In contrast, for other settings, the success
rate of the Geometry Attack is at least 5.5% lower than for FT.

We can also see from Table 5.1 that contrastive learning improves the model robust-
ness. On the one hand, models of BTCL+FT and ADCL+FT are more robust than
FT alone. For instance, in the IMDB dataset, the success rate of the Geometry Attack
on the FT model is 98.7%, which is 6.4% higher than the success rate of 92.3% of the
BTCL+FT model. In most of the settings, ADCL+FT models are also more robust than
BTCL+FT models. The only exception is when we test DBpedia dataset against BAE-R
attack, where both BTCL+FT and ADCL+FT result in a success rate of 12.6%. We
argue that this might result from using only 5,000 examples from DBpedia as the test
set, while 70K examples are available.

18
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Dataset Method
Original Success Rate / Replaced (%)

Acc. (%) Geometry TextFooler PWWS BAE-R

AG News

FT 94.2 86.2/18.6 87.6/25.7 63.6/20.9 17.9/7.4

BTCL+FT 94.3 80.7/18.6 85.7/25.4 63.2/21.4 17.4/7.3

ADCL+FT 94.1 78.8/18.9 83.8/25.4 61.8/21.7 15.7/7.5

Yelp

FT 97.1 94.6/10.6 94.3/10.4 97.0/7.1 42.1/6.7

BTCL+FT 97.1 92.1/10.9 91.3/10.4 94.4/7.9 39.7/6.7

ADCL+FT 97.1 90.8/10.3 90.3/9.9 94.0/7.0 38.7/6.9

IMDB

FT 92.3 98.7/3.5 99.0/6.5 99.2/4.3 54.0/3.0

BTCL+FT 92.3 92.3/4.9 96.8/7.8 95.1/5.0 51.4/3.2

ADCL+FT 92.4 88.7/4.5 92.1/7.6 91.0/4.7 49.0/3.0

DBpedia

FT 99.2 79.6/17.8 79.3/23.2 46.7/16.2 14.3/13.3

BTCL+FT 99.2 77.5/18.8 76.4/23.1 44.8/18.1 12.6/13.8

ADCL+FT 99.1 75.9/17.1 75.7/22.0 43.5/17.6 12.6/11.2

Table 5.1: In-domain experimental results on fine-tuning settings. FT denotes fine-
tuning. BTCL denotes contrastive learning with back-translation. ADCL denotes con-
trastive learning with our Geometry Attack for contrastive loss. We use original accuracy,
attack success rate and replacement rate as the evaluation metric.

5.2 Geometry Attack on Adversarial Training

To further understand the quality and efficiency of our geometry attack, we first conduct
experiments on adversarial training settings. Table 5.2 shows our results, where we
observe that adversarial training significantly improves model robustness in all settings.
Besides, with adversarial training, the original accuracy of the model is still close to the
one with merely fine tuning as shown in Table 5.1. The only exception is Yelp dataset,
whose original accuracy in adversarial training settings is around 96%, while around
97% in fine tuning settings. That is because Yelp dataset is too large and we only do 1
epoch adversarial training. The results shows that our input space, word-level adversarial
training is effective, and that the Geometry Attack is suitable for adversarial training
with BERT.

Additionally, combining our self supervised contrastive learning with adversarial per-
turbations and adversarial training further improves the robustness. For instance, for the
IMDB dataset, the ADCL+ADV model is 1.8% more robust than the ADV model, when
both models are tested against the Geometry Attack (Success rates of Geometry attack:
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Dataset Method
Original Success Rate / Replaced (%)

Acc. (%) Geometry TextFooler PWWS BAE-R

AG News
ADV 94.4 20.7/20.5 25.1/29.3 26.1/22.3 10.7/7.7

ADCL+ADV 94.4 19.6/20.0 24.2/28.9 25.9/21.7 10.2/7.5

Yelp
ADV 96.2 38.8/12.8 52.4/17.3 62.7/11.3 22.2/8.8

ADCL+ADV 96.1 36.4/13.1 51.6/17.1 61.9/11.4 21.0/8.9

IMDB
ADV 92.0 51.4/7.4 75.3/12.7 79.1/9.3 35.1/3.6

ADCL+ADV 91.9 49.6/7.7 75.1/12.6 78.9/9.0 32.4/3.4

DBpedia
ADV 99.0 13.9/21.6 16.5/28.2 17.7/18.9 10.9/14.1

ADCL+ADV 99.0 13.1/20.3 15.7/29.8 17.3/18.6 10.8/14.6

Table 5.2: In-domain experimental results on adversarial training settings. ADV denotes
adversarial training. ADCL denotes contrastive learning with our Geometry Attack for
contrastive loss. We use original accuracy, attack success rate and replacement rate as
the evaluation metric.

ADCL+ADV: 49.6%, ADV: 51.4%). We have similar observations in other settings.

As mentioned in Section 3, different from most works, we generate adversarial samples
on the fly during adversarial training and contrastive learning. We conduct experiments
on AG News dataset with two different training strategy: (a) generate adversarial samples
on the fly for each batch; (b) generate adversarial samples in advance and use same
adversarial samples for each batch. As shown in Table 5.3, strategy (a) significantly
improves the robustness of adversarial models without affecting original accuracy. For
instance, the model training with strategy (a) is 34.6% more robust than the model
training with strategy (b), when both models are tested against the Geometry Attack.

Our Geometry Attack allows strategy (a) possible mainly by improving attack speed.
To show the efficiency of our Geometry attack, we randomly select 1000 samples from
each dataset, and compare attack speed between four attacks. As shown in Table 5.4,
the attack speed of our Geometry Attack is more than 4 times faster than TextFooler,
and around 10 times faster than PWWS and BAE-R on all four datasets.

5.3 MoCo Framework

Though the results in Section 5.1 and Section 5.2 shows that contrastive learning helps
improve the robustness of models, the high demand on computing resources makes con-
trastive learning seem too expensive. To further improve the performance and at the same
time reducing the burden of computing resources, we set another series experiments on
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Strategy
Original Success Rate / Replaced (%)

Acc. (%) Geometry TextFooler PWWS BAE-R

(a) on-the-fly 94.4 20.7/20.5 25.1/29.3 26.1/22.3 10.7/7.7

(b) pre-generated 94.2 55.3/17.1 59.4/22.6 42.0/17.4 16.5/7.3

Table 5.3: Performance comparison between two adversarial training strategy: (a) gen-
erating adversarial samples on the fly; (b) generating adversarial samples in advance. We
conduct experiments on AG News dataset.

Dataset Max Length
Attack Speed (s/sample)

Geometry TextFooler PWWS BAE-R

AG News 128 0.44 2.48 6.29 5.37

Yelp 256 1.16 4.86 10.27 16.03

IMDB 512 2.02 8.69 21.86 24.10

DBpedia 128 0.69 2.69 2.52 7.74

Table 5.4: Attack speed study. We conduct experiments on FT model for all datasets.
For each dataset, we use 1000 randomly selected samples.

MoCo Framework (refer to Section 3 for more details). We evaluate ADMoCo+FT, BT-
MoCo+FT and ADMoCo+ADV on all four datasets. We then compare these models
with ADCL+FT, BTCL+FT, ADCL+ADV respectively. The results are shown in Table
5.2.

The first observation from Table 5.2 is that applying MoCo framework in contrastive
learning improves the robustness of models. For example, the success rate of the Geom-
etry Attack for IMDB dataset drops from 88.7% to 84.2% in AD+FT setting, and from
49.6% to 48.7% in AD+ADV setting. The consistent results apply to other datasets and
other attacks. This observation is delightful conclusion in that with MoCo framework,
we can use much smaller batch size to get similar or even better performance to solve
the problem of high demands on computing resources.

We can see from Table 5.2 that using back-translation in contrastive learning with
MoCo framework doesn’t make improvement, and some results even become worse. For
instance, the success rate of the Geometry Attack for IMDB dataset increases from 92.3%
to 93.3% in BT+FT settings. The potential reason is that with back-translation, all
adversarial samples are generated in advance. That means we always use same adversarial
samples in each epoch, so that we cannot take full advantage of the queue maintained
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Dataset Method
Original Success Rate / Replaced (%)

Acc. (%) Geometry TextFooler PWWS BAE-R

AG News

ADCL+FT 94.1 78.8/18.9 83.8/25.4 61.8/21.7 15.7/7.5

ADMoCo+FT 94.3 76.5/19.1 80.7/26.7 55.9/22.6 14.1/7.5

BTCL+FT 94.3 80.7/18.6 85.7/25.4 63.2/21.4 17.4/7.3

BTMoCo+FT 94.4 80.6/18.1 84.6/24.6 63.1/20.9 17.7/7.5

ADCL+ADV 94.4 19.6/20.0 24.2/28.9 25.9/21.7 10.2/7.5

ADMoCo+ADV 94.4 18.7/20.6 23.5/29.3 24.7/22.2 9.7/7.2

Yelp

ADCL+FT 97.1 90.8/10.3 90.3/9.9 94.0/7.0 38.7/6.9

ADMoCo+FT 97.0 88.6/10.4 88.2/10.5 91.1/7.4 37.8/6.9

BTCL+FT 97.1 92.1/10.9 91.3/10.4 94.4/7.9 39.7/6.7

BTMoCo+FT 97.2 92.3/11.0 91.6/10.1 94.8/7.7 39.2/6.9

ADCL+ADV 96.1 36.4/13.1 51.6/17.1 61.9/11.4 21.0/8.9

ADMoCo+ADV 96.1 35.6/13.4 50.1/17.1 61.0/11.2 21.0/8.3

IMDB

ADCL+FT 92.4 88.7/4.5 92.1/7.6 91.0/4.7 49.0/3.0

ADMoCo+FT 92.4 84.2/3.7 87.8/8.7 87.8/5.1 48.0/2.3

BTCL+FT 92.3 92.3/4.9 96.8/7.8 95.1/5.0 51.4/3.2

BTMoCo+FT 92.5 93.3/4.5 96.6/7.4 95.1/4.4 52.0/3.3

ADCL+ADV 91.9 49.6/7.7 75.1/12.6 78.9/9.0 32.4/3.4

ADMoCo+ADV 91.9 48.7/8.1 74.4/12.4 77.6/9.1 31.8/3.5

DBpedia

ADCL+FT 99.1 75.9/17.1 75.7/22.0 43.5/17.6 12.6/11.2

ADMoCo+FT 99.2 73.6/18.2 74.5/22.9 42.6/17.6 11.6/12.8

BTCL+FT 99.2 77.5/18.8 76.4/23.1 44.8/18.1 12.6/13.8

BTMoCo+FT 99.1 77.4/18.9 76.8/22.8 45.1/18.1 13.0/13.1

ADCL+ADV 99.0 13.1/20.3 15.7/29.8 17.3/18.6 10.8/14.6

ADMoCo+ADV 99.0 12.4/20.1 14.8/28.6 16.2/18.2 10.1/13.8

Table 5.5: In-domain experimental results comparison between two different contrastive
learning framework mentioned in Section 3. We use original accuracy, attack success rate
and replacement rate as the evaluation metric.

by MoCo framework.
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Dataset Method
Original Success Rate / Replaced (%)

Acc. (%) Geometry TextFooler PWWS BAE-R

AG News

FT 94.2 86.2/18.6 87.6/25.7 63.6/20.9 17.9/7.4

BTCL+FT 94.3 80.7/18.6 85.7/25.4 63.2/21.4 17.4/7.3

ADCL+FT 94.1 78.8/18.9 83.8/25.4 61.8/21.7 15.7/7.5

ODCL+FT 94.2 81.0/19.3 85.5/25.8 62.0/21.6 17.6/7.8

ODMoCo+FT 94.1 79.2/18.7 84.0/25.9 60.4/21.9 16.3/7.5

IMDB

FT 92.3 98.7/3.5 99.0/6.5 99.2/4.3 54.0/3.0

BTCL+FT 92.3 92.3/4.9 96.8/7.8 95.1/5.0 51.4/3.2

ADCL+FT 92.4 88.7/4.5 92.1/7.6 91.0/4.7 49.0/3.0

ODCL+FT 92.1 93.0/3.7 96.2/7.5 95.1/4.4 52.3/3.1

ODMoCo+FT 92.5 92.3/4.4 95.7/8.6 94.5/5.3 50.1/3.1

Table 5.6: Out-of-domain experimental results. We use the DBpedia dataset as the out-
of-domain dataset for AG News and IMDB. ODCL denotes contrastive learning on the
DBpedia dataset with our Geometry Attack for contrastive loss 3.11. ODMoCo denotes
contrastive learning on the DBpedia dataset with our Geometry Attack for contrastive
loss 3.15.

5.4 Out-of-Domain Study

An advantage of our self-supervised contrastive learning with adversarial perturbations
is that we do not need labeled examples to improve the model robustness. This enables
us to extend our method to out-of-domain raw data, for example, Wikipedia articles,
which do not have labels.

In our experiments, we use the DBpedia dataset as the out-of-domain dataset for
the AG News and IMDB datasets, mainly because (1) Computational limits: while us-
ing larger datasets such as BookCorpus or Wikipedia might be more useful, conducting
self-supervised contrastive learning on these datasets exceeds the limits of our computa-
tional infrastructure; (2) The DBpedia dataset is several times larger than AG News and
IMDB. This should give us a glimpse of what it looks like when we scale self-supervised
contrastive learning with adversarial perturbations to even larger out-of-domain datasets;
(3) The DBpedia dataset (topic classification on Wikipedia) has different task and do-
main compared to the AG News dataset (news classification from a newspaper) and
IMDB dataset (sentiment classification on movie reviews). This discrepancy allows us to
understand how out-of-domain datasets could help.

Table 5.6 shows our results, where ODCL+FT refers to conducting self-supervised
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Dataset Attacker

Success Rate (%)

FT → ADCL+FT FT → ADMoCo+FT

ADCL+FT → FT ADMoCo+FT → FT

AG News

Geometry 32.4 44.3 30.2 62.3

TextFooler 25.5 33.4 19.7 55.0

BAE-R 29.0 39.6 28.3 50.4

PWWS 27.9 39.4 26.4 60.2

Yelp

Geometry 30.9 34.9 30.1 36.4

TextFooler 23.9 26.6 22.4 28.0

BAE-R 28.6 36.3 34.8 36.3

PWWS 29.6 36.8 37.4 41.5

IMDB

Geometry 35.4 43.9 38.2 41.4

TextFooler 22.1 24.3 22.1 25.2

BAE-R 19.6 26.3 24.7 26.0

PWWS 28.0 29.6 28.9 30.8

DBpedia

Geometry 40.5 45.0 34.6 52.2

TextFooler 32.6 35.4 27.5 42.8

BAE-R 47.1 50.6 55.3 58.8

PWWS 37.8 39.4 32.5 55.8

Table 5.7: Transferability of adversarial examples. FT → ADCL+FT: we generate
adversarial examples using FT models, then test ADCL+FT models on these adver-
sarial examples. The same applies to ADCL+FT → FT, FT → ADMoCo+FT and
ADMoCo+FT → FT.

contrastive learning with adversarial perturbations. We notice that ODCL+FT mod-
els are not as robust as BTCL+FT and ADCL+FT models. One delightable thing
is that when we use the MoCo framework for contrastive learning, which is shown
by ODMoCo+FT in Table 5.6, the robustness of the models is better than that of
BTCL+FT. To further exceed the performance of ADCL+FT models, we might need to
use much larger unlabeled raw datasets to obtain more improvements.

Nevertheless, we can still see that ODCL+FT and ODMoCo+FT models are more ro-
bust than FT models. For instance, for the IMDB dataset, the success rate of TextFooler
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Dataset
Distance (dpos/dneg/δ)

FT ADCL+FT ADV ADCL+ADV

AG News 2.4/3.8/1.4 2.0/4.2/2.2 0.6/3.8/3.2 0.6/4.6/4.2

Yelp 2.9/3.1/0.2 2.7/3.9/1.2 0.6/2.7/2.1 0.6/3.3/2.7

IMDB 2.9/3.6/0.7 2.2/3.8/1.6 0.5/2.5/2.0 0.5/3.3/2.9

DBpedia 2.8/4.8/2.0 2.6/5.1/2.5 0.4/4.8/4.4 0.4/5.1/4.7

Table 5.8: Vector space study under ADCL settings. For each setting, we evaluate
three metrics: (a) the average distance between positive pairs; (b) the average distance
between negative pairs; (c) the difference between (a) and (b).

decreases from 99.0% for FT models to 96.2% for ODCL+FT models and to 95.7% for
ODMoCo+FT models. This shows that our method can improve the model robustness
even if the dataset used for contrastive learning from a completely different domain.

5.5 Transferability of Adversarial Examples

To further understand how contrastive learning improves the model robustness, we study
the transferability of the adversarial examples under the settings of FT and ADCL+FT
(ADMoCo+FT). To be specific, we use FT (ADCL/ADMoCo+FT) models to gener-
ate adversarial examples on the test set of each individual dataset, and then test the
ADCL/ADMoCo+FT (FT) models on these adversarial examples. Table 5.7 shows
the results. We can see that adversarial examples generated by ADCL/ADMoCo+FT
models have much higher success rates on FT models. For example, for the AG News
dataset, the success rates increase by 11.9%, 7.9%, 10.6%, and 11.5% for Geometry At-
tack, TextFooler, BAE-R, and PWWS, respectively under ADCL+FT settings, and by
32.1%, 35.3%, 22.1%, and 33.8% under ADMoCo+FT settings. This demonstrates that
by self-supervised contrastive learning with adversarial perturbations, the models become
more robust against attacks.

5.6 Vector Space Study

By optimizing Equation 3.11, our method pulls the representations of the clean samples
and their corresponding adversarial samples closer in the vector space, while pushing
other different examples further. To validate this assumption, we study the representa-
tions of M clean examples of the AG News dataset and their corresponding adversarial
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Dataset
Distance (dpos/dneg/δ)

FT ADMoCo+FT ADV ADMoCo+ADV

AG News 2.4/3.9/1.5 1.8/4.0/2.2 0.7/4.1/3.4 0.7/4.4/3.7

Yelp 3.5/3.7/0.2 2.9/4.0/1.1 0.7/3.2/2.5 0.5/3.4/2.9

IMDB 3.0/3.7/0.7 2.3/3.8/1.5 0.6/3.4/2.8 0.6/3.8/3.2

DBpedia 2.8/4.8/2.0 2.3/5.1/2.6 0.4/4.9/4.5 0.4/5.2/4.8

Table 5.9: Vector space study under ADMoCo settings. For each setting, we evaluate
three metrics: (a) the average distance between positive pairs; (b) the average distance
between negative pairs; (c) the difference between (a) and (b).

examples in the vector space. We obtain the adversarial examples using the FT models
of each dataset.

Let v1,v2...vM and v′1,v′2...v′M be the vector representations of the clean examples
and corresponding adversarial samples, respectively. For each setting, we evaluate three
metrics:

(a) The average distance dpos between each of the positive pairs vi and v′i, where
1 ≤ i ≤M . Then we have dpos = 1

M

∑M
i=1 distance(vi,v

′
i).

(b) The average distance dneg between negative pairs, which is
dneg = 1

2(M−1)
∑M

i=1

∑M
j=1 1i 6=j(distance(vi,vj) + distance(vi,v′j)).

(c) The difference δ = dneg − dpos between (a) and (b).

Table 5.8 and Table 5.9 shows the results. We can see that our method (1) increases
the distance between negative pairs in all settings; (2) decreases the distance between
positive pairs in FT and ADCL(ADMoCo)+FT models, while the distances between
positive pairs barely change in ADV and ADCL(ADMoCo)+ADV models; (3) increases
δ in all settings. The above three observations validate our assumption in Section 3, and
further explain why our method increases the robustness of pretrained language models
against attacks.

To visualize the distance shown in Table 5.8 and Table 5.9, we randomly select 5
samples from DBpedia dataset and use FT model to generate corresponding adversarial
samples. We then get 10 vector representations using FT, ADMoCo+FT, ADV and
ADMoCo+ADV models respectively and project them into 2D dimension by T-SNE.
The results are shown in Figure 5.1, where circles with same colors represent pairs of
samples and corresponding adversarial samples. We can see from Figure 5.1 that with
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Figure 5.1: Latent space visualization. We randomly select 5 samples and their corre-
sponding adversarial samples from DBpedia dataset. We get 10 vector representations
using FT, ADMoCo+FT, ADV and ADMoCo+ADV models respectively and project
them into 2D dimension by T-SNE. We use same color for each pair of samples and
adversarial samples.

contrastive learning, the distance between a sample and its corresponding adversarial
sample becomes closer, which is consistent to the conclusion obtained from Table 5.9.

5.7 Effect of Batch Size

We conduct additional experiments to study the effect of batch size in ADCL settings.
We use a batch size of 64, 256, and 1024 under the setting of ADCL+FT for the AG
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Batch Size Original Acc. (%) Success (%) Replaced (%)

FT 94.2 86.2 18.6

64 94.3 84.7 19.1

256 94.3 80.7 18.9

1024 94.1 78.8 18.9

Table 5.10: Effect of batch size. We use the Geometry Attack to evaluate the robustness
of each model. The FT model is finetuned without contrastive learning.

Figure 5.2: Effect of queue length. We use the Geomtery Attack to evaluate the robust-
ness of each model.

News dataset. As is shown in Table 5.10, a larger batch size helps improve the model
robustness: the success rate of Geometry Attack decreases from 84.7% to 78.8% as
we increase the batch size from 64 to 1024. This is consistent with previous works of
contrastive learning [8, 9].

5.8 Effect of Queue Length

Though using MoCo framework in contrastive learning saves the computing resources
and at the same time gives higher performance as shown in Section 5.1, it is much harder
to implement the algorithm and to tune parameters. One parameter that significantly
affect the model performance is the size of queue length. We conduct a set of experiments
to study the effect of the queue length. We use 8192, 16384, 32768 and 65536 under the
setting of ADMoCo+FT for AG News dataset. The results are shown in Figure 5.2.
One observation is that with queue length 32768, the model performs best. The other
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observation is that the performance becomes better when increasing the queue length,
however the performance drops when the queue length is too large, which is different
from the result shown in [9], where large queue length means better model performance.
One possible reason is that in our work, the batch size is much smaller than the one
used in [9]. Under the condition of large queue length and small batch size, the queue
is updated slowly, that means there are too many old adversarial samples in the queue,
which leads to the result of poor performance.



Chapter 6

Conclusion and Future Work

In this thesis, we propose to improve the robustness of pretrained language models against
word substitution-based adversarial attacks by using self-supervised contrastive learning,
during which we also leverage adversarial perturbations. Our method is different from
previous works as we can improve model robustness without accessing annotated labels
of the examples. Furthermore, we also conduct word-level adversarial training on BERT
with an efficient attack. Our adversarial training is different from previous works in that
(1) our adversarial training is on the word level; (2) we generate adversarial examples on
the fly, instead of generating a fixed set of adversarial examples beforehand.

Experimental results on four datasets and four adversarial attacks show that our
method improves the model robustness. We also find that combining our method with
adversarial training results in better robustness than conducting adversarial training
alone. In the future, we plan to scale our method to even larger out-of-domain datasets
such as Wikipedia. We also plan to do more qualitative and quantitative analysis on the
quality of the adversarial samples generated by our Geometry Attack.

6.1 Ethical Considerations

While our method can improve the robustness of the pretrained language models against
adversarial attacks, we do not consider other shortcomings of such models in this thesis.
For example, a pretrained language model such might still be subject to certain biases
or prejudices of its training data even if it is now more robust to adversarial attacks.
Furthermore, additional training with our method on large scale raw data might even
strengthen such biases or prejudices. Therefore, one should still be careful when putting
such models into practical use.
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Appendix A

Appendix

A.1 Adversarial Examples of Geometry Attack for Con-
trastive Loss

In Table A.1, we show adversarial examples generated by our Geometry Attack for con-
trastive loss.

A-1



Appendix A-2

Original Zurich employees plead guilty in probe new york (reuters) - two senior
insurance underwriters at zurich american insurance co pleaded guilty
on tuesday to misdemeanors related to bid-rigging in the insurance
market.

Adversarial Zurich employees plead guilty in probe new york (reuters) - two senior
insurance agents at zurich american insurance co testified guilty on
tuesday to violations related to bid-rigging in the insurance market.

Original Allie & Me Allie & Me is a 1997 film directed by Michael Rymer. It
stars Lyndie Benson and Linda Darnell. It won an award at the 1997
RiverRun International Film Festival.

Adversarial Allie & Me Allie & Me is a 1997 theatre guide by Michael Rymer. It
stars Lyndie Benson and Linda Darnell. It won an award at the 1997
RiverRun International Film Festival.

Original It has a stunning lack of even rudimentary traces of realism . almost
every war movie cliche appears in this film and is done badly. on the
other hand , i wouldn’t have watched it to the end if it hadn’ t been so
remarkably bad that it amused me.

Adversarial It has a stunning lack of even joyless traces of realism . almost every
war movie cliche appears in this film and is done erroneously. on the
other hand , i wouldn’t have watched it to the end if it hadn’ t been so
remarkably bad that it flabbergasted me.

Original New report links reputed kingpin to murder fifteen years ago, Ameri-
can journalist Todd Smith was brutally beaten and executed after he
ventured into peru’s jungle to investigate links between shining path
guerrillas and the cocaine trade.

Adversarial New report links reputed suicide to murder fifteen years ago, American
journalist Todd Smith was brutally beaten and executed after he ven-
tured into peru’s jungle to learn links between shining path guerrillas
and the cocaine trade.

Original Black watch troops move into position the first units of a black watch
battlegroup are due to arrive today in their new positions south of
baghdad as tony blair indicated that more british troops may replace
them in the american - controlled zone before the end of the year.

Adversarial Black watch troops move into place the first units of a black watch op-
eration are due to arrive today in their new positions south of baghdad
as tony blair indicated that more british troops may replace them in
the american - controlled zone before the end of the year.

Table A.1: Adversarial samples generated by Geometry Attack for contrastive loss. Blue
words in the original examples are replaced by red words in the adversarial examples.
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