
Distributed

 Computing

Proving ownership of Bitcoin-like
UTXO’s using a zk-SNARK scheme

Semester Thesis

Aaron Menegalli-Boggelli

aaronme@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Tejaswi Nadahalli

Prof. Dr. Roger Wattenhofer

June 5, 2021

Abstract

We study the core principles behind zk-SNARK schemes using the Pinocchio pro-
tocol [1] as reference. Furthermore, the potential of such schemes is highlighted
by addressing the problem of proving ownership of some Bitcoin in a simplified
setting using the ZoKrates [2] toolbox.

i

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 1

2 Zero-knowledge Proofs 2

2.1 A short introduction to zero-knowledge proofs 2

3 Pinocchio Protocol 4

3.1 Polynomials . 4

3.1.1 Knowledge of a polynomial 5

3.1.2 Obscure evaluation . 6

3.1.3 Non-interactivity . 9

3.2 Quadratic Arithmetic Program 10

3.2.1 Transforming computation into polynomials 11

3.2.2 Arithemtic Circuits . 13

3.3 The protocol . 14

3.3.1 Setup phase . 14

3.3.2 Proof . 15

3.3.3 Verification . 15

3.3.4 Zero-knowledge . 16

4 ZoKrates 17

4.1 Writing circuits with ZoKrates 18

4.2 Running the protocol . 18

ii

Contents iii

5 Proving ownership of Bitcoin 20

5.1 Structure of the solution . 21

5.2 Proving knowledge of private key 22

5.3 Inclusion in a Merkle Tree . 23

6 Conclusions 25

Bibliography 26

A Merkle inclusion extension A-1

Chapter 1

Introduction

1.1 Motivation

The popularity and use of cryptocurrencies and blockchain technologies have
accelerated the research in this cryptography field in recent years. Complex
concepts that until a few years ago were merely theoretical begin now to see use
in real-life applications, driven by this big trend. A promising technology that
is having a big impact are so called zk-SNARK proofs (zero-knowledge Succinct
Non-interactive ARgument of Knowledge). They are one of the most recent
evolution of the concept of zero knowledge proofs, firstly introduced in 1989 in
[3] and they are considered by the community a key component for solving the
scalability problem that blockchains are currently facing, among having many
other applications.

1.2 Goal

The goal of this thesis is to understand what are the different components that
allow zk-SNARKs to achieve what they claim and how they are used to achieve
it. The Pinocchio Protocol [1] is considered the first proposed scheme to have a
functional practical implementation applicable to general computation and will
be our reference. Using ZoKrates [2], a toolbox for implementing zk-SNARKs
for a specified computation, we will try to use the Pinocchio protocol to prove
ownership of some Bitcoin without revealing the relevant UTXO’s to highlight a
potential problem that can be addressed using such a scheme.

1

Chapter 2

Zero-knowledge Proofs

2.1 A short introduction to zero-knowledge proofs

The term zero knowledge refers to those interactive proof systems that reveal
nothing more than the the correctness of the statement being proven. All we
learn from the proof is just a single bit: "statement true" or "statement false",
and nothing more. This is unusual, as often traditional proofs provide arguments
from which other information can be learned. For instance, when proving that
a graph is connected, we reveal some information about the graph as a part of
the arguments of the proof, like some nodes or edges of the connected path. The
notion of a zero-knowledge proof seems weird, if not even a bit contradictory. Let
us recall what’s in a classical proof. Statements which we want to assess being
true or false are represented as strings z ∈ {0, 1}∗ and a language L ⊆ {0, 1}∗
identifies those strings that represent a "valid" or "true" statement. A proof is
also modeled as a string x ∈ {0, 1}∗ and, together with a verification function φ
that takes as inputs z and x, assesses if z ∈ L. The point is that a classical proof
is just a fixed and deterministic string.

By introducing the elements of randomness and interaction between a prover
and a verifier, the authors in [3] were able to show that it is possible to con-
vince someone that a statement is true (with high confidence) without revealing
anything else. A proof isn’t a fixed string given to the verifier anymore, but an
interaction between two parties and randomness can be used by the verifier to
give "challenges" to the prover.

Informally, a proof qualifies as a zero-knowledge proof if it satisfies 3 condi-
tions:

• Completeness: It is possible to convince a verifier of a true statement

• Soundness: It is not possible to convinve a verifier of a false statement

• Zero-knowledge: A (possibly dishonest) verifier learns nothing more
than the single bit "true statement"/"false statement" after running the
protocol

2

2. Zero-knowledge Proofs 3

The introduction of this concept led to an explosion of work in this particular
field of cryptography that laid the foundations for the more recent developments
on zk-SNARKs schemes, which we investigate in this thesis.

Chapter 3

Pinocchio Protocol

zk-SNARK, an acronym firstly introduced in [4] stands for zero-knowledge Suc-
cinct Non-interactive ARgument of Knowledge and refers to a set of algorithms
through which a prover can convince a verifier of its knowledge about a certain
statement and the proof needed to achieve that is significantly smaller than the
statement itself, hence succinct. No interaction is required to occur between the
two parties, hence non-interactive, and knowledge about the statement cannot
be extracted by artefacts produced by the prover during the protocol, hence zero-
knowledge. The Pinocchio protocol, introduced in 2013 in [1], is the first scheme
to make use of such a system that is applicable in practice to prove correctness
of general computation. Its main goal was to provide a scheme for verifiable
computation (VC). VC enables the outsourcing of a computation by a client to a
potentially untrusted server whose output can be verified to be correct in much
less time than performing the computation itself. Pinocchio also suggests an
extension to make VC zero-knowledge, where the outsourced computation is a
function of two inputs, one assigned by the client and one by the server, and the
client learns nothing about the server input during verification.

In this chapter we examine the basic elements that enables such systems to
achieve what they claim and give explanations on why they are needed and what
their combinations enables.

3.1 Polynomials

Polynomials are at the core of every zk-SNARK protocol. They are a medium that
lends itself very well to carrying a proof of knowledge. In a zk-SNARK protocol
the computation is first transformed into sets of polynomials and convincing a
verifier of the correct execution of it is actually turned into convincing him of the
knowledge of a specific polynomial. Polynomials have various useful properties
and thanks to polynomial interpolation we can construct and shape them exactly
as we want them to be, allowing us to build encoding of other objects using them.

4

3. Pinocchio Protocol 5

3.1.1 Knowledge of a polynomial

Shared points

A nice property of polynomials is that two polynomials of degree at most d
have at most d points in common. It intuitively follows from equating them:
the solution of the equation are all the shared points and it can be rewritten
as equating another polynomial to zero, which corresponds to finding its roots.
Clearly, since there is no multiplication going on in the transformation the degree
of the resulting polynomial will be the largest of the degrees of the two polynomial
in question, as the following example clarifies:

a3x
3 + a2x

2 + a1x+ a0 = b2x
2 + b1x+ b0

a3x
3 + a2x

2 + a1x+ a0 − b2x2 − b1x− b0 = 0

From the Fundamental Theorem of Algebra we know that a polynomial of degree
d has exactly d complex roots, or, stated in another way, at most d real roots,
convincing ourselves of the initial statement. This property turns out to be useful
in convincing someone of the knowledge of a specific polynomial since, given a
random evaluation point, the probability that it is shared with another specific
polynomial is negligible - if we are dealing in a large space of evaluation points.

Roots

The fundamental element that is exploited in a zk-SNARK scheme is proving
that a polynomial has some specific roots. Since a polynomial can be represented
as the multiplication of monomials of degree 1:

p(x) = (x− r1)(x− r2)(x− r3)...

where r1, r2, r3, ... are its roots, in order to test p(x) on having roots ra and rb
we can construct another polynomial t(x) as follows:

t(x) = (x− ra)(x− rb)

and check if it divides p(x) without a remainder. In other words, if there exists
another polynomial h(x) such that h(x) = p(x)

t(x) , then it is true that ra and rb are
roots of p(x). t(x) is often called the target polynomial and if it divides p(x) its
factors are also cofactors of p(x).

Prover-verifier interaction

Let’s exploit the above presented properties and imagine that a prover knows a
polynomial p(x) and wants to convince a verifier that it has some specific roots.
As a first elementary scheme the verifier can proceed as follows:

3. Pinocchio Protocol 6

• construct the polynomial t(x) containing the monomials with the roots
claimed by the prover

• Draw an evaluation point s at random

• Evaluate t = t(s) and send to the prover s

The prover on its side should:

• Compute h(x) = p(x)
t(x)

• Evalutate p(x) and h(x) on s: p = p(s), h = h(s)

• Send to the verifier p and h

The verifer should check if p = h · t holds. Recall that the evaluation of a
multiplication of polynomials on a point x is equivalent to multyplying the single
evaluations of the single multiplicands polynomials on point x. Cool, if the prover
acted honestly, then the final check really tells the verifier that p(x) has in fact
the claimed roots, but can we be convinced of this just by checking that a simple
multiplication holds? Of course not. It can easily be cheated. Since the prover
knows s, he can also derive t = t(s), pick a random h and set p = ht and still
pass the verification equation. Clearly we need something to restrict the prover
from being able to do this.

3.1.2 Obscure evaluation

The problem is that the prover knows the evaluation point s and can consequently
derive t(s). We want to avoid this, but still let the prover evaluate its polyno-
mials on the randomly drawn evaluation point. Seems quite an hard task but
homomorphic encryption, as we will shortly introduce, will allow us to achieve
that.

Homomorphic encryption

Homomorphic encryption refers to those encryption schemes that not only en-
crypt data, but also allow computation to be done on the encrypted data. Basi-
cally, when an encryption scheme has an homomorphic property, it means that
specific arithmetic operations can be applied to the ciphertext, resulting in the
encryption of the same operation applied to the plaintext. There exists various
types of homomorphic encryptions, which differentiate themselves in what types
of arithmetic operation are allowed to be applied. In particular, fully homomor-
phic encryption allows any efficiently computable function f to be applied to the
ciphertext. To continue our study of the basic elements of the Pinocchio protocol

3. Pinocchio Protocol 7

and solve the problem that arose in the previous section we introduce a simple
encryption scheme that allow multiplication with an unencrypted value.

As many encryption scheme do, it will be based on the hardness of the discrete
logarithm problem (DLP).

Definition 3.1 (DLP). Let p and q be large primes such that q divides p−1, let
Gq = {1, g, g2, g3, ..., gq−1} be a set of powers of g mod p, forming cyclic group of
prime order q with generator p. Set y = gx mod p where x is a uniformly random
value in {0, 1, ..., q − 1}. Find x.

If we choose big enough p and q we make the problem in definition 3.1 suffi-
ciently hard for an encryption scheme to be secure. Encrypting a value x form
the set {0, 1, ..., q−1} is then just raising the generator to the power of x modulo
p:

E(x) = gx mod p

Since we are not bothered with formality but more with giving the intuition
behind the concept, we will drop the modulo p in the rest of this chapter and
assume we are working with values of the group. Multiplying a ciphertext with
an unencrypted value c is just exponentiating the encryption to c:

(gx)c = gcx

We can now make use of such encryption to evaluate a polynomial on an
encrypted point by knowing the encryptions of every power of the evaluation
point up to the degree of the polynomial. For the evaluation point s and the
polynomial p(x) = a2x

2+ a1x+ a0, by knowing (g1, gs, gs
2
), we can compute the

encrypted evaluation of p(s) through exponentiation with its coefficients:

E(p(s)) =
(
gs

2
)a2
· (gs)a1 ·

(
g1
)a0 = ga2s

2+a1s+a0 = gp(s)

Going back to our first elementary scheme, we have now a way of hiding the
evaluation point from the prover but still letting him do computation with it
thanks to the homomorphic property of the proposed encryption. For a claimed
polynomial of degree d, the scheme can be adapted as follows:

• Verifier

– Construct target polynomial t(x) with the claimed roots

– Draw random evaluation point s

– Evaluate t(s) and send to the prover the encryptions g, gs, ..., gsd

• Prover

– Compute h(x) = p(x)
t(x)

3. Pinocchio Protocol 8

– Evaluate p = gp(s), h = gh(s) and return them to the verifier

• Verifier

– Check the if the following equation holds: p = ht(s)

– This is equivalent to the multiplication check but in encrypted space:

gp(s) =
(
gh(s)

)t(s)
⇐⇒ gp(s) = gh(s)t(s)

The prover is now restricted from forging fake p and h like before since he doesn’t
know the secret evaluation point s and can’t therefore derive t(s). Still the scheme
is not yet uncheatable. Observe that nothing prevents the prover from computing
gt(s), as he is in possession of the target polynomial t(x) and the encryptions of the
powers of the evaluation point gs, gs2 , ..., gsd . This is unacceptable as it enables
him to use another workaround and fool the protocol. He can just pick a random
r, encrypt it as gr and set p = (gt(s))r and h = gr. The verification equation will
pass. Clearly we must add another piece to the puzzle, something that restrict
the prover in returning powers of the provided encryptions and not something
picked at random like r.

Knowledge of exponent assumption

What we want to achieve is to obligate the prover to return only an exponentia-
tion of the provided encrypted values and nothing else, which means being able
to tell if the he returned another random encrypted value, like gr in the previous
example. The Knowledge of Exponent Assumption (KoEA) is a widely known
cryptographic assumption often used to prove the security of cryptographic pro-
tocols. It was introduced by Damgård in [5]. Informally, it states that in a prime
order group G with generator g, given as input ga, the only way to output another
group value and its exponentiation with a, namely (gr, (gr)a), for a picked r, is
to compute gr and then (ga)r. There is no other way to do it. Without losing
ourselves in the details on why this is guaranteed, let’s see how it is exploited.

Assuming that the KoEA holds, requiring the prover to return only an ex-
ponentiation of a provided value ga, and nothing else, is accomplished by the
Pinocchio protocol in the following way: the pair (ga, gαa), for a randomly drawn
α that is kept as a secret, is sent to the prover, which is then asked to re-
turn the same exponentiation of both elements with a value c of its choice, as
((ga)c, (gαa)c). The following verification:

(gαa)c = ((ga)c)α

which requires the knowledge of the secret α, holds if and only if the prover
acted accordingly. Since the prover isn’t in possession of the secret α, there is no

3. Pinocchio Protocol 9

other way for him to fulfill the verification equation other than responding with
exponentiating the two received values with the same exponent.

We have now a way to make the proposed elementary scheme invulnerable
against the demonstrated cheats. In addition to sending to the prover the en-
crypted powers of the secret evaluation point, the verifier randomly samples a
secret value α and also sends gα, gαs, gαs2 , ..., gαsd . With these values the prover
can calculate gαp(s) and the verifier can perform the verification on the pro-
vided gp(s), ensuring that no other values was used to construct it other than
g, gs, gs

2
, ..., gs

d .

3.1.3 Non-interactivity

So far we studied the key basic elements needed to construct a robust scheme that
allow to prove knowledge of a polynomial with some specified roots, but which
required interactivity between the two parties. In this section we explain what
are the needed principles to get rid of this requirement and make the scheme non-
interactive. It is clear that in the proposed interactive setting only the verifier
and nobody else should trust the proof provided by the prover. If the verifier
forwards the received proof to someone else, the latter cannot exclude the verifier
shared the secret parameters with the prover or that the verifier himself forged a
fake proof. A different interaction for every user would be required to convince
many parties simultaneously, but this is of course inefficient.

If we can make the secret parameters (s, α) reusable by many verifiers, then
a single proof, using just those parameters, would be enough to convince anyone.
This means that, in order for anyone to be able to perform the verification of
the proof, the parameters should be made public. Obviously, due to the possible
cheats presented earlier, we can’t let this happen. The clear answer is to first
encrypt them and then make them public, making them available to anyone but
impossible to use to forge a malicious proof or to tamper with. With this comes
a problem though. Recall that the verification requires to multiply in encrypted
space the secret parameters with the received values from the prover, but this is
no more possible if s and α aren’t known anymore. We therefore need a way to
allow multiplication of two encrypted values.

Pairing-based cryptography

Pairing based cryptography is what allows us to solve the above presented prob-
lem and achieve non-interactivity. An encryption scheme based on bilinear pair-
ings achieves the desired property of being homomorphic under the multiplication
operation, in addition to the addition operation. This is referred to as double
homomorphic encryption. Informally a bilinear pairing on (G,GT) is a map:

e : G×G 7→ GT

3. Pinocchio Protocol 10

where G and GT are cyclic group of the same order, and it satisfies some specific
conditions. We won’t present the single conditions here since it is not useful to
introduce these formalities to understand the key point behind why this concept
is fundamental to the scheme, but we highlight what is the important property
which is exploited. Basically, the pairing function e allows to represent the en-
crypted multiplication of two group values in a target group GT , taking as input
they’re encrypted values in the original group G:

e(ga, gb) = e(g, g)ab

The output of e can be interpreted as the encrypted multiplication of the two
encrypted inputs, but under a different generator. Furthermore it still maintain
the homomorphic property for the addition operation:

e(ga, gb) · e(gc, gd) = e(g, g)ab+cd

Pairings are constructed using elliptic curves groups and there are specific curves
created to efficiently support them, but we won’t explore this field and stick to
our simple example. Using pairing based cryptography allow now any verifier to
perform the verification stage with the encrypted secret parameters:

e(gp(s), g) = e(gt(s), gh(s))

e(gαp(s), g) = e(gp(s), gα)

Trusted Party Setup and CRS

Protocols like Pinocchio need to have a so called trusted party setup. We need to
have a third party that everyone trust to generate the secret parameters, encrypt
them and then, importantly, erase them. The secret parameters, once generated,
are referred to as toxic waste, as it is really important that they are removed once
all the other element are derived, such that the risk of the prover getting access
to them is zero. At the beginning of the protocol, in what is called the setup
phase, a trusted party randomly samples the secret parameters and construct the
public evaluation key, containing the elements needed by the prover to construct
the proof, and a public verification key, containing the elements needed to verify
a proof. These two keys are glued together in the so called Common Reference
String (CRS). Afterwards the trusted party erase the sampled parameters.

3.2 Quadratic Arithmetic Program

In section 3.1 we introduced the basic building blocks of a zk-SNARK protocol
and explained, using a simple example scheme, how they operate to enable a
prover to convince a verifier of its knowledge of a polynomial with some specified

3. Pinocchio Protocol 11

roots. We now move closer to the real Pinocchio protocol introducing Quadratic
Arithmetic Programs (QAPs), which essentially are systems for encoding a gen-
eral computation with polynomials and that can be used to build a VC protocol
using the techniques presented in the previous section.

3.2.1 Transforming computation into polynomials

A general computation function F can be broken down into a set of elementary
operations of the form:

l operator r = o

where l, r, o encode the left operand value, right operand value, the output value
and operator a mathematical operation like addition or multiplication. Let’s give
a simple example. The following computation:

y = 3x2 + 2x+ 1

can be expressed as the following set of elementary operations:

1 : x · x = out1

2 : 3 · out1 = out2

3 : 2 · x = out3

4 : out2 + out3 = out4

5 : out4 + 1 = y

Knowing an input and the corresponding output for the presented compu-
tation means being able to assign values to the different variables of the set of
elementary operations such that all the equations hold. The idea now is to con-
struct three polynomials l(x), r(x) and o(x) through which, in a way that will
be explained later, we can assign values to the different variables in the different
operations.

To better explain what are we aiming at let’s consider only one elementary
operation, for instance:

1 : v1 · v2 = v3

What we want to achieve is that l(x), r(x) and o(x) evaluate to the value assigned
to the variables present in this specific operation at the evaluation point x = 1
(the index of the operation), namely, if v1 = 1, v2 = 2, v3 = 3, then l(1) =
1, r(1) = 2, o(1) = 3, which make the following equation holds:

l(1) · r(1) = o(1)

⇐⇒ l(1) · r(1)− o(1) = 0

3. Pinocchio Protocol 12

If we create construction rules for polynomials that achieve this, we can check
if, with the assigned values, operation 1 holds by verifying that the polynomial

p(x) = l(x) · r(x)− o(x)

has a root r1 at x = 1.

Imagine now that we construct the three polynomials l(x), r(x) and o(x) such
that this holds for all the elementary operations, i.e the operation at index 2 will
be encoded with l(2), r(2), o(2) and so on for all the d operations. Furthermore
assume that all the operations use multiplication as the operator. Then, to verify
that every operation holds, we can construct a target polynomial in the following
way:

t(x) =
d∏
j=1

(x− j)

and check if it divides p(x). Doing this, as introduced in the previous section,
verifies that all the operation indices are roots of the polynomial p(x), which in
turn, due to the rules with which the polynomials were constructed, verifies that
all operations hold, meaning that the assigned values are correct for the given
computation. Note that we didn’t explained the rules according to which one
should construct l(x), r(x) and o(x) yet, but we just outlined what is the goal
of such construction. If we can accomplish this, then, like it was demonstrated,
we can turn the proving of a correct computation for a given input/output to
proving that a polynomial has some specific roots. This is the ultimate goal of
a QAP, because we can use all the techniques presented in the previous section
and achieve a protocol for proving VC. As mentioned, all the operations should
be multiplications, but this is not a problem, since, as we will see, the way we
construct l(x), r(x) and o(x) assumes a slightly different elementary operation
structure than the presented one, which uses multiplication and encodes addition
in another way.

Construction of operand polynomials

For every variable vk (for k ∈ [n]) present in the set of elementary operations we
construct three polynomials lvk(x), rvk(x) and ovk(x) as follows:

lvk(j) =

{
1 if vk present at operation j as left operand
0 otherwise

for j = 1 . . . d, for d operations. The same applies for rvk(x) and ovk(x) if vk
is present as right operand or output. Observe the important following point:
with such a construction, assigning a value ck to a variable vk, in all operations
where vk is present as a left operand, is equivalent to multiplying ck with the
polynomial: cklvk(x). The same applies for assigning variables present as right
operands or as outputs, using rvk(x) and ovk(x).

3. Pinocchio Protocol 13

Using such constructed polynomials it is possible to add any number of present
variables in a single operand for an operation. We simply add together all the
variable polynomials (with assigned value), getting the final operand polynomial:

L(x) = l0(x) +

n∑
k=1

ck · lvk(x)

Similarly for R(x) and O(x). This enables to represent an elementary opera-
tion as follows:

(v1 + v2 + ...+ vn) · (v1 + v2 + ...+ vn) = (v1 + v2 + ...+ vn)

and consequently to encode addition. Any constant will be encoded using vari-
ables polynomials l0(x), r0(x) and o0(x), which won’t have values assignments as
they "hardcode" constants in every operation. With values {c1, . . . , cn} assigned
to the variables we have:

(
l0(x) +

n∑
k=1

cklvk(x)

)
·

(
r0(x) +

n∑
k=1

ckrvk(x)

)
=

(
o0(x) +

n∑
k=1

ckovk(x)

)

Finally, this is equivalent to:

L(x) ·R(x) = O(x)

and if all the variables were assigned in such a way that all the elementary
operations encoding the computation hold, again, meaning that the computation
was carried out correctly, then there exists a polynomial h(x) such that:

H(x) =
L(x) ·R(x)−O(x)

t(x)

for t(x) =
∏d
j=1(x − j), or, in other words, p(x) has all the roots corresponding

to the factors of t(x).

3.2.2 Arithemtic Circuits

We introduced the notion of QAP trying to illustrate the intuition behind the
construction of the polynomials composing it. More formally, as defined in [1],
a QAP over a field F is a set of three polynomials V = {vk(x)}, W = {wk(x)}
and Y = {yk(x)}, for {k = 0 . . . n} and a target polynomial t(x). Note that
vk(x), wk(x) and yk(x) are just the lvk(x), rvk(x) and ovk(x) presented above.
Their construction is explained using the notion of arithmetic circuit. Following
their explanation an arithmetic circuit is a graph whose nodes represent either an

3. Pinocchio Protocol 14

addition or a multiplication gate (modulo p) with two inputs and one output and
its edges represent input/output values for all the gates. There are input edges
that represent the input values of the circuit and an output edge that represent
the output value of the circuit.

Encoding the circuit into polynomials vk(x), wk(x) and yk(x) is illustrated
as follows: For each multiplication gate g in the circuit a root rg ∈ F is picked
and the target polynomial is then defined as t(x) =

∏
g(x − rg). An index

k ∈ [n] = {1 . . . n} is associated with every input of the circiut and every output
of a multiplication gate. These are the variables of the elementary operations set
of before. As stated "addition gates will be compressed into their contribution
to the multiplication gates", like demonstrated before. Polynomials in V, W
and Y are then used to encode the left and right input and the output of a
gate g. More specifically, if wire k is a left input to a gate g, then vk(rg) = 1,
otherwise vk(rg) = 0, and similarly for the polynomials in W and Y for the
right input and the output. With some intuition it can be recognized that this
construction achieves the properties presented in the previous section and indeed
the polynomial p(x) is constructed as:

p(x) =

(
v0(x) +

n∑
k=1

ckvk(x)

)
·

(
w0(x) +

n∑
k=1

ckwk(x)

)
−

(
y0(x) +

n∑
k=1

ckyk(x)

)

for assigned values (c1, . . . , cn).

3.3 The protocol

We have now a way to construct a polynomial p(x) in such a way that the
target polynomial t(x) divides it if and only if the assigned values {c1, . . . , cn}
are a correct assignment for the encoded computation. Therefore, by using the
elements presented in the first section of this chapter, a protocol for VC can be
created. In this section we present a simplified version of the Pinocchio protocol.

3.3.1 Setup phase

For a function F (the computation to be proven) a QAP is constructed, resulting
in n variables and d operations. Using the polynomials from the QAP, a trusted
party randomly samples s, α, and construct the public evaluation key and the
public verification key:

• EK:
(
{gvk(s), gwk(s), gyk(s), gαvk(s), gαwk(s), gαyk(s)}k∈[n], {gs

j}j∈[d]
)

• VK:
(
gα, gt(s)

)

3. Pinocchio Protocol 15

Note that all the variable polynomials are present also in their version multiplied
with the α element.

3.3.2 Proof

The prover uses its input/output variable assignments to compute the corre-
sponding witness. A witness is an assignment to all the variables of a QAP;
basically the variables obtained from transforming the computation in a set of
elementary operations, or an arithmetic circuit. A valid witness, derived from a
correct assignment of input/output variables, will generate a valid proof that pass
the verification checks. More specifically, the prover, in possess of the witness
{c1, . . . , cn} proceeds as follows:

• constructs the operand polynomial V (x) = v0(x)+
∑n

k=1 ckvk(x), and sim-
ilarly W (x) and Y (x). He then derives

H(x) =
V (x) ·W (x)− Y (x)

t(x)

• computes gH(s) using {gsj}j∈[d]

• assigns the witness to the encrypted evaluation of variable polynomials

gV (s) =
n∏
k=1

(
gvk(s)

)ck
and similarly gW (s), gY (s), gαV (s), gαW (s), gαY (s)

The proof is then:
(
gV (s), gW (s), gY (s), gαV (s), gαW (s), gαY (s), gH(s)

)
3.3.3 Verification

The proof is parsed as
(
gV , gW , gY , gV

′
, gW

′
, gY

′
, gH

)
. Then two checks are per-

formed, one to assess the correctness of the witness and one to restrict the prover
in using the encrypted evaluated polynomials provided in the evaluation key:

e(gV , gW) = e(gt(s), gH) · e(gY , g)

e(gV , gα) = e(gV
′
, g)

, and similarly for gW and gY .

3. Pinocchio Protocol 16

3.3.4 Zero-knowledge

The protocol that was presented until now works for verifiable computation, but
it is not completely zero-knowledge yet. It is true that the verifier doesn’t learn
the witness assigned by a prover in the normal procedure of the protocol, but
still, since the received values are the direct encryption of the witness assigned to
the variable polynomials, knowledge can be extracted from them. A verifier could
for example brute-force different witnesses until he obtains the same values as the
received ones and reconstruct the assigned witness. For true zero-knowledge ran-
domness is needed. In fact, to make the scheme zero-knowledge, a modification
that involves the prover to sample a random parameter δ and modify its proof
with it is required. Some other elements must be included in the evaluation key
for this modification to work but we won’t present the details here as they are
quite tedious and not purposeful to the overall understanding.

Chapter 4

ZoKrates

There exists various practical implementations of different zk-SNARK proving
schemes, the most famous one probably being libsanrk, written in C++, among
a few others ones. This library provides implementation of a few proving schemes,
including Pinocchio, starting from a Rank-1 Constraint System (R1CS). A R1CS
is another mean of representing a computation as a set of elementary operations,
or constraints, as they have to be satisfied in order for the input witness to be
valid for the encoded computation. They are very similar to arithmetic circuits
and in fact they can be very easily reduced to them. Consequently, in order to be
able to construct a proof for an arbitrary computation of choice, one must be able
to work out the transformation and come up with a R1CS that correctly encodes
it. In chapter 3 we presented how zk-SNARK protocols work starting from an
arithmetic circuit without dwelling on how this representation is achieved, which
is not in the objectives of this thesis. Even though libsnark has libraries that
support you in this task by letting you building R1CS in a modular fashion out
of classes that implement elementary computations, it is still quite an involved
process, especially considered the level of understanding needed to execute such
step.

ZoKrates is a library that allows to specify a computation pretty much like
in an ordinary programming language and takes care of transforming it into a
correct R1CS. It then gives the possibility to choose between different backend
libraries (like libsnark) to transform the obtained R1CS into a QAP and to
run a zk-SNARK protocol supported by the backend library. Its main purpose
is to enable the deployment of zk-SNARK proofs on the Ethereum blockchain,
contributing to the development of more complex decentralized applications with
less cost (in terms of fees) and more privacy.

ZoKrates was chosen as the tool to experiment with the Pinocchio protocol
as it offers the more direct access to it, taking care of writing circuits for us.

17

4. ZoKrates 18

4.1 Writing circuits with ZoKrates

In the following we will illustrate how we write a ZoKrates program, which is
the starting point from which a R1CS is constructed. As already mentioned it
is really similar to an ordinary programming language and the idea is that the
program itself is the computation for which you want a proof of correct execution
to be constructed. For this reason it is not that complicated and there is not much
to explain, except for an important detail regarding input variables.

A ZoKrates program

A simple ZoKrates program is listed in 4.1. Input variables, declared as the main
function arguments, can be specified to be private. Private variables are assigned
by the prover during the proof generation stage and the verifier learns nothing
about them besides the output of the computation performed. Public variables,
declared without the specification "private", instead don’t need to remain secret
and the verifier learns what the prover assigned to them. Output variables are
declared after the right arrow.

Listing 4.1: Simple ZoKrates program
1 def main(private field x, field y) -> field:
2
3 field z = 3*x + 7*y - 2
4
5 return z

Generating the inputs

Often the most involved part of using ZoKrates is not so much writing the pro-
gram itself, but more computing a correct input assignment for it. Of course this
is not the case for the listed example program as the computation is trivial and
a proof of correct computation makes not much sense on it. In practice though,
zk-SNARK schemes are used for more complex computations, like a blockchain
state transition function, or, in the case of outsourcing computation to a cloud
server, a quite complex computation that can not be easily carried out on a
mobile device.

4.2 Running the protocol

After ZoKrates compiles the program and construct a R1CS out of it, a chosen
protocol supported by the chosen backend library can be run. Running a protocol

4. ZoKrates 19

is intuitive as it follows the steps outlined in chapter 3. First we should run the
setup phase: The QAP is generated and the proving (evaluation) and verification
keys are constructed. By specifying the values we want to assign to the input
variables ZoKrates let us (impersonating a prover) compute the witness. Using
the witness and the proving key we can then run the proof generation stage where
the proof file is generated. Finally the verification step can be preformed using
the proof file generated by a prover and the verification key.

Chapter 5

Proving ownership of Bitcoin

Finally, to put a zk-SNARK scheme into action we tackle the originally posed
problem. We emphasize right away that ours is more of a mental exercise to
show an example of an interesting problem that can potentially be addressed
using these types of protocols and by no means intend to deliver a practically
implementable solution. In fact we will simplify parts of the problem and use
procedures that have the same purpose, but are actually implemented differently
in the real world.

We want to prove ownership of some Bitcoin without revealing the public
key that can spend them. In the Bitcoin setting, unspent Bitcoin are stored
as Unspent Transaction Outputs (UTXO), which contain the hash of the public
key corresponding to the private key that can unlock the UTXO and spend the
stored Bitcoin. Furthermore, in a second phase, we will also extend the problem
to not disclosing which is the UTXO that is controlled, and really just prove the
statement "I can spend at least x Bitcoin", without revealing more information.
An interesting scenario where this could be useful is, for instance, when more
parties are trying to to join together in a trustless setting, in order to create a
CoinJoin transaction and everybody has to prove ownership of some Bitcoin, but
want to keep privacy on the address and on the amount.

Let’s say a user wants to prove that he owns at least 1 bitcoin. To simplify
the situation let’s consider the simple case where his amount of Bitcoin is stored
in a single UTXO. Then to convince someone of this he must prove three things:

1. He controls the private key that can spend that UTXO.

2. The UTXO is not already spent and it is part of the current UTXO set,
which contains all the currently spendable Bitcoin.

3. The UTXO contains at least 1 bitcoin.

We are particularly interested in the first point as it represents a challenge
that can be well addressed by mean of a zero-knowledge proof since we don’t want
to reveal the public key. The bitcoin protocol hashes the public key to facilitate

20

5. Proving ownership of Bitcoin 21

manual transcription and as a prevention in case in the future it should be possible
to reconstruct the private key from public key data due to an unanticipated
problem, but it can also be beneficial for privacy reasons.

5.1 Structure of the solution

We use ZoKrates to devise a proof of the mentioned three points in a simpli-
fied setting, leveraging the zero-knowledge property of a zk-SNARK scheme like
Pinocchio. As explained, we must come up with a ZoKrates program from which
a R1CS and then QAP can be built. To address the first point we design a
program that takes as inputs a public key, a signature on a message and the
message itself, as well as a hash, which should be the hash of the public key. It
then verifies the signature validity with the given public key and that hashing
the latter yields the input hash. The public key will be privately assigned from
the prover and the verification stage will use the generated proof to check that
indeed the assigned values pass the program assertions, proving the knowledge
of the private key by the prover. This can be concluded since the program

• verifies that hashing the input public key corresponds to the input public
key hash

• verifies the signed message with the input public key, which links the public
key with the private key

To address the second and the third point we allow ourselves to propose a
quite simplistic strategy. Assuming access to the current valid UTXO set, we
imagine to make use of a Merkle Tree to represent it. A Merkle Tree is a tree
whose leaves are hashes of some data set and the value of every parent node up
until the root is the hash of the concatenation of its two children values. It is
used to represent a data set in a very efficient way and to ensure its integrity
since the modification of something in the data set will result in a different root
hash. Proving that some data is included in the tree is quite efficient: following
the path from the leaf corresponding to that data up to the root we provide the
value of every sibling node needed to compute the value of the parent node. If
the final computed value corresponds to the root hash the data is in the tree.
Specifically, we build a Merkle Tree with public key hashes belonging to single
UTXOs whose stored amount of Bitcoin is at least 1. We assume that such a
Merkle tree over UTXOs of at least 1 bitcoin is available to both prover and
verifier through, for instance, a standard shared algorithm that can construct it
after every new block added to the blockchain. We expand our program design
by adding an inclusion proof for the input hash in the proposed Merkle Tree. To
address the mentioned extension to the problem and keep the controlled UTXO
secret, we now hide the input public key hash and also the input arguments for

5. Proving ownership of Bitcoin 22

the Merkle Tree inclusion proof, such that the leaf corresponding to our UTXO
also remains secret.

We present the details of this design in the next sections.

5.2 Proving knowledge of private key

We first display how we address the proof of knowledge of a private key given
the hash of the corresponding public key. We combine proving knowledge of
an hash preimage, which is in fact a typical problem that poses itself very well
to the zero-knowledge setting and it is often used as a demonstrative example,
with the verification of a signature on a message. Note that in the actual bit-
coin implementation ECDSA with the secp256k1 curve parameters is used as
the signing algorithm and Hash160, which involves SHA256 hashing followed by
a RIPEMD-160 hash, is used as an hash algorithm. In the ZoKrates standard
library are available implementations of SHA256 and EdDSA, a signature algo-
rithm based on the Edwards curve, whose purposes are the same and which we
will use instead.

The program

The program is proposed in listing 5.1. As it can be seen it returns correctly
only if the assertion at line 11 is true, guaranteeing that the signature on the
message was actually performed with the correct private key and the value of
HashOfA really corresponds to the SHA256 hash of the public key. For better
understanding: private inputs R and S composes the signature, private input A is
the public key and HashOfA is the hashed public key (of the claimed UTXO) and
finally M0 and M1 compose the message hash and are used to verify the signature.

Listing 5.1: ZoKrates program that prove knowledge of a private key given an
hashed public key

1 def main(field[2] R, field S, private field[2] A, u32[8]
HashOfA, u32[8] M0, u32[8] M1):

2
3 BabyJubJubParams context = context()
4 bool valid_signature = verifyEddsa(R, S, A, M0, M1,

context)
5
6 u32[8] pk_x = field_to_u32_8(A[0])
7 u32[8] pk_y = field_to_u32_8(A[1])
8 u32[8] computed_hash = sha256(pk_x,pk_y)
9 bool hashes_match = HashOfA == computed_hash

10

5. Proving ownership of Bitcoin 23

11 assert(valid_signature && hashes_match)
12 return

Running the setup phase of the Pinocchio protocol for this program generates
a QAP with 138313 variables and degree 139264. Being dependent in the number
of variables the public evaluation key has a size of around 30 MB whereas the
verification key, being dependent only in the input and output variables of the
program, has a size of only around 1 KB. To generate a correct witness for the
proposed program a prover, owning a public/privare key pair associated with a
UTXO, passes as inputs arguments its public key, a message, a signature on that
message preformed with its private key and the hashed public key contained in
the UTXO.

Inputs generation

To generate a correct input assignment for this program we use python. Specif-
ically, we make use of the ZoKrates PyCrypto library, which implements classes
for working with Edwards signatures (EdDSA).

Listing 5.2: Input generation for proving private key ownership
1 sk = PrivateKey.from_rand()
2 pk = PublicKey.from_private(sk)
3
4 raw_msg = "Don’t trust. Verify."
5 msg = sha512(raw_msg.encode("utf-8")).digest()
6 sig = sk.sign(msg)
7
8 assert(pk.verify(sig, msg))
9 write_signature_for_zokrates_cli(sig, pk, hash_pk(pk), msg, ’

zokrates_inputs.txt’)

The proof

Generating the proof with ZoKrates yields a file called proof.json which contains
the 8 group element that compose the proof formatted with the json standard.
In additon to that it also contains the values assigned to the public inputs. For
this program, the generated proof size is only 2294 bits, less than 300 bytes!

5.3 Inclusion in a Merkle Tree

As explained, to adapt our solution for the extended problem, we combine the
previously introduced program with an inclusion proof of the input public key

5. Proving ownership of Bitcoin 24

hash in the proposed imaginary Merkle tree. This extension was also investigated
as a "symbolic" solution with no real attention to the practicality of it and it
was implemented for trees with hardcoded depth three, as making the depth of
the tree variable represented a non-trivial challenge to solve with ZoKrates. An
example ZoKrates program to perform a Merkle tree inclusion proof was already
at our disposal from the standard library, but the real challenge in this task was
writing a python program to generate an actual correct witness. We list the
ZoKrates program in listing A.1. In addition to the inputs already present in
the previous program we have now a few additional arguments to construct this
a proof. They consist in: the root hash of the Merkle tree and the value of the
siblings nodes needed to compute it, which are declared as private inputs, such
that it is not possible for a verifier to identify which leaf is being proven as part of
the tree. To determine in which order to join the so far computed digest with the
next sibling a "direction selector" is needed, and also passed as a private input.

With python an implementation of a Merkle tree was constructed. We then
initialize a Merkle tree using arbitrary SHA256 hashes as leaves, picturing them
as the public key hashes extracted from the UTXO set as explained before. In
one of the leaf we insert the hash of the public key to which the owned private
key corresponds. We then extract all the needed values for the proof and pass
them to Zokrates.

Chapter 6

Conclusions

In this report we presented a study of the concepts behind zk-SNARK schemes.
We saw how polynomials, homomorphic and pairing based cryptography, the
knowledge of exponent assumption and quadratic arithmetic programs are ex-
ploited to achieve verifiable computation, potentially with zero-knowledge. An
example problem solvable through such a scheme was presented in a simplified
setting and addressed using ZoKrates. Many more exciting problems can be
solved using a zk-SNARK protocols and many new applications making use of
them are emerging.

Given the magnitude of the various topics related with such protocols, a
formal and detailed study wasn’t in the range of a semester thesis and a lot
of abstraction had to be done by treating some concept as blackboxes and only
presenting why they are needed and what are the guarantees given. Nevertheless,
we hope that an high-level understanding of it could be grasped and a smooth
accompaniment in this complex field was deliverd.

25

Bibliography

[1] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical
verifiable computation,” in 2013 IEEE Symposium on Security and Privacy,
2013, pp. 238–252.

[2] J. Eberhardt and S. Tai, “Zokrates - scalable privacy-preserving off-chain
computations,” in 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), 2018, pp. 1084–1091.

[3] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of
interactive proof systems,” SIAM Journal on Computing, vol. 18, no. 1, pp.
186–208, 1989. [Online]. Available: https://doi.org/10.1137/0218012

[4] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable colli-
sion resistance to succinct non-interactive arguments of knowledge, and back
again,” Cryptology ePrint Archive, Report 2011/443, 2011, https://eprint.
iacr.org/2011/443.

[5] I. Damgård, “Towards practical public key systems secure against chosen ci-
phertext attacks,” in Advances in Cryptology — CRYPTO ’91, J. Feigenbaum,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 445–456.

26

https://doi.org/10.1137/0218012
https://eprint.iacr.org/2011/443
https://eprint.iacr.org/2011/443

Appendix A

Merkle inclusion extension

Listing A.1: ZoKrates program that prove knowledge of a private key given an
hashed public key

1 def main(field[2] R, field S, private field[2] PublicKey,
private u32[8] HashOfPubKey, u32[8] M0, u32[8] M1, u32[8]
rootDigest, private bool[3] directionSelector, private u32
[8] PathDigest0, private u32[8] PathDigest1, private u32[8]
PathDigest2):

2
3 // Check that the provided public key was actually used

to sign message [M0,M1] to produce signature R,S
4 // Check that the provided HashOfPubKey corresponds to

the sha256 hash of PublicKey
5
6 BabyJubJubParams context = context()
7 bool isSigValid = verifyEddsa(R, S, PublicKey, M0, M1,

context)
8 bool hashAreEqual = (sha256padded(unpack256u(PublicKey[0]),

unpack256u(PublicKey[1])) == HashOfPubKey)
9

10 // Check if HashOfPubKey is actually part of the Merkle
Tree:

11 // compute the root starting from HashOfPubKey and using
the provided PathDigests

12
13 u32[8] currentDigest = HashOfPubKey
14
15 u32[16] preimage = multiplex(directionSelector[0],

currentDigest, PathDigest0)
16 currentDigest = sha256padded(preimage[0..8],preimage

[8..16])
17

A-1

Merkle inclusion extension A-2

18 preimage = multiplex(directionSelector[1], currentDigest
, PathDigest1)

19 currentDigest = sha256padded(preimage[0..8],preimage
[8..16])

20
21 preimage = multiplex(directionSelector[2], currentDigest

, PathDigest2)
22 currentDigest = sha256padded(preimage[0..8],preimage

[8..16])
23
24
25 // All tree assertions must pass for the program to

return
26 assert(isSigValid)
27 assert(hashAreEqual)
28 assert(rootDigest == currentDigest)
29
30 return

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goal

	2 Zero-knowledge Proofs
	2.1 A short introduction to zero-knowledge proofs

	3 Pinocchio Protocol
	3.1 Polynomials
	3.1.1 Knowledge of a polynomial
	3.1.2 Obscure evaluation
	3.1.3 Non-interactivity

	3.2 Quadratic Arithmetic Program
	3.2.1 Transforming computation into polynomials
	3.2.2 Arithemtic Circuits

	3.3 The protocol
	3.3.1 Setup phase
	3.3.2 Proof
	3.3.3 Verification
	3.3.4 Zero-knowledge

	4 ZoKrates
	4.1 Writing circuits with ZoKrates
	4.2 Running the protocol

	5 Proving ownership of Bitcoin
	5.1 Structure of the solution
	5.2 Proving knowledge of private key
	5.3 Inclusion in a Merkle Tree

	6 Conclusions
	Bibliography
	A Merkle inclusion extension

