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Abstract

Autonomous Systems (ASes) use the Border Gateway Protocol (BGP) to exchange route informa-
tion. However, BGP routers are challenging to configure in reality and misconfiguration can cause
serious outages. This thesis presents a full geometric model for the BGP control plane. With this
model, one can efficiently verify common BGP control plane policies such as transit, route prefer-
ences and consistent tagging, which are difficult or even impossible for prior verification work. A big
advantage of our geometric model is that we are able to inject symbolic routes and therefore detect
the entire set of announcements that lead to a policy violation instead of a single counter-example.
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Chapter 1

Introduction

Safely managing a network is extremely complex. On the one hand, configuring a network correctly
is difficult as a network’s behavior depends on the complex interactions among different routing
protocols. On the other hand, typical networks consist of hundreds of routers serving many different
roles. Even today, configuration still happens manually. Operators manually try to bridge the
gap between the high-level behavior and low-level configurations for many devices. Naturally,
misconfigurations happen, which can have extreme consequences.

The Border Gateway Protocol (BGP) is the only inter-domain routing protocol in use today.
Misconfiguration in BGP can lead to serious consequences as many incidents show: For example,
In 2017, a Google operator accidentally announced wrong IP prefixes to neighbors. The false
announcements were picked up by an Autonomous System (AS) in Japan, the latter started to
send local Japanese traffic to Google, and Google then sent it to a black hole. Although the outage
only lasted for few hours, it was still severe [20]. More recently, in April 2021, an Autonomous
System in India mistakenly announced 30 000 IP prefixes, which caused a severe BGP hijacking
accident, even though it only lasted for a few minutes [7]. Outages due to BGP problems are
not uncommon as these examples show. A survey conducted in 2015 showed that 89% of network
operators are never sure that their configuration changes are bug-free [16].

Before pushing configuration changes to production, one should check them. Best would be do
that automatically: that is why verification enters the scene. However, lots of research in the past
years has shown that building a sound BGP verification tool is difficult for two reasons:

• Control plane coverage: BGP uses route maps to control import and export traffic. Each
route map is a filter that consists of arbitrary filtering rules. It takes effort to consider all
possible route map behavior.

• Data plane coverage: Data plane determines the actual forwarding behavior. A control
plane dynamically generates different data planes, based on the link status and the announce-
ments it has received. A sound BGP verifier needs to consider all data planes.

State-of-art BGP verification can be categorized into two groups: data plane verification
and configuration verification. The data plane verification analyzes the configuration based on
a snapshot of the currently installed data plane [17, 14, 15] instead of looking at the configuration
itself. A huge disadvantage of this approach is that it is difficult to obtain the dynamic forwarding
states from the network as it changes. The configuration verification, on the contrary, takes as
input the configuration file and the environment constraints [3, 18, 21]. Generally speaking, the
configuration verification outperforms data plane verification because the configuration normally
does not change that often so that one can derive the forwarding state outside of the real network.

1



CHAPTER 1. INTRODUCTION 2

1.1 Motivation

To illustrate how easy it is to make a mistake while configuring, even a small-scale network, consider
the really simple network given in Figure 1.1. The network has three border routers R1, R2, R3,
which connect to a provider, peer and customer neighbor, respectively. Typically, the network
obeys the standard business relationship, where the announcements received from its providers or
peers are only sent to its customers. In practice, this outbound control is often realized by tagging
the advertisements at the ingress with different community values, and filtering the announcements
at the egress based on the assigned community values [5]. However, in Figure 1.1, the network
operator wrongly tags the provider’s announcements with the community value prepared for its
customer due to a configuration typo in R1’s import route map. The consequence is that now the
network starts announcing its provider’s announcement to its peer.

Figure 1.1: A configuration typo. The network accidentally tags its provider’s announcements with
the community value prepared for its customer. The typo causes the network to propagate its
provider’s announcements to its peer

Such a typo can cause serious economic loss or even worse lead to a DoS situation as te network is
attracting more and more traffic. However, debugging such misconfiguration via manual inspection
can be torturous even for an experienced network operator. That’s why we need an automatic BGP
verification tool.

In the recently, lot of progress has been made in this field and a glimpse of them can be found
in § 2.2. However, state-of-art verification still has limitations.

First, current data plane verifiers such as HSA [14] and Veriflow [17] can only analyze the one
forwarding state which is currently deployed. Therefore they can capture the configuration bug
only if the current data plane reveals it. With every link failure, the forwarding state changes,
and properties which might have held in the previously analyzed forwarding state, might now be
violated.

The emergence of control plane verifiers solves this problem to a large extent. With the help of
SMT solvers and model checkers, they are able to analyze all (or many) data planes at once [3, 18,
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21]. However, a new issue arises with this method. Either a SMT solver [8] or a model checker [11]
requires the translation from low-level configuration to logical formulas. The complex translation
adds to the workload of the whole verification process and is also vulnerable to bugs. Moreover,
these verification tools are designed for a wide range of software and are therefore not tailored for
BGP verification.

One notable issue is that current verifiers are made for verifying data plane properties: reach-
ability and security properties. However, at a higher level, they fail to reveal properties in the
control plane, such as neighbor preference and consistent tagging, which are also very important.

Another common problem for the current BGP verifiers is that they only output one counter-
example when a property does not hold. This is because of the nature of SMT solvers they use as
finding more counter-examples requires more iterations in a SMT solver.

Moreover, to guarantee a high data plane coverage, state-of-art control plane verifiers need to
go through the propagation process for all possible announcements. Plankton [18] speeds up this
process with packet partition. This method mitigates the issue, but the iteration is still inevitable
depending on the number of partitions.

In this project, we would like to develop an approach that largely speeds up the BGP control
plane verification process while still guaranteeing a high data plane coverage. The key to the
solution is to reduce the verification complexity. The insights and challenges we observe for this
goal are listed as follows:

• Compared to the number of possible input BGP announcements, the number of equivalence
classes for each BGP announcement attribute is much fewer. Therefore we can pre-compute
the equivalence classes for each attribute before analyzing the network. The biggest challenge
for this is that the computation needs to cover the entire huge attribute space to ensure a
high data plane coverage.

• After computing the equivalence classes for each BGP announcement attribute, we can use a
single symbolic announcement to represent all possible input announcements. This symbolic
announcement carries the equivalence class labels for each attribute. We can then build a
geometric model to process the symbolic announcement. The difficulty with this is that the
geometric model needs to guarantee a high control plane coverage such as considering all
possible route map behavior.

1.2 Project Goal

The ultimate goal of this project is that, given the network-wide BGP configurations and if any, a
set of external BGP routing announcements, we can efficiently verify BGP control plane properties
such as:

• no transit from neighbor X to neighbor Y

• internally prefers the routes from neighbor U to neighbor V

• want neighbor AS to prefer the routes from the internal router A over B

• has a consistent community tagging at all ingress points

In addition to soundly answer whether or not a BGP control plane property holds, the verifier
should also be able to tell if any property is violated, what are all possible announcements and
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their traces that lead to the violation. For example, if the property ”no transit from neighbor X to
neighbor Y ” does not hold, the verifier will return all possible announcements that could actually
be sent from X to Y and how they are transmitted through the network.

1.3 Main contribution

Our main contribution in this project is that we build a BGP control plane verification that can
soundly and efficiently verify common BGP control plane properties (e.g., no transit). More specif-
ically, our contribution can be divided into the following points:

1. We build a parser to transform the low-level configuration file into high-level objects.

2. We compute the equivalence classes for all BGP announcement attributes and define the
symbolic announcement.

3. We build the geometric model to correctly model the control plane behavior and to propagate
the symbolic announcement.

4. We build the control plane verifier.

1.4 Overview

In this thesis, we first provide a preliminary background on the BGP and the related work in
Chapter 2. Then we explain the idea of the equivalence class computation and the data structures
we have designed for it in Chapter 3. In Chapter 4, we introduce the geometric model and the
entire verification procedure. We then evaluate our model in Chapter 5 and discuss the limitation
of our work and potential future steps in Chapter 6. We give the final summary in Chapter 7.



Chapter 2

Background and Related Work

In the early days, the Internet was of a handful, centrally managed devices. Shortest-path routing
was sufficient at that stage. As the Internet grew and consequently became a network of networks,
such basic routing policies were no longer satisfactory as they could no not express their business
interests. Internet service providers (ISP) and enterprise networks were interested in being able to
specify their own, custom routing policies for economic and political reasons. The Border Gateway
Protocol (BGP) was born out of this this need [5].

BGP is the only inter-domain routing protocol. Its primary function is to exchange network
reachability information between different Autonomous Systems (ASes) [19]. This information
can then be used to construct AS connectivity graphs, prune routing loops as well as enforce
routing decisions. BGP itself is a relatively simple path-vector protocol, most of it’s complexity
is in the decision process and the policies an AS uses to influence this process [5]. Having a
solid understanding of its policies and decision process is therefore necessary before tackling BGP
configuration verification.

2.1 Background1

In this section, we first introduce the fundamentals of BGP, including what a BGP session is, what
a BGP announcement consists of and how a BGP announcement is propagated. We then introduce
the most typical BGP policies that have been widely applied. As well as a brief explanation of how
BGP allows to implement the policies.

2.1.1 BGP sessions

BGP sessions come in two flavors: external BGP (eBGP) and internal BGP (iBGP) session.
An eBGP session is established between border routers of different ASes to exchange routes to
external destinations. An iBGP session is established between routers inside the same network
to disseminate the external routing information. Once a border router receives a new route on
an eBGP session, it propagates this route internally via all iBGP sessions. Usually, each internal
router must have an iBGP session with all other internal routers, which is called an iBGP full
mesh. This is because an internal router only propagates a route on its iBGP sessions when the
route is received on an eBGP session. The propagation rules on different BGP sessions can be
summarized as in Figure 2.2. When a router receives a new route on an eBGP session, it will

1This section is inspired from Communication Networks: https://comm-net.ethz.ch/pdfs/slides/03d_

internet_bgp_policies.pdf
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Figure 2.1: An example of BGP routing. AS3 has 2 border routers R1, R2 and 2 non-border routers
r1, r2. Each border router establishes an eBGP session with a neighbor router from another AS.
Every 2 routers inside AS3 are connected with an iBGP session. AS3 received a BGP announcement
from AS1 via R1 and sends it to AS2 via R2.

propagate it on every eBGP and iBGP sessions. When a router receives a new route on an iBGP
session, it will only propagate the route on its eBGP sessions. Therefore if a border router A does
not have an iBGP session with another internal router B, B has no chance to know the routes the
routs which router A has learned.

Figure 2.2: The propagation rules on different BGP sessions. When a router receives a new route
on an eBGP session, it will propagate it on every eBGP and iBGP sessions. When a router receives
a new route on an iBGP session, it will only propagate the route on its eBGP sessions.

In Figure 2.1, there are two border routers R1, R2 and 2 non-border routers r1, r2. The black
solid lines represent physical links between two routers, the red solid lines represent eBGP sessions,
and the red dashed lines represent iBGP sessions. Note that a full mesh of physical connections is
not required because routers can use the IGP, for example OSPF, to send iBGP messages.

The full mesh of iBGP sessions adds to the configuration complexity and does not scale well



CHAPTER 2. BACKGROUND AND RELATED WORK 7

because every time a new router is deployed, the network operator has to set its iBGP sessions with
all the other internal routers. Network operators therefor often use route reflector to alleviate
this issue. The route reflector acts as a relay point in the network: Each internal router only sends
the new route to the route reflector it connects to, and the route reflector propagates this route to
all other internal routers that also connect to it [2].

2.1.2 BGP announcements

There are 4 types of BGP messages: OPEN, NOTIFICATION, UPDATE, KEEPALIVE [19]. The OPEN

message is used to set up new BGP sessions. The NOTIFICATION and KEEPALIVE messages are used
for session maintenance. The UPDATE message informs the neighbor of route information, such as
a new best route, or the best route withdrawal.

When a BGP UPDATE message carries new route information, we also call this message a BGP
announcement. A BGP announcement carries an IP Prefix and several attributes. The IP
Prefix is an aggregation of IP addresses (e.g., 10.0.0.0/8) and the attributes describe the route
properties, which are used in the BGP decision process. We focus on the most common attributes
in the rest of this subsection.

LOCAL-PREF is a local attribute2 and shall always be included when propagating an an-
nouncement to other internal peers via iBGP. Each LOCAL-PREF value is a 32-bit integer which
indicates the network’s preference for this announcement based on the local policy.

MULTI-EXIT-DISC (MED) is a global non-transitive attribute. Each MED value is a 32-bit
integer and is intended to be used on eBGP sessions to discriminate multiple egress points to the
same neighbor AS. The MED attribute received from a neighbor AS must not be propagated to
other ASes.

NEXT-HOP is a global mandatory attribute. Its value is an IP address which stands for the
next hop when sending packets to the destination (i.e., IP Prefix).

AS-PATH is a global mandatory attribute. It carries the AS numbers of the ASes through which
this announcement has passed and the length is variable. When an AS propagates an announcement
to another AS, it has to prepend its own AS number to the end (i.e., leftmost) of the AS-PATH
attribute.

Community specifies a group of destinations which share some common properties [6]. The
standard format of a community value is ASN:value where the 16-bit ASN represents the current
AS number and the 16-bit value represents the specific value assigned for a group of destinations.
An AS can define custom communities based on its local policies. There are also well-known com-
munities that should be recognized by any community-aware AS such as Internet (advertise the
prefix to all BGP neighbors) and No-Export (do not advertise the prefix to any eBGP neighbors).
An announcement can contain multiple community values in this attribute.

In Figure 2.1, R1 from AS3 received a BGP announcement to reach the IP prefix 5.0.0.0/8
from AS1. The announcement was also attached with several attributes. R1 then propagated this
announcement inside AS3 and finally output the announcement to AS2 via R2. Before outputing

2local attributes are only seen on iBGP sessions



CHAPTER 2. BACKGROUND AND RELATED WORK 8

the announcement, AS3 prepended its AS number to AS-PATH, rewrote the NEXT-HOP with R2’s
IP address and removed AS1’s MED attribute.

2.1.3 BGP route map

Instead of simply forwarding the announcement intact, a router utilizes route maps to filter the
announcements. Each route map has one of the two directions: IN or OUT. When a route map’s
direction is IN, then it filters the incoming announcements received by the router, otherwise it
filters the outgoing announcements. A route map can have multiple route map items with different
sequence numbers. Each route map item consists of a series of match and set statements and a
route map type permit|deny.

Consider the route map given in Figure 2.3. The route map RM IN consists of two route map
items. The first item with sequence number 5 has a higher priority and the second item with
sequence number 10 has a lower priority. The first item consists of two match statements and two
set statements. The match statements specify the requirements an incoming announcement has
to match. The route map type permit before the sequence number declares that the matching
announcements are accepted by the router. If the route map type is deny, then the router will drop
the matching announcement. The two set statements specify the attribute modification on the
matching announcement. If an announcement does not match the requirements in the first route
map item, then it goes to the next item with a lower priority.

Depending on the attribute type to be matched in a match statement, the match patterns are
different. When the attribute to be matched is LOCAL-PREF or MED, the match pattern is a
single value. When the attribute is the community, then the pattern is a community list. When
the attribute is NEXT-HOP or IP Prefix, a prefix list is to be matched. When the attribute is
AS-PATH, then it matches an AS-PATH list. We go into details of different match patterns in the
next chapter.

Figure 2.3: An example of a route map. The route map RM IN consists of two route map items.
The item with a smaller sequence number has a higher priority. Each route map item consists of a
series of match and set statements and a route map type permit—deny.

2.1.4 BGP processing

The route map implementation is only a part of the entire BGP processing flow. Each router
utilizes a specific pipeline to process the announcements it has received. As shown in Figure 2.4,
the pipeline consists of 3 stages.

In the first stage, the router filters incoming announcements from each neighbor with the IN
route maps and stores all routes which are accepted. An announcement is only accepted when it
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satisfies all the requirements specified in the match statement. If this is the case, this announcement
will be forwarded to the set statement, where its attributes will be modified accordingly.

In the second stage, all acceptable routes go through the BGP decision process, where the
best route for each destination is selected. In the decision process, each router uses the selection
preference given in Table 2.1. For all alternative routes that can reach the same destination, the
router goes down the table and compares each attribute. If two routes have the same value for an
attribute, then the router moves on to compare the next attribute. In the third stage, the best
route is advertised to all neighboring router, but only after going through the OUT route maps.

Figure 2.4: BGP announcement processing pipeline3. The pipeline consists of 3 stages. In the 1st

stage, the router filters each incoming announcement, and stores all acceptable routes. In the 2nd

stage, it selects the best route for each destination. In the 3rd stage, the best route is announced
to the neighbors, but only after passing the export filter.

Step Attribute

1 highest LOCAL-PREF
2 shortest AS-PATH length
3 lowest MED
4 eBGP-learned over iBGP-learned
5 smallest NEXT-HOP (tie-break)

Table 2.1: BGP decision process (partial)

2.1.5 BGP policies

The diversity of BGP attributes allows each AS to implement custom BGP policies. We can
divide most BGP policies into 3 categories: (i) business relationship policies, (ii) traffic engineering
policies, (iii) security policies.

3Source: https://comm-net.ethz.ch/pdfs/slides/03d_internet_bgp_policies.pdf

https://comm-net.ethz.ch/pdfs/slides/03d_internet_bgp_policies.pdf
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Business relationship policies There are two common business relationships in the Internet:
customer-provider and peer-peer. A customer AS pays the provider AS for all the traffic between
them. Two ASes that peer do not pay each other for exchanging traffic. Therefore, two policies
are usually desired:

1. never transit traffic between its providers or its peers, or between its peer and its provider.

2. always prefer a customer-learned route (get paid for exchanging traffic), then a peer-learned
route (exchange traffic at no cost), and a provider-learned route at last (pay to exchange
traffic)

In practice, the first policy is usually implemented by tagging announcements with different
community values and only allowing the announcements tagged with customer’s communities to
pass the output filter. The second policy can be achieved by assigning the highest LOCAL-PREF
value to customers’ announcements, the second-highest to peers’ announcements and the lowest
LOCAL-PREF value to the providers’.

Traffic engineering policies There are 2 kinds of traffic engineering: outbound traffic con-
trol and inbound traffic control. An example for outbound traffic control is load balancing. For
exampple, an AS can change the LOCAL-PREF values of 2 equally preferred routes to shift the
traffic from one route to another. Inbound traffic control is more difficult because it requires an
AS to influence the route selection in another AS. One way to do this is via MED. The AS can set
a lower MED value on the announcement that it wants the neighbor AS to accept. The other way
is to prepend the AS number more times on the announcement it does not want the neighbor to
use as the first choice. However, there is no guarantee that the neighbor AS will accept the route
with the lower MED or shorter AS prepending if its local policy prefers another route.

Security policies ASes are vulnerable to invalid announcements. It is therefore necessary to
detect and discard them at the import filter. One example security policy is No-Martians. No-
Martians declares a set of invalid announcements that the AS should discard (e.g., announcements
with private IP prefixes). An AS can also protect its internal resources by not exporting certain
routes to other ASes.

2.2 Related Work

Network verification is the process of proving whether an abstraction of the network satisfies in-
tended network-wide intents [10]. This abstraction could be drawn either from the data plane level
(e.g., forwarding tables) or the control plane level (e.g., configuration files). Based on the abstrac-
tion level, current research on network verification can be divided into data plane verification and
configuration verification.

2.2.1 Data plane verification

The initial progress on the data plane verification is built upon the static analysis of a network state
snapshot. Xie et al. [22] propose an algorithm to compute the network reachable sets by mapping
packet filters, routing information and packet transformation to a unified model. Anteater [17]
translates the high-level network specification into boolean satisfiability problems and verifies them
against the network model (the model is developed from Xie et al.’s algorithm) with an SAT solver.
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HSA [14] builds a geometric model which can statically check the packet forwarding behavior and
identify many problems including reachability, loops and isolation. HSA is later optimized by
ddNF [4], which speeds up HSA computation by pre-computing the header equivalence partition
before run-time. Our approach in this project is also built upon the HSA and ddNF, but in the
control plane instead of data plane, and is also more complicated due to the complexity of the
control plane.

Based on the static analysis, verification tools such as Veriflow [15], NetPlumber [13] and
DeltaNet [12] are also able to perform real-time, incremental verification. One significant advan-
tage of data plane verification is its control plane coverage as it can support arbitrary network
protocols. However, most data plane verifiers have the limitation that they can only analyze the
single data plane that has been deployed in the network.

2.2.2 Configuration verification

Depending on the network failure models, one network configuration can generate different data
planes. To guarantee a higher data plane coverage, configuration verification comes into play.
Batfish [9] is a datalog-based verifier. Given a network configuration, a concrete network environ-
ment, a correctness specification and a set of given announcements, Batfish is able to check a given
announcement against arbitrary correctness specification in a SMT solver. Bagpipe [21], on the
contrary, can check arbitrary announcement against a restricted set of policies with a SMT solver.
MineSweeper [3] improves Bagpipe in terms of control plane coverage by modelling the network as a
combinational circuit. Plankton [18] further improves the scalability of MineSweeper by computing
packet equivalence classes (PECs). Each PEC represents a set of packets that behave identically
in the configuration. A PEC is then associated with the configuration information related to that
PEC.

One common point for these prior work on configuration verification is that their analysis still
partly relies on the routing table generated from the configuration. This feature makes them easy
to verify diverse forwarding behavior, but not for the control plane properties. In our project, we
aim at exploring the possibility of filling this gap.



Chapter 3

Symbolic Announcement

One challenge for the traditional network verification (e.g., HSA, Minesweeper) is to guarantee
enough data plane coverage, meaning the verification result should consider diverse data planes
generated by the network, as introduced in § 1. On the one hand, to check whether a policy holds,
the verifier needs to consider all possible external inputs (i.e., the entire packet header space). On
the other hand, the verifier should consider all possible concrete environments (i.e., link failures).

A traditional BGP verifier with a naive approach would solve this by iterating over all possible
announcements and concrete environments, one at a time. Since a BGP announcement consists of
multiple attributes, this iteration can be very time-consuming. For example, if only considering
the MED, we have to consider 232 different options. However, an important observation is that
one does not need to consider every single announcement on its own as many announcements are
handled the same in the network. Based on this observation, we make a two-step improvement
on the BGP verification in our project. First, we find equivalence classes of announcements and
only consider them. Second, instead of considering each equivalence class separately, we build
a symbolic announcement to represent all equivalence classes and only process the symbolic
announcement in the geometric model.

In the rest of this chapter, we first introduce the intuition behind the equivalence class computa-
tion, we then explain how we compute the equivalence class for each BGP announcement attribute
and create the symbolic announcement.

3.1 Header Space Analysis

Header Space Analysis (HSA) [14] is a data plane verification framework that is able to statically
check the data plane and identify a complete set of failures given a network specification. To
achieve its goal, HSA uses a compact bit representation to compute all reachable IP packets for a
destination. Each packet is represented as a point in {0, 1}L space where L is the packet length.
Each forwarding rule in the router transforms a packet from one point to another. HSA starts with
the full wild-card symbolic packet {∗}L which symbolically represents the entire {0, 1}L space. This
symbolic packet then gets filtered by each forwarding rule as it passes through the different routers
in the network. The final symbolic packet that reaches the destination stands for the set of all
reachable packets.

A simplified example of the HSA framework is shown in Figure 3.11. The simple network consists
of four routers R1-R4 and assume the header space is only 2-bit long. R2 has two forwarding entries:

1This example is inspired from ddNF paper: https://www.microsoft.com/en-us/research/uploads/prod/2015/
11/An-Efficient-Data-Structure-for-Header-Spaces.pdf
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https://www.microsoft.com/en-us/research/uploads/prod/2015/11/An-Efficient-Data-Structure-for-Header-Spaces.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2015/11/An-Efficient-Data-Structure-for-Header-Spaces.pdf
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one with higher priority that sends all packets whose first bit is set to 1 out of port B; and the one
with lower priority that sends all remaining packets to port C. To check the reachability from R1
to R4, R1 dumps the wild-card symbolic packet ** (representing the IP packets destined for 00,
01, 10, 11) into all connected links (here only one link is connected with R2). According to R2’s
forwarding rule, the packets that match 1* are sent to port B, and the remainder is sent to port
C. The remainder is computed as the difference of ** and 1*, in other words ** - 1* = 0*. In the
end, packets whose bit representation falls into 0* will reach R4.

Figure 3.1: An example of the HSA framework. To verify the reachability from R1 to R4, HSA
starts with 2-bit symbolic packet **. When it passes R2, the filtered symbolic packet 1* goes to
port B, the remaining symbolic packet 0* goes to port C. Therefore 0* represents all packets that
can reach R4 from R1 (assuming R1-R2-R4 is the only path between R1 and R4).

A limitation of the HSA framework is that it needs to compute the difference of symbolic
packets at the run time. Yang and Lam [23] observe that most headers are treated the same
given the network forwarding rules. It is therefore more efficient to find the relatively small set
of header equivalence classes at the compile time, and perform the verification based on this
header partition. In this way, the complicated header space calculation is simplified to the simple
set difference calculation. With this optimization, the reachability problem in Figure 3.1 can now
be simplified to Figure 3.2. Based on the R2’s forwarding table, the entire header space can be
partitioned into two equivalence classes: 1* and 0*. Because the full wild-card expression ** is
exactly the union of 1* and 0*, 2 equivalence classes are enough in this case.

Yang and Lam use a BDD algorithm to pre-compute the header partition. ddNF [4] proposes
another more efficient algorithm for this. In our project, we are inspired by both algorithms and
come up with our custom algorithms for BGP announcement partition.

In our project, we use similar ideas as presented above for BGP control plane verification. There
is a clear analogy between the forwarding of data packets in the data plane and the processing of
BGP announcements in the control plane. A BGP announcement in the control plane is analogous
of an IP packet in the data plane. The route maps can be seen as the forwarding rules of the control
plane. However, we cannot apply the ideas from HSA and ddNF one-to-one as BGP announcements
and their attributes are more complex than IP packets. The same holds for route maps. On the
one hand, each field in the IP packet header has a fixed length (without IP options), but BGP
announcements have variable lengths. On the other hand, it is also more difficult to model the
behavior of a BGP route map compared to the IP forwarding table due to the complex logic of a
route map (e.g., multiple matching, attribute modification, dropping, etc.).
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Figure 3.2: The HSA framework with header partition. Baed on R2’s forwarding table, the entire
header space can be partitioned into 2 equivalence classes: 1* and 0*. We use label 1 for 1* and
label 2 for 0*.

3.2 Equivalence Class Computation

Similar to IP packet equivalence classes, we aim at computing announcement equivalence classes
in our project. The challenge is that on the one hand, BGP announcements have several different
attributes as introduced in § 2.1.2 and we have to take them all into account. On the other hand,
attributes have different semantics so that we cannot just use the same approach for every single
attribute. Therefore, we separate the equivalence class computation for each BGP announcement
attribute. Similar to data plane HSA, we first extract all the values for each attribute that appear
in the match segments in any route map item. We then compute the equivalence classes for each
attribute based on the values collected from the route maps. Finally, we assign a unique label for
each class, representing a set of attributes that are handled the same in the network. In addition
to the five attributes we list in § 2.1.2, we treat the IP Prefix as another attribute because it
also appears in the match statement of a route map item. We explain our algorithms and data
structures used for each attribute partition in the rest of this section.

3.2.1 LOCAL-PREF and MED

We first compute the equivalence classes for LOCAL-PREF and MED. Since LOCAL-PREF and
MED are similar in their structure (they are both 32-bit integers), we can use the same approach
to handle the two attributes2.

Consider the two route maps shown in Figure 3.3 and assume they are the only route maps
in the network that match LOCAL-PREF and MED. After automatically extracting their values
from the route maps, we will have values {500} for LOCAL-PREF and {50} for MED. Based on
the extracted values we can compute the equivalence classes. Since a route map always matches
LOCAL-PREF or MED by a single integer as in Figure 3.3, each value that appears in the route
map is already an equivalence class, meaning for BGP announcements with LOCAL-PREF = 500
or MED = 50, they are handled the same in the network. For the label assignment, we can directly
use their values as the labels.

2Although LOCAL-PREF is a local attribute, we still compute its attribute partition for completeness.
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Therefore, for LOCAL-PREF and MED, each value that appears in any route map is a label
standing for an equivalence class. To make sure the union of equivalence classes of each attribute
covers the entire attribute space, we use another label -1 for each attribute to represent all the
other values that do not appear in any route map and are then treated in the same default way by
the network. Therefore, in Figure 3.3, the labels for LOCAL-PREF and MED are {500, -1} and
{50, -1}, respectively (assuming no other route map items).

Figure 3.3: An example of matching LOCAL-PREF and the MED. Route map RM IN has a route
map item matching announcements with MED = 50. Route map RM OUT has a route map item
matching announcements with LOCAL-PREF = 500.

3.2.2 Community

As introduced in § 2.1.2, the standard format of a community value is ASN:value where ASN and
value are both 16-bit long. The partition for the community is a little more difficult than LOCAL-
PREF and MED because instead of matching a single integer, the match statement always matches
a community list which can be transformed into DNF (disjunctive normal form, i.e., a disjunction
of conjunctions).

Consider the configuration in Figure 3.4. CLIST is a community list consists of two community
list items. Each item is a disjunctive part of the DNF, and each community value in an item is
a conjunctive part of that item. Therefore, CLIST can be transformed to the DNF: 21:300 OR
(21:200 AND 21:500). A route map item in the RM IN matches this community list, meaning an
announcement is matched as long as it contains both community values 21:200 and 21:500, or it
contains 21:300.

Figure 3.4: An example of matching the community. CLIST is a community list consists of two
disjunctive community list items and the first item consists of two conjunctive community values.
CLIST can be transformed to the DNF: 21:300 or (21:500 AND 21:200). A route map item in the
RM IN then matches this community list.

Based on the community list construction, we can define each community equivalence class to
be each disjunctive part of a community list. For example, in Figure 3.4, {21:300} is an equivalence
class which stands for all community values that contain 21:300. {21:500, 21:200} is another
equivalence class that stands for all community values containing both 21:500 and 21:200 (in order).
We also use -1 to represent all other possible community values that are handled in the default way
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in the network. Therefore, if CLIST is the only community list in the configuration, then there are
three partition labels for the community: {{21:300}, {21:500, 21:200}, -1}.

3.2.3 NEXT-HOP

The attribute NEXT-HOP specifies the next hop address for an announcement, therefore its equiva-
lence class computation is similar to what one would expect in HSA or ddNF. A significant difference
between NEXT-HOP and the attributes covered before is that NEXT-HOP matching can match
a continuous range of IP addresses, instead of matching several discrete points. The IP address to
be matched in the route map item is defined in the prefix list.

An introduction of a prefix list Figure 3.5 gives an example of matching NEXT-HOP. The
prefix list PLIST consists of two prefix list items with different sequence numbers: 0.0.0.10/31
and 0.0.0.0/16. Similar to the route map item processing, the prefix list item with a lower sequence
number has a higher priority and is processed first. There are also two list types: permit or deny.
If the list type is permit, the announcement whose NEXT-HOP address belongs to that prefix list
item will be matched and other announcements that do not match will go to the next list item
with a lower priority. If the list type is deny, the announcement that has a matched NEXT-HOP
will be filtered out and other announcements go to the next list item. For the equivalence class
computation, the different list types do not make a difference since we only care about the attribute
value. We talk more about different list types in the next chapter.

Absolute value interval Back to Figure 3.5, a route map item in the RM IN matches NEXT-
HOP with PLIST, meaning it matches any announcement whose NEXT-HOP address belongs to
0.0.0.0/16 but not 0.0.0.10/31. Therefore the acceptable NEXT-HOP addresses range from 0.0.0.0
to 0.0.0.9 or from 0.0.0.12 to 0.0.255.255. If we transform the 32-bit IP address to the absolute
value interval, the acceptable interval is [0, 10)

⋃
[12, 65536)3.

Figure 3.5: An example of matching NEXT-HOP. PLIST is a prefix list consisting of two prefix list
items 0.0.0.10/31 and 0.0.0.0/16. A route map item in the RM IN matches the NEXT-HOP with
PLIST. This means any announcement whose absolute value of its NEXT-HOP belongs to [0, 10)⋃

[12, 65536) will be matched by the RM IN.

Attribute partition algorithm for NEXT-HOP We now compute the attribute partition for
NEXT-HOP. Our goal is to find as few equivalence classes as possible while still covers the entire
attribute space, and make sure all NEXT-HOP addresses covered in each class are treated the
same. Take the PLIST for example, the two prefix list items lead to four equivalence classes: [0,
10), [10, 12), [12, 65536) and [65536, 232).

3From now on, we will use the absolute value interval to represent a IP prefix without further explanation.



CHAPTER 3. SYMBOLIC ANNOUNCEMENT 17

We use a tree algorithm Alg 1 to implement this. The algorithm gradually constructs a tree
into which we insert each IP prefix list item in the form of its absolute value interval. In the end, it
makes sure that each leaf node of the tree stands for an equivalence class. All equivalence classes
are disjoint with each other and their union equals the entire 32-bit IPv4 address space.

Initially, the tree only has a root prefix [0, 232) which means that all IP addresses are treated
the same if the configuration does not contain any prefix list. The tree then inserts each new IP
prefix recursively based on the intersection between the new IP prefix and the IP prefixes that have
been inserted before.

Algorithm 1 Equivalence class computation algorithm for NEXT-HOP

1: Input: prefixes: a list of IP prefixes in the form of their absolute value intervals
2: Output: root: the root of a tree, each leaf node is an equivalence class
3: Initialize: root ← [0, 232) . root.left = 0, root.right = 232

4: for prefix in prefixes do
5: Insert(root, prefix)
6: end for
7: return root

8: function Insert(parent, prefix)
9: if parent == prefix then

10: return
11: end if
12: intersection = parent

⋂
prefix . i.e., [0, 10)

⋂
[5, 15) = [5, 10)

13: if not intersection then
14: return
15: else if intersection == prefix then
16: if not parent.child then
17: parent.child.append([parent.left, prefix.left))

. If parent.left == prefix.left, skip
18: parent.child.append([prefix.left, prefix.right))
19: parent.child.append([prefix.right, parent.right))

. If prefix.right == parent.right, skip
20: else
21: for child in parent.child do
22: Insert(parent.child, prefix)
23: end for
24: end if
25: else
26: Insert(parent, intersection)
27: end if
28: end function

Figure 3.6 shows the algorithm output after inserting the two IP prefixes in PLIST. There are
four equivalence classes in Figure 3.6, which are all consistent with the theoretical computation
before.
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Label assignment algorithm for NEXT-HOP We now assign a label for each equivalence
class. If a class has an intersection with any input IP prefix, then we assign a positive label for
this equivalence class. For all equivalence classes that do not have an intersection with any input
IP prefix, we assign the label -1 collectively for them. To simplify the route map filtering process
afterwards, we attach each NEXT-HOP label to the prefix list item it belongs to with Alg 2. In
general, each prefix list shares the same copy of the labels, the prefix list item with a smaller
sequence number first picks up the labels it belongs to, then the item with a higher sequence
number picks up from the remaining labels.

After applying Alg 2, the PLIST in Figure 3.5 is like Figure 3.7. The first prefix list item [10,
12) picks up the label 2 because only the absolute value interval with label 2 is a subset of [10, 12).
The second item [0, 65536) picks up the label 1, 3. Although label 2 is also a subset of [0, 65536)
but it has been picked up by [10, 12) which has a higher priority.

Figure 3.6: An example output of the NEXT-HOP partition algorithm. After inserting [0, 65536)
and [10, 12), the algorithm calculates four equivalence classes labeled with 1, 2, 3, -1, where -1
stands for all equivalence classes that do not have an intersection with any input IP prefix.

Algorithm 2 Label distribution algorithm for NEXT-HOP

1: Input:
prefix list: a prefix list consisting of several prefix list items
labels: a dictionary that maps each label to NEXT-HOP equivalence classes

2: Output: prefix list: the prefix list with each prefix list item attached with NEXT-HOP labels

3: for item in sorted(prefix list) do . sort in the order of seq from smallest to largest
4: for label in labels do
5: if labels[label] ⊆ item.prefix then
6: item.append(label)
7: labels.remove(label)
8: end if
9: end for

10: end for
11: return prefix list
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Figure 3.7: An example of NEXT-HOP label distribution. [10, 12) picks up the label 2, and [0,
65536) picks up the label 1, 3. Although label 2 is also a subset of [0, 65536) but it has been picked
up by [10, 12) which has a higher priority.

3.2.4 IP Prefix

The IP Prefix attribute is in the form of A.B.C.D/length, specifying the range of IP addresses
announced by an announcement. IP Prefix is also matched by a prefix list, but with more matching
rules compared to NEXT-HOP.

An additional introduction of a prefix list When we explain the equivalence computation
for NEXT-HOP, we deliberately omit some parameters when defining a prefix list. The complete
syntax of a prefix list item is shown in Figure 3.8. In a prefix list item, eq, le, ge are three optional
parameters to specify the prefix length to match. For any matching announcement, the prefix in
its IP Prefix (i.e., A.B.C.D) must be a subset of the prefix declared in the prefix list item. If the
prefix list item is constrained with eq, it requires the IP prefix to have exactly the same prefix
length (i.e., /length) as in the prefix list item. If the prefix list item is constrained with ge and le,
then the prefix length l in the matching announcement must satisfies ge ≤ l ≤ le4. For example in
Figure 3.9, only the first two IP Prefixes fall into PLIST2 because their prefixes (i.e., A.B.C.D) is
a subset of 0.0.0.0/16 and their prefix length is between ge and le.

Figure 3.8: The syntax of a prefix list item. eq, le, ge are three optional parameters that specify
the prefix length to match in IP Prefix. The prefix in any matching announcement’s IP Prefix must
be a subset of the prefix declared in the prefix list item. The eq, le, ge constrain the prefix length
in the IP Prefix.

We do not cover ge, le, eq in the NEXT-HOP partition, because a NEXT-HOP address will be
matched by a prefix list item as long as the address falls into the IP prefix (i.e., 0.0.0.0/16). However,
when matching an IP Prefix, the prefix length will be examined by the prefix length constraint.
Therefore we also need to take ge, eq, le into consideration during the IP Prefix partition.

The coverage of a prefix list Before we introduce the algorithm used for IP Prefix partition,
we first look at what IP Prefixes are contained in a given prefix list with length constraints. We
still take PLIST2 as an example. Figure 3.10 shows a subset of IP prefixes contained in PLIST2.
When the prefix length is /24, any IP prefix whose absolute value interval is of length 28 and is
a subset of [0, 65536) is covered by PLIST2. When the prefix length is /25, any IP prefix whose
absolute value interval is of length 27 and is a subset of [0, 65536) is also covered by PLIST2.

4In a Cisco configuration, a valid prefix list item should have the prefix length constraint ge ≤ length ≤ le.
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Figure 3.9: An example of a prefix list item with ge and le. For any IP Prefix A.B.C.D/length, it
can be matched by PLIST2 as long as its prefix (A.B.C.D) is a subset of 0.0.0.0/16 and its prefix
length (/length) is between ge and le.

With this observation, it is easy to conclude that an IP prefix is contained in a prefix list item
[a,b) ge c le d if its absolute value interval [x, y) satisfies Eq 3.1 and Eq 3.2. If the prefix list
item is constrained with eq, then only the IP prefix with the same prefix/length as in the item will
be matched.

a ≤ x ≤ y ≤ b (3.1)

2l = y − x, where c ≤ 32− l ≤ d (3.2)

Figure 3.10: A subset of IP prefixes contained in PLIST2. When the prefix length is 24/25, any
IP prefix whose absolute value interval is of length 28/27 and is a subset of [0, 65536) is covered in
the PLIST2.

A 4-tuple representation of a prefix list item We can then define a 4-tuple to represent
each prefix list item [a,b) ge c le d : (a, b, 32−d, 32− c) where a and b are the left (closed) and right
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(open) boundaries of all IP prefixes (in the form of absolute value interval) covered by the item,
232−d and 233−c are the minimum (closed) and maximum (open) interval length of any covered IP
prefix. For example, the PLIST2 is now represented as (0, 65536, 4, 9).

Attribute partition algorithm for IP Prefix Compared TO the NEXT-HOP partition algo-
rithm Alg 1 which only needs to calculate the prefix intersection during the insertion, IP Prefix
requires another calculation of the prefix length intersection. For example, (0, 232, 0, 33) stands
for the entire prefix list item space, if we insert (0, 65536, 4, 9) under (0, 232, 0, 33), we should get
the following equivalence classes: (0, 65536, 0, 4), (0, 65536, 4, 9), (0, 65536, 9, 33) and (65536,
232, 0, 33).

To achieve this, we can reuse Alg 1 by attaching an inner tree to each prefix node and gradually
building both the inner and outer tree when recursively inserting a new 4-tuple node. The inner
tree insertion process is the same as described in Alg 1 except that we initialize the root to be
[0,33) instead of [0, 232) and we input the prefix length intervals instead of prefix intervals. The IP
Prefix partition algorithm is given in Alg 3. Figure 3.11 shows the algorithm output after inserting
the tuple (0, 65536, 4, 9). The outer tree structure is colored in black and the inner tree attached
to each node is colored in blue.

Label assignment algorithm for IP Prefix We then distribute IP Prefix labels to each prefix
list item in a similar way as in Alg 2 with a minor change in line 5. Instead of only comparing the
prefix interval, we attach an IP Prefix equivalence class (a, b, c, d) (if available) to a prefix list
item (x, y, u, v) when x ≤ a ≤ b ≤ y and u ≤ c ≤ d ≤ v. After the label distribution, PLIST2 will
be like Figure 3.12, where the PLIST2 is attached with its corresponding IP label.

Figure 3.11: An example output of the IP Prefix partition algorithm. The outer tree and the inner
tree are distinguished by different colors. After inserting (0, 65536, 4, 9), the algorithm calculates
four equivalence classes with 2 labels 1, -1. This is because only label 1 is a subset of (0, 65536, 4,
9).

Figure 3.12: An example output of IP Prefix label distribution. The PLIST2 picks up IP Prefix
label 1.
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Algorithm 3 Equivalence class computation algorithm for IP Prefix

1: Input: plist items: a list of prefix list items in the form of 4-tuple
2: Output: root: the root of a two-layer tree, each leaf node of the inner tree attached to a

leaf node of the outer tree is an equivalence class
3: Initialize: root← (0, 232), root.length← (0, 33)

. a stands for the prefix interval (i.e, first 2 values in the 4-tuple), a.length stands for the
length interval (i.e., the last 2 values). a.inner points to the root of a’s inner tree.

4: for item in plist list do
5: InsertIP(root, item)
6: end for
7: return root

8: function InsertIP(parent, item)
9: if item == parent then

10: if parent.inner exists then
11: Insert(parent.inner, item.length)

. call the modified Alg 1 (root← [0, 33)) to insert item.length into the inner tree
12: else
13: for child in parent.child do
14: InsertIP(parent.child, item)
15: end for
16: end if
17: else . similar to Alg 1 line 11-25
18: intersection = parent

⋂
item

19: if not intersection then
20: return
21: else if intersection == item.prefix then
22: if not parent.child then:
23: parent.child.append([parent.left, prefix.left))
24: parent.child.append([prefix.left, prefix.right))
25: parent.child.append([prefix.right, parent.right))
26: for child in parent.child do
27: parent.child.inner = parent.inner
28: end for
29: parent.inner = None

. clear parent’s inner tree once it has been inherited by all child nodes
30: else
31: for child in parent.child do
32: InsertIP(parent.child, item)
33: end for
34: end if
35: else
36: InsertIP(parent, intersection)
37: end if
38: end if
39: end function
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3.2.5 AS-PATH

The AS-PATH attribute records all ASes the announcement has passed, as introduced in § 2.1.2.
An AS-PATH value is a long string of ASNs separated by spaces (e.g., 400 900 1800).

An introduction of AS-PATH list Unlike other attributes, AS-PATH cannot be matched by
an exact value because the path length and the ASNs can be arbitrary. Instead, in the route map,
an AS-PATH is matched by a regular expression defined in the AS-PATH list. Similar to other
attribute lists, each AS-PATH list can consist of multiple AS-PATH list items. Each list item has a
list type permit|deny and a regular expression to specify the AS-PATH this item should match. The
usage of permit|deny is the same as in a prefix list. For example, Figure 3.13 defines an AS-PATH
list ALIST that matches any announcement that is not originated by AS1800 and pass AS100 or
originated by AS9005. Table 3.1 lists the most common regular expressions in an AS-PATH list.

Figure 3.13: An example of matching AS-PATH. ALIST is an AS-PATH list consisting of three
as-path list items, it matches an announcement if its AS-PATH is not originated by AS1800 and
pass AS100 or originated by AS900.

Regex Indication

1800$ originated by AS1800
ˆ1800 received from AS1800
1800 via AS1800

790 1800 via AS1800 and AS790 in order
ˆ[0-9]+ matches AS path length of 1

Table 3.1: The most common regex constraints for AS-PATH

Attribute algorithm for AS-PATH Similar to the prefix list partition, we compute the equiv-
alence classes for AS-PATH based on all AS-PATH list items. However, the regular expressions do
not directly indicate how they intersect with each other. Therefore, we need a new algorithm to
compute the intersection between two regex constraints before the partition.

One way is to use an existing regex library [1]. However, since only a small subset of regexes
are used in the AS-PATH list item (as shown in Table 3.1), we can also design a more specialized
way to realize this. Our solution is to use a binary decision tree called regex-tree to calculate all
possible regex paths given a set of AS-PATH list items. Each possible regex path is constrained
by a set of regexes placed on this path which do not have any conflict with each other (i.e., can be
satisfied at the same time).

5In AS-PATH, ASNs are listed in the order of appearance from right to left, therefore an ASN of the AS that
originates an announcement appears in the rightmost position.
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Each regex on a path can be seen as a property of this path, and a property can have two states:
hold or not hold. For example, we use ˆ1800 = T to represent that the property ˆ1800 holds on
this path, and use ˆ1800 = F to represent that it does not hold. Therefore, it is easy to find that
a possible regex path can have both ˆ1800 = T and 100 = T, but it cannot have both ˆ1800 =
T and ˆ900 = T.

Alg 4 gives the general building flow of the regex-tree (we leave out the function CheckConflict
for later discussion). Figure 3.14 visualizes the structure of the regex-tree with ALIST. Initially,
the tree only has a root regex .* which stands for no constraint on the AS-PATH values. After
inserting ˆ1800 , 100 and ˆ900 , there are six possible regex paths in the tree. Each path also
maintains a regex-list that records if a regex property holds or not on this path. In Figure 3.14,
all regex properties listed in the regex-list are on the corresponding path. We will see that this is
not always the case when we talk about the regex conflict resolution later.

Figure 3.14: An example of AS-PATH regex-tree. After inserting ˆ1800 , 100 and ˆ900 , there
are six possible regex paths.

Label assignment algorithm for AS-PATH As can be inferred from Figure 3.14, each regex
path/regex-list also stands for a disjoint equivalence class for AS-PATH. We give each regex-list a
positive label if its regex-list contains any property that holds (i.e., some regex = T), and assigns
-1 for all equivalence classes that only contain properties that do not hold (i.e., some regex = F).
We then distribute the path labels to each AS-PATH list item by looking at each path regex-list.
The label distribution algorithm is given in Alg 5. Although AS-PATH lists do not have sequence
numbers to order its items, we can assume the item that appears early in the list has a higher
priority and assign a lower sequence number for it. The AS-PATH list after applying Alg 5 is
shown in Figure 3.15, where each AS-PATH list item is attached with its corresponding AS-PATH
labels.

Conflict resolution We now discuss the conflict resolution, which is the most challenging task
in the AS-PATH partition algorithm. In general, there are two types of conflict: mutual conflict
and non-mutual conflict. Mutual conflict means the conflict can be detected when doing the
pairwise comparison during the insertion. Some examples of mutual conflict are listed as follows.
For example, In the first bullet point, ˆ1800 and ˆ900 are two regexes that match on AS paths
that have different last receivers, therefore they can be satisfied at the same time. In the second
bullet point, ˆ1800 match on AS paths that are received by AS1800, 900 1800 match on AS
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Algorithm 4 Equivalence class computation algorithm for AS-PATH

1: Input: regexes: a list of regexes appear in any AS-PATH list item
2: Output: root: the root of a regex-tree, each path of the tree is an equivalence class
3: Initialize: root← .∗ = T

4: for regex in regexes do . here regex is without state (i.e., hold/not hold)
5: InsertAS(root, regex)
6: end for
7: return root

8: function InsertAS(parent, regex)
9: if parent == regex then . only compare the regex, not the state

10: return
11: end if
12: result = CheckConflict(regex, parent.path)

. parent.path points to the current path the parent is on
13: if result = Hold then . regex = F has conflict with the path
14: parent.path.regex list.append(regex = T )
15: else if result = NotHold then . regex = T has conflict with the path
16: return
17: else
18: if not parent.child then
19: parent.child 1 = (regex = T )
20: parent.child 1.path.regex list = parent.path.regex list
21: parent.child 1.path.regex list.append(regex = T )
22: . update the regex-list with the new property
23: parent.child 2 = (regex = F )
24: parent.child 2.path.regex list = parent.path.regex list
25: parent.child 2.path.regex list.append(regex = F )
26: else
27: for child in parent.child do
28: InsertAS(parent.child, regex)
29: end for
30: end if
31: end if
32: end function
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Algorithm 5 Label distribution algorithm for AS-PATH

1: Input:
as list: an as-path list consisting of several as-path list items.

2: labels: a dictionary that maps each label to AS-PATH regex-lists.
3: Output: as list: the as-path list with each as-path list item attached with AS-PATH labels.

4: for item in sorted(as list) do
5: for label in labels do
6: if item.regex = T in labels[label] then
7: item.append(label)
8: labels.remove(label)
9: end if

10: end for
11: end for
12: return as list

Figure 3.15: An example of AS-PATH label distribution. Each AS-PATH list item picks up the
labels it belongs to, the item that appears early in the list has a higher priority.

paths that first pass AS1800 then AS900. Since a valid AS path cannot have duplicate ASNs, these
two regexes cannot be satisfied at the same time.

• ˆ1800 = T and ˆ900 = T

• ˆ1800 = T and 900 1800 = T

• 100 200 300 = T and 300 500 100 = T

• 100 200 = T and 100 = F

• 100 300 = T and ˆ[0-9]+ = T

Handling mutual conflicts is not difficult. Since we always insert a new regex from the tree root,
we can check the mutual conflict before we perform the insertion.

Resolving non-mutual conflicts is much more challenging. A non-mutual conflict means the
conflict cannot be detected in the pairwise comparison and can only be found when knowing the
global information of the path. Some examples of non-mutual conflicts are listed as follows. For
example, in the first bullet point, when 100 200 = T and 200 300 = T already appear on the
same path, then this path can never match 300 100 , otherwise a loop is created in the AS path.
In the second bullet point, if 100 300 500 = F and 100 300 = T are in the same path, then this
path can no longer match 300 500 , otherwise the property 100 300 500 begins to hold.
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• 100 200 = T, 200 300 = T → 300 100 = T

• 100 300 500 = F, 100 300 = T → 300 500 = T

• 100 200 = T, 200 300 = T → 100 300 = T

• 100 200 = T, 100 300 = T, 200 300 = F → 300 200 = F

• 100 = T, 200 = T → ˆ[0-9]+ = T

Unlike mutual conflicts, it is not easy to detect the non-mutual conflict for a set of waypoint
regexes at a first glance. It is easier to find the conflict by combining a true graph and false list
to record these waypoint regexes. A true graph is a directed graph that stores the waypoint regexes
which hold in the path. A false list stores the waypoint regexes which do not hold in the path. Take
the second non-mutual conflict example in the bullet list above, the true graph and the false list
before inserting 300 500 = T is shown in Figure 3.16 (black). When we try to add 300 500 = T
to the regex path, the updated true graph (red) will then have the connection 100→300→500,
which violates the false list. Therefore the property 300 500 = T conflicts with the path.

Figure 3.16: An example of the true graph and false list. Initially, the path has the property
100 300 500 = F and 100 300 = T. When we try to add 300 500 =T to the regex path, the

updated true graph will then have the connection 100→300→500, which violates the false list.

Aside from the example given above, there are other conditions when a set of waypoint regexes
create a conflict (i.e., create a directed cycle in the true graph). In general We use a four-step
procedure as shown in Figure 3.17 to detect any non-mutual waypoint conflict6:

With the above four steps, we are now able to detect all non-mutual waypoint conflicts we can
come up with. When we detect that regex = T has a conflict with the regex path, we stop the
insertion and return (see Alg 4 line 15-16). When we detect that regex=F has a conflict (i.e.,
regex=T already holds in the path), we only add the property regex=F to the path regex-list
without inserting any child into the path (see Alg 4 line 13-14). When there is no conflict and we
have reached the end of a path, we are safe to append both regex=T and regex=F to the regex
path, otherwise we move to the next hop on the path.

6We do not cover conflicts regarding regexes like ˆ1800 and 900$ here because such conflicts can be detected
with some simple if-else checking.
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Figure 3.17: The flow chart of the function CheckConflict.
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For the non-mutual conflict regarding the regex ˆ[0-9]+, we can deal with it by inserting it after
all other regexes and counting the number of different ASNs appear on each regex path. One thing
to note is that when a path has the property ˆ1800 =T and 1800$ = T, then ˆ[0-9]+ always holds.

A limitation of our AS-PATH partition is that it only supports the preliminary regexes that
are listed in Table 3.1 so far. However, for other more complex regexes, we can first disassemble
it into a set of preliminary regexes that form the logical AND/OR relationship. For example, the
regex ˆ6553[0-1] can be disassembled to ˆ65530 OR ˆ65531 .

3.3 Symbolic Announcement Creation

So far, we have calculated the equivalence classes for the most common attributes in an announce-
ment as well as for IP Prefix. We have also attached the equivalence class labels to the route map
for NEXT-HOP, IP Prefix and AS-PATH as shown in Figure 3.7, 3.12 and 3.15. We now create
the symbolic announcement.

As defined at the beginning of this chapter, a symbolic announcement should be able to represent
the entire BGP announcement space. Recall that for each attribute, we compute the equivalence
classes whose union covers the entire attribute space, we can fill each attribute in the symbolic
announcement with the set of equivalence classes for that attribute. With the symbolic announce-
ment, any concrete BGP announcement will now be represented by a combination of equivalence
classes from each attribute. For example, if we have the configuration shown in Figure 3.18, the
symbolic announcement will be like Figure 3.19.



CHAPTER 3. SYMBOLIC ANNOUNCEMENT 30

Figure 3.18: An configuration after applying attribute partition. Red values are the equivalence
classes extracted from the configuration (without -1). For prefix lists and AS-PATH lists, the
equivalence classes are represented by symbolic labels.

Figure 3.19: The symbolic announcement created from Figure 3.18. Each attribute in the symbolic
announcement is the set of equivalence classes of that attribute. The symbolic announcement is
then able to represent the entire BGP announcement space.



Chapter 4

Geometric Model

In the last chapter, we introduce the algorithms and data structures we use to create the symbolic
announcement and replace each attribute value with the equivalence classes it belongs to. With
this preparation, we can now build the geometric model to process the symbolic announcement and
to verify different BGP control plane properties. In this chapter, we first provide a general block
diagram of the entire model, then we go into the details of each module in the diagram.

4.1 Block Diagram

Figure 4.1 shows the block diagram design for our geometric model. Overall, the model can be
divided into three stages. In the first stage, we use a parser to extract the network topology and
route map information from each router configuration file. In the second stage, we compute the
attribute partition and create the symbolic announcement with the methods we have explained in
the last chapter. In the third stage, we input the symbolic announcement, the network topology and
a BGP property query into the verifier, which then starts to process the symbolic announcement
filtering inside the network and finally returns the answer to the query based on the filtering result.

4.2 Parser

Before we can use the geometric model to propagate the symbolic announcement and verify proper-
ties, we need to extract the network information from the real device configurations. The challenge
is that the configurations usually consist of hundreds or even thousands of lines of low-level direc-
tives. Therefore, we need a parser to automatically capture those lines that contain the network
topology and BGP control plane information.

The parser we design translates the low-level configuration to the high-level Python objects. It
is able to recognize the BGP session settings each router declares in the configuration and compute
the complete network topology graph. It also extracts the complete route map corresponding
to each BGP session and gathers all attribute values that appear in any configuration for later
attribute partition.

After parsing all configurations, the parser passes the route map information (e.g., prefix-list
matches) to the attribute partitioner, which then computes the equivalence classes for each attribute
and creates the symbolic announcement as we have covered in the last chapter.

31
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Figure 4.1: The block diagram of the geometric model. The overall work flow can be divided into
three stages: 1. configuration parsing; 2. symbolic announcement creation; 3. property verification.

4.3 Route Map Filtering

When a symbolic announcement is input into the network from an ingress point, it represents
all the possible BGP announcements that could be received from an external neighbor having an
eBGP session with that ingress point. This symbolic announcement will then be filtered by each
router it passes through. When a symbolic announcement finally leaves the network from different
egress points, the remaining content of the symbolic announcement stands for all possible BGP
announcements that could reach that specific egress point. The network verifier can then check if
a BGP property holds based on the content in each export announcement. Therefore, before we
show how our verifier answers each query, we first introduce how the symbolic announcement is
filtered by a route map.

4.3.1 Single matching

We first look at the case when the symbolic announcement is filtered by a route map item with
a single match statement. Consider the example in Figure 4.2. The route map item matches any
announcement with MED = 50, then it sets the LOCAL-PREF of all matched announcements to
100. When the symbolic announcement passes this route map item, the label 50 in MED is picked
up, and all other attribute labels do not change. This means that as long as an announcement has
MED = 50, it will be matched no matter what the values of other attributes are. The remaining
symbolic announcement will then be filtered by the next route map item. In this example, the
remaining symbolic announcement represents all possible BGP announcements that do not have
MED = 50.

The route map item that matches a particular attribute list needs few more steps to compute
the matching symbolic announcement because of the list type permit|deny. For clarification, we
first compare the effect of permit|deny when it appears in an attribute list and in a route map
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Figure 4.2: An example of single matching (MED). The symbolic announcement with MED label =
50 is matched by the route map item and the LOCAL-PREF of the matching symbolic announce-
ment is set to 100. The remaining symbolic announcement (with MED = -1) passes through the
next route map item.

item. As shown in Figure 4.3, a list item of list type deny filters out the label(s) from the input
symbolic announcement, the remaining announcement passes through the next list item which has
a lower priority, if the next item is of type permit, then the label(s) declared in that item will be
matched. In the end, the matching symbolic announcement will contain the union of labels that
are listed in each item of permit type. And the remaining announcement will be the difference
between the original input announcement and the matching announcement. On the contrary, when
a route map item has the route map type deny, it will drop the matching announcement matched
by the list, otherwise, the matching announcement is accepted.

We now consider the route map filtering in Figure 4.4. The route map item matches the AS-
PATH list ALIST, which denies AS-PATH labels 1, 2 and permits label 3. Therefore, the matching
announcement will only have label 3 in the AS-PATH attribute, and all the other AS-PATH labels
appear in the remaining announcement. The same filtering process also applies to the prefix list,
which can be generalized in Alg 6. However it is a little different for the community list.

Recall our partition method for the community attribute, we define each set of community
values that appears in a community list item as a community equivalence class. Therefore, there
could be overlaps between different community equivalence classes. For example, there can be two
equivalence classes: {21:200} and {21:200, 21:500}. It is apparent that for any community values in
an announcement, if it belongs to the class {21:200, 21:500}, it also belongs to the class {21:200}.
Therefore, we need to take care of this when processing the community value filtering. In practice,
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Figure 4.3: The filtering process inside an attribute list. A symbolic announcement passes through
each list item in the order of their priority. An item with list type deny filters out the label(s) in
the symbolic announcement, and the list item with permit matches the label(s).

Figure 4.4: An example of single matching (AS-PATH). The symbolic announcement with AS-
PATH label = 3 is matched by the route map item. The remaining symbolic announcement
containing the remaining AS-PATH labels pass through the next route map item.

we use Alg 7 to deal with the community list filtering. With Alg 7, we can make sure that labels
{21:200} and {21:500, 21:200} in a symbolic announcement will be both matched by the community
list item that permits {21:200}.
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Algorithm 6 Single matching algorithm for the prefix list and the AS-PATH list

1: Input:
labels: a set of NEXT-HOP or IP Prefix or AS-PATH labels in the input symbolic announce-

ment
2: list: the prefix list or the AS-PATH list that is going to match the labels
3: Output:

matching: the matching attribute labels
remaining: the remaining attribute labels that are not matched by the list

4: matching = set()
5: for item in sorted(list) do . sort the list items in the order of their sequence numbers
6: if item.type == permit then
7: intersection = list[item].labels

⋂
labels

8: matching.include(intersection)
9: end if

10: remaining = labels.difference(intersection)
11: end for
12: return matching, remaining

Algorithm 7 Single matching algorithm for the community list

1: Input:
labels: a set of community labels in the input symbolic announcement

2: comm list: the community list that is going to match the labels
3: Output:

matching: the matching community labels
remaining: the remaining community labels that are not matched by the comm list

4: matching = set()
5: for ann label in labels do . each label is a set of community values (i.e., {21:200, 21:500})
6: for list label in comm list do
7: if list label.values ⊆ ann label.values then
8: if list label.type = permit then
9: matching.include(ann label)

10: break
11: end if
12: end if
13: end for
14: end for
15: return matching, remaining
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4.3.2 Multiple matching

A route map item can also have multiple match statements. In this case, only the announcement
that satisfies all the match statements will be matched. Figure 4.5 gives an example of the multiple
matching. In general, the creation of the matching announcement is similar to the single match-
ing. If the symbolic announcement has the required labels in all attributes to be matched in the
route map item, then a matching announcement will be created with the matched labels for the
specified attributes and arbitrary labels for the others. The creation of the remaining announce-
ments is however different because multiple combinations of the attributes appear in the remaining
announcements.

As shown in Figure 4.5, unlike the single matching where only one remaining announcement
passes through the next route map item, three disjoint remaining announcements are generated
when the symbolic announcement passes the route map item. Alg 8 explains how they are generated.
In general, the input symbolic announcement is matched by one match at one time, the local
matching and remaining announcement generated by the current match both go to the next match.
This process is repeated until all match statements are traversed. Then, only the announcement
that is matched by all match statements will be treated as the output matching announcement, all
the other announcements generated by the last match are treated as the remaining announcements.
If there is no matching announcement, then the original input symbolic announcement passes
through the next route map item (not shown in Alg 8).

Figure 4.5: An example of the multiple matching. The route map item matches the announcement
that has MED = 50 and satisfies community list CLIST. Three remaining announcements generated
by the last match pass through the next route map item.
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Algorithm 8 Multiple matching algorithm

1: Input:
sym ann: the symbolic announcement to be matched
rm item: the route map item with multiple match statements

2: Output:
matching: the matching announcement
remaining: the remaining announcement

3: matching = copy(sym ann)
4: remain stack = list()

. store all the remaining announcements generated from last match
5: tmp remain stack = list()

. store the remaining announcements generated from the current match
6: for match in rm item.matches do
7: while len(remain stack) do . filter each remaining announcement
8: remain 1, remain 2 = match.filter(remain stack).pop()
9: tmp remain stack.push(remain 1, remain 2)

10: end while
11: matching, remain 0 = match.filter(matching) . update the matching announcement
12: tmp remain stack.push(remain 0)
13: remain stack = tmp remain stack
14: tmp remain stack.clear()
15: end for
16: remaining = remain stack
17: return matching, remaining
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After applying Alg 8, the matching and remaining announcements are structured as in Fig-
ure 4.6. In general, if a route map item has n match statements, it will generate 1 matching
announcement and 2n − 1 remaining announcements in total.

Figure 4.6: An example output of multiple matching algorithm. The input symbolic announcement
is filtered by each match in order. For a route map item with n match statements, there are 1
matching announcement and 2n − 1 remaining announcements in total.

4.4 Verifier

When a symbolic announcement is filtered by each route map item, only the matching symbolic
announcement will be propagated to other routers. The matching symbolic announcement contains
all possible BGP announcements that will be propagated to the next router. Therefore, we can
easily check many BGP control plane properties by inserting the symbolic announcement at each
ingress point and observe how this symbolic announcement is propagated inside the network until
it leaves the network.

Our geometric model supports two propagation architectures: iBGP full mesh and route re-
flection. As introduced in § 2.1.1, in the iBGP full mesh, a router will propagate the matching
announcement received from an eBGP peer to all other internal routers. In the route reflection, a
router only propagates the matching announcement to the route reflector it connects to. In both
cases, an input BGP announcement from an eBGP neighbor may be propagated to any other eBGP
neighbor.

The verifier provides APIs for different property queries. For example, it allows the user to
check the reachability between any two eBGP neighbors. One advantage of our verifier over others
mentioned in the related work is that in addition to returning a boolean answer to a property query
and a single counter-example if the property does not hold, it outputs all possible announcements
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that violate the property and their traces considering any link failure scenario (i.e., as long as the
ingress and egress links are on).

In the rest of this section, we will present some main properties that our verifier is able to verify
and the verification criteria it is based on.

4.4.1 No transit from A to B

The business relationship policy specifies that a peer or a provider should not reach another peer
or a provider. To verify this property, the verifier allows the user to specify the two neighbors A
and B to check if there is no transit from A to B. This is implemented by inserting the full symbolic
announcement into the ingress point that connects to A, and checking whether any remaining
symbolic announcement is exported from the egress point that connects to B. Because we assume
each symbolic announcement is fully propagated inside the network via iBGP full mesh or route
reflection, the export announcement considers all possibilities that would violate the policy. To
output the original symbolic announcement that violates the policy, the verifier always maintains
a copy of the original announcement when modifying the attributes according to the route map.

4.4.2 Prefer A over B

In the business relationship and outbound traffic control policies, the network usually needs to
specify the preference order for different eBGP neighbors. A common practice is to set a higher
LOCAL-PREF value for the more preferred neighbor. To check if the network prefers neighbor A
over B inside the network, the verifier adds a fake egress point with no route map to the network.
As shown in Figure 4.7, A and B are both connected to the network via R1 and R2. The fake
egress point Rf has an iBGP session with both internal routers, since Rf does not set any route
map, it will directly output the announcements that are originated from A and B and processed by
R1 and R2. Therefore, the verifier can check the LOCAL-PREF values received from R1 and R2.
If all LOCAL-PREF values from R1 are larger than those from R2, then the verifier can guarantee
that the network prefers A over B, otherwise it is not clear.

Figure 4.7: An example of the fake egress point implementation. The fake egress point Rf does
not have any route map and has iBGP sessions with R1 and R2. It will directly output the
announcements that are originated from A and B and processed by R1 and R2. The verifier can
then check the fake egress point to compare the LOCAL-PREF values set for A and B.
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4.4.3 All neighbors are tagged

Many BGP policies are implemented based on the assigning different groups for the eBGP neighbors.
It is therefore important to check whether all external announcements are tagged with a specific
community value. This can also be realized with the fake egress point Rf . Since the fake egress
point Rf has an iBGP session with all other ingress points and has no route map. It will output
the announcements processed by each ingress point as they are. Therefore, by checking the export
announcements, the verifier can know if all eBGP neighbors are tagged and their specific community
values.

4.4.4 Want X prefer R1 over R2

Another set of important BGP policies the verifier can verify are the network inbound traffic control
policies. For example, the verifier can check if the network wants a neighbor to prefer ingress point
R1 over R2. This is done by first comparing the AS prepending times in any output announcement
exported from R1 and R2. If R1 prepends the AS number more times than R2 in all output
announcements, then the verifier considers R1 to be more preferred. If there is no specific priority
in terms of AS prepending between R1 and R2, the verifier then compares the MED values in
their output announcements and considers the ingress point that has a lower MED in all output
announcements as the ore preferred one.

4.5 Initial Network Reduction

So far, we have introduced the entire geometric model for the BGP control plane verification. The
verification result considers the full announcement coverage and link failure coverage. There is one
last piece left for our verifier to satisfy the full data plane coverage, which is the full network state
coverage.

In a BGP announcement processing pipeline, each router will select the best route for each
destination and only propagate the best routes to the next router. In different network states, each
router may select and propagate the different best routes. Normally, it is necessary for a verifier
to consider the verification result in different network states. The initial network reduction (INR)
theory proved by Bagpipe [21] shows that it is enough to only consider the initial network state
because if the best route will be propagated in any network state, it will also be propagated in the
initial state where no former best route has been selected. We use the same idea here and therefore
do not need to consider other network states.
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Evaluation

The evaluation of the geometric model is focused on two dimensions: efficiency and correctness.
To evaluate the efficiency of our model, we calculate the time it takes for its major processes. To
evaluate the correctness, we build a small case-study network and analyze the verifier behavior
when we manipulate the network configuration.

5.1 Efficiency Test

We design three tests to measure the efficiency of the geometric model. In Test 1, we test the time
required for the multiple matching. In Test 2, we test the time it takes for a symbolic announcement
to go through different numbers of route map items. In Test 3, we calculate the time it takes to
assign labels for a set of prefix lists and AS-PATH lists, respectively. Each evaluation is performed
on a 4-core 8-thread CPU (clocked at 2.1GHz) with a 16G of memory.

5.1.1 Test 1: multiple matching test

In this test, we analyze the time consumption for filtering the symbolic announcement with a single
route map item with different number of attributes. Since there are at most six attribute types
that can appear in a route map item match statement (IP Prefix included), a route map item can
have at most six match statements.

Test setup To construct a random route map item, we first build an attribute value pool for
each attribute that contains enough arbitrary values. A very small subset of the attribute pools
is displayed in Figure 5.1 (NEXT-HOP and IP Prefix share the same set of IP prefixes). We then
randomly create 5 prefix lists, 5 AS-PATH lists and 15 community sets (i.e., {21:300} and {21:500,
21:200} are two community sets) by randomly picking from the attribute pool. Each prefix list
consists of 2 prefix list items, the IP prefix in each list item is randomly picked from the IP prefix
pool, and the parameters ge, le, eq are randomly chosen based on the prefix length. Each AS-PATH
list also consists of 2 AS-PATH list items whose values are randomly picked from the AS-PATH
value pool. Similarly, each community set consists of 1 or 2 community values from the community
value pool. The list type permit|deny is also randomly picked for all list items.

We then add the specified number of attributes to the route map item. We randomly pick the
attribute to be matched. If the community value is chosen, then a community list consisting of
2 community list items is created. The values in each list item are randomly chosen from the 15
community sets. If the NEXT-HOP or IP Prefix is picked up, then a prefix list is randomly selected

41



CHAPTER 5. EVALUATION 42

from the 5 prefix lists. Similarly, if the attribute AS-PATH is picked up, then a random AS-PATH
list is selected from 5 AS-PATH lists. When the LOCAL-PREF or MED is picked up, then the
value to be matched is randomly picked from its corresponding attribute pool.

Figure 5.1: A small subset of each attribute value pool. When constructing a route map item or an
attribute list, each attribute value is randomly picked from the pool. NEXT-HOP and IP Prefix
share the same IP prefixes pool because they are matched by the prefix list.

After constructing the route map item, we create the symbolic announcement. For the attributes
LOCAL-PREF and MED, the labels are all the values in their attribute pools, with -1 added to
each attribute. For the attribute community, the labels are the 15 community sets and -1. For
the attributes NEXT-HOP and IP Prefix, we calculate the equivalence class labels based on the
5 prefix lists constructed before (i.e., each prefix list is tagged with both NEXT-HOP labels and
IP Prefix labels). For the attribute AS-PATH, we calculate the AS-PATH equivalence class labels
based on the 5 AS-PATH lists constructed before.

Test procedure With all test setups prepared, we let the symbolic announcement go through
the route map item of different numbers of attributes and start the evaluation. For the evaluation,
we calculate the time for computing the equivalence classes before the announcement filtering and
for the route map item filtering separately. For each possible number of attributes in a route map
item, we repeat the entire procedure from creating random attribute lists to filtering the symbolic
unchanged). Figure 5.2 shows the average result of Test 1.

Test result As can be found in Figure 5.2, the green and red lines stand for the time for computing
equivalence classes and for running a route map item filtering, respectively. Since the number of
prefix lists and AS-PATH lists are always fixed for the equivalence class computation (although the
list items are different every time), the green line does not have significant fluctuation. The time
used for filtering the symbolic announcement slowly increases with the number of attributes. This
is reasonable because according to the multiple matching algorithm Alg 8, more filtering steps are
required when the number of attributes in the route map items grows.

Compared to the time used for running a symbolic announcement analysis, it takes much more
time to compute the equivalence classes. However, since we only need to compute them in the
compile-time once before filtering any symbolic announcement, this time will not affect the run-
time analysis.

5.1.2 Test 2: multiple route map items test

In this test, we analyze the time consumption for filtering a symbolic announcement by different
numbers of route map items.

Test setup The test setup is similar to Test 1, except for two points. First, instead of only
constructing a single route map item, we construct different numbers of route map items. Second,
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Figure 5.2: The result of the multiple matching test. The green line that standing for the time
for equivalence classes computation is relatively stable across different numbers of attributes to
be matched. The red line standing for the announcement filtering time slowly increases with the
number of attributes.

we fix the number of attributes in each route map item to be 2, the attribute itself is still randomly
selected as in Test 1.

Test procedure The test procedure is also similar to Test 1. We first calculate the time for
equivalence class computation, then the time for the announcement filtering. For each number of
route map items in a route map, we repeat the entire procedure 20 times. The average result is
shown in Figure 5.3.

Test result Similar to Figure 5.2, the green line in Figure 5.3 is also relatively stable due to
the fixed number of attribute lists in the equivalence class computation. One significant difference
between Figure 5.2 and Figure 5.3 is that the red line grows faster in Figure 5.3. This is also
predictable because when there are multiple route map items, all the remaining announcements
of the last item need to go through the next item. According to Alg 8, the number of remaining
announcements increases exponentially during the multiple matching. In a real configuration, the
number of route map items in each route map is usually limited, therefore the time consumption
is also under control.

5.1.3 Test 3: equivalence class computation test

In this test, we analyzes the efficiency of our equivalence class computation algorithms for the prefix
list and the AS-PATH list.
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Figure 5.3: The result of the multiple route map items test. The green line is still relatively stable
across different numbers of route map items. Compared to Figure 5.2, the red line grows faster
with the number of route map items in a route map.

Test setup The construction of either list is the same as in the previous tests and each list
consists of 2 list items. Unlike previous tests, we only need to construct specific numbers of lists
for each list type and do not need to create the route map or the symbolic announcement.

Test procedure For each list type, we evaluate the time it takes to compute the equivalence
classes for different numbers of lists. When we compute the time consumption for one list type,
we set the number of another list type to be 0. The test result is shown in Figure 5.4. Each
computation result is also an average of 20 repetitions.

Test result The test result shows that, there is a significant difference between the algorithm
time complexity in computing equivalence classes for the prefix list and the AS-PATH list. As
shown in Figure 5.4, when the number of AS-PATH lists increases, the time consumption grows
exponentially. Compared to the time spent on the AS-PATH list, the time used for the prefix list
is negligible. The most important reason for this difference is that the algorithm for the AS-PATH
partition is much more complicate (see Alg 4 and Figure 3.17) especially when the regex tree grows
deeply.

5.2 Case Study

In this section, we show how the geometric model behaves in a small case-study network. The
network topology and the route maps are given in Figure 5.5. The topology consists of four internal
routers R1-R4 forming an iBGP full mesh and four external routers that have different business
relationships with the central network. The route map configuration for each internal router is



CHAPTER 5. EVALUATION 45

Figure 5.4: The result of the equivalence class computation test. The time consumption for AS-
PATH equivalence class computation grows exponentially when the number of AS-PATH lists
increases. Compared to the AS-PATH list, the time consumption for computing prefix list partition
is negligible.

included alongside. According to Figure 5.5, several desired BGP policies can be inferred from the
route maps:

1. prefer CUST1 > CUST2 > PEER > PROV

2. no transit between neighbor PEER and PROV

3. want AS100 to prefer R1 over R4

4. announcements from CUST1 and CUST2 are tagged with the community value 21:1000,
announcements from PEER are tagged with 21:100 and announcements from PROV are
tagged with 21:10

We then introduce three debugging options in the network. As highlighted in blue in Figure 5.5,
when we turn off the option community on all routes, the statement ”set Community 21:10” in R2’s
route map INMAP-PROV will be missing. When we turn off the option no transit, the statement
”match Community 21:1000” will be missing. When the option ”business relationship” is off, the
highlighted statement ”set LOCAL-PREF 100” will be changed to ”set LOCAL-PREF 10”. By
introducing these debugging options, we simulate the situation where some BGP properties do not
hold due to configuration errors. We then analyze the verifier behavior when different options are
set.

We first look at the case where all BGP properties hold (i.e., all options are on). When we
query the verifier about the policies listed above, the verifier returns the answer as in Figure 5.6.
It is obvious that the verifier gives the correct answer to all queries.
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Figure 5.5: The topology of the case-study network. The topology consists of four internal routers
forming an iBGP full mesh and four external neighbors that have different business relationships
with AS21. Three debugging options are provided as highlighted in blue. When any option is turn
off, the declared property beside it no longer holds.

We now turn off the option business relationship. In this case, the LOCAL-PREF for CUST2
will be incorrectly set to 10 instead of 1000 and the business relationship policy is violated. The
answer given by the verifier has also changed accordingly as in Figure 5.7.

Figure 5.8 shows the results when we turn off the option no transit. As output by the verifier,
since no match is specified in R1’s route map INMAP-PEER, any announcements from PEER will
be received by PROV. There are two sets of attribute values displayed in Figure 5.8. One is original,
which shows the original attribute values received from PROV. The other is export, when it appears
in the output symbolic announcement, it means the attribute value has been modified after it is
processed by the network and propagated to another external neighbor, otherwise the original value
is propagated. The output announcement also lists the announcement trace information, which is
included in the fields ”via routers” and ”via route map items”.

At last, we turn off the option ”community on all routes”. The verifier’s answer is shown in
Figure 5.9. It shows that all announcements from PROV with the IP Prefix label 2 (which stands
for 100.0.0.0/16 ge 16 le 32 ) are not tagged with a specific community value. The fake IP address
#.#.#.# for the fake egress point appears in the next hop because the community values are
examined via the fake egress point (see § 4.4). fake i and fake n are two fake routers at the fake
egress point.
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Figure 5.6: The verifier’s answer when all BGP properties hold. Obviously, the verifier answers
correctly to all property queries.

Figure 5.7: The verifier’s answer when the policy business relationship is violated. The CUST2 now
has the lowest preference among all external neighbors due to an incorrect LOCAL-PREF setting.
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Figure 5.8: The verifier’s answer when the policy no transit is violated. All announcements from
PEER can now reach PROV. The two sets of attributes: original and export specify the attribute
value when it is received and when it is propagated to another external neighbor, respectively.

Figure 5.9: The verifier’s answer when the policy community on all routes is violated. The verifier
shows that all announcements from PROV with the IP Prefix label 2 are not tagged with a specific
community value. fake i and fake n are two fake routers at the fake egress point and #.#.#.# is
the fake IP for the fake egress point.
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Discussion

So far, we have covered the essential technical details of the geometric model for the BGP control
plane verification. Compared with the related work, our model can verify the control plane prop-
erties more efficiently. However, there are still limitations of the model due to the complication of
simulating the BGP control plane behavior. In this chapter, we list some possible optimization we
consider for the model as well as some next steps we could look forward to.

6.1 Limitations

When building the geometric model, we mostly focus on the functional integrity and therefore
leave much room for further optimization. We see the improvement possibilities in the following
perspectives:

Model extension Although the geometric model has modeled the filtering for all route attributes
and allows propagation for different architectures (i.e., iBGP full mesh, route reflection), we make
some restrictions when applying the model. For example, we do not model the BGP decision process
and can only inject routes from one ingress point at a time. In this case, we need to carefully reason
about the limitations which might be introduced due to the omission of the interaction between
different routes.

AS-PATH partitioner Among all attribute partition algorithm designs, AS-PATH is the most
challenging one because we need to deal with conflict resolution when inserting a new regex into
the regex tree. Our AS-PATH partition algorithm now recognizes the most preliminary regexes
(see Table 3.1), for other more complicated regexes, we can first disassemble it into a series of
preliminary regexes. During our evaluation, we find that the time complexity of computing AS-
PATH equivalence classes is much more significant than other attributes. In another informal test,
we test the AS-PATH partitioner performance when importing hundreds of regexes, and the test
result indicates that the algorithm also uses a lot of memory to process the recursion. In summary,
the performance of the AS-PATH partitioner is the bottleneck of the performance of the entire
geometric model. We already see some possible directions for the optimization and we expect to
apply it in the next step.

Community overlap For all the other attributes, we pay much attention to make sure there
is no overlap between different equivalence classes. However, we simplify this process in the com-
munity. We realize that this could lead to false positives in some verification results. In all the

49



CHAPTER 6. DISCUSSION 50

test performed, we have not observed any false positives. However, theoretically, it could happen:
for example, given two equivalence classes: {21:300} and {21:500}. When a route map filters out
{21:300}, the class {21:500} is still in the announcement. This means any real community value
that contains both 21:300 and 21:500 may still be matched later. To handle this kind of false
positive, we think about using a similar but much easier data structure as the AS-PATH regex
tree.

Evaluation In the evaluation, we test the model performance with different sizes of route map
items and different numbers of attribute lists. However, we leave out the behavior when multiple
route maps are applied during the filtering. One reason is that the performance of multiple route
maps is highly dependent on the route map contents. Unlike in the multiple route map items test
where each route map item filters the remaining announcements of the last route map item, only
the matching announcement flows down to the next route map. Since our evaluation is carried out
in a fully random way, we estimate that the result of the multiple route maps test can have a large
variance for different random setups.

Parser The configuration parser is now able to parse the entire network topology and all the
attributes that our model supports. We expect to improve the parser capability by supporting
more settings in a real large-scale network configuration, such as neighbor groups and well-known
communities.

6.2 Outlook

Apart from the possible optimizations we have listed above, we also look forward to the transition
of our focus from the BGP verification to the specification mining. We have already covered some
of them in the current verifier such as the reachability map, the internal preference order and the
community tagging. We expect to support more BGP specifications that are applied in the real
world.



Chapter 7

Summary

In this project, we build a full geometric model for the BGP control plane. With our geometric
model, we can validate common control plane policies such as transit, route preferences and con-
sistent tagging, which are difficult or impossible to verify for prior verification work that partly
relies on data plane analysis. A big advantage of our geometric model is that we are able to inject
symbolic routes and therefore not only get a single counter-example to prove that a policy does not
hold, but the entire set of announcements that lead to the policy violation.

With the equivalence class insight from ddNF [4], we amortize the time overhead for the run-time
verification since we can reuse the equivalence classes for all analyzes over the same network. Based
on our current achievements on the control plane verification, we look forward to the transition to
the BGP specification mining in future work.
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