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Abstract

This document summarizes the efforts conducted to implement a reinforcement
learning environment and train an agent that learns to trade on the Ethereum
blockchain, more specifically with the Uniswap smart contract. The goal is to be
able to learn arbitrage transactions and maybe even more complex strategies like
sandwich attacks.
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CHAPTER 1

Introduction

1.1 Blockchains and Uniswap

Since 2020, the world of cryptocurrencies has attracted a lot of attention and the
amounts of money invested in these systems has increased exponentially. The
large sums featured in this ecosystem makes it a very relevant topic to investigate.
Some researches, like the discovery of “Miner Extractable Value” (MEV) [1],
have had deep impacts over the blockchain world, in this case it created a whole
new research field related to miner attacks and the game theoretical aspects of
transaction mining.

Aiming at creating a truly decentralized economy, the blockchain gave birth
to the first Automated Market Makers (AMM). Those are exchange that are
powered, not by buyers and sellers, but by liquidity pools. Uniswap was the first
to introduce the fixed product formula [15] and rose to be the most important
AMM if the amounts in the liquidity pools or the total transaction amounts are
taken as metrics.

Exchanges can provide “arbitrage opportunities”. An arbitrage opportunity
arises when it is possible to buy an asset in one exchange cheaper than it is
possible to sell it in some other. By buying in the first exchange and selling in
the second, you are guaranteed to make a profit. Uniswap is an exchange like
any other and can provide such opportunities if the price on Uniswap differ from
those of some other exchanges. In this article, we will refer to the prices of the
other exchanges as the “market price”.

Being a smart contract on the Ethereum blockchain, all Uniswap pairs will
also inherit the limitations of the Ethereum blockchain. One of them is that the
transactions are first submitted to the mempool where all the miners can see them,
and only then are they mined into a block, i.e. executed. Miners are not required
to mine transactions in the order they were submitted. Instead they generally
mine first the transactions that bring them the highest fees, i.e. the transactions
with the highest gas price. This makes it possible to frontrun transactions, i.e.
execute a transaction that was submitted after another one before it by setting a
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higher gas price.

This gave rise to the so called sandwich attack that allows some attacker to
extract value from a large Uniswap transaction by submitting two transactions:
one that frontruns and another that postruns the large transaction. Appendix A
explains the details of sandwich attacks.

1.2 Reinforcement Learning

Reinforcement learning is a specific type of unsupervised machine learning that
consists in training a program, called agent, to interact with some environment
and maximize some reward computed from the environment.

1.3 Goals

The goal of this semester project is to create a reinforcement learning pipeline
able to train a reinforcement learning agent that will trade with the Uniswap
smart contract using strategies to increase its wealth. This can include performing
arbitrage transactions, sandwich attacks or some other kinds of guaranteed-benefits
transactions strategies that we might not yet know of. The agent wealth will be
computed in US dollar.

In this project, we will focus on the ETH/USDC Uniswap pair only. ETH is
the currency symbol of Ether, the native currency of the Ethereum blockchain.
USDC is the symbol of the USD Coin cryptocurrency which is a stablecoin pegged
to the value of the US dollar (USD), i.e. it is a cryptocurrency that tries to have
a value as close as possible to that of the US dollar. The ETH/USDC pair is one
of the most popular, as such there is a lot of data available for it.
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Code Architecture

This project’s structure follows the PyBuilder structure as PyBuilder [10] is the
build automaton configured with this project. All the sources are to be found
in the src/ folder. They are sorted by source set, of which they are two: main
and unittest. We will only concern ourselves with the main sourceset, the other
contains only unit tests to check the correct implementation of the first. This
sourceset is further divided in two important folders: python/, that contains a
python package called rlmbc (Reinforcement Learning Meets BlockChain) listing
all the classes and functions required by this project, and scripts/, that contains
the executable files that make use of the functionalities provided by the rlmbc
package.

We will focus on the rlmbc package in this section and describe its architecture.
Some lower details explanations about the important classes of the package will
be given in section 3. The outputs generated by the scripts are detailed in section

6.

2.1 Blockchain Simulation

The folder blockchain/ contains the code required to simulate an Ethereum
blockchain.

This includes a Network class which is the core of the simulated Ethereum
blockchain. This class coordinates the whole simulation, it keeps track of the ERC-
20 tokens [3] deployed, the miners, the regular accounts, the latest transaction
nonce for each account and it decides which miner gets to mine the next block.

The miner class simulates the behavior of miners. It contains an algorithm
that orders the transactions to mine in a way that should greedily maximize the
benefits of the miner. This algorithm is a simplification of the ones used in real
life, but it is probably sufficient for this project. The details of this algorithm are
given in section 3.1. The importance of this algorithm for the simulation and the
current limitations are highlighted in section 5.1.
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The cryptocurrency class provides a simple implementation of ERC-20 to-
kens.

The Transaction class represents all the transactions that are simulated.
It matches quite closely the real Ethereum transactions. Note that Ethereum
transactions can be simple ETH transfers but they can also trigger smart contracts.
Triggering smart contracts was implemented in Python by storing a function
to execute as one of the transaction attributes. This simple hack made the
implementation much simpler, although it provides less guarantees, i.e. the
developer needs to make sure that it only stores functions that trigger simulated
smart contracts and nothing else.

The Uniswap file provides an implementation of a Uniswap pair, as well as
subclasses of Transaction specifically targeted at interacting with the Uniswap
pair, i.e. subclasses for the three possible interactions with Uniswap: minting,
burning and swaps. Details of the formulas and of the implementation are given
in section 3.2.

The remaining classes in the blockchain package are more straightforward
and are not described in more details. This includes classes to represent blockchain
accounts and mined blocks.

2.2 History

The history packages contains the code to simulate prices based on historical
values.

The HistoricalDailyStock class computes daily returns, average daily drift,
daily volatility and squared daily volatility of some provided stock data. Some
helper functions allow:

e Fetching data from Yahoo Finance [4] given the symbol of the stock or
currency whose data should be fetched.

e Loading data from disk.

e Storing data to disk.

All helper functions cache the data for efficiency reasons.

The HistoricalDailyStock class expects the sampling rate of the provided
data to be daily. This is the default sampling rate of data from Yahoo finance.
For blockchain purposes, this is a somewhat low sampling frequency as volatility
is quite high, nevertheless Yahoo Finance has data on many stocks or currencies,
including cryptocurrencies, the datasets are pretty extensive, fast to download,
and totally free which made it a reasonable fit for this project.


https://finance.yahoo.com/quote/ETH-USD?p=ETH-USD&.tsrc=fin-srch
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The Oracle class provides an easy-to-use interface to sample new prices based
on historical values. On the Ethereum blockchain, blocks are mined approximately
every 13 seconds. This means that the various statistics of the historical data
provided by Yahoo Finance like the drift and volatility, which are based on daily
time interval, need to be scaled to much smaller time scales for the oracles’ needs.

There are two implementations of price oracles, i.e. two classes that generates
price evolutions. The first is a geometric brownian motions [5|. Using geometric
brownian motions to simulate prices is the most widely used approach in practice
and is also used in the Black-Scholes model. The second implementation differs
in that it does not use a Wiener process [16] (also called Brownian motion
sometimes) to generate the increments as the first one. The Wiener process
is a Lévy process [8] that has Gaussian increments. This process is easier to
implement, but features less extreme events which we deemed also less realistic.
The second implementation uses a Lévy process with increments drawn from the
Student-t distribution which features more extreme events. The details of the
oracle implementations are provided in section 3.3 and 3.4.

2.3 Probabilities

The DiscreteProbabilityDistribution class provides a straightforward imple-
mentation of discrete probabilities which is used in many places of the project.

2.4 Reinforcement Learning

This package provides all the functions and classes required to perform some
reinforcement learning.

Inside the agent subpackage are classes that implements the abstract interface
BlockchainAgent which provides a simple and unified way for agent to be queried.
This interface is only use at test time, not during the training. Along a wrapper
for rllib-trained agents, a few baseline classes are also provided:

IdleBaseline A baseline to compare the performances of a trained agent that
does nothing with the money it is given.

MintBaseline A baseline to compare the performances of a trained agent that
mints Uniswap shares at the beginning, then only waits and capitalizes
on the fees generated by others that use the Uniswap pair the agent is a
liquidity provider of.

The data subpackage contains hardcoded values and data needed to perform
the simulation like some smart contracts’ addresses, the path to CSV data files
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containing Uniswap transactions, filtered datasets containing the ETH/USDC
Uniswap pair data, etc.

The generator subpackage contains generators for various purposes:

e Generating account with randomly initialized amounts of different currencies.
Some more details on this generator are given in section 3.5. The importance
of this generator is further highlighted in section 5.3.

e Generating various types of Uniswap transaction (mint, burn, swap), includ-
ing arbitrage transactions. Some more details on this generator are given
in section 3.6. The importance of this generator is further highlighted in
section 5.3.

The environment package contains the BlockchainEnv class with is the core
of the reinforcement learning part of this project. This class defines the action
space and the observation space, and setups and manages the simulation. More
explanations about this class are given in section 4.1.

The reward file contains helper functions to compute the agent rewards as
well as the agent total wealth. A brief explanation of this computation is given in
section 3.7.



CHAPTER 3

Algorithms, Formulas and
Implementations

This section focuses on the key classes and algorithms in this project. It describes
them and also explain the rationale behind these choices.

3.1 Miner

In real-life, miners can decide:

e Which transactions they want to include in the block they are mining.

e In which order they list the transactions.

They must, however, always order the transaction of a single account in the
order they were produced, i.e. in increasing nonce order'. We remark that it is
possible for a single account to submit multiple transactions with the same nonce.
This allows an account to potentially override a previously sent but unmined
transaction.

Miners earn money in one of three ways in real-life:

1. They earn a reward of a fixed number of ETH for mining a block.

2. They earn gas fees. Ethereum transactions are composed of instructions
executed by the Ethereum Virtual Machine. Executing instructions on the
EVM has a cost specified in gas. When transactions are submitted, they
specify a gas price which is the maximum gas price that the sender is ready
to pay to get the instructions in their transaction executed. The miner
will earn the number of gas units consumed by the transaction times the

!The nonce of a transaction must always be equal to the number of transactions that the
sending account has already sent, i.e. it increases by one for every new transaction.
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maximum gas price specified in ETH that the user is ready to pay—or less
if the miner decides to bill less than the maximum price, but this does not
happen often in practice.

3. They can earn money by including their own transactions, e.g. arbitrage
transaction or specific types of attacks, as they have oracle-like knowledge
of the transactions that will be executed in the block.

As we are not interested in learning optimal miner behavior in this project,
the first and third sources of revenue are of no concern to us. We focus on the
second instead. Note that miners have a limit on the units of gas that they can
consume in a single block. Therefore, they have an incentive to include only the
transactions with the highest gas price to maximize their benefits.

3.1.1 Transaction Ordering

The miner implementation in this project includes as many transactions as possible
until reaching the block gas unit limit which is set to 1°000°000%. Because we only
consider Uniswap transactions, it is rather unlikely that this limit will ever be
reached. Instead a simpler mechanism is also provided: the miner is provided a
limit on the number of transactions that it can include in the block. This limit can
be set by the developer and makes it possible to include a number of transaction
that is realist given the specifics of the simulation at hand. For example, the
BlockchainEnv class samples a count of transaction from the historical distribution
of Uniswap transactions included per block so as to include a realistic number of
Uniswap transaction in each block.

When ordering transactions, the miners take into account that transactions of
a single user must always be ordered. They also support transaction overriding
and will only ever include one transaction for a given nonce. The gas cost of a
transaction is determined by the miner too by sampling a value from a Gaussian
distribution specific to the type of Uniswap transaction being conducted, i.e.
mint, burn or swap, where the mean and standard deviation were computed from
historical values.

A pseudocode version of the miner algorithm is given in Algorithm 1.

The implementation of the transaction ordering algorithm has runtime com-
plexity of O(n?) which was a concern as the algorithm is executed for every block,
i.e. every 26 steps of the simulation on average as blocks include 26 Uniswap
transactions on average. Being able to run the simulated environment very fast is
of major importance to be able to learn rapidly enough when doing reinforcement
learning. Empirically, it turned out to be reasonable, the main bottleneck was

20n the real Ethereum blockchain, this limit has had values between 3 mio in 2016 and 30
mio in 2021.
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Data: transactions: All executable transactions available sorted by
decreasing gas price

Result: A mined block

1 < 0;

mined transactions = {};

while ¢ < transactions.length do
if current transaction is not the next transaction for the transaction

sender then
T+ +;
continue;

end
if gas already used in block + gas used by transaction > gas available
for block then
1+ +;
continue;
end
fee = gas used by transaction * gas price in ETH,;
if transaction sender has not enough funds for transaction then
T+ +;
continue;
end
pay the miner the gas fees;
execute transaction (might trigger a smart contract);
gas already used in block += gas used by transaction;
next valid nonce for sender += 1;
mined transaction.add(transactions|i|);
if count of transactions in block > mazximum transactions in block

then
| break

end
1 =0;
end

Algorithm 1: Miner Transaction Ordering Algorithm

computing the gradient and updating the weights of the neural network underlying
the agent, not running the simulation.

We remark that the algorithm implemented is a simplification. The cost in
gas unit of each transaction is sampled at random instead of being measured as
in the real Ethereum blockchain®. Further, the greedy approach of taking the
first valid transaction among the highest gas price transactions without taking

3Computing the real gas cost of transactions would require to run the transactions through
the Ethereum Virtual Machine which would take unreasonable amounts of time and unreasonable
amounts of efforts to implement.
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the gas consumption into account is a simplification that might not be optimal
for the miner. The problem of selecting the transactions in order to maximize the
miner’s benefit is a variant of the Knapsack Problem |7] which is NP-hard.

3.1.2 Atomic Transactions

Transactions can fail in many ways: the sender might not have enough balance to
pay the transaction, or it might set the gas price so high that it does not have
enough balance to pay the miner fees, or the smart contract function that it triggers
might fail for some reason. Ethereum transaction are atomic, i.e. they are either
fully executed or fully reverted, but never half-executed. Providing this guarantee
is desired in our simulation to mimic reality closely and to prevent the simulation
from unexpected behaviors or even crash because of invalid transactions.

Providing atomicity is notoriously hard. The current implementation does in
fact provides transaction atomicity, but it relies on the implementation details of
the Uniswap pair which is the only smart contract there is to interact with. Upon
executing a transaction, a miner will first transfer the fees and the transaction
amount from the transaction sender to the miner and transaction receiver respec-
tively. Then it will execute the smart contracts function, if any. Each function in
the Uniswap pair performs first many checks to assert that the transaction can
be executed completely. Only once those checks are successful does the smart
contract modify its internal state. If any check fails, the smart contract will not
change its internal state, but will instead throw an exception which will cause
the initial two transfers to be reverted by the miner. If the smart contract was to
make any change to its internal state and to throw an exception only afterwards,
then those changes could not be reverted as they are not tracked by the miner,
i.e. the structure of the code does not guarantee transaction atomicity, only the
low-level implementation details of the Uniswap pair does. In other words, it is
the smart contract responsibility to make sure either that they fail an incoming
transaction before making any changes to their state or to execute the transaction
fully. This is something that might need to be improved in the future, especially
if the simulation needs to accommodate other smart contracts.

3.2 Uniswap

The Uniswap implementation in this simulation follows the Uniswap APT [15] quite
closely. In the code, the two currencies that the contracts holds are called crypto0
and cryptol. We will keep this naming scheme in the following explanation as
well as the following conventions:

e 7o and r; denotes the reserves of crypto0 and cryptol respectively.
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e s will denote the total amount of shares assigned by the Uniswap pair. s,
will denote the amount of shares owned by user a.

When the Uniswap pair is created, the account that creates it specifies the
initial amounts ag and aq of crypto0 and cryptol respectively that the pair will
contain. The creator is given an amount of shares equal to \/ag - a1. The trading
fee is set to 0.30%.

Note that the implementation of the Uniswap class performs extensive testing
of all values during the computations so as to fail as early and with as much
explanations as possible to make it easy to debug some issues in the code.

3.2.1 Mint Transactions

To perform a mint transaction, the sender only specifies the amount dy of crypto0
that it wants to send to the smart contract. Then the smart contract will computes
the corresponding amount §; of cryptol given the exchange rate of the pair and
transfer it from the sender’s account to itself.

We remark that this implies that the sender must have enough cryptol to
perform the transaction, otherwise, some exception will be thrown. When training
an agent through reinforcement learning however, the programmer does not have
such fine-grained control over the actions that are tried, so the action space
must be designed in such a way that the agent cannot try to perform an invalid
transaction which would otherwise crash the simulation.

We also remark that this is a simplification over the real-world Uniswap
implementation which lets liquidity providers provide any amount of cryptol
given a fixed amount of crypto0. However, providing liquidity at any rate other
than the market rate provides an arbitrage opportunity. The only rational choice,
when providing liquidity is to do it at the market rate, which is the reason why
we considered this simplification to be reasonable.

The liquidity provider, called Ip hereafter, will be given an amount of shares
ds,, equal to dg - s /0. The total amount of shares s will be additively increased
by the same amount.

3.2.2 Burn Transactions

When some sender [p requests to burn s, shares, it will receive ds,, - 70/s crypto0
and s, - 71 /s cryptol. Further, the total amount of shares will be additively
decreased by ¢

Sip*
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3.2.3 Swap Transactions

The following formula is used to compute the amount of cryptol that the smart
contract will send to a user a that is swapping some cryptoO for some cryptol.
Given that a sends &y crypto0 to the contract, it will receive 0.997 - o¢ - 1 /(10 +
0.997 - &p).

The formula to compute the amount of crypto0 that it would receive given
some transferred amount of cryptol is obtained by swapping the 0 and 1 indices
in the above formula.

3.3 GeometricBrownianMotionQOracle

This class implements a geometric brownian motion with Wiener process incre-
ments, i.e. increments drawn from the Gaussian distribution. The formula for a
geometric Brownian motion [5] is that the stock price S; of stock S at time ¢ is
given by:

2
Sy = Sp - exp <<u — 02) t+ aWt> (3.1)
Where:

e 5p is the price at the beginning of the simulation.

e 1 is the drift of the stock price, i.e. the average of the return percentage
sampled at a fixed frequency.

e o is the stock’s volatility, i.e. the standard deviation of the stock return
percentage for the same sampling frequency as the drift.

e W, which is the Wiener process increment.

In this implementation, the sampling frequency was chosen to be 1 day, because
data available to us had this sampling frequency. Generating values for the Wiener
process was done by sampling from a Gaussian distribution with mean 0 and
standard deviation equal to t.

An example of the prices generated by this oracle is given in figure 3.1.

3.4 StudentGeometricBrownianMotionOracle

This class provides a geometric Brownian motion with Student-t increments. The
stock price follows the same process as the one described in equation 3.1. This
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Prices generated by GBM

7000 -

6000 -

5000 -

Price of ETH in USD

4000 A

3000 -

21-10 21-11 21-12 22-01
Time

Figure 3.1: Some generated USD prices for ETH by a geometric Brownian motion.

time however, the Wiener process is replaced with a Lévy process with Student-t
increments instead of Gaussian increments. We used five degrees of freedom,
v = 5, as is standard in finance. When sampling from this distribution, the
variance of the output will be equal to -5 by property [14]. We need however
the increments to have a variance equal to ¢, so we scale down the increments as

follow.

X ~ Student(5)
(v—2)-t

increment = X -

We remark that

as desired.

An example of the prices generated by this oracle is given in figure 3.2.
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Prices generated by Student-t GBM

14000 ~

12000 ~

10000 ~

8000 -

Prices of ETH in USD

6000 -

4000 A

21-10 21-11 21-12 22-01
Time

Figure 3.2: Some generated USD prices for ETH by a geometric Brownian motion
based on Student increments.

3.5 AccountGenerator

The AccountGenerator class is used to give some initial balance to simulated
accounts. Currently, the algorithm simply draws an initial balance uniformly at
random between 1’000 and 1°000°000 for all the currencies the account should
own.

3.6 TransactionGenerator

The TransactionGenerator’s goal is to generate Uniswap transactions. It can
generate any kind of Uniswap transactions: mint, burn and swap. It can further
generate arbitrage swap transactions. Finally, it offers methods to generate
Uniswap transactions where the specific type of transaction is chosen at random.

To choose the type of transaction to generate, the TransactionGenerator
samples from the real-life distribution of type of Uniswap transactions.

When generating transactions, the transaction amount is chose uniformly at
random between 0.1% and 90% of the sender’s balance. The reason for choosing
these values is pretty much arbitrary but it guarantees that the transaction
amount’s will be rather diverse, and more importantly that no account will ever
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end up with a zero balance. This in turns guarantees that any account will always
be able to generate any kind of transaction.

When generating burn transactions, only accounts owning shares for the
Uniswap pair are considered and the “sender’s balance” is actually the amount of
Uniswap shares it owns. When generating mint transactions, the generator has to
be cautious about not generating mint transactions with an amount of crypto0
that corresponds to an amount of cryptol too large for the sender to be able to
pay or vice-versa. For this reason, the generator first computes the ratio between
the cryptos of the Uniswap pair owned by the sender, then computes the ratio of
crypto owned by the Uniswap contract and then defines the “limiting crypto” for
the sender based on those two ratios.

Assume sy and s; are the amounts in crypto0O resp. cryptol owned by the
sender and 1o and 71 are the reserves of crypto0O resp. cryptol of the Uniswap
pair. The sender’s ratio is @ = sg/s1. The Uniswap pair’s ratio is 5 = ro/r1. If
a < 3, then the limiting currency for the sender is crypto0 and vice-versa. In
other words, we know for sure that even if the sender was to mint 100% of its
crypto0, it could still pay the required amount of cryptol to the Uniswap pair
(see section 3.2 for the details on why it will need to pay some cryptol). The
transaction amount is set to a uniformly random value between 0.1% and 90%
of the limiting currency so as to guarantee that the transaction can always be
executed successfully.

When generating swap transaction, the TransactionGenerator might decide
to generate arbitrage transactions. The generator will first check whether there is
an arbitrage opportunity. Whenever the price of the Uniswap pair deviates from
the market price, there might be an arbitrage opportunity, i.e. a transaction that
will swap some crypto0 (or cryptol) for some cryptol (or crypto0) that can then
be sold on the market for more crypto0 (or cryptol) than the original amount
sent. The optimal transaction is the one that bring the price on Uniswap back
to the market price. Uniswap applies a 0.30% fee which needs to be taken into
account to determine if there is an arbitrage opportunity. If the benefits of the
arbitrage are not enough to cover the fees, then this is equivalent to saying there
is no arbitrage opportunity.

The optimal amount of token 0 to swap for some token 1 in an arbitrage
transaction can be computed as follow |2].
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v =1 — trading fee
k= To - T1
k

Y- Mmp

oL
0_7 r1— 01 o

(51:T1—

Where:

e 79 and 71 are the reserves of crypto0 and cryptol in the Uniswap pair.

e m, is the market price rate given in crypto0 per cryptol

If &g is negative, then there is not arbitrage opportunity that yields positive
return when selling some crypto0. It can be checked whether there is an arbitrage
opportunity in the other direction by swapping the 0 and 1 indices in the above
formula. It can be the case, because of the trading fee of Uniswap, that there is no
arbitrage opportunity at all, i.e. both dg and é; are negative values. This happens
when the price of Uniswap deviates too little from the market price compared to
the trading fee for anyone to be able to make a benefit. To check the presence of
an arbitrage opportunity, one of the § needs to be strictly positive.

Once the TransactionGenerator has verified that there is an arbitrage op-
portunity, it will decide at random whether it produces an arbitrage transaction,
i.e. a transaction that will bring the price ratio of the Uniswap pair back to the
market price, or if it just generates a random swap transaction. The proportion
of arbitrage was defined arbitrarily to be 1/5. We will expand in section 5.3 on
why this value would need to be fine-tuned further than it currently is.

3.7 Agent Total Wealth

This helper function makes it easier to compute an account’s total wealth in
USD. We decided to define the wealth of an agent as the equivalent value in USD
of the assets the agents owns. This simplifies many aspects of the simulation,
indeed the agent can perform an arbitrage transaction simply by buying an asset
like ETH on Uniswap at a cheaper price than the market price to perform an
arbitrage transaction. It does not need to sell the currency bought to “enact”
the arbitrage; instead we compute the value of the assets with the market USD
price thus virtually completing the arbitrage. Using the US dollar is also quite
instinctive for humans and many platform provide data on the exchange rate
between any cryptocurrency and the US dollar.
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In the case of this project, the total wealth of an account is comprised of:

e The value in USD of the ETH that the agent owns.
e The value in USD of the USDC that the agent owns.

e The value vgp4res in USD of the Uniswap pair shares that the agent owns.
The value of the shares owned is computed as follow:

Taccount = Saccount / S
VETH—$ = Taccount " 70 " My ETH—5$
VusDC—$ = Taccount " T1 - Mp USDC—$

Ushares = WUSDC—$ + WETH $

Where:

— Saccount 18 the amount of shares owned by the account.
— s is the total amount of shares in the Uniswap pair.
— r is the ratio of shares owned by the account for the Uniswap pair.

— vEgra_s and vygspo_.g are the value in dollar of the ETH resp. USDC
owned by the account.

— rg and r1 are the ETH resp. USDC reserves of the Uniswap pair.

— My ETH—$ and my, yspc—g are the market prices of ETH resp. USDC
in USD.



CHAPTER 4

Reinforcement Learning

Reinforcement learning is a type of machine learning that falls in the category
of unsupervised learning. The idea is to make a program learn from interactions
it has with an environment. The environment is generally a simulation, like a
physical simulation or a blockchain in our case. The program, called agent, is
fed with an observation of the environment. This might be a total description of
the environment, in which case it is called a state of the environment, or only a
partial description. Given this observation of the environment, the agent is asked
to choose an action among the set of possible one. Note that some part of the
environment might be randomized. The agent is also fed with a feedback, called
reward, on how well it performed so far, i.e. not only on how positive the last
action it took was, but more globally on how well the agent is doing so far. This
is the value that makes it possible for the agent to learn.

4.1 BlockchainEnv

The BlockchainEnv class is the heart of the reinforcement learning part of this
project. It handles the simulated blockchain, the price oracles, keeps track of the
time, generates transactions using the TransactionSimulator, etc.

A reinforcement learning environment, as defined by OpenAlI/gym! [9] provides
an interface with mainly two functions:

1. A step function that steps the simulation.

2. A reset function that start a new simulation.

Below is a short summary of the design choices made for the simulation.

!OpenAl/gym is the most commonly used reinforcement learning interface and there are
many libraries that are compatible with it. Unfortunately, the documentation available online
is very partial. A very useful although not straightforward reference is the GitHub repository
hosting the code of the Python package.

18
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Upon calling reset, the environment will create a new blockchain, reset the
price oracles, create new simulated blockchain accounts—which implies that a
different number of account might be created, and that each account might be
initialized with different amounts of each crypto—and create a new Uniswap
ETH-USDC pair. The Uniswap pair can be initialized with different policies
regarding its exchange rate. One can decide to provide the exchange rate explicitly,
to draw it at random or to have one that is identical to the market prices. This
can be provided as an argument of the environment constructor. The default is to
have a price identical to that of the market as this is probably the most useful for
learning arbitrage transactions on popular Uniswap pairs. We remark however,
that for exotic pairs, the exchange rate of the pair might not reflect the market
price. It might be interesting to train the agent to be robust against exotic pairs
too.

Then, the BlockchainEnv class generates everything that will happen in the
next block in the function _prepare_new_block. It samples the time in second
until the next block is mined from a Gaussian distribution Gaussian(13, 3) as esti-
mated from real life values of the Ethereum network. The number of Uniswap trans-
actions that will occur in this block is also sampled from a Gaussian distribution
whose parameters were computed using real-life data (Gaussian(26.188,10.603)).
The TransactionGenerator (see section 3.6) is used to generate the transactions
at random. The time at which each transaction will be executed is also drawn at
random uniformly in the time span of the block.

Calling the step function will lead to the release in the mempool of the next
prescheduled transaction if there is any left. If there are none left, then calling
step will cause the environment to trigger the mining of the next block, prices
will be generated from the various price oracles, the agent wealth under the newly
sampled prices will be computed as well as the reward. Finally the environment
will prepare everything that will happen in the next block. The step function,
upon completing a prepared block, will return that the simulation should be
stopped if the agent has reached a total wealth of zero (which can happen because
of the fees that the agent pays to execute transactions) or if the number of blocks
completed so far is equal to the limit set when constructing the environment.

The environment will allow the agent to make a decision every time a trans-
action is received in the mempool of the simulated Ethereum network, i.e. once
after each randomly generated transaction is submitted.

We remark that r1lib (see 4.2) splits any simulation into episodes to perform
the learning. These episodes might not coincide with the Ethereum blocks from
the simulation.

4.1.1 Observation Space

Each observation contains the following information:
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1. The amount of each token in the Uniswap pair, i.e. how liquid the pair is.
2. The price ratio in the Uniswap pair.
3. The price ratio of the market.

4. 30 slots for information about transactions that were submitted to the
network but that are not yet mined. The transactions are ordered by
decreasing gas price.

Each transaction will be described using the following values:

1. The type of the transaction (mint, burn, swapOFor1 or swapiFor0).
2. The transaction amount.

3. The transaction sender.

4. The transaction nonce.

5. The transaction gas price.

Here is a short rational for each of these values. The liquidity of the pair is
required to compute the optimal arbitrage transaction amount. The price ratio
of Uniswap and that of the market are required to compute whether there is an
arbitrage transaction to perform. The submitted-but-not-yet-mined transactions
are required for the agent to be able to learn how to perform sandwich attacks
(see section A) and arbitrage transactions altogether as the transactions that will
be included in the block might shift the price of the Uniswap pair thus creating or
destroying arbitrage opportunities. If there are less than 30 such transactions, the
slots will be left with 0-values. Using 30 slots leave enough space for including all
transactions of the block in more than half of the cases on average, as the number
of Uniswap transactions in each block is sampled from a Gaussian distribution
with mean 26.18 and standard deviation of 10.60. The transactions are ordered by
decreasing gas price because transactions with high amounts generally have a high
gas price in real-life and high-amount transactions are important for arbitrage
opportunities as they might shift the price of the Uniswap pair. Thus the agent
might learn that transactions in the first slots are more important when learning to
perform arbitrage transactions or sandwich attacks. Remark that the transaction
generator does not implement this correlation between high transaction amount
and high gas price, i.e. transactions with high amounts will have a gas price coming
from the same price distribution as all other transactions, which is a limitation
of the current implementation. Another reason is that ordering transactions by
decreasing gas price makes it possible to learn gas priority auctions. In such an
auction, two arbitrage bots will compete over the same opportunity by submitting
transactions with identical nonce but increasing gas price. As the auction might
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happen fast in the case of bots, they might submit many transactions to win the
opportunity, i.e. more than 30. At this point, it becomes important that the
transactions are ordered by decreasing gas price, so that the agent knows of latest,
i.e. the highest gas price, transaction submitted in the auction.

Transaction observations contain the transaction type which is required to
know what effect the transaction will have. To reduce the size of the observation
space, it might be interesting to only list swap transactions and therefore be
able to remove the transaction type altogether from the transaction observations.
Note that this will however prevent the agent from knowing about changes in
liquidity in the pair during the block due to mint or burn transactions. The
transaction amount is required to know whether the transaction will be large
enough to generate an arbitrage opportunity. The sender and nonce makes it
possible to know whether this transaction might override another transaction.
Finally the gas price is important to know how it will be ordered in the block.

We remark that the observation space is pretty large, thus making training
harder.

4.1.2 Action Space

An agent needs to provide actions that currently are defined as containing the
following fields:

1. The type of Uniswap transaction to generate, i.e. mint, burn, swap1For0Q
or swapOForl.

2. The percentage of the agent’s balance to invest.
3. The transaction nonce.

4. The gas price to use.

The reason for not using absolute values when specifying the transaction
amount, and to rely on balance percentage instead, is that it limits the size of the
action space which would range from 0 to infinity while it ranges from 1 to 100 in
our case. It further avoids the problem of transaction amounts that are larger than
what the agent actually owns thus making learning easier. On the other hand,
this strategy has the drawback that the agent does not know the absolute amount
it is setting for the transaction. This makes it impossible to create optimum
arbitrage transactions and is a major drawback. This problem might be solved
by including the agent’s ETH and USDC balance in the observation, but would
require the agent to learn more things. Another option would be to use absolute
values (which will make the action space much larger) and clip the actual value
to the account’s balance. This time, the issue is that the agent cannot know in
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advance if it has the balance required to perform the transaction it wants, thus
making it hard to exploit arbitrage opportunities again. Lowering the action
space to only 10 values that would represent 10%, 20%, ..., 100% of the agent’s
balance would make learning faster at the cost of limiting more the agent’s ability
to produce transactions that have the optimal arbitrage value.

A general problem when specifying the transaction amount is that an agent
might perform multiple transactions and thus try to sell more than 100% of
its balance. As we cannot know which transactions will be mined (especially if
there are multiple miner strategies implemented, see section 3.1), this behavior
should be considered as valid. The check for valid amount must be performed
at mining-time. In turn, this requires that transaction are atomic, i.e. that
transactions either are fully executed or fully reverted, but never half-executed
(see section 3.1.2 for details on atomic transactions).

The transaction nonce is implemented as a simple boolean value. A 0-value
indicates that the agent desires to override its previous transaction. A 1-value
indicates that the agent desires to use a new transaction nonce. We remark
that this makes it impossible for the agent to override any other transactions
than those with the previous nonce. This also means that an agent will not be
able to play priority gas auction for sandwich attacks as it generally requires to
compete over two transaction slots at the same time. This implementation was
chosen as it lowers considerably the size of the action space. The alternative is
to use an integer space going from 0 to infinity which would allow overwriting
any non-mined nonce and to generate transaction with not-yet valid nonce which
might yield interesting results.

The gas price is an integer value in the range 0 to infinity. This makes the
action space quite large. Using only three values, e.g. fast transaction, normal
speed and slow transactions like is found on many web interfaces these days, was
considered. It would make learning much faster at the cost of making it impossible
to play priority gas auctions. This might however still leave the agent enough
freedom to perform arbitrage transactions if there are no aggressively competing
arbitrage bot (which would steal the arbitrage opportunity by setting optimum
gas price). Implementing three levels of gas price would, however, require to
handle gas more thoroughly throughout the simulation (see section 5.2 to learn
more about how to better handle gas).

4.1.3 Reward

Rewards from the simulation are always set to 0 except right after a block is mined.
This specific moment is indeed the only one when it makes sense to compute the
agent’s wealth which is required to compute the agent’s reward. Indeed, to be
able to compute the agent’s wealth (as described in section 3.7), one needs to
know the amount of each crypto that the agent owns and the number of Uniswap
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shares. And as long as the agent has outstanding transactions that might or
might not be mined in the block, it is unclear what these numbers are.

In turn, this implies that the rewards of each of the potentially many transac-
tions performed by the agent during a block are aggregated into a single value
making learning harder as the agent cannot know which transaction or transac-
tions improved or worsened the reward. Further, the reward value dependent on
the market price of currencies. This means that there might exist some blocks
during which it is not possible to have a positive reward because the price of ETH
and USDC both go down steeply. Similarly, there might exist blocks during which
the reward will be positive thanks to market prices going up, even though the
agent’s behavior was sub-optimal or even detrimental. It is not clear what the
consequences on learning the randomness of market prices have.

As a final remark, we note that the dependence of the reward on the market
prices induces the agent into trying to predict the market prices’ evolution. Indeed,
by betting on a currency whose value in USD goes up, the agent would always
receive a positive reward. Investigating how the prices are generated is therefore
important. This simulation makes exclusive use of price oracle that use random
walks. We might believe that the market prices are thus unpredictable. However
this is not true: the price oracles use increments of price that are drawn from
distribution with potentially non-zero expected value (see sections 3.3 and 3.4).
The problem is close to being non-existent for USDC as this is a stable coin
pegged to the value of USD, thus on average the increment for USDC will have
a zero value. However, the situation is quite different for ETH which has seen
dramatic USD value increases since its early days. Thus the agent trained on this
simulation will have an incentive to rely on the assumption that market evolution
follows some distribution over time, e.g. that the price of ETH will go up and
might therefore only learn to bet on ETH and wait.

4.2 Rllib

Providing a simulation environment is the first step to doing some reinforcement
learning. The second is to have a framework in which to use the said environment
to train an agent. This raises multiple questions like what model should we use to
build the agent? how does the agent “learn”? how to choose the actions that the
agent performs will learning (also called the exploration/exploitation tradeoff)?
ete.

Implementing reinforcement learning from scratch is a very complex task and
would represent more that a semester project in itself. There are indeed many
algorithms to choose from: Advantage Actor-Critic, Proximal Policy Optimization,
etc. Some exploration regarding reinforcement learning was conducted in order to
find a framework that would allow drop-in use of reinforcement learning algorithms.
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The RL field is quite novel however and there are not so many options available
out there. The most common models for the agent are neural networks. Neural
network libraries like PyTorch and Tensorflow have tutorials or even sometimes
light-weight libraries for doing RL, e.g. Tensorflow Agent [6]. Those however are
generally partial and still require the user to implement many aspects like the
actual learning algorithm.

We decided to use rllib [12]| instead. The library is based on ray which
is a distributed-computing library. It is not mandatory to use the distributed
computing aspect of ray to use r1lib.

While being state of the art, implementing many RL algorithm and interfacing
with PyTorch and TensorFlow, r11ib does not provide a very extensive documen-
tation, and the examples showcasing the usage of the library are still rather sparse.
This being probably caused by how recent the whole field is. Using the library
was therefore not straightforward and required perusing the documentation to
find specific bits of information or to understand the cause of some errors.

R11ib provides many reinforcement learning algorithms out-of-the box. We
settled on using Proximal Policy Optimization as it features great properties and
is recommended as a default options by rllib.



CHAPTER 5

Approximating Reality

If we want our agent to learn things that can be transferred in reality, we need the
simulation to approximate reality closely enough. There are a few shortcoming in
the current implementation that are described hereafter.

5.1 Transaction Ordering Algorithms

In the real Ethereum blockchain, there are many transaction ordering algorithms
being used. Ordering transactions in order to maximize the miner’s benefit is
probably a goal that most of these algorithms follow. However, there are multiples
ways to achieve this. A pretty standard one is to order the transactions by
decreasing gas price, but this greedy strategy might not yield the best possible
ordering and there are many other aspects to consider.

The transaction ordering algorithm implemented in this project probably
mimics closely enough what most miners do in real-life, however, it does in no
way provide a comprehensive view of all the algorithms possible.

Note that transaction ordering is an important aspect that the agent must
learn in order to be able to perform sandwich attacks. Indeed, to perform such
an attack, the agent must understand how to frontrun and postrun a transaction
with its own transactions (see section A for the details of the sandwich attack).
Training the agent in an environment with multiple miner algorithms that might
order transactions differently would make the simulation much more realistic and
might enable more robust learning.

5.2 Gas Costs

Currenlty, gas price of generated transactions is drawn at random from a single
Gaussian distribution generated from historical values. This model is pretty far
from reality in which it is considered that there is a gas price (expressed in ETH)
and accounts performing transactions in the Ethereum blockchain can choose to

25
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use the market price to get their transactions mined at a regular speed, set the
price lower for slow transaction or set the gas price higher for fast transactions.

This also has implication on what the agent can learn (see section 4 for
details). In this specific case, generated transactions in the simulation will always
have prices drawn from the same price distribution, while the reality would be
that transactions have price drawn from a distribution whose mean changes over
time. As the agent needs to learn how to order transactions, this is probably a
simplification that would is not reasonable if the agent is to run in real life.

For example, implementing the market gas price with an oracle and having
the generator choose prices from a distribution centered around this price would
be closer to reality.

5.3 Uniswap Exchange Rate

On a Uniswap pair, each swap transaction will cause the exchange rate to shift. For
popular Uniswap pairs, the Uniswap exchange rate never deviates too much from
the market prices because of fierce competition over the arbitrage opportunities.
For exotic pairs on the other hand, it is often the case that the price on Uniswap
can deviate quite a lot from the market prices.

We want to be able to simulate all these behaviors in our simulation too, which
is the reason why the transaction generator can generate arbitrage transactions.
Note that simulating exotic pairs is much simpler: limiting the amount of arbitrage
transactions will yield the desired result. Simulating popular pairs is much harder.
Unfortunately, simulating popular pairs is also a lot more interesting, indeed as
they have much larger liquidity pools, arbitrage opportunities will generally be
much larger. Finding the good ratio of arbitrage transactions to regular swap
transaction is crucial to mimic reality, i.e. keep the Uniswap price close to that of
the market. The liquidity on the Uniswap pair as well as the amounts allocated at
the beginning of the simulation to simulated accounts need to strike a balance. On
one hand, accounts need to have enough liquidity to perform arbitrage transactions
that actually bring the Uniswap rate back to that of the market. On the other
hand, they must not be able to shift the Uniswap price too much!.

Figure 5.1 shows the exchange rates in the ETH/USDC Uniswap pair along
with the market prices generated by the price oracles in a 100 block simulation,
which is approximately equivalent to 20 minutes?. We remark that the current
setup would need some further refinement as the Uniswap price diverges too much
from the market price.

'In reality, large swap transactions are generally split into multiple transactions to prevent
sandwich attacks.

2A new block is produced every 13 seconds on average in our simulation, thus with 100
blocks, we have a pproximately 1300 seconds which is 21.66 minutes.
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Figure 5.1: This figure shows the price of ETH in USDC over time, where time is
indexed by Ethereum blocks mined. The blue line displays the exchange rate in
the Uniswap pair. The yellow line shows the market exchange rate as randomly
generated by the price oracles of ETH and USDC.



CHAPTER 6

Results

The simulation is, to the best of our knowledge, bug-free. However the training
still crashes when r1lib tries to set the gas price to infinity. The stack trace
for such a case is given in appendix B. Fixing this issue requires changing the
action space of the agent, i.e. changing how the agent specifies the gas price of
its transactions. Unfortunately, it is not a straightforward change; some more
explanations are given in section 8.1.

So far, we were able to train the agent for 135 iterations at most. The rest
of the time, either the computer crashed because of lacking RAM memory (see
section 7.3), or r11ib tried to set the gas price of some transaction to infinity thus
crashing the simulation. Nevertheless, it seems interesting to look at whether the
agent was able to learn something in such a little time and to explore an example
simulation to understand what the simulation does. This section delves into the
outcome of the agent trained for 135 iterations.

6.1 Simple Evaluation

The only way we know of to evaluate an agent is to run the agent on multiple
simulations and look at how it performs compared to some other baseline. The
evaluation script does exactly this: it runs the agent as well as some baseline
like the idle baseline and the mint baseline (see section 2.4) a fixed number of
times and compare the average wealth increase percentage.

After running this evaluation script, we obtained the following averaged results:

Idle Baseline -0.013% of wealth increase on average.
Mint Baseline 0.007% of wealth increase on average.

Trained Agent -7.018% of wealth increase on average.

The distribution of wealth increase percentage of each of the agents across
the 100 simulations is shown in figure 6.1.
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Figure 6.1: Distribution of the wealth increase percentages across the different

baselines and the trained agent.
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It seems quite clear that, if the current learning environment makes it possible
at all to learn something, then the agent was not trained for long enough to learn
it. Unfortunately, these statistics give only little details about what is going on

and how the agent is actually behaving.
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6.2 Advanced Evaluation

This second script, advanced_agent_evaluation.ipynb makes it possible to
explore deeper what is going on in a single simulation. Its goal is to make it
possible to understand what the agent learned or to do some debugging. Indeed,
any implementation mistake might provide opportunities for the agent to “hack”
the simulation, which it most likely will as the agent tries to maximize its wealth
not follow the rules.

Hereafter are given some information on an example simulation to give some
feeling of what is actually going on. The simulation was run for 100 blocks. In
total, there was 8 blockchain accounts that took part:

Account (address=miner_1, 22.930280609753773ETH, 0.0USDC)
Account (address=agent, 1000.1953977610376ETH, 60.3USDC)
Account (address=generated_account_0012, 176325.49172518332ETH,
— 1430522338.1633081USDC)

Account (address=generated_account_0013, 157766.16543026388ETH,
< 841260424 .6515439USDC)

Account (address=generated_account_0014, 118300.21093045667ETH,
« 33984247 .855853155USDC)

Account (address=generated_account_0015, 68664.3262678783ETH,
< 15949278.197112404USDC)

Account (address=generated_account_0016, 275398.84974007425ETH,
< 15497208.399045324USDC)

Account (address=uniswap_pair_ETH/USDC, 6059209.301757226ETH,
< 23475763015.034077USDC)

Beside the account of the agent, we see one miner account, an account for the
Uniswap smart contract and 5 simulated blockchain accounts (generated_account_0012
to generated_account_16). The balance of the accounts at the end of the simu-
lation is also included.

The agent only performed two transactions in this simulation which are
summarized in table 6.1.

Block Type Amount [USDC] Gas Price [ETH]
4 swaplfor0 910 0.0
) swaplfor0 30 0.0

Table 6.1: The transactions sent from the agent that got mined during the
simulation.



6. RESULTS 31

We remark that the agent performs very few transactions. This behavior was
remarked for all the agents trained so far, i.e. all those trained on the latest
version of the simulation, but also for those trained on previous versions of the
simulation. It is not entirely clear why the agent act so rarely.

We remark that the agent only performs one type of transaction: swapifor0.
It sells almost all of its USDC to get ETH: from the 1000 USDC that the agent is
allocated at the beginning of the simulation, it only keeps 60.

We remark that the gas price is always set to 0 which seems to indicate that
transaction ordering is of little concern to the agent. In real life, transaction with
a gas price of zero would likely never be mined. Because this simulation only
considers Uniswap transactions, the miner have only very few transactions to
choose from, thus even with a gas price of zero the transactions are mined.

A guess that could explain why the agent act so little, with such big transactions
and to sell all its USDC is that it bets that the value of ETH in USD will go up and
maximizes therefore the benefits in USD. Statistically speaking, this makes sense
as the ETH price oracle will generate increasing prices on average. Furthermore,
keeping USDC, which is a stablecoin pegged to the value of the US dollar has no
chance of yielding benefits in US dollar over time. This could also explain why the
agent ignores the gas price: as long as the transaction is mined rapidly enough,
it does not make much difference. This also means that the current setup fails
at making it possible or interesting for the agent to learn arbitrage transactions.
This might be caused by the learning time which is too short, i.e. the agent had
not enough time to learn such complex behaviors, or it might be because the
reward function is defined in a way that incentivizes betting on the exchange
rate of ETH (high risk, high reward) over performing arbitrage transactions (no
risk, low reward). If the second is true, then the reward function will need to be
changed to something that enables learning of arbitrage transactions.

The agent balances across time are given in figure 6.2. It illustrates visually
the transaction data: the two transactions in blocks 4 and 5 are clearly visible

The value of ETH in USD as generated by the price oracles during the
simulation is given in figure 6.3. The price of USDC in USD is of very little
interest as the ratio was 1:1 up to the third decimal at least at all time during
the simulation. We remark that the agent’s wealth evolution closely follows that
of the value of ETH in USD. This can be explained by the fact that the agent
basically bought all the ETH it could at the beginning of the simulation and then
waited.

We also remark that the agent never became a liquidity provider, i.e. never
performed mint transactions. This can be explained by the fact that the simulation
generates probably less swap transactions than there are in real-life, thus yielding
less fees which makes the liquidity provider strategy less interesting.
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Figure 6.2: Agent balances of various currencies and equivalent wealth in USD
across the blocks of the simulation.
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CHAPTER 7

Issues During the Project

Hereafter are listed some of the issues or difficulties that arose during the project.

7.1 Reinforcement Learning

Performing reinforcement learning is both highly technical and tricky. Some slight
variation in the setup of the environment might make the difference between
learning something and learning nothing at all. Therefore, finding some good
library to do it was a major requirement.

Reinforcement learning is still a cutting edge technology and there are not
so many implementations available online. Most of the available ones are under-
documented and there is no consensus on which library is the best to use. Therefore
we were pretty much left to trying to figure out which library would be the quickest
and easiest to use by actually trying them out.

Also, the interaction between reinforcement learning libraries, that perform the
actual learning, and standardization libraries like OpenAI/gym, that only define
the interface that environments and agents must provide, was confusing. There
are indeed multiple standardization libraries available, and each reinforcement
learning library integrates with only a subset of the standardization ones. They
might not even list the libraries the integrate in their documentation.

We found it pretty hard to navigate the r11ib documentation that sometimes
gives very low-level information making it generally irrelevant and sometimes
forgets to mention important high level information like how to use the logger or
to give a working example of how to perform some RL training with reasonable
settings.

Even though r11ib is pretty hard to use and the documentation a bit sparse
and complex to navigate, we believe that it was the best choice of RL library. Of
the many alternatives we explored, it is the only one that provides off-the-shelf
implementation of RL algorithms. Most other libraries still require the developer
to implement many aspects of the learning, which would have made this project
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both longer and more complex.

7.2 Logger

R11ib uses the standard python logging library. When running the training
in multi-processed mode (which is the default mode), r11ib does not print the
logs of the workers. This makes it much harder to understand what is going on
and what might not be working properly in the environment. This was a major
problem for quite some time. The solution we used in the end was to revert to
the “local mode” of r11lib which runs the training code in a single process and
makes it possible to see the logs generated by the environment. The downside is
that we do not benefit from parallelism anymore, but it was deemed reasonable
during the coding phase.

7.3 RAM

Training a RL agent uses a very large amount of RAM space as the gradients
of each weight of the neural network underlying the agent needs to be saved.
This caused the training process to fail regularly on our 32GB RAM computer.
Training on a computer with larger memory might solve the issue. Furthermore,
training on a cluster, i.e. using the parallelism provided by ray which is the library
underlying r1lib, might make the learning process faster. However, deploying
ray on a cluster is not trivial and will require some time. Instructions to do this
can be found in [11].



CHAPTER 8

Future Improvements

We list here what we believe to be the major points that need improvement.

8.1 Gas Price Action Space

Currently, the agent can set any value for its transactions’ gas price, from 0 to
infinity. Setting the price to infinity crashes the simulation which has prevented
us from the training the agent long enough for it to learn anything useful. It also
makes the action space very large. A better solution needs to be found. This
solution however, should still make it possible for the agent to learn gas priority
auctions. Also, the agent is not currently fed the price of gas which could be
useful.

8.2 Simulated Gas Price

Gas price needs to be handled in a more detailed fashion in the BlockchainEnv
class. The gas price should evolve over time using a price oracle and the transaction
generator should make clever choices about the gas price to set in the generated
transactions. For example, it could sample gas prices from a distribution centered
around the current gas price. Transactions with higher gas price should be the
ones executed the fastest, while those with a lower gas price will be executed in a
slower fashion. The miners might also benefit from better heuristics for estimating
the gas cost of a transaction than sampling from the historical gas costs.

8.3 Uniswap Exchange Rate

Some fine-tuning is required on the liquidity of the Uniswap pair and on the
amounts that the generated accounts are given at the beginning of the simulation
in order to guarantee that the difference in exchange rates between the Uniswap
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pair and the market matches those found in real life. We remark that currently
the difference are larger than what they are in real life. We further remark that
the real life differences might sometimes be large too, for example for exotic pairs,
and it might therefore be interesting to train different agents for different types
of pair, i.e. from mainstream to exotic ones.

8.4 Code Refactorings

At the implementation level, almost all classes, methods and attributes have been
documented extensively which should make extending the code rather straightfor-
ward. The one class that would benefit from a rewrite is the BlockchainEnv one
which is more than 600 lines of code long and could be broken down to multiple
subclasses, each handling one aspect of the simulation.

8.5 Miner Algorithm

Currently, the miners have very few transactions to choose from when mining
their block as only Uniswap transactions are considered in this simulation while
the real-life Ethereum blockchains also features all the other transactions. This
implies that even with a gas price set to 0, a transaction has a high probability of
being mined fast. This is obviously quite different from what happens in real life
and will probably impact what the agent can learn regarding transaction ordering.

8.6 Uniswap Transactions

Even though the number of Uniswap transaction per block is realist, the amounts
of the transactions are too small to generate enough fees to make the liquidity
provider strategy an interesting one. Fine-tuning the amounts of the generated
transactions to increase the amount of fees generated seems like a desirable
improvement that could impact what the agent learns: it could end up choosing
to become a liquidity provider in some instances.



CHAPTER 9

Conclusion

This project was very interesting, it was the opportunity to learn about many
aspects of the Ethereum blockchain like transaction ordering algorithms, constant-
product automated market maker like Uniswap, the mempool, etc. Implementing
the Ethereum simulation was fun, even though more complex than initially
envisioned.

The reinforcement learning part was the trickiest. Finding RL libraries, testing
them out and then using them proved to be very difficult as they are not well
documented. Further, designing the action space, observation space and reward
function was a challenging task that might require some more tuning in the future.

This project was also an opportunity to learn more about finance, arbitrage
transactions and some of the mathematical models that we use today.

Overall, the very broad scope of this project made it both very interesting
but also difficult. The lack of defined goals in term of what we wanted to learn
made it also hard to decide which road to follow. Learning arbitrage transactions
requires different observation space, action space, reward function and simulation
functionalities than learning gas priority auctions for example. We ended up
implementing an environment that could accommodate both, with the upside
that it was very interesting to implement, but with the downside that it is rather
complex.
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APPENDIX A

Sandwich Attacks

The sandwich attack is summarized as follow by [13]:

The problem: Crypto traders lose millions every month because their
transactions are being sandwich-attacked. There are dozens of bots
continuously monitoring the mempool to find transactions they can
frontrun. So far it was difficult for traders to estimate whether their
swaps on decentralized exchanges were susceptible to sandwich attacks
or not.

The attack: If a victim swaps asset A for asset B, this will increase
the price of A in the respective liquidity pool. Bots spot the victim
transaction before it executes. They then release two transactions
that surround the victim trade (frontrunning and backrunning it). In
their first transaction, ’Attacker Tx1’, they swap A for B. After the
victim transaction executes, they swap B for A, and make a profit due
to the price increase after the victim transaction. Attackers have to
pay an exchange fee (on Uniswap this is 0.3% of the input amount).
In case they are not colluding with the miner, they also have to pay
for gas. The price difference resulting from a victim transaction is not
necessarily large enough for a profitable sandwich attack.

A-1



APPENDIX B

Stack Trace of the Infinite Gas
Price Error

The following error was thrown at the 136" iteration of the agent’s training by

ray. It is caused by some computation failing when rllib tries to set the gas
price to np.inf, i.e. to infinity.

Failure # 1 (occurred at 2021-09-03_22-11-41)

Traceback (most recent call last):

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
< y/tune/trial_runner.py", line 739, in

— _process_trial

results = self.trial_executor.fetch_result(trial)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/tune/ray_trial_executor.py", line 729, in

— fetch_result

result = ray.get(trial_future[0], timeout=DEFAULT_GET_TIMEOUT)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/_private/client_mode_hook.py", line 82, in

< wrapper

return func(*xargs, **xkwargs)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra |
— y/worker.py", line 1564, in

~ get

raise value.as_instanceof_cause()

ray.exceptions.RayTaskError (AssertionError):

< ~~[[36mray: :PP0.train()~~[[39m (pid=1042179, ip=10.68.152.189)
File "python/ray/_raylet.pyx", line 534, in

— ray._raylet.execute_task

File "python/ray/_raylet.pyx", line 484, in

— ray._raylet.execute_task.function_executor
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File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

— y/_private/function_manager.py", line 563, in
— actor_method_executor
return method(__ray_actor, *args, **kwargs)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

— y/rllib/agents/trainer.py", line 640, in
— train
raise e

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

— y/rllib/agents/trainer.py", line 629, in
— train
result = Trainable.train(self)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

— y/tune/trainable.py", line 237, in
— train
result = self.step()

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

— y/rllib/agents/trainer_template.py", line 170, in
— step
res = next(self.train_exec_impl)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

< y/util/iter.py", line 756, in
— __next__
return next(self.built_iterator)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

< y/util/iter.py", line 783, in
— apply_foreach
for item in it:

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

— y/util/iter.py", line 783, in
— apply_foreach
for item in it:

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

— y/util/iter.py", line 843, in
— apply_filter
for item in it:

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

— y/util/iter.py", line 843, in
— apply_filter
for item in it:

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra

— y/util/iter.py", line 783, in
— apply_foreach
for item in it:
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File "/home/yves/.virtualenvs/rlmbc/lib/python3.

< y/util/iter.py", line 783, in
— apply_foreach
for item in it:

File "/home/yves/.virtualenvs/rlmbc/lib/python3.

— y/util/iter.py", line 783, in

— apply_foreach

for item in it:

[Previous line repeated 1 more time]

File "/home/yves/.virtualenvs/rlmbc/lib/python3.

< y/util/iter.py", line 876, in
— apply_flatten
for item in it:

File "/home/yves/.virtualenvs/rlmbc/lib/python3.

< y/util/iter.py", line 828, in
— add_wait_hooks
item = next(it)

File "/home/yves/.virtualenvs/rlmbc/1lib/python3.

— y/util/iter.py", line 783, in
— apply_foreach
for item in it:

File "/home/yves/.virtualenvs/rlmbc/lib/python3.

— y/util/iter.py", line 783, in
— apply_foreach
for item in it:

File "/home/yves/.virtualenvs/rlmbc/lib/python3.

— y/util/iter.py", line 783, in

— apply_foreach

for item in it:

[Previous line repeated 1 more time]

File "/home/yves/.virtualenvs/rlmbc/lib/python3.

— y/util/iter.py", line 471, in
— base_iterator
yield ray.get(futures, timeout=timeout)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.
— y/_private/client_mode_hook.py", line 82, in

< Wrapper
return func(*args, *xkwargs)
ray.exceptions.RayTaskError(AssertionError):
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9/site-packages/ra

9/site-packages/ra

9/site-packages/ra

9/site-packages/ra

9/site-packages/ra

9/site-packages/ra

9/site-packages/ra

9/site-packages/ra

9/site-packages/ra

— ~~[[36mray: :RolloutWorker.par_iter_next() "~ [[39m (pid=1042172,

— ip=10.68.152.189)
File "python/ray/_raylet.pyx", line 534, in
— ray._raylet.execute_task
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File "python/ray/_raylet.pyx", line 484, in

— ray._raylet.execute_task.function_executor

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/_private/function_manager.py", line 563, in

— actor_method_executor

return method(__ray_actor, *args, **kwargs)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/util/iter.py", line 1151, in

— par_iter_next

return next(self.local_it)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra |
— y/rllib/evaluation/rollout_worker.py", line 339, in

— gen_rollouts

yield self.sample()

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/rllib/evaluation/rollout_worker.py", line 740, in

< sample

batches = [self.input_reader.next()]

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/rllib/evaluation/sampler.py", line 101, in

— next

batches = [self.get_data()]

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/rllib/evaluation/sampler.py", line 231, in

— get_data

item = next(self.rollout_provider)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/rllib/evaluation/sampler.py", line 652, in

< _env_runner

base_env.send_actions(actions_to_send)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/rllib/env/base_env.py", line 363, in

— send_actions

self.vector_env.vector_step(action_vector)

File "/home/yves/.virtualenvs/rlmbc/lib/python3.9/site-packages/ra
— y/rllib/env/vector_env.py", line 173, in

— Vvector_step

obs, r, done, info = self.envs[i].step(actions[i])

File "/home/yves/Documents/studies/2019_ethz/class/2021-02_compute
— r_science/deep_learning meets_blockchain/rl_blockchain/src/mai
— 1n/python/rlmbc/reinforcement_learning/environment/blockchainen
— v.py", line 484, in

— step

self .network.mine_next_block(len(self._transactions_to_execute))
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File "/home/yves/Documents/studies/2019_ethz/class/2021-02_compute
< r_science/deep_learning_meets_blockchain/rl_blockchain/src/mai
— n/python/rlmbc/blockchain/network.py", line 175, in

— mine_next_block

new_block = miner.mine_block(maximum_transactions_count)

File "/home/yves/Documents/studies/2019_ethz/class/2021-02_compute
— r_science/deep_learning meets_blockchain/rl_blockchain/src/mai
— 1n/python/rlmbc/blockchain/miner.py", line 118, in

— mine_block

self._network.ETH.transfer(transaction.sender, self.address,

— fee_amount_eth)

File "/home/yves/Documents/studies/2019_ethz/class/2021-02_compute
< r_science/deep_learning_meets_blockchain/rl_blockchain/src/mai
— n/python/rlmbc/blockchain/cryptocurrency.py", line 71, in

— transfer

assert self._balances[sender] >= amount, f'You tried to transfer

< {self.to_str(amount)} ' \

AssertionError: You tried to transfer nanETH from agent to

— miner_202. This is not possible because agent has only

— 100.0ETH. Delta: nanETH.

ETH transfers from the agent to a miner only happen to pay fees of a
transactions, and the only way to achieve a value of nan for the fee is to multiply
by np.inf.
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