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Abstract

Process mining has gained ground in various fields as a methodology for extracting insight
from large and complex logs continuously emanating from diverse processes. Thus far it has
nevertheless not been applied to a networking context, a gap we bridge with this work by
applying process mining techniques to a log based on ordinary network traceroutes. We find
that the methods are indeed applicable as we discover and visualize the topology of a network
over three months.
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1 Introduction

In the current era of ubiquitous data collection, logs of various kinds feature as an important
format of collected data. This is also the case in networking and communication where, for
instance, publicly available BGP announcements generate a constant stream of information.
In addition, autonomous system (AS) operators set up ample telemetry for monitoring and
analyzing the state of their network. It is therefore a current research area to study not only
data collection but also the consequent data analysis aspect. In this work, we investigate how
the techniques introduced by process mining can provide insight in a networking setting.

1.1 Process Mining

Process mining is fundamentally concerned with discovering and analyzing processes based on
log data. Discovery produces a concise representation of the process underlying the generation
of the log and can be visualized as a diagram such as a Petri net [19]. Comparing a log and a
model bring further insight into discovered models, and this has been formalized as conformance
and bottleneck analysis. Relevant questions answered through such analysis include: How many
deviations from the model does the log exhibit? Where in the model do these deviations occur?
Which portions of the process are time-consuming? Are some portions of the process quick on
average but slow in a small number of situations? Answers to such questions support problem
solving and decision making across a broad range of domains.

Process mining has indeed seen successful application both in academia and the industry;
for example in healthcare [16] to analyze steps in patient treatment in a hospital [20], in ICT for
improving software development processes [22], and in manufacturing to analyze semiconductor
testing processes [21]. A more complete picture of existing uses cases is given in a survey by
dos Santos Garcia et al. [7]. Applications to networking have nonetheless remained largely
unexplored, prompting this research project.

A key requirement for employing process mining techniques is that the input data be rep-
resented as an event log. Logical entities flowing through a process are referred to as cases, and
at each step in the process, a log entry is recorded specifying the name of the activity along
with a timestamp. Table 1.1 presents a simple event log with three cases and four types of
activities. Such a format provides the minimal information necessary for modeling a process.
It is nonetheless possible to include further event-specific or case-specific attributes for richer
analysis, such as the name of a resource executing an activity or separate timestamps for the
start and completion of an activity.

Process models can be represented in various notations, with Petri nets [19] having gained
popularity in the domain of process mining for their strong theoretical foundation enabling
the definition of workflow nets [25], an instance of Petri nets satisfying certain properties.
Alternative representations include transition systems (also known as automata) primarily used
for theoretical illustrations, along with the Business Process Model and Notation (BPMN) more
commonly found in business settings.

Several algorithms have been proposed to discover process models from event logs. Among
the first influential algorithms is the Alpha algorithm [28], which considers the footprint of an
event log, that is, relations between all pairs of activities as inferred from consecutive activities
in each trace. These relations can be translated to Petri net components to produce a process
model. Figure 1.1 shows the Petri net produced by applying the Alpha algorithm on the log
in 1.1. Another discovery algorithm important in this work is “directly follows” modeling [15],
which trims down the modeling space from that of the Alpha algorithm’s but produces adequate
results in simple, well-structured processes.
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Table 1.1: A sample log showcasing the minimal
event log format.

Case ID Activity Timestamp

1 Start 34
2 Start 54
1 Process 59
3 Start 63
2 Reject 70
2 End 72
1 End 78
3 Process 82
3 End 91

Figure 1.1: A sample Petri net representing
the process model mined from the log in Table
1.1 using the Alpha miner. Places are denoted
by circles and transitions by rectangles, while
the filled black circle represents a token in the
start place.

Beyond process discovery, process mining provides value in techniques combining informa-
tion from an event log and a process model for richer analysis such as conformance checking
[17, 27], performance analysis [9, 27], resource analysis [18], and anomaly detection [4]. Confor-
mance checking is concerned with matching traces of events belonging to a case with a process
model to quantify fitness, that is, the extent to which the process model can replay cases. An
important method in this form of analysis involves alignments [5], where a trace in the event
log is matched with the closest valid execution of the process model.

1.2 Network Discovery and Testing

Network discovery itself has been amply studied, particularly in the early 2000s. At the time,
measurement was largely limited to passive techniques at the level of a node or a link, or
active techniques between end hosts, as categorized in a survey by Lawrence et al. [13]. Passive
measurement is primarily concerned with estimating traffic intensity between observed source–
destination pairs, whereas active measurement probes the network typically using ICMP echo
packets as part of a traceroute. Joining results from measurements between a set of several
hosts allows building a more intricate map of the network and its characteristics than local
measurements obtained passively, which also assume some level of access into the network unlike
active techniques with lighter assumptions. Hence this latter approach has received much more
attention in the inference of network topologies.

Active measurement techniques mainly rely on traceroute with research efforts focusing
on overcoming its limitations. Key challenges include alias resolution—determining the IP
addresses belonging to interfaces of a single router—along with reducing measurement overhead
to enable scalability. For example, Rocketfuel [23] addresses these issues by exploiting the IP
identifier field for alias resolution and by using public BGP routing information to prune likely
irrelevant paths for scalability. Skitter [10], on the other hand, consists of a carefully chosen set
of vantage points and destinations. Alias resolution is tackled by probing interfaces using UDP
packets to an unused port with the intention of triggering a “port unreachable” reply from the
router’s loopback address. A survey by Donnet and Friedman [6] provides a more complete
account of traceroute-based methods.

With the emergence of Software-Defined Networking (SDN) in the early 2010s, interest in
discovering topologies formed by a priori unknown routers has diminished. Instead, research
interest has increased in settings where access to switches is assumed, such as data centers,
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hence giving a link-layer topology against which to compare measurements. In other words,
research focus has shifted from network-layer topology discovery towards testing and anomaly
detection at the link layer. Classification into active and passive approaches remains nonetheless
relevant.

In passive techniques, the general idea is to monitor for interesting packets at switches and
when matching packets are encountered, either send information to a collector server or embed
information in the packet header to be removed and processed at the edge of the network.
Examples falling into this category are NetSight [8], which sends “postcards” containing key
information from packet headers to a collector, and PathDump [24], which embeds identifiers
of switches crucial for path reconstruction into the header. Everflow [32] also has a passive
component where TCP packets are mirrored to a collector.

In active methods, the underlying notion is crafting artificial packets fulfilling conditions of
interest and injecting them to switches. Then, SDN traceroute [2], for instance, takes the ap-
proach of tagging these packets to forward them to the controller at each hop. Everflow’s active
component takes another approach by encapsulating these debugging packets to a loopback IP
address.

Advances in programmable data planes have opened new avenues for more scalable net-
work measurements under in-band network telemetry (INT) [11]. For example, PINT [3] allows
defining queries that result in small chunks of metadata being probabilistically embedded into
packet headers throughout the network and aggregated and reconstructed at switches at the
edge of the network. Similar to Everflow’s passive component, dShark [30] relies on traces being
mirrored to collectors and it instead focuses on the subsequent analysis with a distributed archi-
tecture aiming for a high throughput. A third INT-based approach, LightGuardian [31], splits
small, packet-level data structures called sketches further into sketchlets to reduce overhead and
extends the structure with capabilities to record flow-level statistics.

1.3 Contribution

We explore the potential of process mining in the context of networking. In particular, we look
into topology discovery and how a topology varies over the course of three months. To that
end, we collect traceroutes from RIPE Atlas [1] and process them into event. As the process
mining tool, we use the open-source ProM [29].

We find that process mining techniques work largely as expected, allowing to effortlessly
visualize the topology of the network based on the traceroute event log. In terms of how
the topology evolves over time, we observe route changes that appear to stem from deliberate
configuration changes rather than load balancing. We hypothesize that changes in routes are
induced by increased delay on the original path, but that turns out not to be the case. A separate
question of interest concerns whether some links transmit packets to different destinations with
different delays, which we find to indeed occur in rare yet conclusive instances.

The report is divided into four additional sections. We first present relevant process mining
techniques in Section 2, after which we present the dataset collected for this purpose in Section 3.
We then show some observations from the dataset in Section 4 before finishing with concluding
remarks in Section 5.

3



2 Methods

2.1 ProM: The Process Mining Toolkit

ProM [29] is the original open-source tool implementing process mining techniques under a user-
friendly graphical user interface. The interface is divided into three sections: resources (Figure
2.1), plugins (Figure 2.2), and visualization. The visualizations are specific to each plugin—
the Alpha Miner and Directly Follows Visual Miner plugins used in this work are introduced
in Sections 2.2 and 2.3. ProM supports importing logs formatted as comma-separated values
(CSV). Cases and activities may consist of several attributes in the log, which can be specified
when imported.

Figure 2.1: The ProM (version 6.10) main screen listing the loaded resources. In this example, a CSV
file has been imported and converted to the XES event log format, which is the primary format used
when computing models.

2.2 Alpha Miner

The Alpha Miner plugin implements the Alpha algorithm [28] to construct a Petri net con-
forming to the provided log. This serves as a simple and general visualization of an event log
without needing to configure any parameters.

In detail, the algorithm considers the sequences of activities within every case: one such
sequence is referred to as a trace and thus the input is a multiset of traces. For the example
log in Table 1.1, the multiset of traces is

L = {(Start,Process,End), (Start,Reject,End), (Start,Process,End)}. (2.1)

Notably, the Alpha algorithm neglects frequency and time aspects, such as the prevalence of
certain traces or the relative ordering of cases, which leads us to also employ a more complex
plugin described in Section 2.3.

The following description of the Alpha algorithm takes inspiration from the Coursera course
on process mining by van der Aalst [26]. To simplify notation, we define the following for all
pairs of activities x and y within traces:
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(a) The Alpha Miner (Section 2.2) is used to build a
Petri net from the given log.

(b) The Directly Follows Visual Miner (Section 2.3)
builds “directly follows” models that can be interacted
with to highlight or filter for specific characteristics.

Figure 2.2: The ProM plugins view lists the available plugins and selecting one shows the required
input and resulting output formats.

(i) x > y ⇐⇒ x is directly followed by y

(ii) x→ y ⇐⇒ x > y and not y > x

(iii) x||y ⇐⇒ x > y and y > x

(iv) x#y ⇐⇒ not x > y and not y > x

Direct succession.

Causality.

Parallel activities.

Choice or no direct relationship.

Evaluating relationships between all pairs of activities across a set of traces allows building
a footprint, a matrix summarizing relationships between activities. Table 2.1 shows such a foot-
print for the example traces in Equation 2.1. Note that the existence of direct succession > is
evaluated across all traces, and thus it is enough for a → relationship to occur in a single trace
for it to take precedence over #. Similarly || takes precedence over →.

Table 2.1: Footprint of activities for the multiset of traces in Equation 2.1, that is, the log from Table
1.1. Note the multiple interpretations of #: Process and Reject are mutually exclusive activities, while
Start and End have no direct relationship.

Start Process Reject End

Start # → → #
Process ← # # →
Reject ← # # →

End # ← ← #

The steps of the Alpha algorithm are outlined below, illustrated with our running example
in gray:
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0. Assume a multiset of traces L over transi-
tions T .
L = {(Start,Process,End), . . .}
T = {Start,Process,Reject,End}

1. TL = {t ∈ T | ∃σ ∈ L : t ∈ σ}
TL = {Start,Process,Reject,End}

2. TI = {t ∈ T | ∃σ ∈ L : t ∈ head(σ)}
TI = {Start}

3. TO = {t ∈ T | ∃σ ∈ L : t ∈ tail(σ)}
TO = {End}

4. XL = {(A,B) | A,B ⊆ TL ∧A,B 6= ∅
∧ ∀a ∈ A, b ∈ B : a→ b
∧ ∀a1, a2 ∈ A : a1#a2
∧ ∀b1, b2 ∈ B : b1#b2}
XL = {({Start}, {Process}),
({Start}, {Process,Reject}), . . .}

5. YL = {(A,B) ∈ XL | ∀(A′, B′) ∈ XL :
A ⊆ A′, B ⊆ B′ =⇒ (A,B) = (A′, B′)}
YL = {({Start}, {Process,Reject}),
({Process,Reject}, {End})}

6. PL = {p(A,B) | (A,B) ∈ YL} ∪ {iL, oL}
PL = {p({Start},{Process,Reject}), . . . , iL, oL}

7. FL = {(a, p(A,B)) | (A,B) ∈ YL ∧ a ∈ A}
∪ {(p(A,B), b) | (A,B) ∈ YL ∧ b ∈ B}
∪ {(iL, t) | t ∈ TI} ∪ {(t, oL) | t ∈ TO}
FL = {(Start, p({Start},{Process,Reject})),
(p({Start},{Process,Reject}),Process), . . . ,
(iL,Start), (End, oL)}

8. α(L) = (PL, TL, FL)
Visualized in Figure 1.1.

The multiset of traces is the event log and
transitions are activities.

All occurring transitions.

Initial transitions.

Final transitions.

Causally related pairs of internally indepen-
dent sets: all transitions in A can be followed
by all transitions in B, and any two transi-
tions within A or B do not follow each other.

Maximal set pairs of XL: A and B contain
all applicable transitions.

Set of places. iL and oL are added source
and sink places, respectively.

Set of arcs between places and transitions:
from transitions to places, from places to
transitions, from the source place to initial
transitions, and from final transitions to the
sink place.

The resulting Petri net.

While the Alpha algorithm produces adequate results with many datasets thanks to its
generality, the context of traceroutes enables further assumptions to be made, leading to a
more suitable class of models and a more versatile ProM plugin.

2.3 Directly Follows Visual Miner

Given the Alpha algorithm’s limitations in visualizing frequencies and time, we also employ
the Mine with Directly Follows visual Miner plugin (documentation [14]) which implements a
simple directly follows model (DFM) [15]. Such a model only considering direct succession of
activities introduces the limitation of not modeling concurrency, which the Alpha algorithm is
capable of modeling.

However, this tradeoff is inconsequential in the context of traceroute data: routers and links
are ordered sequentially, so a packet can traverse only one link at a time rather than several
links concurrently. In return, the visual miner provides means to filter out infrequent traces
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and restrict the visible model to data within a chosen time interval. These features are detailed
in Figure 2.3.

Given that the concurrency limitation of DFMs does not apply in our context, the plugin
with its rich features is very well suited for analyzing the dataset described in the following
section, Section 3.

(a) The full DFM. Numbers indicate the number of
traces executing each activity and they are also graph-
ically rendered using a blue color scale.

(b) A simplified view of the DFM omitting the less
frequent “Reject” activity. A slider in the interface al-
lows pruning less frequent traces. Specifically, the paths
slider defines a lower bound for the proportion of traces
that should be represented in a model omitting as many
of the least frequent edges as possible. The model above
is produced by any value under 66.7 %.

(c) The full DFM filtered to only include traces having
an event within a chosen time interval. The times in
Table 1.1 have been interpreted as Unix timestamps,
which is why the time filter includes January 1, 1970,
as the date.

(d) The plugin also provides a view visualizing sojourn
times, that is, times elapsed between completions of two
consecutive activities. Numbers under activities denote
the mean sojourn times, which are also rendered using
a red color scale.

Figure 2.3: A directly follows model based on the event log in Table 1.1 and visualized by the Directly
Follows Visual Miner. The rounded rectangles denote activities.
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3 Dataset

We apply process mining on an event log extracted from traceroutes from one source to ten
destinations. The traceroutes originate from hourly dumps of traceroute measurements in RIPE
Atlas [1], a geographically distributed network of probes and anchors. Volunteers hosting a
probe or an anchor in their network may request measurements such as pings and traceroutes
between these devices, and the results are typically made publicly available.

These hourly dumps are filtered to only consider traceroutes with a straightforward interpre-
tation to allow reconstructing a path based on hop information. Namely, we discard traceroutes

(i) where all probes at any hop time out, as we would be missing information about a router,

(ii) with more than one IP address at a given hop, implying two probes took different paths,
and

(iii) where the traceroute encounters an error.

After the filtering, we are left with 66 062 traceroutes (on average 31 per hour and 749 per
day) to analyze further. Notably, every hop now has exactly one IP address to be considered
a router interface, which allows determining the path to a destination as the sequence of these
IP addresses. Furthermore, we can estimate the delay from one router to the next by averaging
round-trip times at every hop, halving those to estimate one-way delays, and computing the
difference of these estimates between consecutive routers. This data suffices to build an event
log of the form presented in Table 3.1. The parameters for importing the event log in ProM are
in Figure 3.1.

Table 3.1: Excerpt of the constructed event log. The Unix timestamp of a traceroute coupled with
its source and destination address uniquely identify a case. The hop-specific source and destination
addresses identify the activity starting and ending at the times indicated by the hop-specific timestamps.
The second block of lines shows the boundary between two distinct traceroutes: the timestamp increases
and the hop attributes restart from the beginning.

Unix time-
stamp (s)

Source ad-
dress

Destination
address

Hop
#

Hop source ad-
dress

Hop destina-
tion address

Hop
start
time-
stamp
(ms)

Hop
end
time-
stamp
(ms)

1614557183 51.89.117.81 80.241.3.66 1 51.89.117.81 51.89.116.1 0.00 0.17
1614557183 51.89.117.81 80.241.3.66 2 51.89.116.1 192.168.143.254 0.17 0.21
1614557183 51.89.117.81 80.241.3.66 3 192.168.143.254 10.13.65.254 0.21 0.33
...

...
...

...
...

...
...

...
1614557183 51.89.117.81 80.241.3.66 16 92.47.145.190 88.204.208.2 56.10 56.11
1614557183 51.89.117.81 80.241.3.66 17 88.204.208.2 80.241.3.66 56.11 60.04
1614558581 51.89.117.81 103.126.52.180 1 51.89.117.81 51.89.116.1 0.00 0.17
1614558581 51.89.117.81 103.126.52.180 2 51.89.116.1 192.168.143.254 0.17 0.19
...

...
...

...
...

...
...

...

From all the publicly available traceroutes, we chose to investigate further traceroutes orig-
inating from 51.89.117.81 and targeting ten destinations common during the initial phase of
data collection at the end of March 2021. With such a heuristic, we expected to obtain ample
data during the three months of data collection, and indeed, seven of the ten destinations had
traceroutes for most of the period from March to May 2021 (Table 3.2).

Suitably formatted for process mining, this dataset provides an intuitive mapping between
process mining and networking concepts. Each traceroute measurement is a case in process
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Figure 3.1: Parameters to provide to the CSVImporter plugin in ProM to convert a log of the form
shown in Table 3.1 into the XES event log format. timestamp, src addr, and dst addr identify the case;
activity srcIP and activity dstIP identify activities starting at start t ms and ending at end t ms.
The SSS format for time defines the values as milliseconds since January 1, 1970 at 00:00:00.000. Hence
the resulting cases are treated by ProM as if they had all happened in 1970, but this is inconsequential
as we are not interested in potentially interleaved traceroutes. The relative ordering of traceroutes can
be recovered from the timestamp attribute, which needs to be duplicated to be accessed in the Directly
Follows Visual Miner plugin.

mining and a proxy for the path an individual packet would take from the source to the des-
tination. IP addresses returned at each hop are paired to produce activities representing links
between pairs of router interfaces; physical links may nonetheless slightly deviate from these.
Finally, approximated starting and ending times of traceroute hops on the one hand estimate
delay between two routers, and on the other hand serve as starting and ending timestamps
for computing activity service times. These characteristics make the dataset well suited for
exploring process mining in the context of networking, although the content itself presents no
particular significance to us.
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Table 3.2: The IP addresses of the chosen traceroute source and ten destinations, and the mean
number of hops across all measurements to provide an intuitive impression of the distance between the
hosts involved. The last column indicates the proportion of hours in the collected three months of data
that had at least one traceroute to the corresponding destination: seven destinations have data in at
least 95 % of the 2111 hours between March 1 at 00:00 and May 29 at 23:59 excluding two complete days
and one full hour with missing data. Due to a technical glitch, there is no data in the following intervals
(UTC): March 30 23:02:44 to April 1 00:31:32, April 3 from 01:36:29 to 03:47:37, and April 7 23:09:37
to April 9 00:53:30.

Source address Destination address Mean hop count Total number
of traceroutes

Proportion of
hours with ≥ 1
traceroute

51.89.117.81

91.132.8.99 17.0 7886 99.95 %
159.253.17.19 19.0 7797 99.95 %
193.141.27.220 18.0 7199 99.91 %
197.80.104.36 21.2 8092 99.91 %
80.241.3.66 16.7 12 814 99.72 %
45.65.244.254 19.3 7898 97.20 %
103.126.52.180 23.2 4741 95.45 %
80.65.65.220 20.0 5221 71.80 %
164.113.94.217 20.8 4285 65.55 %
194.187.174.6 25.0 129 4.74 %
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4 Results

The results consist of five subsections considering the following questions:

4.1 What does the overall topology of the network over the first two weeks look like, visualized
with ProM?
A visualization with the Alpha algorithm shows that two links divide the network into
sections with private and public IP address prefixes.

4.2 What do the paths to individual destinations look like and do they evolve over time?
Single paths predominate at short time intervals, implying no load balancing. There are
path changes to all destinations, though frequencies and complexities of changes vary
significantly between destinations.

4.3 Are there any time regularities to routing changes?
No such regularities are discernible, but changes tend to occur among a handful of paths
per destination.

4.4 Is there a correlation between changing routes and delay prior to the change?
No. While delay typically changes after switching to another path, no intuitive causality
is observed.

4.5 Do any links show systematically different delays for packets to different destinations?
Against the expectation that link delays would be independent of destination, two links
consistently transfer packets to different destinations at different rates for at least some
period of time.

For readers in the Networked Systems Group at ETH, interactive versions of some figures are
available at https://gitlab.ethz.ch/nsg/students/projects/2021/sa-2021_processminingnetworking/-/

tree/master/report/figures/plotly.

4.1 Topology overview

What does the overall topology of the network over the first two weeks look like, visualized with
ProM?

A unique feature offered by process mining is visualizing an event log in the more interpretable
form of a Petri net. Figure 4.1 visualizes paths inferred from the full three months of the
traceroute data. However, using the full data leads to too much complexity since a Petri net
generated by the Alpha algorithm fits the log perfectly without any simplification or aggregation.
This property results in giving equal visibility to high-frequency and less relevant low-frequency
traces as well as superimposing all possible paths to a destination, ignoring the dimension of
time. We therefore limit the Petri net to the first two weeks of March in Figure 4.2.

This illustration provides an overview of the topology with few details on individual seg-
ments. Notably, the first few hops from the source to any destination fall within a private
network and all traffic is routed through two specific links and their respective pairs of routers
before leaving. As the remaining weeks of the data maintains a similar structure, these routers
likely serve a special function such as firewalling or analytics. The portion of the network after
these routers is in part hosted within the same AS but gradually shifts to other ASes depending
on the destination.

The Petri net capturing the three months of data is too complex to analyze visually. Restricting
the visualization to the first two weeks provides a more manageable view revealing a network
divided into a private portion and a subsequent public portion.
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Figure 4.1: The Petri net resulting from applying the Alpha algorithm on the three months of data is too complex to interpret due to every unique trace to
ever have occurred being represented.
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Figure 4.2: A Petri net representing the network as inferred by the Alpha algorithm using the first two weeks of the data. Each rectangle represents a link
formatted as link source IP—link destination IP. The traceroute source IP address is highlighted in yellow (on the left) and the final destination IP addresses
are highlighted in green (on the right). The pink circles in the middle indicate a set of four routers that divide the network into two sections: to the left is a
private network with IP addresses under prefixes 192.168.0.0/16 and 10.0.0.0/8, and to the right is a network primarily consisting of public IP address prefixes
apart from the occasional 10.0.0.0/8 for some routers still within the source AS.
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4.2 Paths by destination

What do the paths to individual destinations look like and do they evolve over time?

The overview of the previous section lacks in capturing frequencies and time evolutions of paths
to destinations. The Directly Follows Visual Miner responds to these needs by applying a color
scale to the graph and offering an interface to interactively select a time interval to consider in
the visualization. Additionally, it provides means to simplify the resulting model by disregarding
low-frequency traces.

Figures 4.3, 4.4, and 4.5 present a small case study of what can be observed from traceroutes
to 45.65.244.254, and the observations are of similar nature for all other destinations. Each of
the 10 destination IP addresses were analyzed as separate graphs to ease the computational load
and since overlapping paths between different destinations do not provide further meaningful
insight. Towards some destinations, traceroute paths remained very stable with few changes
throughout the three months, while there was more variability towards other destinations, as
is demonstrated in the following subsection, Section 4.3. Nonetheless, even variable paths re-
mained stable at hourly timescales, indicating that load balancing does not take place at the
level of individual source–destination pairs. Instead, changes in paths are better attributed to
modified network configurations.

Analyzing paths at a detailed level reveals that one path dominates at any given time, that is,
no load balancing is present. Additionally, how often route changes occur and the length of the
new segment varies by destination.
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Figure 4.3: Frequencies of links taken when reaching 45.65.244.254 over the three months of data collection. Darker blue shades indicate higher frequencies.
Interpreting the IP addresses around the pink AS border between the source AS16276 and AS23520 indicates that the former has two routers connected to an
edge router in the latter. The portion of the graph to the left, close to the source, is a linear path cut out of the picture due to size constraints. Additionally, the
model has been pruned to use the 98.5 % most frequent traces to reduce clutter by traces occurring only a few times; such omissions are visible in frequencies of
incoming and outgoing links not summing up to equal numbers.

Figure 4.4: Between March 1 and 10, all 852 traceroutes follow a single path to 45.65.244.254. The light-shaded rectangles represent links that are part of the
model but remain unused during this interval.

Figure 4.5: Between March 10 and 19, the vast majority of traceroutes follow a single path to 45.65.244.254. A handful of traces take deviating paths; for
example, there are 11 traceroutes where the source AS16276 uses a different router to reach AS23520.
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4.3 Overview of path changes by destination

Are there any time regularities to routing changes?

Having identified that some destinations experience changes in paths over time, a question of
interest is to investigate whether there are any regularities in, for instance, the frequency of
route changes. Given that observed routes typically remain constant for at least several hours,
we aggregate them over 8-hour intervals and keep the most prevalent routes to represent these
intervals in Figures 4.6 and 4.7. We split routes at the two links identified in Figure 4.2 as the
changes inside and outside the private network can be considered independent.

In Figure 4.6, we observe that the number of path changes over the three months ranges
from 1 to 21 depending on the destination. Nonetheless, even with high variability in paths,
the same small set of paths is reused: the number of unique major paths does not exceed 8 for
any destination. This is expected as physical connections are altered more rarely than software
configurations, which can be updated with less effort.

In Figure 4.7 covering the private portion of the network shared between all destinations,
routes remain more stable. When changes do take place, not all destinations using the same
path are necessarily affected (pink path) and a path no longer used towards some destination
may be picked up by another destination (green path).

There is no regularity such as a certain periodicity for path changes, which take place among
a small number of possible paths for each destination. The smaller private network exhibits path
changes more rarely than the public part of the network after it.

Figure 4.6: Predominant paths during 8-hour intervals from after the private network to each of the ten
destinations. Each color represents one path and gaps indicate missing data in the interval, while “major
path changes” designate transitions from one predominant path to another. Interactive plot available.

4.4 Correlation between path changes and delay

Is there a correlation between changing routes and delay prior to the change?
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Figure 4.7: Predominant paths during 8-hour intervals within the private network to each of the
ten destinations. Five destinations maintain constant paths, four destinations exhibit one switch, and
80.241.3.66 briefly sees two paths differing from the otherwise constant path. In particular, the green
and pink paths are the same for both pairs of destinations for which they are used, but the other colors
are specific to each destination. Interactive plot available.

A potential explanation for changing routes is that an increase in delay, implying congestion,
would trigger rerouting to balance load. We investigate this hypothesis by plotting shares of
paths over time overlaid with delay to visually detect such an effect. To reduce noise and
improve readability, we reuse the 8-hour time buckets introduced in the previous subsection
(4.3) to average both path shares and delay. Additionally, we restrict the delay to the region
delimited by the two routers between which all path changes to a destination take place. This is
to mitigate changes in delay occurring on individual links elsewhere, unrelated to path changes.

Figure 4.8 looks at this effect for destination 45.65.244.254. The segment for computing
delay runs from 94.23.122.246 to 69.79.104.1 as the variable routes are all contained within, as
can be verified in Figure 4.3. One key observation in the graph is that there is no visible causal-
ity from an increase in delay leading to a path change. However, different paths have different
delays, which the graph reflects as expected with changes in delay occurring simultaneously
with path changes. Another key observation is that the graph validates the notion mentioned
in the previous subsection (4.3) on routes persisting for several hours: the colored path shares
indicate 100 % shares in most of the 8-hour intervals.

While only one example is presented in this report, the results are similar for all destinations
and the same conclusion holds: from this data we are unable to establish a causality where an
increase in delay between two points in a network would induce a change of route between these
points.

4.5 Destination-specific differences in delay on a shared link

Do any links show systematically different delays for packets to different destinations?

Separate from the rest of the analysis, we compare delays that packets to different destinations

17



Figure 4.8: Share of distinct paths, represented by colors, to 45.65.244.254 over time between
94.23.122.246 and 69.79.104.1, the segment in which all path changes to this destination occur. The
black line denotes delay in this segment (note the axis not starting at 0). Observe, for instance, the
clear drop in delay when shifting from path 1 to 3 on March 19. After mid-May, delay and its variability
increase with path 7, though at the end of May it seems to stabilize to low levels again without a path
change. Rare paths with less than 100 occurrences are grouped under the overflow label “other”. Inter-
active plot available.

experience on shared links. The expectation is that links should treat packets equally and
thus transmit them at equal rates. To this end, we consider delays at every link, grouped by
destination. These are further classified into daily buckets—long enough to ensure large samples
(about 50 to 100 observations per group) but short enough to also capture temporary effects.

We then employ the Kruskal–Wallis test1 [12] to find any statistically significant differences
in median delays between groups on each link on each day. Of the total of 395 links, 2 links
show significant discrepancies in median delay for different destinations: p-values of the Kruskal–
Wallis test range from 1.1× 10−25 to 7.6× 10−14.

We explore these apparent differences further through plots. Figure 4.9 looks at one link
serving two destinations where the difference persists throughout the three months and where,
curiously, the sign changes from a certain point onwards. Figure 4.10 shows a similar difference
for another link likewise serving two destinations; here the difference only lasts for 10 days at
the beginning of the measurement period, but we do not know if this had already been the case
prior to beginning the measurements.

Two links carry traffic to different destinations with systematically different delays for at least
several days. The cause, however, remains unknown as we lack details of the network to inves-
tigate further.

1The Kruskal–Wallis test is a non-parametric alternative to the parametric ANOVA, both of which test for
equality of locations (median and mean, respectively) among several groups of observations.
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(a) Delays on link 91.121.131.74 to 37.187.36.199 for
the two destinations using the link, 45.65.244.254 and
103.126.52.180. Between April 26 and May 5, this link
is not on the path to these destinations except for one
traceroute. Interactive plot available.

(b) Figure (a) zoomed to values of link delay roughly
between 36 and 50 ms to more clearly showcase the
discrepancy in delay between traceroutes destined to
45.65.244.254 and 103.126.52.180. Before May 12, pack-
ets to 103.126.52.180 travel systematically more slowly
than those to 45.65.244.254, while after May 12 the roles
are reversed.

(c) The data in Figure (a) modulo one hour. Tracer-
outes to both destinations consistently take place at
four regular times in an hour, so the discrepancy in
delay is not explained by hourly time correlation or in-
terference in measurements.

(d) The data in Figure (a) modulo one day. Tracer-
outes to both destinations happen throughout the day,
so the discrepancy in delay is not explained by daily
time correlation.

Figure 4.9: Median delays towards 45.65.244.254 and 103.126.52.180 on link 91.121.131.74 to
37.187.36.199 show a discrepancy between the two destinations. The cause however remains unclear.
Note the range of the vertical axes not starting at 0.
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Figure 4.10: Delays on link 94.23.122.246 to 54.36.50.233 for the two destinations using the link,
159.253.17.197 and 164.113.94.217, during March. There is a discrepancy in delays until March 10, after
which both destinations see the same delay on this link. Interactive plot available.
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5 Conclusion

The goal of the project was to explore how process mining techniques may be applied in a
networking context. To do so, we constructed a dataset based on publicly available traceroutes.
While the contents of the dataset brought no groundbreaking revelations, we gained a solid
picture of how process mining can be applied in practice and found that the domain of net-
working can indeed benefit from developments in process mining, especially in terms of quick
and convenient visualizations.

Some caveats should nonetheless be noted regarding the practical use of the ProM tool and
its plugins, which are mainly developed separately by various volunteers. First, this hetero-
geneous plugin ecosystem correlates with a heterogeneous level of documentation scattered in
different locations. Second, there is weak support for saving configurations to reapply them at
a later point in time on potentially different data, hindering scientific reproducibility. Similarly,
exporting visualizations is poorly supported with the only option being low-resolution raster
images of the visible screen. Lastly, scalability for datasets larger than a few tens or hundreds
of megabytes appears to require considerable computational resources, depending on the plu-
gin used. In the same vein, it should be added that ProM relies heavily on its graphical user
interface and a headless environment has limited support and documentation. All of these con-
siderations suggest a need for a redesigned tool based on modern practice. Specifically, a Python
API for process mining would allow gaining wider adoption in the data science community by
improving usability and compatibility with existing data science frameworks.

Potential future work with a dataset of the same format as the current one includes com-
paring paths between two hosts in both directions, comparing delays from two sources reaching
a common router before continuing to the same destination, as well as comparing frequencies
of routing changes inside and at borders of ASes.

Other, more general possible future work includes visualizing specific network characteristics
of interest on top of a topology built with a process mining technique. This would be realized
by targeting a specific process mining algorithm to reimplement under a framework compatible
with requirements not readily met by ProM, such as online data processing.
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