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Abstract

The goal of this project is to find a procedural content generation (PCG) method
for online generation in momentum-based games. To this end, we make our own
game called Fast Painting. The content should be solvable, varied, and it should
exhibit the desired difficulty.

In our approach, two reinforcement learning agents, the solver and the gener-
ator, are trained in an alternating Markov game. We incentivize solvability and
variety of the generated content by giving non-negative variety rewards to the
generator when his actions produce recently unseen experiences for the solver.
We sabotage the solver by limiting his vision, his ability to act and his training
duration in an effort to create easier levels. In a procedure called ghost mode
we give a reward for placing level components, that the solver only passes with
initial momentum.

Our generator produces solvable levels without much training. The variety of
its content increases very slowly across millions of training steps. Our attempts at
enforcing difficulty have had little success. The achieved difficulty range is rather
small and the more difficult generators still place many easy platforms. It is
likely, that more training or an additional difficulty reward is needed to make the
behaviors of the different generators diverge more drastically. The momentum
reward seems to result in more interesting levels.
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Chapter 1

Introduction

1.1 Motivation

The most obvious constraints a game level designer has to work around are

• Solvability: There must be a way to progress, otherwise there is no point
in playing.

• Variety: Monotonous and only slightly differing experiences become boring
very fast.

• Difficulty Fit: Beginners as well as advanced players should be able to
enjoy the game. Offering levels of varying difficulty and labeling them,
gives everyone a starting point and a goal to work towards.

That these properties are desirable is self-evident. But, what they mean con-
cretely and how they can be enforced in a certain game is not straight-forward.
This makes level design, also known as content generation, a very hard problem
which creatives solve in an elaborate iterative process in the majority of games.
In this semester thesis we will focus on PCG for momentum-based games i.e.
games where momentum is the main game mechanic a player needs to master to
do well. The nature of momentum in these games poses a significant challenge
for level design. In a non-momentum platformer it is easy to ensure that gaps can
be cleared because the maximum distance jump-trajectory is predictable. This
changes completely when the character maintains momentum. Suddenly, the
possibility of a jump depends on whether the player can build up the necessary
momentum which can be a complex function of the surrounding environment.
This often makes it infeasible to prove solvability. Someone has to perform the
jump in order to show that it is indeed possible. Creating a hard level is therefore
at least as hard as completing it. This means that games are often shipped with
unrealized difficulty potential. In Trials Fusion for example, the hardest tracks
made by players (e.g. Crown Control - Qkoosy [1]) are much harder than the
most difficult tracks made by the level designers (e.g. Inferno IV [2]). Another
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1. Introduction 2

consequence of momentum is that the player needs to know about upcoming seg-
ments earlier to act properly. This can lead to situations where it is impossible
for the player to know how to act without having seen the level before. If we
generate the content as it enters the players vision, we should be able to enforce
solvability with the players momentum in mind.

1.2 Goals

We want to find a method for procedural content generation in momentum-based
games using our own game, called Fast Painting. The levels should adhere to the
design philosophy described in section 1.1 i.e. they should be solvable, varied
and exhibit the desired difficulty. On top of that, the generator should be able to
iteratively generate while we are playing, making sure that the generated sections
are solvable with the players current momentum. This creates a game mode that
is simply not possible without PCG.



Chapter 2

Game Setup

To develop and test our PCG method, we made our own momentum-based game
Fast Painting in Unity (Fig. 2.1). It is a two-dimensional motorcycle platformer
and it can be played in a browser at: https://beb.vsos.ethz.ch 1

Figure 2.1: Screenshot of the game made for this semester thesis.

2.1 Gameplay

In Fast Painting, the player has to drive from left to right, coloring everything
he touches purple. For every platform he passes, his score increases by one. The
platforms are placed as the player goes along and the difficulty increases with

1If the link is not working in Jul-Aug 2021, please let me know.
Contact: bewolff@student.ethz.ch

3

https://beb.vsos.ethz.ch
mailto:bewolff@student.ethz.ch


2. Game Setup 4

Figure 2.2: Keyboard controls for the game.

increasing score. If he falls or hits his head, the game restarts. The generated
platforms will be different on every run. A player goal is to beat their friends’ or
their own high score.

2.2 Controls

The bike is controlled with 4 discrete inputs and can be played in a browser with
a keyboard (Fig. 2.2).

• gas - accelerate the bike using the rear wheel motor

• brake/reverse - brake with both wheels or reverse if the rear wheel is in
contact with the ground

• lean left/right - applies a torque to the rider, allowing him to stabilize or
flip

Additionally, leaning forward moves the riders center of gravity over the front
wheel and leaning backward shifts his weight back. His center of gravity remains
in the respective position until the player leans in the other direction. Note
that the mass of the motorcycle, which is twice the mass of the rider, does
not shift. Transitioning into the opposite stance also gives the rider an initial
torque thrust. This, combined with a very playful i.e. soft suspension, makes
the motorcycle behave more intuitive with discrete inputs and allows for more
interesting maneuvers like bunny hops (Fig. 2.3).

2.3 Platforms

The generated platforms can be parametrized by their shape

s ∈ S = {Rectangle,Circle, Square,Ramp}, (2.1)
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Figure 2.3: Overlapped frames at different stages of a bunny hop. The red
dot indicates the center of mass of the rider since the stance of the rider is not
animated.

size l ∈ R>0 and angle α. The meaning of l and, due to different rotation
symmetries the range of α, depend on the shape:

• rectangle with constant height - l denotes the length and α ∈ [−π
2 ,

π
2 ) (Fig.

2.4a)

• circle - l denotes the diameter, α = 0 (Fig. 2.4b)

• square - l denotes the height and width, α ∈ [0, π2 ) (Fig. 2.4c)

• 45° ramp consisting of 5 trapezoidal segments - l denotes the length of the
border on the inside i.e. concave side and α ∈ [−5π

8 ,
3π
8 ) (Fig. 2.4d)

A platforms position is given by the position of its anchor a = (ax, ay)
T ∈ R2,

which marks where the platform begins. The head marks the end of a platform
and its position is h = (hx, hy)

T ∈ R2 (Fig. 2.4).

2.4 The Motorbike

The distance between the wheel centers is 2u, where u is the length unit in the
game, and the motorbike position b = (bx, by)

T ∈ R2 is given by the center point
between the wheel contact points (Fig. 2.5). We chose the larger gravitational
acceleration −15 u

s2 to compensate for this scaling.
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(a) Rectangular platform, α ∈ [−π
2 ,

π
2 )

(b) Circular platform, α = 0. The generator
can use ᾱ ∈ [−π

2 ,
π
2 ) to set the anchor of

the circle when connecting to the previous
platform (pink dot).

(c) Square platform, α ∈ [0, π2 ) (d) Ramp platform, α ∈ [− 5π
8 ,

3π
8 )

Figure 2.4: The meaning of l and α for different platform shapes. The relative
anchor and head positions are shown by the orange and red dots respectively.

Figure 2.5: Screenshot of the motorbike at rest with a scale reference. Its position
b is given by the position of the orange dot. The angle of the bike is θ = 0.



Chapter 3

Content Generation

3.1 Related Work

In recent years there has been a lot of research on procedural content generation
(PCG) for video games. The methods usually cover a subgenre of games and
range from design tools to complete generators, as shown by an overview of puzzle
generation methods [3]. Shaker et al. [4] generate a sequence of events through
grammatical evolution, called timeline. Then the timeline is simulated, i.e. level
components are placed whenever they appear in an event such that a solvable level
is constructed [4]. Unfortunately, the approach does not suit our game, where
there are no discrete events that can easily be mapped to level components. In
another approach, Gisslén et al. [5] show, that adversarial reinforcement learning
can be used for PCG (ARLPCG). One RL agent, called generator, learns how to
iteratively construct a level while another, named solver, learns how to solve it.
Special generator observations, referred to as auxiliary variables, are connected to
its reward function and used to control difficulty as well as very specific behaviors,
like airtime in a racing game [5].

3.2 Generator

3.2.1 Actions

Let mg ∈ N be the generator distance. To allow the solver and player to react,
platforms are requested such that there are always at least mg platforms in front
of the solver. Let pk be the platform placed at step k ∈ N and let ak and hk

be its anchor and head positions respectively (see section 2.3). Platform pk is
considered passed when

bx ≥ hkx (3.1)

where b = (bx, by)
T is the position of the bike (Fig. 2.5). Then the generator

action for pk+1 is requested as soon as the bike passes pk−mg+1 (Fig. 3.2).

7



3. Content Generation 8

The output of the generator has a discrete part

d = (d1, d2)T ∈ S× D

where S as in eq. 2.1 and

D = {Connect,Gap} (3.2)

and a continuous part
c = (c1, c2, c3, c4)T ∈ R4

that are interpreted as follows. The shape of the platform is given by d1. Let
β = 4u be a scaling factor, then the position of the anchor relative to the head
of the previous platform i.e. the offset is

δ = ak+1 − hk =

{
(0, 0)T , for d2 = Connect
δ̄, for d2 = Gap

}
∈ R2

where

δ̄ = µδ + β ·
(
c1

c2

)
and

µδ =

(
2u
−3u

)
(3.3)

is the mean intermediate offset of the heuristic generator (detailed in section
4.2). By choosing d2 = Connect the generator can therefore connect platforms
seamlessly.
Let

ᾱ = ((µα + c3 ·
π

2
+
π

2
mod π)− π

2
) ∈ [−π

2
,
π

2
)

be the intermediate angle where

µα = 0 (3.4)

is the mean intermediate angle of the heuristic generator. The angle then depends
on the shape s of the platform according to

α =


ᾱ, for s = Rectangle
0, for s = Circle
ᾱ
2 , for s = Square
2ᾱ, for s = Ramp

 .

Since for circles ᾱ is not used to rotate the platform, we can allow the generator
to use it to change where to anchor a circle when connecting it to the previous
platform i.e. d2 = 0 (Fig. 2.4b).
Finally, the size of the platform l is determined by

l = max(1.5u, µl + β · c4)
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where
µl = 7u (3.5)

is the mean intermediate size of the heuristic generator. We limit the size to
[1.5,∞), because tiny platforms are rather uninteresting.
Note, that the continuous part of the action c determines the normalized offset
of the values δ̄, ᾱ and l from the heuristic mean intermediate values µδ, µα and
µl.

3.2.2 Observations

When the platform pk+1 is requested, the generator observation consists of a bike
observation ob ∈ R4 × {0, 1} and platform observations

oip ∈ R4 × {0, 1, 2, 3} for k −mg + 2 ≤ i ≤ k

i.e. one for each platform in front of the bike. Additionally, it receives one random
input in [0, 1). The total observation is then fed to the network as a floating-point
vector of size ng = 5 + 5 · (mg − 1) + 1.

The bike is observed as

ob =



vx
β
vy
β

(( θπ + 1) mod 2)− 1
ω
2π{

0, for q = Back
1, for q = Forward

}


where v = (vx, vy)

T ∈ R2 is its linear velocity, θ ∈ [−π, π) is its angle, ω ∈ R is
its angular velocity, q ∈ {Back,Forward} is the stance of the rider and β = 4u is
a scaling factor. Platforms are observed as

oip =



ξix
ξiy

(α
i

π
2

mod 2)− 1

li

β
0, for si = Rectangle
1, for si = Circle
2, for si = Square
3, for si = Ramp




where

ξi = (ξix, ξ
i
y)
T =

ai − b
β

.
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(a) The appearance of the starting platform
in game.

(b) The appearance of the starting platform
to the generator and solver.

Figure 3.1: The starting platform in cyan and the bike in the starting position.

The starting platform (Fig. 3.1a) is perceived as split into mg pieces, such that
the generator can also make the observations at the beginning of an episode (Fig.
3.1b).

3.3 Solver

3.3.1 Actions

Every 100ms we request a discrete action

f = (f1, f2)T ∈ G× L (3.6)

from the solver where

G = {Reverse,Coast,Gas} (3.7)
L = {Lean Back,Not Leaning,Lean Forward}. (3.8)

The solver can therefore control his speed and rotation with f1 and f2 respectively
(see section 2.2 for details).

3.3.2 Observations

The solvers observations are very similar to the observations of the generator.
They consist of bike and platform observations ob and oip as defined in section
3.2.2. However, the solver does not observe the same platforms as the generator.
The bike is considered to be at platform pk if

hk−1
x ≤ bx < hkx. (3.9)

Let pk be the platform the bike is currently at and let ms ∈ N≤mg be the solver
distance, then the solver observes

oip for k − 1 ≤ i ≤ k +ms − 1 (3.10)
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Figure 3.2: Screenshot of a scenario with mg = 3, ms = 2 and 5 platforms.
The platforms that are observed by the solver are colored cyan and unobserved
platforms are white. Once the bike position i.e. the orange dot passes the green
line, a generator action is requested and the platform observations of the solver
are shifted forward. Should the bike fall behind the blue line, the observations
are shifted back but no generator action is requested.

i.e. it sees the platform behind itself, the platform it is on, as well as ms −
1 platforms ahead. There is an unreachable out-of-sight platform behind the
starting platform, such that the solver can also make his observation at the
start of an episode. When the bike crosses the head of a platform in positive
x-direction i.e. when bx ≥ hkx, the platform observations are shifted forward and
if platform pk+ms does not exist, a generator action is requested. If the bike
leaves the platform in the negative x-direction i.e. if bx < hk−1

x the solver shifts
his platform observations back (Fig. 3.2).

3.3.3 Rewards

At end of step t, the solver receives the reward

rs =
bτ+1
x − bτx
β

(3.11)

i.e. the unscaled progress in the positive x-direction, where bτ = (bτx, b
τ
y)T is the

bikes position at the beginning of step τ . The solver therefore wants to make
progress in the positive x-direction as quickly as possible.

3.4 Solvability

Gisslén et al. [5] use the success rate of the solver to traverse platforms in plat-
form game as a measure of difficulty and control it using auxiliary variables i.e.
on a hard difficulty setting, the generator is rewarded when the solver fails. To
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prevent impossible levels when setting a hard difficulty, they give a negative re-
ward to the solver when it fails, so that it does not attempt a jump it deems
impossible, therefore not failing [5].
We take a different approach to enforce difficulty (see section 3.7), i.e. our gener-
ator is not rewarded for making the solver fail. Because an episode ends when the
solver crashes or leaves the track and the generator receives non-negative rewards
with every step (see sections 3.5 and 3.6), it is directly incentivized it to create
traversable platforms. This eliminates the need for a negative solver reward upon
failing, which is convenient, because it means we do not have to tune this reward
i.e. the courage of the solver. Our solver is therefore never discouraged and learns
from every obstacle regardless of whether it deems it possible.

3.5 Variety

To enforce general variety in our levels, we reward the generation of recently
unseen level segments. In our game it is possible that unnecessary platforms are
generated. We consider a platform unnecessary when the solver passes it without
touching it (Fig. 3.3). The variation in these platforms hardly impacts the player
experience and should thus not be rewarded.
Let Ai be the event that platform pi was touched by one or more wheels before
pi was passed for the first time and let pk be the platform the bike is currently
at (eq. 3.9). In the event of Ak, the transition vector

tk = (tk1, . . . , t
k
9)T ∈ T (3.12)

T = R6 × S2 × D (3.13)

with S and D as in (eqs. (2.1) and (3.2)), is associated with the transition that
the bike made i.e. the transition from the most recently touched platform

pi : i = max { j | Aj , j < k} (3.14)
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to pk, and stored in the transition buffer B. The transition vector tk contains the
normalized intermediate parameters of the two platforms

tk1 =

{
0, for si = Circle
ᾱi
π
2
, else

}
(3.15)

tk2 =

{
0, for sk = Circle and dk2 = Gap
ᾱk
π
2
, else

}
(3.16)

tk3 =
li

β
(3.17)

tk4 =
lk

β
(3.18)

tk7 =si (3.19)

tk8 =sk (3.20)

and information about how they are connected (Fig. 3.3)

(tk5, t
k
6)T = δik = ak − hi (3.21)

tk9 =

{
Connect, if pi and pk overlap
Gap, else

}
. (3.22)

If pi is a circle, ᾱi has no effect on the transition, thus we set tk1 = 0. Similarly,
if pk is a circle and is not connected to pi, i.e. i < k− 1 or dk2 = Gap, the anchor
ak is unaffected by ᾱk and we set tk2 = 0.
To measure the similarity of two transitions we use the metric

d : T× T→ [0, 3] (3.23)

d(t, t′) =

{
dH(t, t′), for dH(t, t′) > 0
dA(t, t′), else

}
(3.24)

where the Hamming distance (t7, . . . , t9)T

dH(t, t′) =
9∑
j=7

1[tj 6=t′j ] (3.25)

differentiates the types of transition vectors and dominates the asymptotic dis-
tance (t1, . . . , t6)T

dA(t, t′) = 1− exp(−
6∑
j=1

(tj − t′j)2) (3.26)

which compares transition vectors of equal type. Let nb be the current size of the
buffer, whenever the bike passes a platform pk for the first time, the generator
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receives the variety reward

rkv =


10 ·min{d(tk, t)|t ∈ B}, for Ak ∧ nb = nb,max
10, for Ak ∧ nb < nb,max
0, for ¬Ak

 . (3.27)

This transition vector tk is then stored in a buffer B of maximum size nb,max =
200. In case nb > nb,max, old transition vectors are removed from the buffer
B until nb = nb,max before calculating rkv . The transition vector tk is added to
the buffer B after calculating rkb . The buffer has to fill only once. It is not
emptied at the beginning of the episode or when resuming training. The buffer is
also not observed by the generator and does not function as memory. It simply
incentivizes the generator to use its random input to create different transitions.
This reward function has several benefits:

• Placing platforms behind the solver in an attempt to gain instant and infi-
nite reward, will not work, because unless the solver touches the platform
the generator does not get a reward

• Unnecessary platforms earn no reward and thus, placing them is disincen-
tivized through reward discounting

• Variations in unnecessary platforms do not affect the reward

• Variety in the transitions the solver and player experience are incentivized

• Because there are only

nt = |C| · |S|2 = 2 · 42 = 32 < 200 = nb,max (3.28)

transition types, a decent policy should rarely receive rkv ≥ 1. The reward
signal is therefore dominated by dA. We expect the boundary of the set
of transitions the solver makes Tc to contain the most difficult transitions
e.g. barely possible jumps or steep uphill sections. To maximize reward,
the generator has to create some transitions at the boundary and therefore
generate sections where the solver struggles. Note, that it would make sense
to impose an upper bound on the normalized sizes of the platforms tk3, tk4
and a lower bound on the normalized offset in y-direction tk6, to ensure,
that Tc is closed.

3.6 Momentum

To incentivize the creation of momentum-based levels i.e. levels that require the
player to keep his momentum across platforms in order to progress, we construct
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Figure 3.3: Screenshots of three similar level sections where the wheels of the
bike touch the white platforms, but do not touch the red platform. The blue
arrow visualizes that the reward function treats all situations equally.

a momentum reward. Let pk be a platform the bike touched and just passed
i.e. Ak, and let pi be the most recently touched platform as in eq. 3.14. With
probability pghost, the generator training enters a procedure called ghost mode
(Fig. 3.4b)), where the generator has the opportunity to receive an additional
reward for pk. The bike is sent back to the position it had when it passed the
center ci = (cix, c

i
y)
T ∈ R2 of platform pi for the first time i.e. when

bx ≥ cix (3.29)

and its linear and angular velocity is set to zero. The purpose of this mode is to
see if the solver can make it past pk, starting from pi, without initial momentum.
The experiment can end in three ways:

• The solver makes it past pk (Fig. 3.4c): The generator receives no momen-
tum reward.

• The solver crashes the bike (Fig. 3.4d): The generator receives the momen-
tum reward rm.

• The solver backs up into pi−1: Its reward (eq. 3.11) does not incentivize it
to do this unless the transition requires more momentum. The generator
receives the momentum reward rm.

When ghost mode ends, the bike is set back into the position it was in, before
entering the mode (Fig. 3.4e) and a platform is requested. The bike also keeps
its momentum from before entering the procedure. Note, that giving a reward
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to the generator for making the ghost rider crash does not give an incentive, to
create impossible platforms. This is, because ghost mode is not entered unless
the rider has already made the transition successfully. The probability pghost and
rm are hyperparameters. A high value for pghost slows down training time per
step significantly, since it mainly depends on simulation time.

3.7 Difficulty

Because the reward of the generator is tied to the success of the solver, we can
force it to make easier levels by sabotaging the solver. We do this in three ways:

• sticky actions - Let f̄ t be the action that is actually applied to the game,
when the solver action f t is requested, then

f̄ t =

{
f t, with probability 1− psticky
f̄ t−1, with probability psticky

}
. (3.30)

Notice, that due to the recursive nature of eq. 3.30, one action can get
stuck for several time steps. The solver will therefore develop a much more
careful policy. When the solver makes inference during generator training,
actions can still stick.

• solver distance ms - limiting the amount of platforms the solver is able to
see ahead, should make it difficult to act appropriately.

• training steps - shortening the training of the solver and generator, results
in a suboptimal solver model and therefore in an easier generator.

3.8 Live Generation

By running inference on the trained solver and generator models, it is possible
to generate levels offline. However, we can also simply replace the solver with a
player. This is, what allows for online content generation. In Fast Painting, we
adjust the camera zoom such that the last mg = 5 platforms are fully inside the
players vision.



3. Content Generation 17

(a) The transparent blue rider on the left
marks the saved rider position. If the solver
crashes before touching another platform
and passing it, ghost mode is not entered.

(b) The pink transparent rider on the right
marks where the rider position and momen-
tum was saved before the solver takes con-
trol of the blue ghost rider, which has no
initial momentum.

(c) The ghost rider reaches the pink rid-
ers position, the generator receives no ad-
ditional reward and the solver takes control
of the pink rider (Fig. 3.4e) which kept his
momentum and a platform is requested.

(d) The ghost rider crashes, the generator
receives an additional reward and the solver
takes control of the pink rider (Fig. 3.4e)
which has kept his momentum and a plat-
form is requested.

(e) The ghost disappears.

Figure 3.4: Step-by-step example of the ghost mode procedure. Platforms that
were touched by a wheel are colored purple. Transparent bikes mark positions
the bike might return to. The color of the rider indicates whether we are in ghost
mode. Pink means regular training, blue means ghost mode.



Chapter 4

Training

This chapter highlights the training setup and technical difficulties with Unity
ML-Agents [6].

4.1 The Algorithm

To train the generator and solver policies, we use Proximal Policy Optimization
(PPO) [7]. Since the generator reward for placing a platform pk depends on
whether the player touches it (see section 3.5) and sometimes on the whether the
ghost makes the transition to it (see section 3.6), we cannot give the reward to
the generator in the same step k. Instead, the reward for platform pk is paid in
step k +mg − 1. Because the solver acts on a much higher frequency, we set the
reward discount factor γ to a higher value for it, than for the generator. We only
experimented little with other hyperparameters. Table 4.1 lists all of them. We
alternate between training the solver and generator every 3 · 105 steps and start
by training the solver on a heuristic generator (see section 4.2). While training
one model, we run inference on the latest version of the other model. Due to the
time limit of this project we never trained for so long that the rewards no longer
increased i.e. an optimum was reached. Still, our generator produces solvable
content because its solvability does not rely on convergence as with the setup
by Gisslén et al. [5]. The solver only needs to touch and make it past a few
generated platforms in an episode before crashing in order to give the generator
a reward signal.

4.2 Heuristic Generator

The heuristic generator places platforms according to(
c1

c2

)
=

1

β

(
max(−1u,∆δx)
max(−2u,∆δy)

)
(4.1)
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Generator Solver
Buffer Size 2048 2048
Batch Size 512 32

Learning Rate
Schedule Linear Linear

Learning Rate 3 · 10−4 5 · 10−4

Epochs 3 3
Layers × Units 3 × 128 3 × 256
Time Horizon 32 128

γ 0.9 0.99
λ 0.95 0.95
β 5 · 10−3 5 · 10−2

ε 0.2 0.2
Normalize

Observations No No

Table 4.1: Hyperparameters used with the Unity ML-Agents PPO Trainer [6].

c3 =
∆α
π
2

(4.2)

c4 =
∆l

β
(4.3)

where
∆δ ∼ N (0, I2 · u2) (4.4)

∆α ∼ N
(

0,
( π

12

)2
)

(4.5)

∆l ∼ N (0, (2u)2) (4.6)

and

d1 =


Rectangle, with probability 0.7
Circle, with probability 0.1
Square, with probability 0.1
Ramp, with probability 0.1

 (4.7)

d2 =

{
Connect, with probability 0.5
Gap, with probability 0.5

}
. (4.8)

The discrete and continuous parts d and c are interpreted as a regular generator
action (see 3.2.1). The heuristic generator is supposed to generate easy levels that
the initial solver can train on. Thus, the variance in the platform parameters
is small. Admittedly, the clipping of ∆δ in eq. 4.1 is overcomplicated and
unnecessary.



Chapter 5

Results

5.1 Experiments

To evaluate the impact of the rewards and the sabotaging of the solver, we look
at 20 training runs.

In runs 1-10, we do not apply the ghost mode procedure described in section
3.6. In runs 11-20, we do give the momentum reward. Across the 10 runs within
a batch, we try to achieve easier levels by sabotaging the solver as detailed in
section 3.7. Tables 5.1 and 5.2 show the exact hyperparameters used. We will
refer to models with a higher run number as better and harder for solvers and
generators respectively, not because they are guaranteed to perform better, but
because they have an advantage. Models with a lower run number will be referred
to as worse and easier.

For runs 1-10 we see, that for the generator the episode length and the average
step reward increase with training and are generally higher for the harder solver
generator pairs (Figs. 5.1a and 5.1b). Because the generators only receives the
variety reward rv in these runs, it must be making progress towards the solvability
and variety objectives. The fact that the reward is higher for the better solver
generator pairs indicates, that forcing the generator to make easy levels, makes
it harder to create variety, which is expected. Run 2 and 5 however do not follow
this trend i.e. have significantly higher step reward than similar runs.

For runs 11-20 the results are similar (Figs. 5.1c and 5.1d). However, the mo-
mentum reward causes oscillation in training, especially at the start. Apparently
randomly, generator 17 receives significantly higher step reward.

When putting the solvers up against different generators, we would expect,
that better solvers outperform worse solvers on the same generator and them-
selves on a harder generator i.e. receiving more cumulative reward. To evaluate
this, we put 4 solvers up against 4 different generators (Fig. 5.2).

For runs 1-10 our expectations are unfortunately not met (Fig. 5.2a). Al-
though, solvers 4,7 and 10 perceive generator 10 has the most difficult, solver 10
is the only solver who perceives the generator difficulties in the expected order.

20



5. Results 21

Ironically, Solver 1 does better against generator 10 than any other solver, de-
spite having no training experience with it. This is likely due to the shortsighted
solvers having a smaller observation space and thus learning much faster, which
is a significant advantage, that is not compensated enough by the reduction in
training steps.

Surprisingly, for runs 11-20, the results are less random (Fig. 5.2b). The
reached distances are a lot smaller for the harder generators, which hints at more
difficult tracks. For solvers 11 and 14, the generators difficulties are ranked as
expected. The difference in the average steps between generators 11 and 14 is
however much bigger than between generators 14 and 17. Furthermore, solvers
11, 14 and 17 perform very similar against generator 11, while solver 20 does
extremely poor. Surprisingly again, the average horizontal bike velocity vx is
greater in the runs without momentum reward.

The variance in the distance un runs 1-10 is extremely high (Fig. 5.2a) and
200 samples are probably not enough to get a good estimate of the mean. We
cannot properly evaluate the difficulty of the content using this data. In Runs 11-
20 the variance is smaller (Fig. 5.2b). The additional training or the momentum
reward or both, must be the cause of the less random results.

An episode is reset if no platforms are requested for 15 seconds. When the
rider falls on his back or gets stuck without hitting his head, we get a very poor
estimate of the average horizontal bike velocity vx. Its relation to the momentum
reward are therefore also unclear.

1 2 3 4 5 6 7 8 9 10
psticky 0.4 0.36 0.32 0.28 0.24 0.20 0.16 0.12 0.08 0.04
ms 1 1 2 2 3 3 4 4 5 5

steps/107 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
pghost 0 0 0 0 0 0 0 0 0 0
rm 0 0 0 0 0 0 0 0 0 0

Table 5.1: Momentum and difficulty hyperparameters in runs 1-10.

11 12 13 14 15 16 17 18 19 20
psticky 0.4 0.36 0.32 0.28 0.24 0.20 0.16 0.12 0.08 0.04
ms 1 1 2 2 3 3 4 4 5 5

steps/107 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
pghost 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
rm 5.5 3.6 3.03 2.8 2.7 2.67 2.67 2.7 2.74 2.8

Table 5.2: Momentum and difficulty hyperparameters in runs 11-20.
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(a) The average generator episode length in runs 1-10.

(b) The average generator step reward in runs 1-10.

(c) The average generator episode length in runs 11-20.

(d) The average generator step reward in runs 11-20.

Figure 5.1: The number of training steps increases with the run number. The
values are exponentially smoothed with a halftime of 6.9 · 105 steps.
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(a) Runs 1-10

(b) Runs 11-20

Figure 5.2: Distance reached by the solver and the horizontal bike velocity vx
averaged over 200 episodes, and the standard deviation of the distance σdistance
for 16 different solver generator pairs.
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5.2 Conclusion

The generator starts producing reliably solvable levels very early on during train-
ing. After that, the variety in the created levels increases slowly. The generator
therefore successfully learns the solvability and variety objectives. From inspec-
tion of the content, it is very obvious however, that the generator overfits to the
starting platform i.e. the first few platforms are always very similar and then
they become more and more varied.

Our approach to generating content of different difficulty, had little success.
There is no strong pattern in the performance of the solver models on the gen-
erated content. Still there is a noticeable difference in difficulty when switching
from the easiest to the hardest generator. The generators which received mo-
mentum reward and trained longer, appear to generally produce more interesting
and harder levels. Unfortunately, the overall difficulty range is quite small. The
easiest generator should be easier and the hardest one should be more difficult.
Also, the difficult generators do not exclusively place hard platforms.

More training is probably needed to see the difficulty categories of the gener-
ators diverge more drastically and to see the better solvers outperform the short-
sighted ones. An additional reward to incentivize placing hard level components
exclusively, could help make the generators’ difficulty level more consistent.

The generators seem to behave the same when generating live, which means
overfitting to a solver model is not an issue.

5.3 Future Work

Due to the setup used during this project (see section A.1), it was not possible to
manipulate the experience buffer of agents after the fact. However, it might be a
powerful tool to speed up the increase in variety reward. Unnecessary platforms
as in Fig. 3.3 and their respective generator actions could be merged, such that
the generator quickly learns to omit them.

To make even easier levels, one could try sabotaging the solver even more and
in other ways.

One could also do something similar to our ghost mode procedure where dif-
ferent solvers are put in the same situation and a reward is given to the generator
if only some solvers make the transition and others do not. This could help teach
the generator to exclusively place hard level components.
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Appendix A

Using ML-Agents

A.1 Technical Difficulties

To train the solver and generator in an alternating Markov game [8], we need to
run inference on one policy, while updating the other. Using the Low-Level Python
API for Unity ML-Agents, it is possible to connect the Unity environment i.e.
the game, to a custom training loop. We can then run the Unity environment
together with the training loop on the cluster and the switch in the updating
policy occurs automatically (Fig. A.1). However, there are two downsides to this
approach:

• Setting up the low-level API with a reinforcement learning library and
writing a custom loop is rather big undertaking

• The trained network cannot easily be converted into one, that can be in-
tegrated into the game, and it therefore needs an external python process
that supplies generator actions

For these reasons we decided to use the command line interface

mlagents-learn

provided by the ML-Agents Toolkit and the PPO algorithm that comes with it
[6]. Getting started with mlagents-learn is very straight-forward. However, our
asymmetric adversarial setup creates the following challenges:

• Because mlagents-learn does not allow us to run inference on one behavior
while training another, we have to integrate the updated model into the
Unity environment when switching trainees, which requires rebuilding the
environment.

• Rebuilding the environment is not possible on the cluster, because the Unity
Editor does not support Debian Linux.

A-1
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(a) Training the solver while running inference on the generator.

(b) Training the generator while running inference on the solver.

Figure A.1: An alternative training setup. The Unity ML-Agents Low-Level
Python API accepts actions and returns observations and rewards for all behav-
iors in the Unity environment [6]. Switching between training the solver and the
generator, can be done in a custom training loop directly on the cluster.

• Building the environments can be automated on supported operating sys-
tems, but only one instance of the Unity Editor can run on any machine
at once.

To work around this issue, I run multiple build servers, that supply the cluster
processes with new environments whenever the trainee is switched (Fig. A.2).
The servers run on systems that support the Unity Editor.
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Figure A.2: The trainee is switched from generator to solver. The build server
downloads the updated generator model and integrates it into a new environment
build that the solver can continue training in.
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