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Abstract

One of the largest DEX Uniswap released their version v3 in 2021 and introduced
the concept of concentrated liquidity. Now liquidity providers in Uniswap v3
need to choose a range in which they want to provide liquidity. We built a
robust and precise backtester based on the original Uniswap v3 smart contract
and used it to test eleven different strategies for liquidity providers. We analyzed
those strategies on the USDC-ETH pool with 0.05% transaction fee. We found
strategies that performed really well when Ethereum was going up, but most of
these strategies did not perform so well when Ethereum was going down. We
also analyzed the delta of liquidity provision strategies.
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Chapter 1

Introduction

The concept of blockchain and the first decentralized cryptocurrency has been in-
troduced by Nakamoto with Bitcoin [1]. Later blockchains with smart contracts,
most notably Ethereum [2] followed. Due to smart contracts, decentralized fi-
nance or DeFi emerged on Ethereum. DeFi is a financial technology that elim-
inates the need for traditional financial intermediaries like banks. Various DeFi
protocols provide different services to users. These protocols allow users to take
out loans, get insurance, or exchange tokens without intermediaries involved.

Protocols that allow users to exchange tokens on-chain are called Decentral-
ized Exchanges (DEX). These exchanges allow users to trade without an interme-
diary. Traders do not have to deposit their funds in a centralized exchange (CEX)
and therefore give up custody of their funds. They can instead exchange tokens
directly on-chain with smart contracts. Most of these DEXs use an automated
market-making algorithm rather than a traditional order book. The orders are
executed on a liquidity pool. Liquidity providers (LP) deposit that liquidity in
a pool, and traders trade against that. As a reward for providing this liquidity,
LPs get a fee for each swap.

In Uniswap v3 [3], LPs must also choose price ranges for a particular pool in
which they want to provide their liquidity. The LP’s fee depends on the selected
price range and the current price. Providing liquidity also comes with a risk. An
LP will suffer impermanent loss if the price of a pair of tokens is different. The
range the LP has chosen determines how big that impermanent loss is.

We investigate different strategies to choose these price ranges and how im-
permanent loss and fees affect the returns of LPs. For that investigation, we
backtested these strategies on past data.

1



1. Introduction 2

1.1 Related Work

Max [4] introduced the passive rebalancing strategy for Uniswap v3 in a blog
post. Gamma Strategies developed a strategy based on Bollinger Bands [5]. Clark
derived the replicating portfolio and greeks for constant product market [6] and
for constant product with bounded liquidity [7]. Neuder et al. [8] did a formal
study on liquidity provision strategies on Uniswap v3 with a Markov model.
However, they did not consider impermanent loss. Fritsch [9] analyzed different
liquidity provision strategies for Uniswap v3. He used hourly data to analyze the
strategies. We have improved the analysis by doing more exact calculations and
adding more strategies. Mellow showed how to create different market making
strategies on Uniswap v3. They also show how to build derivatives on-chain [10].



Chapter 2

Background

2.1 Decentralized Exchanges

On decentralized exchanges like Uniswap, Sushiswap, and Pancakeswap, traders
can swap between different tokens on the DEX, which does not require traders
to deposit any currency in the exchange, allowing traders always to have custody
of their assets. The swap happens atomically, and DEX never holds any of the
trader’s assets. Transactions in DEXs are executed on-chain. Therefore, the
trade is only settled when the network has verified the transaction.

There are DEXs on various platforms such as Solana, Avalanche, but Ethereum
is the most popular. On Ethereum, any token that fulfills the ERC-20 standard
can be traded on a DEX. Such a token can represent a lot of things, like a lottery
ticket, shares in a company, or a US dollar [11]. Users can trade almost any asset
on DEXs because tokens do not need to be listed by a central authority. Instead,
any user can open a new liquidity pool for a token pair. Furthermore, DEXs are
not subject to governments and regulatory entities. Users are free to trade and
are never required to do KYC.

2.2 Constant Product Market Makers

In contrast to CEXs, most DEXs do not use a traditional order book, but they use
an automated market maker (AMM). Most DEXs like Sushiswap and Uniswap,
which is currently the largest DEX and has a total locked value of over $8 billion
and a daily volume of $1-2 billion [12, 13], use a form of constant product market
maker (CPMM).

In Uniswap v2 [14], anyone can create a liquidity pool for an arbitrary token
pair. A liquidity provider will deposit both tokens into the pool to bootstrap that
pool. Once the pool is bootstrapped, a liquidity provider must always deposit
both tokens in the same ratio as the pool’s current state. Traders swap tokens
with the pool’s liquidity and pay a fee. This fee will then be distributed pro-rata

3



2. Background 4

among all liquidity providers. The trading fee of Uniswap v2 is 0.3%.

A CPMM like Uniswap v2 ensures that the product of the two reserves stays
constant. Consider a pool of the token pair (X,Y ). Assume the reserve for token
X is x and the reserve for token Y is y. Then the product x · y = k is constant if
the pool has no fees. Consider a trader who wants to swap y of token Y to token
X. With fees, the following product is constant, k = (x− xout) · (y+(1− f)yin),
where f is the transaction fee. After the swap, the new reserves will be:

y′ = y + (1− f)yin (2.1)

x′ =
k

y′
=

k

y + (1− f)yin
(2.2)

So the amount of token B the trader gets is tB:

xout = x− x′ = x− k

y + (1− f)yin
(2.3)

[15] The reserves can never go to zero, as we can see in Equation 2.2, x′ = 0 ⇐⇒
yin → ∞. Such a trade would have infinite costs. From Equation 2.3 we see
that big orders have a bigger price impact and are therefore more expensive than
small orders. The price of an asset is only determined by the ratio of the reserves.

P =
x

y
(2.4)

Arbitrageurs will keep the price close to prices on other exchanges.

2.3 Concentrated Liquidity

With Uniswap v3, the concept of concentrated liquidity got introduced. In earlier
versions of Uniswap, the liquidity providers had to support trading on the entire
price range (0,∞). The liquidity was uniformly distributed along:

k = x · y (2.5)

This distribution is not capital efficient because assets only trade in a small subset
of (0,∞), much of the liquidity in a pool is never used.

It makes sense to allow LPs to provide liquidity in a smaller price range than
(0,∞). We call a finite price range [pa, pb] a position. A position only needs to
support trading within its range. It will act like a CPMM with larger reserves
within its range. These reserves will be called virtual reserves.

When the price moves down, it means that the reserves of Y are shrinking,
and analogously, the reserves of X are shrinking when the price moves up. In 2.1
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Figure 2.1: Virtual Liquidity [3]

we see that, for a price range [pb, pa] and a current price pc with pc ∈ [pb, pa], we
would need to provide xreal of X and yreal of Y .

When the price moves out of the range, pc /∈ [pb, pa], the reserves of that
position are entirely made up of one asset. The position is no longer active, and
it does not earn any fees. When the price moves back in pc ∈ [pb, pa], the position
will become active and earn fees again.

The amount of liquidity needed for a position is measured by L =
√
k. The

real reserves of a position are:

L2 = (x+
L

√
pb
) · (y + L

√
pa) (2.6)

The curve of the real reserves (Equation 2.6) is a translation of (Equation 2.5).
This relation can be seen in Figure 2.2.

LPs can create as many positions as they want, giving them the possibility to
approximate any distribution of liquidity. The concept of concentrated liquidity
allows the market to decide in which price range liquidity is needed. Concentrated
liquidity is a mix of a classical order book and a CPMM that only allows LPs to
provide the whole price range (0,∞).

[3]



2. Background 6

Figure 2.2: Real Reserves [3]

2.3.1 Range Orders

We can approximate limit orders by providing liquidity in a small interval. The
difference between a range order and a traditional limit order is that the range
order has a minimum interval width, and while the price is in that interval, the
order is partially executed. Another difference is that we need to withdraw if
the price crosses the range. If we do not withdraw it and the price crosses back
again, the position will be traded back and reverse the trade. Since range orders
are just a regular liquidity provision, we do not have to pay swap fees. On the
contrary, we even get fees.[3]

Example 2.1. Assume the current price pc of ETH is at 100 USDC, and we
want to sell ETH. We set a range order at [150, 151]. When the price moves
above 151, we have sold all of our ETH for USDC.

pc = 100 150 151

range order

Figure 2.3: Range Order before Execution



2. Background 7

pc = 160150 151

range order

Figure 2.4: Range Order after Execution

2.4 Uniswap V3 Implementation Details

Implementing concentrated liquidity in a gas-efficient manner is not easy. Uniswap
v3 has a few interesting implementation details. These details are described in
[3] and also implemented in our backtester to ensure that we exactly replicate the
smart contract. The smart contract of Uniswap v3 tries to optimize for swaps,
since swaps are by far the most common type of transaction. We will not consider
any protocol fees because they are zero at the moment.

2.4.1 Ticks and Ranges

The space of possible price ranges is divided into discrete ticks. A position in
Uniswap v3 is made up of a lower tick il and an upper tick iu. The price of the
tokens is always expressed as the price of token0 in terms of token1. The choice
of which asset is token0 or token1 is arbitrary and does not change the logic of
the contract, besides rounding errors.

There is a tick for every price, which is a power of 1.0001. The ticks are
indexed by an integer i, and the price of each index is:

p(i) = 1.0001i (2.7)

Therefore, each tick is 0.01% or one basis point away from its neighboring ticks.
Not every tick can be used, but only certain ticks depending on the tick spacing.
[3]

2.4.2 Global State

The important variables of the contract that are relevant to swaps and liquidity
provision are:
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Variable Name Notation
liquidity L

sqrtPrice
√
P

tick ic
feeGrowthGlobalToken0 fg,0
feeGrowthGlobalToken1 fg,1

Table 2.1: Global State [3]

The pool does not track the current reserves, x and y but instead tracks L
and

√
P . We can compute x and y by:

x =
L√
P

(2.8)

y = L ·
√
P (2.9)

The global state also contains the current tick ic, which is given by:

ic = ⌊log√1.0001

√
P ⌋ (2.10)

Furthermore, the contract tracks the two numbers feeGrowthGlobalToken0 (fg,0)
and feeGrowthGlobalToken1 (fg,1). These numbers represent total fees earned
per unit of virtual liquidity (L) over the entire contract history. [3]

Swap Within a Single Tick

Within a single Tick, the contracts act as a regular CPMM. Suppose the transac-
tion fee is γ, and we swap ∆y token1 for token0. Then feeGrowthGlobalToken1
will be incremented by:

∆fg,1 = yin · γ (2.11)

The sqrtPrice will be increased by:

∆y = yin · (1− γ) (2.12)

∆
√
P =

∆y

L
(2.13)

These formulas only work if we do not cross any tick. Otherwise, we can only use
a portion of yin, then cross ticks, as described in section 2.4.3, and then continue
swapping in a single tick. [3]
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2.4.3 Tick-Indexed State

Each tick tracks the following values:

Variable Name Notation
liquidityNet ∆L

liquidityGross Lg

feeGrowthOutsideToken0 fo,0
feeGrowthOutsideToken1 fo,1

Table 2.2: Tick-Indexed State [3]

LiquidityNet ∆L is the amount of liquidity that should be removed or added
when the tick is crossed. LiquidityGross is used to determine if a tick has an
active position. We can not use ∆L, since ∆L = 0 does not guarantee that the
tick is not used.

FeeGrowthOutsideToken{0,1} are used to calculate the fees within a given
range. We will omit the subscript for the rest of this section because the formulas
are identical for both tokens. Let us define fa as the fees earned above a tick i:

fa(i) =

{
fg − fo(i) ic ≥ i

fo(i) ic < i
(2.14)

And analogously fb as the fees below a tick i:

fb(i) =

{
fo(i) ic ≥ i

fg − fo(i) ic < i
(2.15)

Then we can calculate the fees in the range fr between a lower tick il and an
upper tick iu as follows:

fr = fg − fb(il)− fa(iu) (2.16)

Cross Ticks

Whenever we cross ticks, we need to update fo. It will be updated as follows:

fo(i) := fg − fo(i) (2.17)

After the crossing, we can continue swapping, as described in section 2.4.2. [3]

2.4.4 Position-Indexed State

The contract has a mapping from (user, lower tick, upper tick) to a position
struct, which tracks the following values:



2. Background 10

Variable Name Notation
liquidity l

feeGrowthInsideToken0Last fr,0(t0)

feeGrowthInsideToken1Last fr,1(t0)

Table 2.3: Position-Indexed State State [3]

The liquidity (l) is the virtual liquidity of the position. The liquidity does
not change as fees are earned. In contrast to Uniswap v2 where the fees are
reinvested automatically and therefore increase the liquidity.

Set Position

The function setPosition takes three arguments: liquidityDelta δl, lowerTick il
and upperTick ir. First, it will calculate the uncollected fees (fu) for both tokens.
For that, it considers the change of fr of [il, ir], between t1 and t0 and multiply
it with the liquidity l:

fu = l · (fr(t1)− fr(i0)) (2.18)

The fees will be payed out to the user and the function will update fr,0(t0)
and fr,1(t0). Then the funciton updates l by adding δl. The following formulas
calculate the amount the user needs to deposit (or receive if it is negative):

∆Y =


0 ic < il

∆L · (
√
P −

√
p(il)) il ≤ ic < iu

∆L · (
√
p(iu)−

√
p(il)) ic ≥ iu

(2.19)

∆X =


∆L · ( 1√

p(il)
− 1√

p(iu)
) ic < il

∆L · ( 1√
P
− 1√

p(iu)
) il ≤ ic < iu

0 ic ≥ iu

(2.20)

[3]



Chapter 3

Methodology

To evaluate our strategies, we use actual data from Uniswap pools. We then
backtested the strategies with our backtester, which implements the core part of
the Uniswap v3 smart contract.

3.1 Data

Uniswap v3 transaction data can be assessed using The Graph’s Subgraph of
Uniswap v3 [16]. Unfortunately, the data on The Graph was not correctly in-
dexed. Therefore, we got the data directly out of the Ethereum blockchain. That
data came from the Etherscan API [17]. This data had to be decoded using the
contract ABI of Uniswap v3.

3.1.1 Pools

The analysis of the strategies was done on the Uniswap v3 ETH-USDC 0.05%
pool, which was initialized on May 5, 2021. The in-sample period was from June
4, 2021, until November 20, 2021 and has a length of 169 days. The out-of-sample
period is from November 20, 2021, until February 28, 2022 and has a length of
169 days. We chose to start backtesting one month after the initialization of the
pool so that there is enough liquidity and volume.

3.2 USDC

We will assume for the whole thesis that 1USDC = 1$. This assumption is
reasonable because each USDC is backed by a dollar and this backing is regularly
audited [18].

11
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3.3 Backtester

To evaluate our strategies, we implemented our backtesting tool. Our initial
approach was running a local EVM using Hardhat [19] and deploying the original
Uniswap v3 core smart contract [20]. However, it turned out that running a local
blockchain is way too slow. That is why we decided to implement the logic of the
contract in Go. While we built the backtester from scratch to leverage 256-bit
integer calculations, we referenced code of similar implementations [21, 22].

Our backtester runs all relevant historical transactions (Mint, Burn, Swap,
and Flash), and then it runs the transactions of our strategy on top of that. The
backtester replicates the logic of the smart contract and comes to the same result
as the original contract. We will not try to differentiate which portion of the end
value comes from the value of the liquidity provision and which part comes from
the fees because the backtester is automatically compounding the fees.

Our Go backtester achieved a 50x speed improvement due to various opti-
mizations compared to a backtester based on the Uniswap v3 SDK [21]. The
backtester with a local EVM needs several hours to complete one run of all
transactions, whereas our Go backtester only needs about 1 second. The most
important optimizations are caching complex calculations, using 256bit integers,
and changing from Javascript to Go. Our backtester is also able to test different
parameters in parallel.

The backtester uses the price of the pool (Equation 2.4) to calculate how
much USDC our ETH is worth, which means that we assumed that the price on
Uniswap v3 is reflective of the market price of Ethereum overall. We also used
the assumption from section 3.2 to convert the USDC to dollar.

3.3.1 Analysis

All strategies start with an equal amount of both assets, and the total value of
the assets will be $2. We chose such a small amount to minimize our strategies’
impact on the pool’s liquidity. As already mentioned in section 3.1.1 all strategies
start one month after the initialization of the pool. Moreover, we did not consider
any cost of gas fee when doing our analysis. We did not consider the gas cost
because the cost of gas is constant and would be negligible with more capital.
Depending on the strategy, there will be specific parameters. Strategies and their
parameters will be discussed in chapter 4.
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3.4 Metrics

We used several metrics to measure the performance of our strategies.

3.4.1 Return On Investment

The most important performance metric is return on investment, or ROI. It is
defined by:

ROI = r =
end amount − start amount

end amount
(3.1)

This return needs to be annualized:

ra = (1 + r)
365
days − 1 (3.2)

[23]

3.4.2 Maximum Drawdown

The drawdown (DD) of a portfolio is the loss from the peak. It is defined by:

DD =
value − peak value

peak value
(3.3)

The maximum drawdown (MDD) is the maximum of all drawdowns. In our
simulation, we take hourly Snapshots of the value of our positions and then
calculate the maximum drawdown.

MDD = max(DD) (3.4)

[23]

3.4.3 Volatility

To estimate the volatility of our strategies, we take snapshots at fixed intervals
(hourly, daily, and weekly). Define:

n+ 1: Number of snapshots

Vi: Value of all positions at the end of the ith interval, for i from 0 to n

τ : Length of time interval in years.
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Let
ui = ln (

Vi

Vi−1
), for i from 1 to n

be the change of Vi.
Let

ū =
1

n

n∑
i=1

ui

be the average of ui.
The unbiased sample variance ui is:

s =

√√√√ 1

n− 1

n∑
i=1

(ui − ū)2 (3.5)

From this we can estimate the volatility σ by σ̂, which is defined as:

σ̂ =
s√
τ

(3.6)

[24]

3.4.4 Sharpe Ratio

The Sharpe ratio measures the ratio of the risk premium to the volatility.

Sharpe Ratio =
r − rf

σ
(3.7)

r is the return and rf the risk-free rate. Usually, the US Treasury bill is taken
as the risk-free rate. However, considering this thesis is about crypto, we will
choose Aave’s deposit rate on USDC.

3.4.5 Downside Deviation

The downside deviation is similar to the volatility, but it only looks at returns
that fell below the minimum acceptable return (MAR). We will choose MAR = 0.
The target downside deviation (TDD) is defined by:

TDD =

√√√√ 1

n

n∑
i=1

min(0, ui −MAR) (3.8)

[25] This also needs to be scaled by the length of the interval. The downside
volatility σd is estimated by σ̂d, which is defined by:

σ̂d =
TDD√

τ
(3.9)
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3.4.6 Sortino Ratio

The Sortino ratio is similar to the Sharpe ratio but only considers the downside
deviation. [25]

Sortino ratio =
r − rf
σd

(3.10)

We will also use Aave’s rate as the risk-free rate here.

3.4.7 Value at Risk

The Value at Risk or VaR is the threshold loss value for a given portfolio, time,
and a probability p. To calculate VaR, we take snapshots at fixed Intervals, sort
them by the returns, and take the value of the p-th percentile.

3.4.8 Delta

The delta (∆) of the liquidity postions is the ratio of change in value of the posi-
tions to the change in value of the underlying token. In our case, the underlying
token is Ethereum.

Example 3.1. Let us assume the total value of our postitions increased from
2$ to 3$ and the price of Ethereum increased from 2000$ to 4000$. To compare
the delta of liquidity positions to the delta of options we will scale it with the
position size. The delta would then be:

∆ =
3− 2

4000− 2000
· 2000

2
=

1

2000
· 1000 = 0.5 (3.11)

[24] A delta of zero means that the liquidity is not subject to price change in the
underlying asset. Delta one means that the change in the value of the liquidity
position is identical to the change in the underlying asset.



Chapter 4

Strategies

We will backtest a few strategies to determine the best strategy for an active
liquidity provider. For all strategies, we will test out all reasonable parameters.
Furthermore, all our strategies do not try to predict the price of the tokens in the
future. If the strategy is dynamic, we will rebalance our position every 2 hours,
6 hours, one day, seven days, and 30 days.

4.1 No Provision

In this strategy, half of the portfolio is in token zero, and the other half is in
token one. The assets will not be deposited in any pool. This simple strategy is
a good benchmark because it shows how much the value of the tokens increased.
Since no liquidity was provided, there is no impermanent loss of earned fees. This
strategy will be our reference strategy, which we will take as a baseline.

4.2 Uniswap V2

For this strategy, we will provide the liquidity just as in Uniswap v2. We will
provide liquidity in the interval [minTick,maxTick].

Price maxTickminTick

Li
qu

id
it
y

Figure 4.1: Uniswap v2 Strategy
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4.3 Constant Interval

We will choose a fixed parameter a > 0 for this strategy. In the beginning, we will
provide liquidity in a symmetric interval around the current price. This interval
will never be adjusted. More specifically, we will choose the interval [p−a, p+a],
where p is the price at the beginning.

For the USDC-ETH pool, we will choose a ∈ [10, 40000], which means that
the size is between 10 and 40000 basis points, or 0.1% and 400%. It does not make
sense to choose another a because, at any time, the price is always in [p−a, p+a].

Price
pp− a p+ apc

Li
qu

id
it
y

Figure 4.2: Constant Interval Strategy

4.4 Interval Around the Current Price

This strategy will provide liquidity around the current price in a fixed interval.
We will rebalance our position every update interval as discussed in the beginning
of chapter 4. Let pc be the current price and a ∈ [10, 40000], then we will set our
position to [pc − a, pc + a] at every update interval.

We will fill the interval as much as possible. However, it is usually not possible
to use up both tokens, so the remaining token will be left outside the pool.

Price
pcpc − a pc + a

Li
qu

id
it
y

Figure 4.3: Interval Around the Current Price Strategy
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Example 4.1. Let us consider a USDC-ETH pool. With the current price of
one ETH being 100 USDC. Assume we have 1 ETH and 110 USDC. Then we
will provide liquidity in the interval [pc − a, pc + a] for some a. For that, we will
use 1 ETH and 100 USDC, leaving us with 10 USDC, which we will leave outside
the pool.

4.5 Two Intervals Around the Current Price

This strategy aims to fix the problem of having leftover liquidity. The first
interval is the same as in the interval around the current price strategy 4.4,
namely [pc − a, pc + a]. Let b be a paramter and b ∈ [10, 1000], then the second
interval will either be [pc, pc+b] or [pc−b, pc], depending on which asset is leftover
[4]. This will allow us to use up all our liquidity.

Price
pcpc − a pc + apc + b

Li
qu

id
it
y

Figure 4.4: Two Intervals Around the Current Price Strategy

4.6 Fill Up

This is another strategy trying to solve the problem of 4.4. The first interval is
[pc − a, pc + a]. The second interval is [pc, pc + a] or [pc − a, pc], depending on
which asset is leftover.
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Price
pcpc − a pc + a

Li
qu

id
it
y

Figure 4.5: Fill Up Strategy

4.7 Swap

Another attempt to solve the problem of interval around the current price strategy
4.4 is to swap half of the excessive token for the other token. We would only swap
half to ensure that the value we have for both tokens will be equal afterward. We
provide liquidity in [pc − a, pc + a]. The disadvantage of this strategy is that we
would have to pay fees to other LPs.

4.8 Range Order

This strategy is similar to the swap strategy 4.7, but we will use a range order as
introduced in section 2.3.1 to swap half of the excessive token for the other token.
Like the other strategies, we will rebalance every update interval. However, we
will also do an additional rebalance after each update interval whenever the range
order is executed.

The difference of this strategy compared to the two intervals around the
current price strategy 4.5 with b = 10 is that this strategy only uses half of the
remaining liquidity and does an additional rebalance.

Price
pcpc − a pc + a

Li
qu

id
it
y

Figure 4.6: Range Order Strategy
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4.9 Moving Average

This strategy does not look at the current price but instead at the moving average
of the price pa. We will consider different time intervals for calculating the moving
average: two hours, six hours, one day, seven days, 30 days, 100 days, and 200
days. The liquidity position of this strategy will be [pa − a, pa + a]. As in the
constant interval strategy 4.3, the leftover token will not be used to provide any
liquidity.

4.10 Volatility sized Interval

In this strategy, we will adjust the size of the interval to the volatility. We
consider different time intervals to calculate the past volatility. Those intervals
are the same as in the moving average strategy 4.9 We will have one parameter
c ∈ (0, 64). To be more specific, we used a Q6.10 fixed point integer and tried
every Q6.10 number from 1 to 216 − 1. Let v be the current standard deviation
of the price, then the liquidity position will be [pc− v · c, pc+ v · c]. The standard
deviation was not scaled to the size of the history window, and it is the standard
deviation of the price and not the price change. The leftover token will also not
be used in this strategy.

4.11 Bollinger Bands

This strategy combines the moving average strategy 4.9 and the volatility sized
intervals strategy 4.10. We will provide liquidity inside the Bollinger Bands.
These bands are made up of a lower band BOLL = pa − c · v and an upper band
BOLU = pa + c · v. The liquidity position will be [pa − v · c, pa + v · c]. This
strategy also has an unused leftover token. [23]
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Results

Snapshot

We will only present the results using daily snapshots (τ = one day from section
3.4.3). Our backtester also calculated volatility, VaR, and downward deviation
for hourly and weekly snapshots.

Risk-Free Rate

The risk-free rate rf will be used for the Sharpe ratio introduced in section 3.4.4
and Sortino Ratio introduced in section 3.4.6. As mentioned, we will use Aave’s
deposit rate. We got the data from [26] and took the average rate. The average
rate was 2.62% for the in-sample period from May to November. For the out-of-
sample period from November to February, the average rate was 3.81%.

5.1 Buying Ethereum

To have a comparison how the strategies performed, it makes sense to know how
the price of Ethereum changed during the in-sample and out-of-sample period.
If we bought Ethereum for 2$ at the beginning of the in-sample period and sold
it at the end, we would have 3.175$. If we would have done the same in the
out-of-sample period, we would have 1.216$.

5.2 Strategies

We will show the results per strategy. We will show the worst, median, and best
parameters for strategies by annualized return, Sharpe ratio, and Sortino ratio.
We will automatically compound the fees every update interval since a burn and
the following collect function call automatically collects the fees.

21
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The exception is the no provision strategy 5.2.1, which does not earn any
fees. The v2 strategy 5.2.2 and constant interval strategy 5.2.3 always set the
same interval. Thus, it makes sense to have non-compounded results for these
two strategies. We will present for these two strategies compounded and non-
compounded results

We will show the 1st, 50th, and 99th percentiles for all strategies that have
parameters (strategies 5.2.3 to 5.2.11). The percentiles will be based on end
amount and Sharpe ratio.

5.2.1 No Provision

The no provision strategy 4.1 gives the following results during the in-sample
period.

in out
End Amount $2.588 $1.608
Annulized Return 74.41% -37.58%
Maximum Drawdown -19.87% -28.18%
Volatility 43.95% 41.60%
Downward Deviation 31.05% 32.98%
VaR 95% -3.12% -4.62%
Sharpe Ratio 1.633 -0.967
Sortino Ratio 2.312 -1.219

Table 5.1: No Provision

The bad performance in the out-of-sample period is due to the Ethereum
price going down.

5.2.2 V2 Strategy

For the v2 strategy 4.2, we can either reinvest the fees each update interval or
not reinvest any fees. We present the performance per update interval. ∞ means
the update interval is infinity. In other words, we never reinvest our fees, and
therefore it is non-compounding.
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Update
Interval 2 hours 6 hours 1 day 7 days 30 days ∞

End Amount $2.609 $2.611 $2.611 $2.611 $2.612 $2.612
Annulized
Return 77.59% 77.79% 77.85% 77.86% 77.99% 78.07%

Maximum
Drawdown -21.38% -21.38% -21.37% -21.33% -21.89% -21.89%

Volatility 43.12% 43.13% 43.19% 43.21% 43.30% 43.16%
Downward
Deviation 30.27% 30.28% 30.35% 30.43% 30.39% 30.54%

VaR 95% -3.22% -3.21% -3.22% -3.24% -3.24% -3.24%
Sharpe Ratio 1.739 1.743 1.742 1.741 1.741 1.748
Sortino Ratio 2.477 2.482 2.479 2.473 2.481 2.470

Table 5.2: V2 In-Sample

Update
Interval 2 hours 6 hours 1 day 7 days 30 days ∞

End Amount $1.591 $1.592 $1.593 $1.593 $1.593 $1.593
Annulized
Return -38.95% -38.89% -38.86% -38.85% -38.85% -38.86%

Maximum
Drawdown -31.21% -31.19% -31.17% -31.22% -31.30% -32.04%

Volatility 49.11% 49.15% 49.23% 49.30% 49.21% 49.20%
Downward
Deviation 38.36% 38.40% 38.49% 38.64% 38.47% 38.70%

VaR 95% -6.21% -6.21% -6.16% -6.23% -6.23% -6.23%
Sharpe Ratio -0.847 -0.844 -0.843 -0.841 -0.843 -0.843
Sortino Ratio -1.084 -1.081 -1.078 -1.073 -1.078 -1.072

Table 5.3: V2 Out-Of-Sample

Compounding does not always give better results. While providing liquidity
earns us fees, our capital is subject to impermanent loss. The difference between
the update intervals is minimal. In the out-sample period, the strategy has a
negative return due to Ethereum going down.

The V2 strategy is similar to the no provision strategy 5.2.1 because providing
liquidity in such a large interval has minimal impermanent loss and earns minimal
fees. In the out-of-sample period, the impermanent loss was greater than the
earned fees.
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5.2.3 Constant Interval

For the constant strategy, the interval is always the same. Thus, it is possible to
have a non-compounding result.

1% 50% 99%
Sample in in in out out out
Update
Interval ∞ 1 day 30 days ∞ 1 day 30 days

Parameter a 320 23140 5680 320 23140 5860
End Amount $2.258 $2.621 $2.680 $1.352 $1.585 $1.537
Annulized
Return 29.90% 79.35% 88.20% -57.04% -39.45% -43.40%

Maximum
Drawdown -36.63% -22.07% -28.06% -48.75% -32.56% -40.36%

Volatility 58.35% 43.05% 46.26% 91.04% 53.06% 76.53%
Downward
Deviation 42.35% 30.17% 31.78% 70.97% 41.26% 58.39%

VaR 95% -5.44% -3.36% -3.65% -10.46% -6.59% -8.16%
Sharpe Ratio 0.468 1.782 1.850 -0.655 -0.793 -0.601
Sortino Ratio 0.644 2.543 2.693 -0.841 -1.020 -0.788

Table 5.4: Constant Interval by End Amount

1% 50% 99%
Sample in in in out out out
Update
Interval ∞ 2 hours ∞ ∞ 2 hours ∞

Parameter a 270 23020 7710 270 23020 7710
End Amount $2.259 $2.619 $2.666 $1.353 $1.584 $1.560
Annulized
Return 30.14% 79.02% 85.98% -57.00% -39.57% -41.52%

Maximum
Drawdown -36.63% -22.08% -26.20% -48.65% -32.62% -40.28%

Volatility 58.46% 42.94% 43.95% 90.92% 52.94% 69.05%
Downward
Deviation 42.42% 30.05% 31.18% 70.84% 41.11% 53.59%

VaR 95% -5.44% -3.36% -3.64% -10.43% -6.52% -7.67%
Sharpe Ratio 0.471 1.779 1.897 -0.656 -0.797 -0.639
Sortino Ratio 0.649 2.543 2.673 -0.842 -1.026 -0.824

Table 5.5: Constant Interval by Sharpe Ratio
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This strategy’s median and 99th percentile had slightly higher returns than
the no provision strategy 5.2.1 during the in-sample period. However, the con-
trary happened when the Ethereum price declined during the out-of-sample pe-
riod. The performance of this strategy is slightly worse than the no provision
strategy during the out-of-sample period. The first percentile parameter has a
small interval and performs poorly in the in- and out-of-sample period.

If we look at the Sharpe ratio, we get a similar picture. We can see that
this strategy’s median and 99th percentile performed slightly better than the
no provision strategy 5.2.1 during the in-sample period. However, the return is
negative during the out-of-sample period, and it does not make sense to compare
Sharpe ratios.

5.2.4 Interval Around the Current Price

1% 50% 99%
Sample in in in out out out
Update
Interval 2 hours 30 days 6 hours 2 hours 30 days 6 hours

Parameter a 38360 15900 1950 38360 15900 1950
End Amount $2.614 $2.628 $3.457 $1.588 $1.579 $1.354
Annulized
Return 78.33% 80.38% 225.99% -39.24% -40.00% -56.95%

Maximum
Drawdown -21.64% -23.56% -31.52% -31.70% -33.53% -46.84%

Volatility 43.14% 43.43% 78.83% 50.41% 55.26% 88.07%
Downward
Deviation 30.25% 30.32% 54.66% 39.30% 42.86% 68.19%

VaR 95% -3.27% -3.53% -6.14% -6.36% -6.81% -10.28%
Sharpe Ratio 1.755 1.791 2.833 -0.830 -0.771 -0.676
Sortino Ratio 2.503 2.565 4.087 -1.065 -0.994 -0.874

Table 5.6: Interval Around the Current Price by End Amount
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1% 50% 99%
Sample in in in out out out
Update
Interval 30 days 2 hours 7 days 30 days 2 hours 7 days

Parameter a 38870 21440 2590 38870 21440 3590
End Amount $2.616 $2.627 $3.415 $1.590 $1.581 $1.477
Annulized
Return 78.53% 80.25% 217.53% -39.08% -39.85% -48.06%

Maximum
Drawdown -22.23% -22.15% -29.20% -31.78% -32.66% -41.13%

Volatility 43.28% 43.31% 73.39% 50.47% 53.01% 80.78%
Downward
Deviation 30.34% 30.30% 50.62% 39.38% 41.18% 61.97%

VaR 95% -3.30% -3.39% -5.77% -6.41% -6.56% -8.84%
Sharpe Ratio 1.754 1.792 2.928 -0.826 -0.801 -0.627
Sortino Ratio 2.502 2.562 4.246 -1.059 -1.031 -0.818

Table 5.7: Interval Around the Current Price by Sharpe Ratio

Choosing a relatively small interval (1950 ticks = 19.5%) gives us an excellent
performance during the in-sample period. However, during the out-of-sample
period, the return is worse than the reference strategy (no provision strategy
5.2.1), but the difference is not as big as in the in-sample period.

The strategies that perform well regarding the end amount also perform well
regarding the Sharpe ratio. Furthermore, smaller intervals have more volatility
than bigger intervals.
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5.2.5 Two Intervals the Around Current Price

1% 50% 99%
Sample in in in out out out
Update
Interval 7 days 2 hours 30 days 7 days 2 hours 30 days

Parameter a 850 11130 13880 850 11130 13880
Parameter b 440 850 900 440 850 900
End Amount $1.676 $2.577 $2.649 $1.834 $1.577 $1.585
Annulized
Return -31.73% 72.85% 83.46% -17.03% -40.12% -39.50%

Maximum
Drawdown -36.66% -21.56% -23.91% -30.87% -31.46% -33.82%

Volatility 58.31% 42.96% 46.94% 65.77% 49.60% 56.34%
Downward
Deviation 47.04% 30.54% 33.07% 51.04% 39.12% 43.63%

VaR 95% -5.66% -3.20% -3.59% -6.15% -6.37% -6.91%
Sharpe Ratio -0.589 1.635 1.722 -0.299 -0.862 -0.748
Sortino Ratio -0.730 2.300 2.444 -0.385 -1.093 -0.966

Table 5.8: Two Intervals Around the Current Price by End Amount

1% 50% 99%
Sample in in in out out out
Update
Interval 7 days 1 day 30 days 7 days 1 day 30 days

Parameter a 790 34950 32690 790 34950 32690
Parameter b 590 190 920 590 190 920
End Amount $1.665 $2.566 $2.622 $1.641 $1.548 $1.591
Annulized
Return -32.68% 71.23% 79.54% -34.80% -42.48% -39.00%

Maximum
Drawdown -35.66% -21.44% -22.38% -39.07% -31.46% -31.95%

Volatility 57.41% 42.71% 44.03% 73.89% 49.24% 50.99%
Downward
Deviation 46.34% 30.44% 30.95% 59.25% 39.28% 39.75%

VaR 95% -5.66% -3.37% -3.30% -9.77% -6.29% -6.46%
Sharpe Ratio -0.615 1.607 1.747 -0.507 -0.916 -0.816
Sortino Ratio -0.762 2.254 2.486 -0.632 -1.148 -1.047

Table 5.9: Two Intervals Around the Current Price by Sharpe Ratio
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The return of this strategy is similar to that of the no provision strategy 5.2.1
for the 50th and 99th percentiles. However, choosing bad parameters can lead to
significantly worse performance.

5.2.6 Fill Up

1% 50% 99%
Sample in in in out out out
Update
Interval 6 hours 6 hours 30 days 6 hours 6 hours 30 days

Parameter a 450 26890 4670 450 26890 4670
End Amount $1.691 $2.600 $2.741 $1.099 $1.590 $1.529
Annulized
Return -30.36% 76.25% 97.51% -72.56% -39.06% -44.02%

Maximum
Drawdown -37.95% -21.70% -29.59% -48.38% -31.73% -39.19%

Volatility 50.53% 42.81% 49.13% 65.97% 50.23% 72.94%
Downward
Deviation 44.02% 30.10% 33.31% 61.10% 39.25% 55.79%

VaR 95% -4.80% -3.22% -3.85% -10.23% -6.40% -8.23%
Sharpe Ratio -0.653 1.720 1.931 -1.140 -0.830 -0.639
Sortino Ratio -0.749 2.446 2.849 -1.230 -1.062 -0.836

Table 5.10: Fill Up by End Amount
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1% 50% 99%
Sample in in in out out out
Update
Interval 7 days 2 hours 30 days 7 days 2 hours 30 days

Parameter a 250 35650 4210 250 35650 4210
End Amount $1.674 $2.601 $2.756 $2.306 $1.590 $1.521
Annulized
Return -31.91% 76.39% 99.82% 35.95% -39.07% -44.64%

Maximum
Drawdown -37.84% -21.54% -30.47% -22.01% -31.46% -39.78%

Volatility 60.22% 42.95% 51.02% 69.47% 49.57% 75.05%
Downward
Deviation 48.68% 30.18% 34.44% 48.44% 38.74% 57.33

VaR 95% -5.68% -3.20% -3.98% -5.69% -6.32% -8.50%
Sharpe Ratio -0.573 1.718 1.905 0.480 -0.841 -0.630
Sortino Ratio -0.709 2.445 2.822 0.688 -1.076 -0.824

Table 5.11: Fill Up by Sharpe Ratio

This strategy performed similarly to the two intervals around price strategy 5.2.5
for the 50th and 99th percentile. Choosing the wrong parameter (a = 450) can
lead to terrible performance, both in the in-sample and the out-of-sample period.
Interestingly, for a = 250, the return during the out-of-sample period is positive.
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5.2.7 Swap

1% 50% 99%
Sample in in in out out out
Update
Interval 7 days 1 day 30 days 7 days 1 day 30 days

Parameter a 250 23480 8000 250 23480 8000
End Amount $1.866 $2.601 $2.615 $1.637 $1.584 $1.633
Annulized
Return -13.87% 76.45% 78.47% -35.11% -39.60% -35.50%

Maximum
Drawdown -33.94% -21.40% -26.00% -41.80% -31.30% -32.80%

Volatility 61.05% 43.26% 48.22% 75.91% 49.42% 54.99%
Downward
Deviation 48.96% 30.59% 34.11% 59.46% 38.86% 42.34%

VaR 95% -5.66% -3.23% -3.91% -10.32% -6.21% -6.74%
Sharpe Ratio -0.270 1.707 1.573 -0.497 -0.854 -0.693
Sortino Ratio -0.337 2.413 2.223 -0.635 -1.087 -0.900

Table 5.12: Swap by End Amount

This strategy performed similarly to the two intervals around price strategy 5.2.5
for the 50th and 99th percentile. Choosing small intervals can even lead to
negative returns in the in-sample period. The negative returns are probably due
to the strategy swapping a lot and paying fees each time. The strategy needs to
swap more if the interval width is small. The narrower the liquidity position, the
more the ratio of your assets change as the price changes.
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1% 50% 99%
Sample in in in out out out
Update
Interval 7 days 6 hours 7 days 7 days 6 hours 7 days

Parameter a 500 19570 38060 500 19570 38060
End Amount $1.861 $2.598 $2.609 $1.637 $1.585 $1.593
Annulized
Return -14.43% 75.89% 77.63% -35.14% -39.49% -38.85%

Maximum
Drawdown -33.59% -21.49% -21.34% -40.49% -31.24% -31.26%

Volatility 58.47% 43.11% 43.25% 71.89% 49.27% 49.44%
Downward
Deviation 47.23% 30.35% 30.52% 57.36% 38.61% 38.80%

VaR 95% -5.66% -3.22% -3.21% -9.92% -6.28% -6.26%
Sharpe Ratio -0.292 1.699 1.734 -0.525 -0.855 -0.839
Sortino Ratio -0.361 2.414 2.457 -0.658 -1.091 -1.069

Table 5.13: Swap by Sharpe Ratio

5.2.8 Range Order

1% 50% 99%
Sample in in in out out out
Update
Interval 7 days 2 hours 30 days 7 days 2 hours 30 days

Parameter a 50 23780 25590 50 23780 25590
End Amount $1.837 $2.589 $2.612 $1.605 $1.583 $1.593
Annulized
Return -16.75% 74.69% 78.01% -37.83% -39.62% -38.80%

Maximum
Drawdown -28.67% -21.49% -22.67% -42.69% -31.27% -32.32%

Volatility 45.48% 43.07% 43.77% 79.20% 49.23% 51.97%
Downward
Deviation 36.06% 30.30% 30.78% 63.29% 38.56% 40.44%

VaR 95% -4.06% -3.22% -3.34% -10.55% -6.26% -6.55%
Sharpe Ratio -0.426 1.673 1.722 -0.511 -0.858 -0.797
Sortino Ratio -0.537 2.379 2.449 -0.639 -1.095 -1.024

Table 5.14: Range Order by End Amount
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1% 50% 99%
Sample in in in out out out
Update
Interval 1 day 7 days 30 days 1 day 7 days 30 days

Parameter a 940 24570 38030 940 24570 38030
End Amount $1.835 $2.585 $2.612 $1.222 $1.602 $1.593
Annulized
Return -16.93% 74.10% 77.98% -65.49% -38.04% -38.83%

Maximum
Drawdown -28.12% -21.45% -22.25% -44.38% -31.44% -31.78%

Volatility 45.09% 42.82% 43.49% 62.02% 49.96% 50.48%
Downward
Deviation 38.91% 30.42% 30.55% 55.21% 39.20% 39.37%

VaR 95% -3.79% -3.21% -3.30% -8.03% -6.47% -6.42%
Sharpe Ratio -0.434 1.669 1.733 -1.098 -0.814 -0.821
Sortino Ratio -0.502 2.350 2.466 -1.234 -1.037 -1.053

Table 5.15: Range Order by Sharpe Ratio

Even though this strategy does not have to pay exchange fees, the performance
is similar to the swap strategy 5.2.7. Small intervals did not perform well in both
the in- and out-of-sample period. We could not determine why.
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5.2.9 Moving Average

1% 50% 99%
Update
Interval 1 day 2 hours 2 hours 1 day 2 hours 2 hours

History
Window 200 days 30 days 2 hours 200 days 30 days 2 hours

Parameter a 3170 24160 2180 3170 24160 2180
End Amount $2.314 $2.625 $3.447 $1.579 $1.584 $1.369
Annulized
Return 36.99% 79.90% 224.12% -39.99% -39.56% -55.92%

Maximum
Drawdown -19.85% -22.01% -30.94% -39.26% -32.40% -46.06%

Volatility 29.18% 43.28% 76.77% 72.16% 52.36% 86.65%
Downward
Deviation 20.64% 30.29% 53.03% 55.17% 40.70% 67.03%

VaR 95% -2.61% -3.35% -6.02% -7.59% -6.49% -10.10%
Sharpe Ratio 1.178 1.786 2.885 -0.591 -0.806 -0.676
Sortino Ratio 1.665 2.551 4.177 -0.772 -1.037 -0.873

Table 5.16: Moving Average by End Amount

1% 50% 99%
Update
Interval 6 hours 7 days 2 hours 6 hours 7 days 2 hours

History
Window 100 days 7 days 6 hours 100 days 7 days 6 hour

Parameter a 1540 24950 2350 1540 24950 2350
End Amount $2.343 $2.628 $3.429 $1.386 $1.586 $1.382
Annulized
Return 40.73% 80.29% 220.44% -54.72% -39.42% -55.02%

Maximum
Drawdown -32.70% -21.89% -30.47% -45.53% -32.32% -45.45%

Volatility 56.21% 43.45% 74.55% 86.48% 52.38% 85.59%
Downward
Deviation 41.01% 30.54% 51.36% 67.09% 40.90% 66.14%

VaR 95% -5.02% -3.37% -5.76% -10.61% -6.56% -9.95%
Sharpe Ratio 0.678 1.788 2.922 -0.663 -0.803 -0.673
Sortino Ratio 0.929 2.543 4.241 -0.855 -1.028 -0.872

Table 5.17: Moving Average by Sharpe Ratio
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This strategy performs very similarly to the interval around price strategy 5.2.4.
The strategy with the smallest history windows performed the best in the in-
sample period. In contrast, the strategies with the largest history window per-
formed the best in the out-of-sample period. A strategy like the 99th percentile
strategy according to the end amount, with a history window of 2 hours, is almost
the same strategy as the interval around price strategy 5.2.4, because the moving
average of the last 2 hours is almost the same as the current price.

5.2.10 Volatility Sized Interval

1% 50% 99%
Update
Interval 30 days 6 hours 1 day 30 days 6 hours 1 day

History
Window 1 day 1 day 7 days 1 day 1 day 7 days

MultiplierX10 19962 18354 6364 19962 18354 6364
Parameter c 19.494 17.924 6.215 19.494 17.924 6.215
End Amount $2.353 $2.646 $3.439 $1.483 $1.379 $1.552
Annulized
Return 42.12% 83.06% 222.47% -47.59% -55.17% -42.20%

Maximum
Drawdown -26.51% -29.56% -31.28% -41.73% -45.48% -35.72%

Volatility 39.78% 51.68% 80.99% 81.26% 83.60% 62.80%
Downward
Deviation 27.32% 36.14% 56.47% 61.77% 64.80% 48.42%

VaR 95% -3.24% -4.33% -6.14% -9.15% -9.70% -7.15%
Sharpe Ratio 0.993 1.556 2.715 -0.618 -0.691 -0.714
Sortino Ratio 1.446 2.226 3.893 -0.813 -0.892 -0.926

Table 5.18: Volatility Sized Interval by end amount
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1% 50% 99%
Update
Interval 7 days 7 days 1 day 7 days 7 days 1 day

History
Window 1 day 100 days 2 hours 1 day 100 days 2 hours

MultiplierX10 15460 27317 11977 15460 27317 11977
Parameter c 15.098 26.677 11.696 15.098 26.677 11.696
End Amount $2.380 $2.621 $3.235 $1.405 $1.593 $1.479
Annulized
Return 45.61% 79.40% 182.57% -53.37% -38.85% -47.88%

Maximum
Drawdown -25.89% -21.48% -29.53% -44.15% -31.22% -40.98%

Volatility 42.98% 43.71% 61.79% 86.27% 49.30% 80.52%
Downward
Deviation 30.30% 30.77% 42.09% 66.58% 38.64% 61.84%

VaR 95% -3.32% -3.29% -5.07% -9.99% -6.23% -9.48%
Sharpe Ratio 1.000 1.757 2.912 -0.649 -0.841 -0.627
Sortino Ratio 1.419 2.495 4.275 -0.841 -1.073 -0.817

Table 5.19: Volatility Sized Interval by Sharpe Ratio

The performance of this strategy is also similar to the interval around price
strategy 5.2.4. The smallest history windows performed the best during the in-
sample period. A small history window leads to a smaller standard deviation
and, therefore, a smaller interval. We did not scale the standard deviation with
the history window.
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5.2.11 Bollinger Bands

1% 50% 99%
Update
Interval 30 days 1 day 1 day 30 days 1 day 1 day

History
Window 6 hours 2 hours 6 hours 6 hours 2 hours 6 hours

MultiplierX10 15474 35762 4356 15474 35762 4356
Parameter c 15.111 34.924 4.254 15.111 34.924 4.254
End Amount $2.354 $2.640 $3.442 $1.461 $1.515 $1.541
Annulized
Return 42.24% 82.15% 223.06% -49.23% -45.13% -43.05%

Maximum
Drawdown -27.45% -26.66% -32.24% -42.27% -38.79% -38.77%

Volatility 41.33% 47.13% 83.19% 83.76% 72.90% 81.54%
Downward
Deviation 28.41% 32.82% 58.14% 63.61% 55.86% 62.43%

VaR 95% -3.32% -3.84% -6.43% -9.49% -8.29% -8.52%
Sharpe Ratio 0.959 1.687 2.650 -0.619 -0.655 -0.560
Sortino Ratio 1.394 2.424 3.791 -0.815 -0.855 -0.732

Table 5.20: Bollinger Bands by End Amount
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1% 50% 99%
Update
Interval 30 days 7 days 7 days 30 days 7 days 7 days

History
Window 2 hours 200 days 7 days 2 hours 200 days 7 days

MultiplierX10 13918 5427 9610 13918 5427 9610
Parameter c 13.592 5.300 9.385 13.592 5.300 9.385
End Amount $2.372 $2.617 $3.373 $1.453 $1.593 $1.571
Annulized
Return 44.51% 78.71% 209.25% -49.84% -38.84% -40.65%

Maximum
Drawdown -27.86% -21.43% -27.01% -42.47% -31.22% -34.36%

Volatility 42.14% 43.50% 70.83% 84.73% 49.32% 58.43%
Downward
Deviation 28.97% 30.63% 48.87% 64.31% 38.65% 45.31%

VaR 95% -3.36% -3.27% -5.47% -9.63% -6.23% -6.94%
Sharpe Ratio 0.994 1.749 2.917 -0.619 -0.841 -0.741
Sortino Ratio 1.446 2.484 4.228 -0.816 -1.073 -0.955

Table 5.21: Bollinger Bands by Sharpe Ratio

This strategy performs similarly to the interval around price strategy 5.2.4 during
the in-sample period. However, the return during the out-of-sample period is
better. It is almost as good in the out-of-sample period as the no provision
strategy 5.2.1. This strategy worked pretty well overall.
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5.3 Detailed Analysis of the Interval Around the Cur-
rent Price Strategy

Figure 5.1: Interval Around the Current Price Strategy In-Sample

Figure 5.2: Detailed View of Figure 5.1
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As we can see in Figure 5.1 and Figure 5.2 the strategy has a single local maximum
at a = 1950 for the in-sample period. The difference between the bigger intervals
is minimal.

Figure 5.3: IInterval Around the Current Price Strategy Out-Of-Sample

In the out-of-sample period, there is a single local minimum at a = 280. The
curve of the out-of-sample period seems mirrored to that of the in-sample period.
Small intervals tend to perform poorly. The tiny intervals (a < 50) have a decent
return because all their liquidity will be exchanged to USDC initially. Since there
is no ETH left, it is impossible to provide liquidity anymore.
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Figure 5.4: End amount with Different Time Intervals In-Sample

The Figure 5.4 shows the difference between returns depending on the update
intervals. We can see a sudden jump at 380 in the orange graph. The reason for
the jump is that for all parameters a ≤ 380, all liquidity will be in USDC, and
for a ≥ 390, the liquidity will be in Ethereum. The price of Ethereum is higher
at the end of the in-sample period than at the beginning, which leads to good
performance, because it is as if we had bought Ethereum from the beginning
until the lowest price point of Ethereum. Once we only have Ethereum left, all
our assets will stay in Ethereum, because we cannot provide any liquidity since
no USDC is left. In the interval around price strategy 4.4, we have to provide a
symmetric interval around the current price, so we need an equal value of both
tokens. We can not provide any liquidity, if one the amount of one asset is zero.
Thus, our strategy is often very similar to either buying or selling Ethereum.
All positions that need both assets to provide liquidity suffer from this problem.
Most of our strategies only have a single position that would need both assets.

5.3.1 Monthly Analysis

We will show the end amount for all parameters A for the months June 2021 until
February 2022. At each month, we start with 1USDC and 1$ worth of ETH.



5. Results 41

Figure 5.5: Interval Around the Current Price Strategy Monthly

What is surprising is that some curves are concav and some are convex. We
can not predict the curvature based on the end amount.

5.4 Detailed Analysis of the Fill up Strategy

The fill up strategy can always provide liquidity, because one of the intervals only
needs one asset. We will show the results for an update interval of one day and
30 days.
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Figure 5.6: Fill Up Strategy In-Sample

Figure 5.7: Fill Up Strategy Out-Of-Sample

We can see, this strategy does not work for an update interval of one day, as
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the largest intervals produce the best results, and those results are close to the
v2 strategy. With an update interval of 30 days, the strategy worked and we got
a better result than the v2 strategy. The best parameter here was 3270 and with
that the strategy got an end amount of 2.783$.

5.5 Delta

In this section, we will show the delta of various strategies. We will use an update
interval of one day for all strategies.

5.5.1 Constant Interval

Figure 5.8: Delta of Constant Interval Strategy
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5.5.2 Interval Around the Current Price

Figure 5.9: Delta of Interval Around the Current Price Strategy
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5.5.3 Range Order

Figure 5.10: Delta of Range Order Strategy

5.5.4 Bollinger Bands

We will use a history interval of one day for this strategy.
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Figure 5.11: Delta of Bollinger Bands Strategy

5.5.5 Comparisons Between Strategies

In the Figures 5.8 to 5.11 we see that all strategies have a delta of around 0.5
for large intervals, because proving liquidity in a large interval is similar to just
holding 50% of your portfolio in Ethereum and never providing any liquidity.
The delta of doing that is 0.5. For almost all parameters of the four analyzed
strategies, the delta was greater than zero. The interval around the current price
strategy and Bollinger Bands strategy worked pretty well. They have a higher
delta when the price is going up.
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Conclusion and Future Work

We have built a robust backtesting tool for Uniswap v3 that can be reused. With
that tool, we analyzed eleven different strategies and have found strategies that
performed well when the price of Ethereum was rising. However, often these
strategies performed poorly when the price of Ethereum sunk. We have found
strategies that have a bigger delta when the price was rising than when it was
falling. These are strategies that could be implemented. In future work, other
stablecoin-Ethereum pools should also be analyzed. However, we think that the
results will still heavily depend on the Ethereum price. Furthermore, it would
also be interesting to analyze pools like BTC-ETH.

We identified two categories of strategies, one that perform similarly to the
v2 strategy, namely no provision, constant interval, two intervals around the
current price, fill up, swap, and range order strategy. The other category of
strategies performed similar to the interval around the current price strategy.
Those strategies are moving average, volatility sized interval, and Bollinger Bands
strategy. In future work, it would be interesting to combine the strategies, e.g.
Bollinger Bands with fill up or swap.

Future work should instead analyze stablecoin pairs or find a way to hedge
using different DeFi protocols and create a delta-neutral strategy. Furthermore,
it would also be interesting to compare liquidity provisions on Uniswap v3 with
different DEXs. With Uniswap launching on Arbitrum, Optimism, and Polygon,
it would be compelling to compare pools on these platforms to pools on the
Ethereum. However, these platforms do not have alot of volume yet.
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