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Abstract

Machine Learning can assist programmers in various ways, such as by retrieving
fitting code snippets from a database to serve as inspiration. Previous approaches
to this problem relied on bimodal encoders. We propose to use unimodal en-
coders, which specialize on just one modality and show that this, in combination
with other performance enhancing methods, outperforms prior works to achieve
State-of-the-Art performance in the CodeSearchNet benchmark. To that end, we
make use of a framework called xMoCo and enhance it using a novel approach of
incorporating a Barlow loss as a regularization term, which boosts performance
across the board.
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Chapter 1

Introduction

In recent years, Machine Learning has made its way into the vocabulary of nearly
every person that uses computers. While it is quickly becoming one of the most
effective buzzwords for advertising, recent research manages to apply the idea of
making computers ”learn for themselves” to many new practically useful areas.
These areas can be as ”simple” as translating between languages or as complicated
as making a car safely drive itself [1].

One area of applications for Machine Learning is in assisting programmers
with writing code. While platforms such as GitHub or StackOverflow offer a
vast amount of knowledge in solving programming problems, the task of finding
suitable examples of code to adapt can be a tedious one. Machine Learning can
assist the programmer in various ways, such as offering code autocompletion or
by retrieving code samples that could be suitable to solve the task at hand.

1.1 Code Search

The task of retrieving suitable code extracts from a large database of code is called
”Code Search” (sometimes also called ”Code Retrieval”). Here, the programmer
would be able to give a retriever program a problem query in natural language
(similar to how one interacts with search engines like Google Search) and be
presented with a list of code extracts that might solve the query problem. The
difficulty in Code Search is to retrieve code that is semantically related to the
input query. In general, this requires the retriever program to ”understand” both
how natural language and programming languages are structured, what their
semantics are and how they relate to each other.

Intuitively, code search can be interpreted as a translation task where the
input language is English (or any other human language) and the target is some
programming language, where the translation must be retrieved from an existing
database of code in that programming language.

While the concept of autocompletion is closely related to Code Search, we
have to emphasize here that at their core these two programming aids solve

1



1. Introduction 2

different problems. Autocompletion attempts to synthesize new code by antici-
pating what the programmer wants to do, while Code Search retrieves code from
a fixed set of samples. Since neither of these problems have been fully solved
yet, a combination of both would be ideal, as recent research suggests [2], with
autocompletion reducing the amount of time spent on boilerplate code and Code
Search providing the programmer with inspiration on how to solve problems that
autocompletion fails to solve on its own. While a significant practical usefulness
of this has not been shown just yet, it is still worth investigating whether we can
improve on previous methods.

1.2 Encoders and the latent space approach

One popular method of tackling Code Search is by using so-called encoders.
Encoders are programs that take some input data and transform that data into
some other representation. As an analogy, take the example of a camera. A
camera takes in light intensity data and turns it into a digital representation that
is suitable for being stored. If desired, encoders can reduce the dimensionality of
the input data to save storage at the cost of reducing the reconstruction quality.

Similar to images, we can also encode text, but this time in the hope of turning
it into a representation that makes it possible for the computer to more easily
compare it to other texts. This is the idea of the ”latent space”, which is a scary
sounding term that is used in Machine Learning to say that the data was somehow
encoded. Encodings in the latent space are typically called ”embeddings” and are
nothing more than some (usually) high-dimensional vectors.

Figure 1.1: The concept of an encoder
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Recent methods in Code Search use embeddings to relate natural language
and programming languages with each other. Concretely, an encoder is used to
transform the natural language and the programming language into the latent
space, where it is possible to compare them with each other more easily. This
is the basic idea that this thesis revolves around. In the following chapters, we
will explain how prior methods apply this idea to make the computer learn the
relation between these two types of text data, and how we can improve on them.

1.3 Current methods and our contribution

Current methods in Code Search generally rely on the so-called ”Contrastive
loss”. This loss is explained in more detail in Chapter 3. Intuitively, this loss
function attempts to maximize some notion of similarity between embeddings
of positive pairs and minimize similarity between embeddings of negative pairs.
During inference, we can compute the similarity of an encoded input query and a
database of encoded code samples. The code sample with the highest similarity
can then be proposed as a solution to the given query.

Recent models such as CodeBERT [3] are encoders that rely on the Self-
Attention mechanism and are based on the Transformer architecture [4]. These
encoders are pre-trained on publicly available Documentation-Code pairs and
then fine-tuned for the Code Search task using the contrastive loss. While they
show promising results, they use a unified encoder for both Documentation and
Code. We conjecture that this hinders performance and propose to use a differ-
ent existing framework that is more suitable for multimodal data, called Cross
Momentum Contrastive Learning (xMoCo) [5]. xMoCo makes it possible to use
separate encoders for Documentation and Code and adds some mechanism to sta-
bilize training and improve scores. Additionally, we use hard negative sampling
as proposed in both xMoCo and a different framework called DyHardCode [6] to
improve performance. Finally, we combine this framework with a Barlow loss as
proposed in Barlow Twins [7] and investigate the effect the simple augmentation
method ”Easy Data Augmentation” (EDA) [8] can have on performance.

Overall, our contributions consist of the following:

• Apply xMoCo to Code Search to show that solutions to this problem can benefit
from separate encoders.

• Combine xMoCo with hard negatives to improve performance in the Code Search
task.

• Propose the use of Barlow loss as a regularization term and show its potential by
achieve State-of-the-Art performance in the CodeSearchNet benchmark.

• Investigate whether simple Natural Language augmentation can benefit perfor-
mance in Code Search.



Chapter 2

Related work

2.1 Contrastive learning

Contrastive learning [9] has made possible quick advancements in areas of re-
search such as Computer Vision. There, much effort is put into closing the gap
between supervised and self-supervised learning, and frameworks like SimCLR
[10] and MoCo [11, 12, 13] have shown just how effective contrastive learning
can be. These methods generally rely on augmentation of single-modality data
(images) to obtain positive pairs. This is unfortunately unsuitable for many Nat-
ural Language tasks, where we often already have positive pairs from different
modalities (e.g. different languages).

2.2 xMoCo

Cross Momentum Contrastive Learning (xMoCo) [5] is a framework that proposes
to use multiple encoders to better handle multimodal data. It builds on ideas from
the Momentum Contrast framwork (MoCo) [11] to circumvent the limitations of
relying just on in-batch negatives by building a consistent dictionary of negative
samples on-the-fly. Contrastive learning strongly depends on the number and
quality of negative samples, so using more samples is one way to improve learning
performance.

MoCo proposes to use a slow encoder (or momentum encoder) and queue to
use negatives from past iterations without the need of forwarding them through
the encoder again. The slow encoder is an additional encoder which is updated
not by backpropagation but by computing a weighted average of the weights of
the main/fast encoder. The slow encoder is essentially a stabilized representation
of the fast encoder and hence produces consistent results over several iterations.
Through the slow encoder, one can forward samples and store them in a buffer (a
queue) for use as negative samples in later iterations. Because the slow encoder
is a stabilized version of the fast encoder, the queue does not suffer from strong
fluctuations. After some time, however, these samples will get stale and need
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2. Related work 5

to be replaced, which is why the queue size is limited. A schematic of MoCo is
shown in Figure 2.1.

Fast Encoder Slow Encoder

Key queue

loss(q, k)

Momentum update

Query q

Gradient

update

Key k

Embedding of q Embedding of k

Figure 2.1: Schematics of MoCo

xMoCo builds on top of this by using one fast and slow encoder as well as a
queue per modality. This makes it possible to use split encoders for multimodal
data with contrastive learning. A schematic of xMoCo is shown in Figure 2.2.
Notice that the loss is now the combination of losses obtained by combining the
query with the key queue and the key with the query queue.

Key networkQuery network

Query Fast
Encoder

Key Fast
Encoder

Query Slow
Encoder

Key Slow
Encoder

Query queue Key queue

loss(k, q) loss(q, k)

Combined loss

Momentum update Momentum update

Gradient

update

Query q Key k

Fast embedding of q Fast embedding of kSlow embedding of q Slow embedding of k

Figure 2.2: Schematics of xMoCo

2.3 DyHardCode

DyHardCode [6] is a framework that takes a different approach to obtaining
more (meaningful) negative samples, namely hard negative sampling. It leverages
new methods of fast nearest-neighbour search [14] of pre-encoded embeddings to
find potential hard negative samples during iterations. These embeddings are
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computed before training, and updated after every epoch to reduce staleness.
Once found, the corresponding sample will be forwarded through the current
encoder to obtain an updated embedding for it.

2.4 CodeBERT, GraphCodeBERT and SynCoBERT

The results of DyHardCode largely rely on models pre-trained on Natural Lan-
guage and Programming Languages. The first of these models is CodeBERT [3],
which was pre-trained for multiple Programming Languages on the CodeSearch-
Net corpus [15] using Masked Language Modelling (MLM), where the model is
trained by making it predict tokens which have been masked out from the in-
put sequence. Additionally, it uses Replaced Token Detection (RTD) to learn
from unannotated code. The second one is GraphCodeBERT [16], a model pre-
trained only on code that considers data flow for improved performance. The
corresponding paper also introduces new pre-training tasks to effectively use this
additional information. SynCoBERT is a different model that uses information
extracted from the Abstract Syntax Tree (AST) such as which parts of the code
correspond to identifiers and where edges in the AST are for pre-training. All of
these models can later be fine-tuned on the Code Search task.

2.5 CodeSearchNet

To have a comparable metric for the performance of solutions to the Code Search
task, the CodeSearchNet Challenge [15] was created. CodeSearchNet is a dataset
consisting of many Documentation-Code pairs from six different Programming
Languages obtained through non-forked open-source GitHub repositories. A pre-
filtered version thereof [16] is used for fine-tuning and benchmarking of Code
Search methods. Several benchmarks for different tasks have been derived from
CodeSearchNet and were aggregated in the CodeXGLUE dataset[17], of which
the AdvTest benchmark is of particular interest for this work. Said test contains
the code samples from CodeSearchNet, but normalized, which gives a better look
into how well the model generalizes. While Code Search is the topic of interest
for this work, the CodeSearchNet dataset can also be used for related problems
such as documentation generation and code autocompletion.

2.6 Barlow Twins

Similar to MoCo, Barlow Twins [7] is a framework originally intended for self-
supervised learning in Computer Vision. It does not rely on a contrastive loss
but rather uses an entirely different loss we refer to as ”Barlow loss” that depends
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on the cross-correlation matrix of samples. In particular, it aims to minimize
redundancy in the embedding features and can benefit from larger embedding
sizes than contrastive learning.

2.7 Augmentation

Augmentation can be used as a way of regularization and is particularly useful
when we otherwise don’t have enough data. It alters the data in sometimes hu-
manly imperceivable ways and can make the model more robust to perturbations.
Easy Data Augmentation [8] is a simple method of augmenting Natural Language
through synonym replacement and other techniques. While not as sophisticated
as methods like backtranslation, it is computationaly inexpensive in comparison.
As previous methods for Code Search did not use any augmentation, it might be
worth investigating whether there is any potential in using such a tool.



Chapter 3

Method

3.1 Contrastive learning

The contrastive learning objective was originally proposed in [9]. For a set of
pairs {(xi, yi)}Ni=1, one typically [17, 3, 6] formulates it as follows:

min
θ

N∑
i=1

− log
exp(fθ(xi)

T fθ(yi)/σ)∑
j∈Bi

exp(fθ(xi)T fθ(yj)/σ)
(3.1)

where fθ is a function parameterized by θ, N is the total number of training
pairs, Bi is the set of indices of the samples in the batch that contains i and σ is
a temperature hyperparameter. Intuitively, this objective aims to maximize the
dot products between embeddings of positive pairs (xi, yi) and to minimize dot
products between negative pairs (xi, yj) where i 6= j over the entire training set.
Equivalently, we can formulate the following loss function:

LCONTRAST =
∑
i∈B
− log

exp(f(xi)
T f(yi)/σ)∑

j∈B exp(f(xi)T f(yj)/σ)
(3.2)

where B is the current batch. Notice that only in-batch samples are used as
negatives, which is why it is desirable to have a large batch size or to employ some
other method of obtaining more negatives, as will be explored in the following
sections.

This objective is useful because it enables us to have a notion of ”similarity”
between sample pairs, where a large dot product implies high similarity and
a small dot product implies low similarity. The function f is typically chosen
to generate a length-normalized high-dimensional vector, which means that the
products fθ(xi)T fθ(yj) form a cosine similarity, because for two vectors a and b
it holds that:

||a|| = ||b|| = 1 =⇒ CosineSimilarity(a, b) =
aT b

||a|| · ||b||
= aT b (3.3)

8



3. Method 9

What this in turn means for our purposes is that we minimize angles be-
tween positive sample pairs and maximize angles between negative sample pairs.
For certain frameworks like xMoCo, the contrastive learning objective has to be
altered slightly, as discussed in the next section.

3.2 xMoCo

xMoCo [5] is a framework that extends MoCo [11, 12, 13] to work with multiple
encoders. For each modality, xMoCo has a ”fast encoder” and a ”slow encoder”,
the latter of which is a moving average of the respective fast encoder. These
slow encoders are less prone to fluctuations, which means that their parameters
change much slower and the outputs stay roughly the same (consistent) for longer
than is the case for the fast encoders. This makes it possible to build a consistent
dictionary of embeddings that can be used as negatives in the contrastive learning
objective. When using the contrastive learning objective, involving more nega-
tives makes it possible to learn better encoder functions as evidenced by xMoCo
[5], MoCo [11, 12, 13] and DyHardCode [6]. While the optimal solution here
would be to encode the entire database with the fast encoder in every iteration
and to use all samples, this approach would be computationally wasteful. The
dictionary is a tradeoff between this optimum and required training time. How-
ever, a problem the dictionary has is the potential for staleness of the embeddings
which could hurt performance. This is mitigated by limiting the size of the dic-
tionary and by defining it as a queue that replaces the oldest embeddings with
new ones after every iteration.

During training, the samples in the current batch are forwarded through
both the slow and fast encoder and the produced embeddings length-normalized.
The embeddings from the fast encoder serve as positive samples and in-batch
negatives like in Formula 3.1. The embeddings from the slow encoder, however,
will be put into the queue after the current iteration. A schematic of xMoCo for
our modalities is shown in Figure 3.1.

The embeddings that are already present in the queue can be used as negatives
by computing the pairwise similarities of the positive samples to them. Comput-
ing the pairwise similarity is simple and computationally inexpensive because of
the normalization: Simply compute all pairwise dot products of the embeddings
to obtain their cosine similarity.
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Code networkDocs network

Docs Fast
Encoder

Code Fast
Encoder

Docs Slow
Encoder
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Encoder

Docs queue Code queue

loss(p, q) loss(q, p)

Combined loss

Momentum update Momentum update

Gradient

update
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Fast embedding of q Fast embedding of pSlow embedding of q Slow embedding of p

Figure 3.1: Schematic of xMoCo with the ”Docstring” and ”Code” modalities

With the obtained similarities, we can define two loss functions (one for each
modality) that incorporate the additional negatives:

LDOCS =
n∑
i=1

− log
exp(d(xi)

T c(yi)/σ)∑
j∈B

exp(d(xi)T c(yj)/σ) +
∑

k∈QC

exp(d(xi)Tk/σ)
(3.4)

LCODE =
n∑
i=1

− log
exp(c(yi)

Td(xi)/σ)∑
j∈B

exp(c(yi)Td(xj)/σ) +
∑

k∈QD

exp(c(yi)Tk/σ)
(3.5)

where d is the fast encoder for the Documentation strings, c is the fast encoder
for the Code strings and n is the batch size. B is the set of in-batch indices and
QD, QC are the embeddings in the queue (Documentation/Code respectively).
Notice that in these equations, the queue embeddings stem from the respective
other modality and that we take the pre-encoded embeddings from the queue
directly instead of forwarding them again. Putting these together, we get our
final loss function:

LCOMBINED =
LDOCS + LCODE

2
(3.6)

It is not strictly necessary to have a factor 1
2 here, but we chose to use it

regardless for monitoring purposes. In the end, this factor will be balanced out
by the choice of learning rate. For our purposes, we adapted xMoCo for the Code
Search task and combined it with recent pre-trained models called CodeBERT
[3] and GraphCodeBERT [16] and fine-tuned them. We also experimented with
optional hard negatives and a Barlow loss for regularization. These principles are
described in the next sections.
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3.3 Hard negatives

A different (though not orthogonal) approach to obtaining more samples for
the contrastive learning objective is hard negative mining. In contrast to how
the queues in xMoCo work, hard negative samples are not obtained at random
from shuffled batches, but are specifically chosen because they are hard for the
encoders to separate from the positive embeddings. In some sense, they are
more meaningful for learning and can thus improve performance. DyHardCode
[6] demonstrates this well by achieving massive improvements over its previous
State-of-the-Art [16] by simply incorporating hard negative mining.

Negative mining works by computing the embeddings of the entire dataset
before every epoch. During training, we can then obtain the indices of potential
hard negatives by running a nearest-neighbour search (in terms of cosine similar-
ity) over these embeddings. Similar to the queue, it is important to update the
embeddings periodically to combat staleness. However, for hard negative mining
it is sufficient to update all embeddings once per epoch. This is because we only
use these to find indices of potential hard negatives, not their actual embeddings.
Once found, the corresponding samples are forwarded once again to get updated
embeddings.

An issue that can arise here are false negatives. Since we sample the embed-
dings of the entire dataset, it can happen that a sample’s own index is returned
as its nearest neighbour. To prevent any negative impact this can have, we can
simply mask out embeddings that stand in conflict with the in-batch samples.

To enhance the efficiency of this process, it is also possible to put the newly
encoded embeddings in their own queue for use as (not necessarily hard) negatives
in later iterations. We can combine hard negatives and xMoCo by adapting the
loss functions:

LHDOCS =

n∑
i=1

− log
exp(d(xi)

T c(yi)/σ)∑
j∈B

exp(d(xi)T c(yj)/σ) +
∑

k∈QC

exp(d(xi)T k/σ) +HC +HQC
(3.7)

with the hard negative term

HC =
∑
h∈HC

exp(d(xi)
T cslow(yh)/σ) (3.8)

and the hard negative queue term

HQC =
∑

h∈HQC

exp(d(xi)
Th/σ) (3.9)

where HC are the indices of the mined Code hard negatives and HQC are the
embeddings in the ”hard negative” queue. Note that these embeddings are not
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necessarily hard negatives for the samples in the current batch because they
were mined for previous batches. Also notice that in Equation 3.8 we use the
slow encoder cslow because we found this to produce better scores, as further
explained in Chapter 4.3.2. LHCODE is defined analogously. These two losses are
then added to form LHCOMBINED like in Equation 3.6.

3.4 Barlow regularization

An entirely different idea that does not rely on the contrastive learning objective
was proposed for self-supervised Visual Representation learning in the paper
”Barlow Twins” [7], called the ”Barlow loss”. This loss function computes the
empirical cross-correlation matrix of the samples and determines the loss value
based on its difference to an identity matrix. The loss is minimized when all
entries on the diagonal are 1 and all off-diagonal elements are 0. The importance
of on/off-diagonal can be traded off using an additional hyperparameter. As the
authors of the paper describe it, this loss function minimizes the data redundancy
of the embedding features.

Concretely, the authors of Barlow Twins define the loss function as follows:

LBARLOW =
∑
i

(1− Cii)2 + λ
∑
i

∑
j 6=i
C2ij (3.10)

where λ is a positive constant trading off the importance of on-diagonal and off-
diagonal terms and C is the cross-correlation matrix of the current embeddings
standardized and computed along the batch dimension.

While not immediately useful for our task of computing similarities, we can
incorporate this loss into the xMoCo framework as a regularization term. Like
before, we forward all samples through the fast and slow encoder, but for this
loss we only use the (normalized) embeddings of the fast encoder. These can
optionally be fed through an additional projector to obtain higher-dimensional
representations. This was shown to be useful for the Barlow loss for other prob-
lems [7], so we also explore this option in this work. Being required to reduce this
additional loss, the overall objective becomes harder to minimize, but that could
improve generalization performance. We can adjust the impact this term has
by adding a weight hyperparameter for it. Incorporating this into the previous
framework is straightforward and it also works with hard negatives. A schematic
of it is shown in Figure 3.2.
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Figure 3.2: Schematic of xMoCo with added Barlow loss

The new loss then looks as follows:

LBCOMBINED = LCOMBINED + βLBARLOW (3.11)

where β is the aforementioned weight for the Barlow loss. This can be done
analogously with the hard negative loss LHCOMBINED to define LBHCOMBINED.

3.5 Augmentation

A different regularization method useful for many problems is augmentation. In
augmentation, the input data is somehow transformed to create perturbations.
These perturbations reduce the potential for overfitting and generally make the
model more robust. This can be particularly useful when the amount of training
data is limited. Previous Code Search solutions did not use any augmentation,
which is why we decided to explore its potential for this particular task. For our
purposes, we exclusively augmented the Documentation part of the data, as no
off-the-shelf solution for augmentation of Code was available.

There are several methods of augmenting Natural Language, such as back-
translation, where (usually) Machine Translation is used to translate the input
data to a different language and back. Because Machine Translation typically
isn’t bijective, the output of this process will be an altered version of the original
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data. However, this comes with a heavy computational cost. For our purposes,
we employed a much simpler method called Easy Data Augmentation (EDA) [8].

EDA leverages a synonym database to augment input data. It has four main
components that perturb the input, as described by the paper’s authors:

• ”Synonym Replacement (SR): Randomly choose n words from the sentence
that are not stop words. Replace each of these words with one of its syn-
onyms chosen at random.”

• ”Random Insertion (RI): Find a random synonym of a random word in
the sentence that is not a stop word. Insert that synonym into a random
position in the sentence. Do this n times.”

• ”Random Swap (RS): Randomly choose two words in the sentence and swap
their positions. Do this n times.”

• ”Random Deletion (RD): Randomly remove each word in the sentence with
probability p.”

The number of selected words n can be adapted based on the length of the
input sequence, for example by defining it as n = αl, where α is the fraction of
words that should be replaced and l is the length of the sequence.



Chapter 4

Experiment details

4.1 Dataset

The datasets we used are based on the CodeSearchNet Challenge dataset [15].
This dataset consists of many bimodal Documentation-Code pairs as well as
unannotated code snippets from 6 programming languages. This data was col-
lected from publicly available GitHub repositories. The authors of GraphCode-
BERT [16] pre-filtered the bimodal pairs to create a cleaned-up version of Code-
SearchNet, which we will use for our experiments for better comparison. Their
filtering process consisted of removing comments in the code, removing faulty
(unparseable) code, removing samples with less than 3 or more than 256 tokens,
removing samples with special tokens such as URLs in their documentations and
removing samples where the documentation is not in English. Table 4.1 shows
statistics for the individual programming languages for the filtered dataset.

Programming Language Training samples Dev samples Test samples
Go 167,288 7,325 8,122
Java 164,923 5,183 10,955
JavaScript 58,025 3,885 3,291
PHP 241,241 12,982 14,014
Python 251,820 13,914 14,918
Ruby 24,927 1,400 1,261

Table 4.1: Statistics for the different programming language datasets (taken from
[16])

An additional dataset we used, called AdvTest [17], which contains samples
exclusively from Python, is derived from the CodeSearchNet dataset. It contains
19, 210 test samples which were normalized. This means that function names and
variables are replaced with special tokens to make it harder for the retriever to
distinguish between codes. In particular, the results on this test set should give
a better estimate on the generalization ability of models.

15
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4.2 Evaluation method

For evaluation, we use the Mean Reciprocal Rank (MRR) defined in Equation
4.1. To obtain the rank for every sample in the test set, we give our retriever
the Documentation string and compute the position of the correct code snippet
in the similarity ranking.

MRR =
1

|T |

|T |∑
i=1

1

ranki
(4.1)

where T is the test set and ranki is the rank of the correct code snippet in the
similarity ranking.

We follow the method GraphCodeBERT [16] uses and combine the develop-
ment and test sets from Table 4.1 to form the full test set T per language for a
more realistic score. Additionally, we test our models on the AdvTest dataset.

4.3 Implementation details

We implemented our method in Python and used PyTorch1 as a foundation for
the Machine Learning models. To parallelize computation, we used PyTorch
Lightning2, which simplifies writing device-agnostic implementations. To obtain
the pre-trained CodeBERT and GraphCodeBERT models and tokenizers, we
used the Huggingface Transformers3 library. All code is available on GitHub4.

4.3.1 xMoCo

We implemented the basic modules of xMoCo in PyTorch Lightning. Imporantly,
we noticed during initial experimentation that it is crucial to disable any regu-
larization mechanisms in the slow encoders to improve scores (i.e. to put the
encoders in evaluation mode). The queues are implemented as PyTorch Light-
ning register buffers, which are simply tensor matrices which we loop over by
advancing a pointer after every update. For multi-GPU training, every GPU
processes just a subset of the entire batch. PyTorch Lightning then automati-
cally syncs gradients over all GPUs. To update the queue, we locally gather the
embeddings from all GPUs and put them into the GPU-local queue copy to have
a consistent queue over all GPU-threads.

1https://pytorch.org/
2https://www.pytorchlightning.ai/
3https://huggingface.co/
4https://github.com/jstuder3/nl-pl_moco

https://pytorch.org/
https://www.pytorchlightning.ai/
https://huggingface.co/
https://github.com/jstuder3/nl-pl_moco
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The embeddings produced by CodeBERT and GraphCodeBERT have dimen-
sion 768. We normalize these embeddings before storing them in the queue or
using them for loss computation. Because we use shuffling, it is possible that
samples in the queue are actually false negatives. We could optionally mask out
these entries by setting their value in the similiarity matrix to -1, however, we
found that detecting false negatives is as expensive as doing forward passes and
has little impact on score, so we generally did not use this mechanism for the
queue.

4.3.2 Hard negatives

Inspired by DyHardCode’s approach, we used Facebook AI’s Similarity Search
(FAISS) library5 for Python to quickly find nearest neighbours in the sense of
cosine similarity. Before every epoch, we push the entire dataset through the
slow encoders to generate a FAISS index for each modality. During training, we
can then query this FAISS index by feeding it the fast encoder embeddings for
which we want to find hard negatives. Based on DyHardCode’s findings, we use
the documentation embeddings to find code hard negatives for the documentation
part and code embeddings to find documentation hard negatives for the code part.
The FAISS index will return the indices of potential hard negatives. We then
forward these through the slow encoder again to obtain an updated embedding.
We use the slow encoder rather than the fast encoder in this step because during
initial testing we found that this (surprisingly) benefits the validation score. A
schematic of this is shown in Figure 4.1. As mentioned previously, the hard
negatives can be put into their separate queue as well (not shown in this figure).
Because there are relatively few hard negative samples compared to the size of
the queue, it is feasible to filter out false negatives here by manually setting their
similarity value to -1.

Code networkDocs network

Docs Fast
Encoder

Code Fast
Encoder

Docs Slow
Encoder

Code Slow
Encoder

Docs queue Code queue

loss(q, p) loss(p, q)

Combined loss

Momentum update Momentum update

Gradient

update

Docstring q Code p

FAISS code index 
 (updated once per epoch)

Slow embedding of q Fast embedding of q Fast embedding of p Slow embedding of p
hard negative

codes

FAISS docs index 
 (updated once per epoch)

hard negative
docs

Figure 4.1: Schematic of xMoCo with hard negatives

5https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss
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4.3.3 Barlow regularization

Barlow Twins [7] uses tied projectors. However, since we focus on a multimodal
problem, we implemented Barlow loss with the option of using either tied or
separate projectors per modality for experimentation purposes. During training,
the length-normalized embeddings produced by the fast encoder are first fed
through these projectors, then standardized along the batch dimension and finally
used to compute the cross-correlation matrix. While it would make sense to
divide the values of this matrix by the batch size to enforce it to become truly
uncorrelated for every sample, we found during initial testing that not dividing it
like in the pseudocode provided in [7] actually produces better results. It should
be noted, however, that this makes our results depend on the batch size and the
number of GPUs used. Because of that, we kept the batch size and number of
GPUs constant.

Figure 3.2 shows a schematic of how the Barlow loss can be incorporated.
Notice, however, that it is also possible without further modification to use hard
negatives in combination with Barlow loss, which this figure does not show.

4.3.4 Augmentation

For augmentation, we directly copied the EDA implementation by the paper’s
authors6. We did not change the default probability parameters of EDA and only
changed necessary things about the code to make it work for our purposes.

When augmentation is enabled, the training set will be randomly augmented
in one go before every epoch, rather than during the training itself. This is done
for simplicity and to reduce the computational impact augmentation would have
if we were to augment samples in a lazy manner.

4.4 Experiment hyperparameters and hardware

Unless otherwise noted, we used the hyperparameters listed in Table 4.2. In
the following sections, we will refer to this configuration as ”base config”, with
ablations listed in section 5.3. We used early stopping with a patience of 3 epochs
on the MRR to reduce wasted computations and used the checkpoint with the
best MRR over all epochs to produce the final test results.

The hardware used in all experiments were either 4 GeForce RTX 3090 or
4 Titan RTX GPUs and an AMD EPYC 7742 CPU. Computation times for
the smallest dataset (Ruby) ranged from 1.5 hours to 6 hours depending on
the number of hard negatives chosen. For the larger datasets (e.g. Python),

6https://github.com/jasonwei20/eda_nlp

https://github.com/jasonwei20/eda_nlp
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Hyperparameter Value
Batch size 32
Learning rate 1e-5
Docs encoder and Code encoder CodeBERT
xMoCo momentum 0.999
Regular queue size 8192
Hard negative queue size 0
Number of hard negatives 0
Barlow lambda λ 0.005
Barlow weight β 0
Barlow projector dimension 0 (no projector)
EDA augmentation enabled False

Table 4.2: Base hyperparameters used for the experiments

computation times could be as large as 40 hours until early stopping terminates
execution.



Chapter 5

Results

5.1 Test results

We ran the tests on two different configurations. A separate model is trained for
every language. If not stated otherwise, the models are configured as in Table
4.2. The first one is xMoCo with hard negatives, where we mine 8 hard negatives
per positive sample. Secondly, we tested the combination of 8 hard negatives
with Barlow regularization with β = 5e − 5 and no projector (i.e. we compute
the cross-correlation matrix directly on the standardized embeddings). The final
scores are shown in Table 5.1 and Table 5.2.

We can see here that xMoCo with hard negatives (with or without Barlow
regularization) outperforms the previous State-of-the-Art average, with the Bar-
low variant improving by 1.9% relatively to DyHardCode with GraphCodeBERT
and 10.2% over using just vanilla CodeBERT. xMoCo matches or outperforms
previous methods in most languages. The largest difference can be observed in
PHP, where the Barlow variant improves over the previous best score produced
by SynCoBERT by 5.3% relatively.

Model/Method Ruby JavaScript Go Python Java PHP Overall
CodeBERT 0.679 0.620 0.882 0.672 0.676 0.618 0.693
GraphCodeBERT 0.703 0.644 0.897 0.692 0.691 0.649 0.713
SynCoBERT 0.722 0.677 0.913 0.724 0.723 0.678 0.740
DyHardCode (CB) 0.715 0.666 0.917 0.713 0.729 0.636 0.729
DyHardCode (GCB) 0.740 0.687 0.921 0.738 0.738 0.677 0.750
xMoCo w/ h.n. 0.747 0.683 0.929 0.723 0.766 0.707 0.759
xMoCo w/ h.n. & barl. 0.751 0.690 0.924 0.733 0.772 0.715 0.764

Table 5.1: MRR test results on the combined validation/test set for the different
subsets of the CodeSearchNet corpus. Results of prior works are taken from [6]
and [18].

The results on the AdvTest benchmark show that our models perform slightly
worse in this task than previous methods did. Interestingly, the Barlow variant

20



5. Results 21

produced a lower score than the one without Barlow, despite the results from the
CodeSearchNet benchmark showing the inverse effect.

Model/Method AdvTest (Python)
CodeBERT 0.272
GraphCodeBERT 0.352
SynCoBERT 0.381
DyHardCode (CB) 0.378
DyHardCode (GCB) -
xMoCo w/ h.n. 0.367
xMoCo w/ h.n. & barl. 0.361

Table 5.2: MRR test results the AdvTest benchmark. Results of prior works are
taken from [6] and [18].

5.2 Visualizations

5.2.1 Latent space visualization

To see how the embeddings before and after training differ, we used a combination
of Principal Component Analysis and t-SNE [19] (both implemented in the scikit-
learn library1) to reduce the 768-dimensional embeddings to 2 dimensions. Figure
5.1 shows the results of a random subset of the embeddings for Ruby, with black
lines connecting corresponding pairs. Before training (i.e. using non-finetuned
CodeBERT), we observe that Documentation and Code form their own clusters.
However, after training corresponding pairs are generally very close together. The
method used to make this visualization is further described in Appendix A.

5.2.2 Cross-correlation matrix visualization

In order to get a better grasp on how the Barlow loss affects training, we logged
the cross-correlation matrix during validation to observe how it changes over time.
Figure 5.2 shows the cross-correlation matrix prior to training and after 3 epochs
for a large Barlow weight β = 0.5 to make the effect more visible. The used pro-
jector was an identity function, which means that the produced cross-correlation
matrices have shape 768x768, as 768 is the encoder output dimensionality. The
observed result is not an identity matrix, but that is expected since Barlow is
used as a regularization term and not the main loss. Additionally, our imple-
mentation slightly deviates from the exact specification as discussed in section
4.3.3.

1https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html
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Figure 5.1: Dimensionality reduction for a subset of the Ruby corpus before (left)
and after training (right)

Figure 5.2: Aggregated cross-correlation matrix of the validation set prior to
training (left) and after 3 epochs (right)

5.3 Ablations

Because the used methods introduce several new hyperparameters (or transfer
prior methods to a new problem), we conducted ablations on the validation set to
determine good hyperparameter combinations. These were later evaluated on the
test set to form the results listed in section 5.1. The following chapter outlines
these ablations. The experiments were all run using the same seed to ensure
consistent results. All ablations were run only once and if not otherwise noted
use the hyperparameters listed in Table 4.2 (also referred to as ”base config”).
Experiments with a ”(∗)” in the caption were run by Zihan Zhang.
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5.3.1 Queue size

Firstly, we conducted experiments using different queue sizes, as shown in Table
5.3. We find that performance increases first and drops off at too large sizes,
which is roughly consistent with the findings in [5]. We find that a queue size of
8192 provides the best results.

Regular queue size
0 2048 4096 8192 16384

Base config 0.7692 0.7921 0.7948 0.7955 0.7929

Table 5.3: Results for different queue sizes (∗)

5.3.2 Encoder choice

Since xMoCo offers the unique ability of using different models for the differ-
ent modalities, we experimented with different combinations of CodeBERT and
GraphCodeBERT, as shown in Table 5.4. We find that the combination of Code-
BERT on both the Docstring and Code encoder provides by far the best result.

Docs/Code encoder
CB/CB CB/GCB GCB/CB GCB/GCB

Base config 0.7955 0.6997 0.6839 0.7438

Table 5.4: Results for the different encoder combinations (∗)

5.3.3 Hard negatives

Then, we investigated the effect that hard negatives have on our results, as well
as how using a queue for the hard negatives affects scores, as shown in Table 5.5.
We find that using the maximum possible number of hard negatives produces the
best results and that using a hard negative queue in trade for a smaller regular
queue does not provide any benefits over using just the regular queue. In fact, it
seems this can in some cases even hurt performance.

5.3.4 Barlow parameters

We then investigated different choices for the Barlow weight β (without a pro-
jector) and hard negatives. We first conducted some informal experiments to
determine a rough range of interesting values and then tested those. Notably, we
found that if the Barlow weight is chosen too large, the MRR will collapse. As
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Regular/hard negative queue size
8192/0 6144/2048 4096/4096 2048/6144 0/8192

H
ar
d
ne

g. 0 0.7955 - - - -
2 0.7995 0.7974 0.7975 0.798 0.7997
4 0.8008 0.8005 0.8023 0.8008 0.8006
8 0.8068 0.804 0.8011 0.7986 0.7996

Table 5.5: Results for different combinations of number of hard negatives and
queue sizes (∗)

seen in Table 5.6, Barlow regularization is fairly unstable, radically going from a
good score to collapsing with just a small difference in weight. Nevertheless, it is
capable of slightly improving scores over not using it at all.

Barlow weight
1e-4 7e-5 5e-5 3e-5 1e-5 5e-6 0

H
.n

. 0 <0.1 0.8027 0.8032 0.7987 0.7965 0.7953 0.7955
8 0.8027 0.8062 0.8082 0.8055 0.8054 0.805 0.8068

Table 5.6: Results for different combinations of number of hard negatives and
Barlow weights. ”<0.1” means that the validation score collapsed

Since we can also use projectors for Barlow, we also experimented with those,
as shown in Table 5.7. We can have them either tied (i.e. the same projector
is used for Docstrings and Code) or untied. We find that within the range of
chosen weights, projectors do not offer any benefit. However, it is possible that
with the choice of different weights, one could improve scores. We chose not to
investigate further out of time restrictions. Here, too, we can observe that Barlow
regularization is fairly unstable, with some scores collapsing below 0.1.

Projector dimension
No projector 2048 4096

- Tied Untied Tied Untied

B
.w

. 1e-4 0.8027 <0.1 <0.1 <0.1 <0.1
5e-5 0.8082 0.7363 0.7384 <0.1 <0.1
1e-5 0.8054 0.801 0.7928 0.7581 0.7539

Table 5.7: Results for different combinations of Barlow weights, projector dimen-
sion and tying (all use 8 hard negatives); ”<0.1” means that the validation score
collapsed (∗)
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5.3.5 Augmentation

Finally, we investigated whether simple augmentation of the Docstrings using
EDA offers any benefits. We found that without Barlow regularization, the
score slightly decreased and with Barlow, the results (surprisingly) remained
unchanged, as shown in Table 5.8.

No augmentation EDA augmentation

B
.w

. 0 0.8068 0.8064
5e-5 0.8082 0.8082

Table 5.8: Results for different combinations of Barlow weights and augmentation (∗)



Chapter 6

Conclusion and future directions

In this work, we transfer xMoCo, a split encoder framework for multimodal tasks,
to an application called Code Search. xMoCo is different from previous methods
that have been used for this task in that it uses one encoder per modality rather
than a single, bimodal encoder. Additionally, it uses queues that hold embeddings
from previous iterations. These embeddings can be used as negative samples
in the contrastive learning objective. We enhanced xMoCo by incorporating
hard negative mining to find particularly impactful samples that can be used as
negatives in addition to the samples in the queue, and by introducing the idea of
using the Barlow loss as a regularizer.

We are able to outperform previous methods used for Code Search, as indi-
cated by our results for the CodeSearchNet benchmark. This benchmark consists
of Documentation-Code pairs from 6 different programming languages. However,
we are not able to outperform previous methods at the AdvTest benchmark.
This indicates that - despite better scores in the CodeSearchNet benchmark -
our method does not generalize better than previous methods.

The results from our ablations show that data augmentation of the Natural
Language part of this problem using Easy Data Augmention does not improve
scores.

Future directions for research could include transferring the Barlow regular-
ization concept to different tasks, as it is a quite general idea with low computa-
tional overhead and has proven to be beneficial for our purposes. Despite EDA
not having observably improved scores, it is still possible that data augmentation
could be beneficial for real-world applications, where users might not use partic-
ularly formal language in their search queries. Data augmentation in the likes
of Backtranslation might have a clearer impact on this. We also didn’t explore
any augmentation for Code due to the lack of availability of off-the-shelf tools.
We imagine that using such a method could drastically improve scores for the
AdvTest benchmark.
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Appendix A

Interactive tools

A.1 Interactive code retriever

We wanted to have a more tangible result than just MRR numbers, so we im-
plemented a code retriever that uses pre-trained models generated in this work.
It’s a simple User Interface implemented in Python’s appJar1 library. The user
can enter a query in natural language, choose what programming language the
retrieved code should stem from and set which subsets of the CodeSearchNet
corpus should be used for retrieval (train/val/test). Additionally, the user can
select how many of the top results should be displayed. An image of the interface
is shown in Figure A.1 and a couple of example outputs are shown in Figure A.2.

Figure A.1: The code retriever interface with a query and a retrieved code snippet
(with annotations)

1http://appjar.info/

A-1

http://appjar.info/
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Figure A.2: Some samples of code retrieved for different queries in Python (top
row) as well as Ruby and Java (bottom row)

Unfortunately, the tool requires the use of the (fairly large, 4GB each) check-
points for the xMoCo models. Additionally, the entire code part of the Code-
SearchNet corpus needs to be pre-encoded before use. However, once this is done
and the model is loaded, code retrieval takes anywhere from 1 to 10 seconds
depending on the subset size and hardware used, as only the natural language
query has to be encoded and is then compared to the code embeddings. It is
required to use a CUDA capable GPU with at least 2 GB of VRAM. For these
reasons, the practical usefulness may be limited. A more optimal solution for
when speed and expandability is desired would be a server-based code retriever,
where queries are sent over the internet to a fast server that can almost instan-
taneously return search results. What’s interesting is that in principle this can
be used in an online-manner: If new code samples are added to the database,
we can just encode them and add the generated vector to the set of embeddings.
The runtime of retrieval will increase linearly in the number of samples in the
embedding list, but with a larger dataset the quality of retrieved code snippets
might improve.

A.2 Dimensionality reduction

To generate Figure 5.1, we combined two dimensionality reduction techniques.
The first one is Principal Component Analysis which analytically finds the most
important components of the input data. We used this to reduce the 768-
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dimensional embeddings to 50 dimensions. From there, we used t-SNE, a clus-
tering algorithm that iterates over the data and attempts to separate it. Because
t-SNE’s runtime and quality depend on the number of input dimensions and
number of samples used, it is recommended to reduce high-dimensional data to
a lower dimension before applying t-SNE for better results, just like we did with
PCA. Note that t-SNE is not deterministic and that we randomly sample em-
beddings instead of using the full corpus, which is why results slightly differ from
run to run, as shown in Figure A.3, however, the general clusters remain similar.

Figure A.3: Three independent runs of the dimensionality reduction method

It is also possible to inspect the data by clicking on individual data points.
A pop-up will appear that shows which modality was used to generate the em-
bedding, followed by the actual Docstring/Code. An example of this is shown
in Figure A.4. Notice how for the concrete sample shown here, semantically re-
lated data (in this case the relation is through the concept of ”deletion”) is indeed
mapped to a similar area, which was the premise of this entire work.

Figure A.4: A concrete example of how similar data is mapped close together
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