
Building an Application on ICP

Bachelor’s Thesis

Enrico Mayor
mayore@ethz.ch

Group
Distributed Computing Group

Computer Engineering and Networks Laboratory
ETH Zürich

Supervisors
Robin Fritsch

Prof. Dr. Roger Wattenhofer

June 2022

1

Contents

1 Introduction 3

2 Technical Analysis 4
2.1 Overview . 4
2.2 Layers . 5

2.2.1 Peer-to-Peer Layer . 6
2.2.2 Consensus Layer . 6
2.2.3 Routing Layer . 6
2.2.4 Execution Layer . 7

2.3 Network Nervous System . 7
2.4 Subnets . 8
2.5 Canisters . 9

2.5.1 Query Calls . 9
2.5.2 Update Calls . 10

2.6 Chain-Key Cryptography . 11
2.7 Consensus . 12
2.8 Internet Identity . 16
2.9 Motoko . 17
2.10 Conclusion . 17

3 Integrations 18
3.1 Direct Integration with Ethereum 18

3.1.1 ICP smart contracts calling Ethereum smart contracts . . 18
3.1.2 Ethereum smart contracts calling ICP smart contracts . . 18

3.2 Direct Integration with Bitcoin 18

4 Tokenomics 19
4.1 Locking . 19
4.2 Transforming . 19

5 Case Study 20
5.1 Objective . 20
5.2 Visualization . 20
5.3 Development . 21

5.3.1 Front-End . 22
5.3.2 Back-End . 22

5.4 Application Overview . 25
5.5 Analysis . 28

6 Summary 30

2

1 Introduction

According to its creator, the DFINITY foundation, a non-profit organization
with headquarters in Zurich, the Internet Computer is the fastest and most
scalable general-purpose blockchain which extends the Internet with computa-
tion. Decentralized applications (dapps) and smart contracts can run on the
Internet Computer and serve their content directly to the user in a browser.
Additionally, users can securely interact with and authenticate to dapps using
Internet Identity, ICP’s anonymous blockchain authentication framework. In
other words, ICP seems to be an alternative to centralized cloud computing
services like AWS or Google Cloud with the bonus that it is decentralized and,
according to the DFINITY foundation, infinitely scalable. 1

In this bachelor thesis, supervised by Prof. Dr. Roger Wattenhofer and Robin
Fritsch, we will analyze the inner workings of the Internet Computer (ICP) and
build a prototype project on top of it. We will try to find out how secure, fast,
and scalable it is and if it is, as promised by the DFINITY foundation, the
future of the Internet.

We will start with a technical analysis of ICP, where we deconstruct its inner
workings. The literature on ICP is very one-sided. On the one hand, their
marketing literature is reckoned by many as ”over-the-top” and their developer
literature is highly technical. In this thesis, we will try to strike the middle
ground between the two by appealing to the broader audience, which lies some-
where between consumers and developers. After the technical analysis, we will
look at the programming language Motoko, a new programming language for
smart contracts designed to seamlessly support the programming model of ICP,
followed by an outlook on what lies ahead for ICP, namely the Bitcoin and
Ethereum integration. After having dug deep into the technical aspects of ICP,
we will look at its tokenomics, which is the topic of understanding the sup-
ply and demand characteristics of a cryptocurrency. Having covered everything
technical alongside the finance aspect of ICP, we will present the prototype de-
veloped on ICP for this bachelor thesis by defining its objective, showcasing the
development and deployment process, and analyzing its speed and scalability.
In the last chapter of this thesis, we will summarize everything we have learned
and answer the question if ICP is really ”the future of the internet”.

1https://dfinity.org/howitworks/

3

2 Technical Analysis

2.1 Overview

The Internet Computer network consists of a hierarchy of network building
blocks. Data centers on the first level (of which there eventually will be thou-
sands) host the node hardware. These data centers host many nodes, which
leads us to the second level. On the second level, there are nodes (of which
there eventually will be millions) combined to a subnet, the third level. These
subnets host canisters (of which there eventually will be billions), which are the
compute-unit of ICP. These canisters are what developers upload their compiled
web-assembly code on.

Figure 1: Hierarchy of network building blocks

The Network Nervous System (NNS) is the managing unit of the data centers.
It plays a similar role to ICAN on the Internet and permits data centers to join.

Another vital concept are subnets. A subnet hosts a subset of the canisters.
Subnets are created using nodes drawn from different data centers, which the
NNS coordinates. All the nodes of a subnet replicate the content of one another.
The NNS also can split or merge subnets to distribute the load (e.g., requests by
other canisters or end-users) as efficiently as possible, which can happen without
a service interruption.

4

Figure 2: Subnets

There are different subnet types. A particular subnet hosts the NNS, which
developers do not have access to. Developers can target a specific subnet type
for their canister (e.g., make code for a specific subnet type) like a data subnet,
system subnet, or fiduciary subnet, which allows the canister to have specific
properties or capabilities.

As already mentioned, subnets are used to host canisters. Canisters are bundles
of Web Assembly byte code and 4 KB memory pages. That Web Assembly
byte code gets created by compiling the code of Motoko or Rust. Canisters can
interact with each other via API calls. 2

The current network status of the Internet Computer (as of June 1st 2022) looks
as follows: 3

• Node providers: 44

• Node machines: 518

• Subnets: 35

• Canisters: 75’930

2.2 Layers

The Internet Computer consists of four layers: 4

• peer-to-peer layer

2https://medium.com/dfinity/a-technical-overview-of-the-internet-computer-f57c62abc20f
3https://dashboard.internetcomputer.org/
4https://dfinity.org/whitepaper.pdf

5

• consensus layer

• routing layer

• execution layer

Figure 3: Layers

2.2.1 Peer-to-Peer Layer

The peer-to-peer layer’s job is to transport messages between replicas in a sub-
net. The goal is the following: If an honest replica broadcasts a message, then
that message will eventually be received by all honest replicas in the subnet,
which is called a ”best effort” broadcast channel.

2.2.2 Consensus Layer

The consensus layer’s job is to set up a global ordering of all inputs such that
all replicas in a subnet will process such inputs in the same order. The protocol
used here is based on a blockchain. The root of the tree is called the genesis
block, and each non-genesis block in the tree contains a payload consisting of a
sequence of inputs and a hash of the block’s parent in the tree. The inputs in the
payloads of the blocks along the longest path are the ordered inputs processed
by the execution layer of the Internet Computer.

2.2.3 Routing Layer

The routing layer’s job is to take the payloads from the consensus layer and give
it to the execution layer for processing, which updates the state of the canisters
and generates an output that the routing layer processes.

6

2.2.4 Execution Layer

The execution layer’s job is to process the input one at a time. Processing the
input means updating the state of the canister and giving an output back to
the routing layer.

2.3 Network Nervous System

The Network Nervous System (NNS), a tokenized open governance system, su-
pervises and manages the Internet Computer. The NNS stores the information
of which nodes belong to which subnet, alongside many more things. It also
decides how to update that information (e.g., adding new nodes to subnets). A
few unique canisters make up the NNS, which is what we will take a look at
now.

Figure 4: Governance and Registry Canisters

The governance canister stores proposals and neurons. Proposals are suggestions
by the community on how ICP can or should be improved. These proposals can
be voted on by people who stake ICP tokens (see tokenomics section). Neurons
determine who is allowed to participate in governance.

The registry canister stores the configuration of the whole Internet Computer
(e.g., which nodes belong to which subnets). For example, in the above figure,
the registry canister stores the information that subnet S3 stores these four
nodes.

Another paramount canister in the NNS is the ledger canister, which stores
accounts and transactions. Accounts keep track of how many tokens a given

7

entity has alongside the address of that account. Tokens can be sent from one
account to another, which is recorded in transaction history. 5

Figure 5: Ledger Canister

2.4 Subnets

Subnets are the most crucial concept of ICP and are the fundamental build-
ing blocks of the system. In simple terms, a subnet is a subset of canisters
that run on ICP. Node machines in a given subnet are drawn from independent
data centers, ensuring security using Byzantine fault-tolerant technology and
cryptography developed by cryptographers at DFINITY. Within a subnet, all
canisters replicate each other’s content and computations, which serve the pur-
pose of load-balancing and security. One particular data center cannot simply
say that the state of a canister is X if all other canisters in the subnet agree
that it is, in reality, Y.

A feature of subnets is that they are transparent to users and software. The
only thing that one needs to know (e.g., the user or canister software) is the
identity of the canister in order to call the function that it shares. In other
words, canisters can communicate with each other using function calls while
only needing the canister ID to do so. This is quite similar to how the Internet
works: On the Internet, the only thing a user needs to know is the IP address of
the computer he wants to interact with alongside its TCP port that it listens to.
ICP works pretty much the same where any software/canister given permission
can call any other software/canister directly without knowing anything about
the counter-party. The only thing that is needed for that is the canister ID.

5https://medium.com/dfinity/the-network-nervous-system-governing-the-internet-
computer-1d176605d66a

8

In order to properly load balance, the NNS can split or merge subnets as needed,
which further ensures the transparency of the subnets.

When someone contributes software to ICP, they have to specify a specific sub-
net type such as ”data,” ”system,” or ”fiduciary.”

Figure 6: Subnet Types

As seen in the figure above, each type gives specific capabilities and permissions.
For example, if someone would like to call other canisters, one would need a
”system” or ”fiduciary” subnet since the ”data” subnet does not allow this. 6

2.5 Canisters

As previously discussed, subnets host canisters. A canister is WebAssembly byte
code that can run on a WebAssembly virtual machine. That WebAssembly byte
code gets created by compiling down a programming language compatible with
ICP, like Motoko or Rust. Canisters can communicate via publicly specified
API, as presented in the previous chapter. In simple terms, a canister is a
bucket where one can upload his compiled code that then runs on ICP. We will
dive deep into how to set up a canister on ICP in a later chapter. 7

A function on a canister can be invoked in two ways. Either as a query call or
an update call.

2.5.1 Query Calls

Query calls do not make persistent changes to the state. Any changes they make
to memory are discarded after running, making them performant and inexpen-
sive. They do this by not running on every node of the subnet, which means a

6https://dfinity.org/whitepaper.pdf
7https://dfinity.org/whitepaper.pdf

9

lower security level. A use case for a query call could be a user requesting an
update on his social media feed (read-only). 8

Figure 7: Query Calls

The way a query call works is quite simple:

1. User makes call M to canister C, which the user’s client sends to a bound-
ary node of the subnet, which then sends M to a replica of the subnet that
hosts canister C.

2. Canister M will do the computation on M and sends the result back to
the user via the boundary node.

2.5.2 Update Calls

Update calls make persistent changes to the state and are tamperproof because
they run on every subnet node. A use case for an update call could be a user
submitting a new post to his social media account hosted in a canister. 9

8https://dfinity.org/whitepaper.pdf
9https://dfinity.org/whitepaper.pdf

10

Figure 8: Update Calls

The way an update call works is a bit more involved:

1. User makes a call M to canister C, which the user’s client sends to a
boundary node of the subnet, sending M to a replica of the subnet that
hosts canister C.

2. That replica will broadcast M to all other replicates on that subnet (using
the peer-to-peer layer).

3. The leader of the next round will bundle M together with other inputs to
create the payload for block B proposed by the leader.

4. After block B is finalized, the payload is sent to the routing layer for
processing.

5. The routing layer will place M in the input queue of canister C.

6. The execution layer will process M and update the internal state of canister
C.

7. Canister C computes a response R to the request M which is then recorded
in the ingress history data structure.

2.6 Chain-Key Cryptography

Unlike other blockchains, ICP does not use proof of work or proof of stake to
process transactions. Instead, the subnets communicate with each other using
chain-key cryptography. The Internet Computer will, down the road, run on
millions of nodes at scale, and chain-key cryptography is what will enable that.

11

As we already discussed, to achieve the correctness of results, each canister runs
on multiple nodes instead of just one, which removes the single point of failure
possibility. In order to make this multi-node infrastructure work, messages need
to be jointly signed by all the nodes hosting the canister that the user queries for
a result, which is what chain-key cryptography enables. All nodes have a part
of a secret key that, if put together, combines into the entire secret key, which
enables them to sign a message with the requested result jointly. The signature
that gets created this way can be verified using the public key of the Internet
Computer, of which there exists precisely one. The significant advantage (for
example, to the Ethereum ecosystem) is that even though ICP runs millions
of nodes and thousands of subnets, all needed to validate any results from the
subnets is one public key.

Now, for ICP to scale, the nodes are partitioned into subnets, and each subnet
has its public key with which one can authenticate messages. All the nodes
included in a subnet have a part of the secret key. If more than the required
threshold of nodes agrees, they can use their part of the key to sign a message
jointly using the so-called threshold signature scheme. The user can verify the
message’s authenticity using the subnet’s public key.

Putting all of that together, we can conclude that to verify a response from
ICP, the only thing needed is a 48-byte public key. To validate a smart contract
outcome on Ethereum, an Ethereum client needs to download more than 400
gigabytes, which will grow linearly with time. 10

2.7 Consensus

The consensus problem in ICP boils down to the replicas in a subnet not always
receiving the messages in the same order and then finding a global order per
subnet in which to handle the messages. All the nodes within a subnet run the
ICP consensus algorithm to agree on which messages to run in which order. 11

10https://medium.com/dfinity/chain-key-technology-one-public-key-for-the-internet-
computer-6a3644901e28

11https://medium.com/dfinity/achieving-consensus-on-the-internet-computer-ee9fbfbafcbc

12

Figure 9: Consensus Orders Input

In order to reach that consensus, ICP uses a blockchain. The messages that
a subnet should process are grouped into blocks, and each block points to the
next block, which forms a blockchain. The goal is then for all the replicas to
agree on the blockchain, which gives the ordering.

Figure 10: Blockchain

Essentially, four main components enable the consensus algorithm:

• Block making: creates candidate blocks with which the blockchain gets

13

built

• Notarization: identifies valid blocks with which the valid blockchain gets
built

• Random beacon: gives randomness to enhance the protocol further

• Finalization: an indicator for when an agreement is reached

Any node on the subnet can be the block maker, and this block maker will have
some messages available that the subnet should process. The block maker then
groups these messages and proposes a new block that could be appended to
the blockchain. The catch is that we need more than one block maker because,
otherwise, one block maker could be malicious and cause issues in the network.

Figure 11: Block Maker

Since any node could be a block maker, we need a process to find valid blocks. In
other words, every block must be notarized, ensuring that a valid block proposal
is published every round. Nodes can issue notarization shares if they agree that
a block is valid, and if a certain threshold of notarization shares is hit, the new
block will be notarized. It could be that a node signs multiple valid blocks in
order to ensure that at least one block becomes fully notarized.

14

Figure 12: Notarization

In order to reduce the number of notarized blocks (which leads to less overall
complexity in the system), we introduce the so-called random beacon, a random
value shared by the replicas of the subnet. This random beacon is used to rank
block makers, which gives an ordering on which valid block maker to choose,
choosing a block of the respective block maker.

Figure 13: Random Beacon

Notaries create finalization shares on a block if they did not notary-sign any

15

other block at that height. Whenever we see such finalization, we know the
blockchain can be trusted up to that point because that is proof that no other
finalized block at that height can exist.

Figure 14: Finalization

2.8 Internet Identity

The Internet Identity lets users authenticate themselves anonymously to dapps
on the Internet Computer. Instead of having a password for every website one
visits, one has his Internet Identity. Essentially, it allows users to authenticate to
dapps using one of their devices (e.g., face-id on iPhone or fingerprint check on
laptops) instead of passwords, which is made possible by the already discussed
Chain Key Cryptography. The Internet Identity runs on any device that uses
the so-called WebAuthn standard. If a user runs on a device that does not
support this standard, then that user can use an HSM device such as a YubiKey.
The process of creating such an Internet Identity is quite simple. Simply go to
identity.ic0.app (a page that runs on ICP) and follow the steps there.

When a user sets up his Internet Identity, the security chip on his device will
generate a unique cryptographic key. The public key part of that will be stored
on ICP together with the Identity Anchor. When a user loads a website on ICP
(e.g., the front end of a given canister smart contract), that website shows a
button with which the user can authenticate himself. This is similar to how it is
handled in the Ethereum ecosystem. The user also has a button in dapps with
which he can connect his wallet that practically pseudo-anonymously authenti-
cates him towards that dapp. Returning to ICP, this button then launches the
Internet Identity pop-up where the authentication takes place. In contrast to
signing in via Single Sign-On (SSO), the Internet Identity authenticates on the

16

user side rather than the server side, leading to less exposure to big tech firms
and more security. 12

2.9 Motoko

Motoko is the new open-source programming language designed for the Inter-
net Computer. It is strongly typed, actor-based, and has built-in support for
orthogonal persistence and asynchronous message passing. The exciting thing
about Motoko is that a developer will not need the special knowledge usually
needed for blockchain programming languages. It can be used as an ordinary
programming language. The Motoko compiler takes the source code and does
all the usual things (e.g., runs it through a parser, generates an abstract syntax
tree, does type-checking) and then generates WebAssembly code. It does that
because by doing so, any canister running on WebAssembly can communicate
with any other canister also running WebAssembly without the source language
needing to be necessarily Motoko. In fact, it could be any programming lan-
guage that compiles to WebAssembly (e.g., Rust). 13

2.10 Conclusion

In the previous chapters, we have learned that the Internet Computer consists
of a hierarchy of network building blocks. The data centers at the bottom run
many nodes, which are put together into a subnet that hosts canisters. All
of that is being controlled by the NNS, the tokenized open governance system
of ICP. Unlike other blockchains, ICP does not use proof of work or proof of
stake to process transactions. Instead, the subnets communicate with each other
using chain-key cryptography. All the nodes within a subnet run the consensus
algorithm of ICP to agree on which messages to run in which order, for which
ICP uses a blockchain.

12https://medium.com/dfinity/web-authentication-and-identity-on-the-internet-computer-
a9bd5754c547

13https://medium.com/dfinity/motoko-a-programming-language-designed-for-the-internet-
computer-is-now-open-source-8d85da4db735

17

3 Integrations

This section will introduce some new updates that are coming to the Internet
Computer, namely the direct Bitcoin and Ethereum integration as a teaser of
what lies ahead for ICP.

3.1 Direct Integration with Ethereum

This integration aims to enable Ethereum smart contracts to call into smart
contracts directly (e.g., canisters) on the Internet Computer and vice versa. 14

3.1.1 ICP smart contracts calling Ethereum smart contracts

In order to accommodate this feature, the Internet Computer introduces sup-
port for a threshold variant of ECDSA, which is the crypto scheme that secures
Bitcoin and Ethereum balances and its smart contracts. This will enable can-
isters to create Ethereum transactions against public keys. The great thing for
developers is that ICP introduces a so-called proxy smart contract (running on
ICP) which makes creating a transaction on the Ethereum network as simple
as calling a function.

3.1.2 Ethereum smart contracts calling ICP smart contracts

This feature cannot be solved using cryptography. However, the Internet Com-
puter can copy new Ethereum blocks into the proxy contract (see the previous
section) and that contract can detect when a block has been finalized. Then
the proxy contract can scan the block for calls from Ethereum smart contracts
to ICP smart contracts and the result of previous calls. The proxy contract will
then communicate with the smart contract on ICP and return the respective
values.

3.2 Direct Integration with Bitcoin

This integration aims to establish a connection to the Bitcoin ledger using Chain
Key Cryptography. This enables developers to build canisters on ICP that
directly communicate with the Bitcoin network without an intermediary. In
essence, this lets canisters effectively become Bitcoin wallets that can receive and
send BTC. This is huge because it brings smart contracts to the Bitcoin network,
allowing the liquidity of Bitcoin to flow into a new hub for DeFi applications.
In other words, we will probably soon have decentralized, Bitcoin-based lending
and borrowing protocols similar to AAVE or Compound on Ethereum. 15

14https://medium.com/dfinity/internet-computer-ethereum-integration-explained-
6967456e35f9

15https://medium.com/dfinity/the-internet-computers-bitcoin-developer-preview-is-now-
available-85ce1df6b17d

18

4 Tokenomics

Tokenomics is the topic of understanding a cryptocurrency’s supply and demand
characteristics. The Internet Computer has two native tokens that play the
central role in the tokenomics of the Internet Computer ecosystem. The first
token is called ICP, and it is a governance token, which means that it can be
used to vote on decisions that influence the ICP ecosystem. The second token is
called CYCLE, which within the ICP ecosystem is used as fuel for computation.
Additionally, every canister can create its token if it wishes. Canisters can also
hold token balances for any token used natively on the Internet Computer (e.g.,
ICP and CYCLE) and for tokens created by any canister. In addition to that,
it is possible to send tokens from one canister to another using function calls.
Now we will look at what ICP tokens can be used for. 16

4.1 Locking

One can lock his ICP tokens inside the NNS and will get so-called Neurons in
return. Neuron holders can vote on proposals and will earn voting rewards paid
out in ICP. The Neuron must be dissolved to withdraw ICP tokens locked inside
a Neuron. Dissolving takes time, but once the Neuron dissolution process has
been completed, the locked ICP can be withdrawn. The longer the dissolving
time of a Neuron is configured, which can be set by the user, the more voting
power one has, and the more voting returns will be paid out in ICP. This is
done to encourage the long-term holding of ICP, which generally leads to the
best overall decisions (e.g., votes) for any network.

4.2 Transforming

When one wants to host a canister on ICP, he will need the CYCLE token,
which can be obtained by transforming ICP tokens into CYCLE tokens. The
CYCLE token is like fuel for the system and gets burned when computation
power for a canister has been used. Since CYCLE tokens are created from ICP
tokens, ICP tokens essentially get burned with every computation that happens
on the Internet Computer, making it deflationary. In other words, as long as
computations are being done on the Internet Computer, there must be someone
on the market buying ICP to do these computations, which leads to ICP having
a high monetary velocity. The conversion rate for transforming ICP tokens into
CYCLE tokens is computationally set such that one trillion CYCLE tokens are
roughly one Swiss Franc at the time of conversion.

16https://www.dfinitycommunity.com/beginners-guide-to-understanding-icps-tokenomics/

19

5 Case Study

5.1 Objective

The objective of this thesis was not only to give the reader a technical overview
of ICP from a theoretical perspective but also a practical one. We wanted to
analyze if what is being marketed is accurate and, most notably, how performant
the ICP ecosystem is for hosting software. For that, we have partnered up
with a shareholder services provider company that was interested in building a
prototype for one of their services using a decentralized hosting provider. When
someone buys a stock in Switzerland (e.g., Nestle, UBS, or Credit Suisse stock),
this is recorded in the company’s software. In addition to that, this company
also organizes the general assemblies for their clients, which is where we come
into play. Essentially, they wanted to enable general assemblies to be held online
with unlimited computing power and scalability, which ICP can handle. In order
to achieve that, we have built a working prototype of how that use case could
be realized as a web application running on ICP.

5.2 Visualization

We kick-started this project by building a mockup, which visually represents
how the application should look in the end. This process was realized together
with the input of the client in order to visualize what the client wants this to
look like. To that end, we started with three design directions that we thought
could work. The first design direction we coined ”futuristic, technology, mysteri-
ous, performance”, the second design direction was ”professional, minimalistic,
visionary” and the last design direction we saw as ”friendly, progressive, mod-
ern”.

20

Figure 15: Mockup Exploration Phase

The client ended up choosing the third design direction, which is what we then
build out as the full application. After optimizing the mockup together with
the client, we ended up with something like this:

Figure 16: Final Version of Mockup

5.3 Development

After finishing the mockup, we were ready to start the development process. We
have separated our work into front- and back-end. In general, the work needed

21

to build the application code-wise is the same for legacy cloud computing (e.g.,
AWS or Google Cloud) as ICP. The real difference becomes evident when it is
time to deploy the application, which we will focus on in the upcoming sections.

5.3.1 Front-End

The front-end component of the prototype was built using React-JS, which runs
on Fleek, which is like Netlify for the open web. Fleek lets us host our static
front-ends on the Internet Computer without much work. The steps to get a
front-end up and running on Fleek are remarkably simple:

1. Connect the GitHub front-end repository

2. Specify build settings in Fleek

3. Deploy front-end to ICP

That is it! The only thing left to do in Fleek is connecting the front-end with
the back-end, which, again, is remarkably simple: Add the canister-id and the
canister-host to the ”.fleek.json” file and everything else is handled by Fleek. As
the name suggests, the canister-id is simply the unique identifier of the canister.
The canister-host is just the domain that gets created for accessing the back-end.

Figure 17: Fleek Setup

5.3.2 Back-End

The back-end component of the prototype was built using Motoko, which runs
on a designated canister that we have set up. We had to do it this way because
Fleek only allows for front-end canisters (at least for now). Deploying a back-
end canister on ICP manually is more tricky than simply connecting the GitHub
repository, as seen with Fleek before. It works as follows: 17

17https://medium.com/dfinity/how-to-deploy-your-first-canister-using-the-nns-dapp-
c8b75e01a05b

22

1. Go to NNS.

2. Create a new wallet or sign in.

3. Fund wallet with some ICP coins.

Figure 18: Wallet

4. Create a canister using the ”Create or Link Canister” button.

Figure 19: Canisters

5. Convert ICP tokens to CYCLE tokens in the pop-up that appears.

23

Figure 20: Cycles

6. Get the principal by running the ”dfx identity get-principal” command on
your local machine.

7. Go back to NNS, click on the ”Change Controller” button, and add the
principal from the previous step.

Figure 21: Controller

8. In the project’s root directory, open the file ”canister-ids.json” and add
the back-end canister ID.

24

Figure 22: Add canister ID

9. Deploy the canister by running the ”dfx deploy –network ic –no-wallet”
command on your local machine.

That is already it. The canister is now up and running, and as long as we
keep a CYCLE balance in the canister, it will run for as long as the Internet
Computer is running with no third party being able to shut it down (thanks to
ICP’s decentralized approach).

5.4 Application Overview

After discussing the deployment process for both front- and back-end, let us
finally look at the application itself. This chapter could also be omitted since
the application content is not what ICP is about. It is much more about the
infrastructure the software runs on (which is why we focused on the deployment
process in such detail before). On ICP, developers can build anything from
small company websites to colossal enterprise systems. What we have built is
something in the middle, as we will discover now.

The purpose for this prototype is for the partner company to be able to take it
on as a new project and further develop and fine-tune the current version. We
start with the first screen where users can create an account or log in:

25

Figure 23: Login

After logging in, the user gets redirected to the application’s main page, where
he can see and do multiple things. There is a live stream of the general assembly
on the left-hand side, which will be held when the user is on that page. In our
prototype, we approximated this with a hard-coded YouTube video for now.

Figure 24: Livestream

On the right-hand side, there are the talking points of the general assembly
which are things the shareholders can vote on (e.g., ”Should we appoint that
new CEO?” or ”Should we accept the proposal of the board to increase the
salary of department X?”).

26

Figure 25: Talking Points

When clicking on any voting button, a pop-up appears where the user can cast
his vote (e.g., yes, abstain, or no), triggering a call to the back-end canister that
stores the vote.

Figure 26: Voting

Finally, after the general assembly is finished, this is what the application will
look like to a user. All talking points have been voted on and the final result of
the votes is being computed on the partner company’s server.

27

Figure 27: Final State

5.5 Analysis

The two KPIs we used to do our analysis were cost and speed. Multiple resources
have done a cost analysis, and the conclusion was always the same or at least
similar. Running software on ICP is cheaper than running it on a centralized
cloud provider (e.g., AWS or Google Cloud) since AWS is using its monopolistic
position in the market to charge whatever they want. To give a sense of how
much cheaper it is, let us assume we put 1 TB of data in, and then we read it
1,000 times, approximating the usage of a typical web- or mobile application.

Figure 28: Cost Comparison

As the above illustration shows, the cost for getting data into the system (e.g.,
uploading onto the servers) is higher on ICP than on AWS. That is because
AWS is subsidizing this transaction from other revenues. Not only that, but
this data in transaction is also a bit more complicated on a decentralized setup

28

because on ICP all the nodes in the subnet need to reach consensus, unlike on
AWS where everything is managed centrally. The cost for user requests (e.g.,
getting data out of the system) is much cheaper on ICP compared to AWS
since, as already mentioned above, AWS is using its monopolistic position to
charge whatever they want. Since the data out transaction (e.g., user request)
is being done much more frequent than the data in transaction, ICP happens
to be cheaper than AWS in a real-world setting. 18

The Internet Computer promises web speed with software that runs on it.
Therefore, instead of focusing on the numbers under the hood (e.g., how ef-
ficiently is the blockchain algorithm), we decided to focus on the numbers that
an actual user would see (e.g., how responsive are the websites that run on ICP
and how quickly do they load). We compared the page speed (using Lighthouse)
of websites on the traditional web with their counter-part in the ICP ecosystem.
Here are a couple of examples:

Figure 29: Speed Comparison

The conclusion after our performance testing is that it does not matter where
one hosts its software (e.g., ICP or AWS) since the speed is roughly the same. It
is more about optimizing the website (e.g., compressing images) that positively
plays into the performance metric. Hence, we conclude that ICP can deliver
web-speed experiences as promised.

18https://icp.guide/costs-on-the-internet-computer/

29

6 Summary

In this bachelor thesis, supervised by Prof. Dr. Roger Wattenhofer and Robin
Fritsch, we analyzed the inner workings of the Internet Computer (ICP) by
building a prototype project on top of it. We tried to find out how secure, fast,
and scalable it is and if it is, as promised by the DFINITY foundation, ”the
future of the internet”.

The Internet Computer consists of a hierarchy of network building blocks. The
data centers at the bottom run many nodes, which are put together into a
subnet that hosts canisters. All of that is being controlled by the NNS, the
tokenized open governance system of ICP. Unlike other blockchains, ICP does
not use proof of work or proof of stake to process transactions. Instead, the
subnets communicate with each other using chain-key cryptography. All the
nodes within a subnet run the consensus algorithm of ICP to agree on which
messages to run in which order, for which ICP uses a blockchain.

After building and deploying a working prototype on ICP in a joint partnership
with a shareholder services provider company, we concluded that it is cheaper
and every bit as performant to run software on ICP compared to centralized
cloud computing services like AWS or Google Cloud. The Internet Computer
ecosystem provides an exciting addition to the world of cloud-based hosting
thanks to its decentralized nature. As of this moment, there are not many data
centers running nodes. However, once the ICP network grows, it could very
well be that ICP could become one of the many relevant players in software
hosting since the underlying technology is well-made and its approach seems
to be scalable. What is in that way is the mass adoption of the development
community that has not yet built much software on top of ICP, which will most
likely take some more time. However, having interviewed a handful of experi-
enced developers exposed to ICP, the overall feedback was nothing but fantastic.
Given enough time, this crypto project with headquarters in Switzerland will
hopefully add value to the cloud computing landscape, which is good because it
is about time that someone democratizes this stagnant, oligopolistic industry.

30

