
Distributed

 Computing

Collision Detection Algorithm for a
Practical Airborne Collision Avoidance

System
Bachelor’s Thesis

Patrick Oberlin

poberlin@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Peter Belcák

Prof. Dr. Roger Wattenhofer

March 28, 2022

Acknowledgements

First of all, I thank my supervisor Peter Belcák for his support and guidance
throughout the thesis. The topic combines two fields I am quite fond of, and
I thank Prof. Dr. Wattenhofer for offering such an interesting project to work
on. Furthermore, I thank my friends, colleagues and family for their support, for
proofreading the thesis, and for their patience when I started talking about the
project on every occasion.

i

Abstract

Good weather facilitates light and sporting aircraft (LSA) activity. LSA pilots
have natural incentives to fly their planes inside areas of lift, aiming to remain
airborne for as long as possible. The more aircraft engage in this activity, the more
difficult it is for a pilot to keep track of the aircraft in their vicinity. Monitoring
relative positions of aircraft close by is, however, crucial to collision prevention.
The objective of this thesis is to provide an automated solution for tracking planes
to reduce pilot workload and detect potential collisions early on.

This thesis proposes a trajectory prediction algorithm based on positional
and sensoric data, and a collision detection algorithm foreseeing possible collision
courses in order to warn pilots of imminent danger. The latter algorithm further
performs on-line detection of properties and whereabouts of thermic streams
to improve its predictions. The algorithms are complemented by an example
Python implementation, and a graphical simulation environment to showcase
their behaviour in example scenarios.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Trajectory Prediction 2

2.1 Algorithm . 2

2.1.1 What a prediction looks like 2

2.1.2 Structure . 3

2.2 General decision process . 4

2.2.1 Methods used . 7

2.3 Parameters . 11

2.3.1 User Inputs . 11

2.3.2 Other Parameters . 12

3 Thermal and Wind detection 14

3.1 Thermal model and its limits . 14

3.2 Detection and handling . 14

3.3 Wind . 16

3.3.1 Improvement ideas . 17

4 Interaction with other aircraft 18

4.1 Communication . 18

4.2 Collision Detection . 19

5 The Simulation 21

iii

Contents iv

6 Analysis 24

6.1 Time Analysis . 24

6.2 Limits of the Algorithm . 26

6.3 Conclusion . 26

7 Further Work 27

7.1 Future Ideas . 27

Bibliography 28

Chapter 1

Introduction

When several aircraft are flying in a confined space, as for example a thermal
poses, the risk of a collision increases with the number of planes. The pilot of
each aircraft has to notice and keep track of every aircraft that poses a potential
threat. As long as there are only a few aircraft around, it is easy enough to keep
some distance between them to reduce the risk of a crash. But when the airspace
becomes more crowded, the intermediary distances will decrease, making sudden
changes of course more impactful. In addition, it becomes way harder for a pilot
to detect possible collision courses.

The aim of this thesis is to address the abovementioned emergent difficulties.
Though a pilot should never cease paying attention to their surroundings, the
algorithm aims at detecting dangers in case one is still missed. This is achieved
by tracking an aircraft’s flight using GPS data and estimating possible future
trajectories it might take, then exchanging and comparing these trajectories with
the other aircraft to find potential crash courses. Since the problem particularly
arises in proximity to thermals, thermal detection is a core element that sets this
algorithm apart from established technologies, such as FLARM [1]. Thermals
are recognized in-flight and transmitted on-line between aircraft to maximize the
accuracy of the generated predictions. Capitalizing on this advantage, potential
collisions can be anticipated with higher reliability.

The thesis is part of a larger project targeting the mentioned problem. The
final goal of the latter is to develop a device pilots can take with them imple-
menting the described behaviour. Since this is the first thesis within the project,
the algorithm could not be tested in its envisaged environment. Counteracting
this issue, a simulation was created that is able to schematically visualize the
past and future flight paths as well as thermals. It provides a user interface (UI)
allowing to add and remove aircraft and thermals at runtime, and an API that
allows to create custom scenarios, e.g., to test new features. Since it is written
in Python, new ideas can be implemented fairly quickly.

1

Chapter 2

Trajectory Prediction

2.1 Algorithm

General Hints

To forego the need to specify the meaning of the following terms on every occur-
rence in the thesis as well as in the code, here is how they will be used in the
thesis:

• Heading: Denotes a GPS direction in degrees, thus ∈ [0, 360).

• Bearing: Denotes a GPS direction in radian, thus ∈ [0, 2π).

• Direction: Refers to a normalized, 3-dimensional vector indicating the x,
y, and z component of the aircraft’s movement. Multiplying direction with
speed yields the velocity vector, where speed is the current speed of the
aircraft.

2.1.1 What a prediction looks like

A prediction is represented in one of two ways. The first is how one’s own
prediction is stored on the device. It can be directly used in the collision detection
algorithm. The prediction is stored as a chronologically sorted list of future
positions, each having a longitude, a latitude, an altitude, and a timestamp. The
interval between these positions is determined by dividing the size of the aircraft
by its current speed, leading to a parameter we shall call ∆t. The size of the
aircraft is provided by the user entering it into his device. This calculation leads
to spheres that overlap each other by exactly half their radius (see Figure 2.1).
The resulting positions can be easily compared to other aircraft’s. If the distance
between them is too small, a collision will happen in case both aircraft follow the
predicted trajectory.

However, the list stores a lot of data, which is bound to cause problems
when communicating our prediction to the aircraft in the vicinity. Thus, a more

2

2. Trajectory Prediction 3

Figure 2.1: Schematic figure of the collision spheres. The blue sphere represents
the aircraft, the yellow spheres are the spheres indicating the predicted future
positions with a time step of ∆t. ∆t is always chosen such that the spheres
overlap each other. This allows for comprehensive collision detection while not
needing a large number of spheres.

compact form is necessary. The second way trajectories are saved is as a set of
parameters fully describing the trajectory. These parameters are the following:

Position The current position
Direction The direction the aircraft is currently flying
Speed The current speed of the aircraft
Size The radius of the aircraft’s collision sphere
Type The type of the trajectory ("straight" or "left/right turn")
Rate of turn The rate of turn if the trajectory type is a turn, else null

From these parameters, once exchanged, an aircraft is capable of calculating
the list of future positions of the other aircraft in the area, which then can be
used to detect looming collisions.

2.1.2 Structure

The core element of the algorithm is a class called TrajectoryPredictor. This
class only needs to be fed the GPS data, and the prediction and collision de-
tection function can be called when there is CPU time available. Optimally
this is done once per second to keep the predictions accurate. The predictor
manages a submodule called ThermalTracker, which recognizes and organizes
thermals. It is used by the predictor to get the thermal strength at a given po-
sition. In principle, the ThermalTracker does not have to be separated from the
TrajectoryPredictor, but doing so increases clarity. The tracker keeps a list of
all known thermals (recognized by itself as well as learnt from other aircraft).

2. Trajectory Prediction 4

A class named gps was created to provide functionality with regard to the
positions. A gps instance has a latitude and a longitude, both of which are
stored in rad, an altitude in meter, and a timestamp. A gps object can either
be generated from a 4-tuple consisting of the four values, or from a line of an
.igc file, which is a common format to store flight track data. The class is
equipped with methods to add two positions, which is useful when generating
the list of future positions, find the distance between two locations, and get the
bearing when looking from one position to another. To find the distance between
two GPS coordinates, an equirectangular approximation is used, following the
formula from Movable Type Scripts [2]

2.2 General decision process

In this section, the decision process of the TrajectoryPredictor is explained.
This process analyzes the GPS data and decides which trajectories are likely
future flight paths. These paths are stored so that they can be broadcast and
compared to other trajectories.

Variables used in the algorithm:

L Array-like object that stores all likely trajectories

P Array-like object that contains the last 15 positions

P ′ Array-like object containing the last 3 positions

p The latest position received from the GPS module (i.e., the current posi-
tion)

In line 1 of Algorithm 1, the parameters speed and ∆t are adjusted so
that all following calculations are done with the latest data. In particular, the
speed is recalculated as the average speed over the last 10 seconds, capped at 10
positions.

The function LinApprox in line 3 will be explained in more detail below. It
calculates a linear approximation of the points P and their mean squared error
(MSE). The error is then compared in line 4 against a threshold σ = 1m. If
the error is smaller, the straight trajectory is computed and stored to be used
in the collision detection. Using a fixed threshold value is only a first approach.
To improve the decision making of the algorithm, an adaptive value can be used
that is continuously improved during or after a flight. This would also allow to
personalize the parameter to the style of the pilot.

After adding the line prediction, the algorithm checks if the aircraft has flown
through a thermal during the positions in P (line 7). If this is the case, the
prediction will not be accurate if the thermal ended within P. To account for
the case where this did happen, an alternative vertical speed is calculated by

2. Trajectory Prediction 5

Algorithm 1: Function PredictTrajectory

1 UpdateSpeed();
2 initialize L,P,P ′, p;
3 line,MSE ← LinApprox(P);
4 if MSE ≤ σ then
5 L← GetPrediction(line);
6 L ← L ∪ L;
7 if flown through thermal then
8 L′ ← adjust L;
9 L ← L ∪ L′;

10 if distance(line, p) ≥ τ then
11 if last positions allow a turn then
12 T← PredictTurn();
13 L ← L ∪ T;
14 if flown through thermal then
15 T′ ← adjust T;
16 L ← L ∪ T′;
17 else
18 T← PredictTurn();
19 L ← L ∪ T;
20 if flown through thermal then
21 T′ ← adjust T;
22 L ← L ∪ T′;
23 Lshort ← LinApprox(P ′);
24 if ∂2z

∂t2
̸= 0 or a turn prediction was made then

25 L ← L ∪ Lshort;
26 return L

2. Trajectory Prediction 6

subtracting the average height gain due to thermals from the total height gain in
the considered time period. Using this new value, another prediction is computed
and added to L.

To conclude whether a turn is possible as well, two conditions are checked
(lines 10 to 11). The first one is that the current position needs to be off in
comparison with the line that was calculated. The line’s fixpoint is the mean
point of P, thus the direction vector will, if the aircraft is turning, not point
exactly towards the current position, but rather beside it. If this distance is
larger than τ = 3m, a turn is not considered unlikely and the second condition is
checked. More specifically, the 3 latest rates of turn are calculated and compared.
In order for the second condition to pass, these rates either have to be of the same
sign, or the ones that are of opposite sign than the latest have to be smaller than
0.05rad/s ≈ 2.8◦/s. Both the 3m and 0.05rad/s thresholds need to be tested
and improved from real-life data when the first prototype is built. If now both
conditions are met, a turn prediction is computed, and again an alternative turn
is added if the aircraft recently flew through a thermal.

However, if the line approach is not likely, i.e., the condition in line 4 eval-
uates to false, a turn prediction is added in any case. This ensures that always
at least one prediction is made. The procedure then is the same as in lines 12
to 16.

Independently of the decisions above, a linear approximation for the last
three positions is made in the end (line 23). If there is a change in the vertical
speed due to a change in the aircraft’s pitch angle within P but not P ′, the line
prediction L will not be accurate because it will include the positions before the
pitch change until they are not contained in P anymore. For example, if the
aircraft has just leveled off, L will predict a decreasing climb rate over the next
15 seconds even though the aircraft is not climbing anymore. Since the shorter
prediction L′ stops considering the thermal after three new positions, it will be
the more accurate forecast during approximately 12 seconds. There is little gain
in adding another adjusted prediction for the thermal case as before since the
short line will adapt to that very quickly anyways.

During many manoeuvres, both L and L′ will be computed and added to
the list L, which is intended. L will be more accurate and stable, e.g., during
turbulence, while L′ will be quick to adapt to a turn, ascent, or descent that is
being initiated or ended.

2. Trajectory Prediction 7

2.2.1 Methods used

Find Linear Approximation

Variables used in the algorithm:

P Array-like object that contains the last 15 positions
−→
D The direction the aircraft is flying

Algorithm 2: Function LinApprox
Input: P

1 P ← mean(P);
2
−→
D ← svd(P − P);

3 if
−→
D is badly off then

4
−→
D ←

−→
D ∗ (−1);

5 MSE ← ComputeActualmse;
6 line← (P,

−→
D);

7 return line, MSE

The singular value decomposition (SVD) returns the direction of the linear/first
order polynomial approximation calculated from the input positions P, minimiz-
ing the mean squared error (MSE). Since the singular value decomposition only
fits a line over the data and does not care about the timely order of the positions,
the returned values might point exactly in the opposite direction of what one
would expect. In lines 3 to 4, it is checked whether the difference between the
approximation D and the direction calculated from the last two positions is larger
than 135◦. If so, the direction vector is turned by 180◦. The threshold of 135◦

will only lead to mistakes when an aircraft has turned more than 270◦ since the
last time a GPS position was saved (see Theorem 2.2). The interval between
two positions is aimed to be 1s, which means it is close to impossible to fulfil this
condition. If a single position is lost somehow (not just delayed by less than 1s),
errors might occur during extreme manoeuvres, but even then not for extended
periods of time.

The mean squared error is then calculated so that it can be used for compar-
ison in Algorithm 1. The line that is returned is represented by a point on the
line, here the mean point P from line 2, and its direction

−→
D .

Get Prediction

The Algorithm GetPrediction returns a list of future positions that are com-
puted from the line that was computed by LinApprox. The computation is

2. Trajectory Prediction 8

Algorithm 3: Function GetPrediction
Input: line

1
−→
V ← speed ·∆t ·

−→
D ;

2 s← gps(
−→
V ,∆t) ;

3 L1 ← compute future positions from s;
4 if L1 goes through a thermal then
5 L2 ← amend L1;
6 return {L1,L2};
7 else
8 return {L1};

implemented using a step variable s that is of type gps (see Section 2.1.2). In
line 1, a vector

−→
V is calculated such that it contains the distance the aircraft

will move during ∆t in each dimension. From
−→
V , the step s can be initialized as

a gps instance (line 2). Further, the timestamp of s will be ∆t in order for the
following procedure to work. The list of positions can be generated from the cur-
rent position p by iteratively adding s and storing the resulting position (line 3).
This procedure makes use of the adding functionality of the gps class mentioned
in Section 2.1.2, which sums all four components of the given positions.

If any position in L1 is inside a thermal, a second trajectory L2 is computed
in line 5 by adding any thermic impact on the afflicted positions. Whenever
the trajectory does lead through a known thermal, this computation yields a
prediction accounting for it, and one not accounting for it. This is important
because thermals are not constant in time, but oftentimes bubbles that detach
themselves from the floor at intervals.

Predict Turn

The turn prediction builds upon the following two common geometric theorems
(see Figure 2.2):

Theorem 2.1 (Central Angle Theorem). The inscribed angle β of a circle is twice
the circumferential angle α.

Proof. Consider the special case where CD is exactly the diameter. Then, the
triangle ABD is isosceles, and thus ∠ADB and ∠ABD are equal. The sum of
the interior angles in △ABD is then

α+ α+ (180◦ − β) = 180◦

⇔ 2 · α = β.

2. Trajectory Prediction 9

Figure 2.2: Outline of the angles for Theorems 2.1 to 2.2

The case depicted in Figure 2.2 can then be interpreted as two times the special
case by dividing the triangles with a diameter through D and A. Since both parts
fulfill the condition, also the sum does. Thus,

2 · α = β

Theorem 2.2 (Chord Tangent Angle Theorem). The chord tangent angle γ is
equal to the circumferential angle α.

Proof. The triangle ABC is isosceles, thus

∠ABC =
180◦ − β

2
=

180◦ − 2α

2
= 90◦ − α.

Using ∠ABC + γ = 90◦, it follows:

γ = 90◦ − ∠ABC = 90◦ − (90◦ − α) = α

Remark 2.3. Both theorems are valid independently of the locations of B,C,D
on the circle.

Variables used in the algorithm:

p′ The second latest position (i.e., the one right before p)

t The rate of turn

b The current bearing

2. Trajectory Prediction 10

ρ: The radius of the turn

c Chord length, i.e., the length of the straight line between two consecutive
points if the aircraft flies on the arc of the circle.

Algorithm 4: Function PredictTurn

1 t← getRateOfTurn() ;
2 d← getBearing(p′ → p) ;
3 b← d+ t

2 ;

4 c← distance(p,p′)
∆tpp′

· sin(
t·∆t
2)

sin(t
2)

;

5 repeat
6 create s;
7 pnew ← pold + s;
8 T1 ← pnew;
9 b← b+ t ·∆t;

10 pold ← pnew;
11 until enough points are calculated ;
12 if T1 goes through a thermal then
13 T2 ← amend T1;
14 return {T1,T2};
15 else
16 return {T1}

In Algorithm 4, a list of positions is returned assuming the aircraft is turning
at a constant rate (the non-constant turn has not been addressed yet). The
general principle is the same as in GetPrediction: create a step s and add it to
the current position iteratively. This time, though, s needs to be adjusted after
every step to create a curve. In order to do that, the parameters in lines 1 to 4
are introduced.

First of all, the rate of turn t is calculated. It is averaged over the last ten
positions to gain some stability but stay adaptive at the same time. The rate
of turn can be computed from the difference in bearing between three positions
using Theorems 2.1 to 2.2 and dividing it by the time difference (∠CDB
corresponds to exactly half the angle the aircraft has turned during moving from
B to C).

The bearing d is the bearing when looking from p′ towards p (B to C). This
is decidedly not the same as the current bearing, as can be seen in Figure 2.2.
Specifically, d is the bearing from B to C while the actual bearing b of the aircraft
at C is along EC, the tangent of the circle. To actually find the current bearing
of the aircraft, half the rate of turn has to be added, although multiplied by the
time difference between p′ and p. The time difference is usually 1s, but might be
larger due to device failures or the CPU coping with a huge workload.

2. Trajectory Prediction 11

Finding the chord length between the current and the next position can be
divided into three steps:

d =
distance(p, p′)

∆tpp′
(2.1)

ρ =
d

2 · sin
(
t
2

) (2.2)

c = 2 · ρ · sin
(
t ·∆t

2

)
. (2.3)

In these steps, d denotes the chord length that is traveled between p′ and
p, normed to 1s. Since t · 1s = β (Figure 2.2) due to the two theorems, the
formula for the radius ρ can be used by substituting β with t. The chord length
then follows from the third equation, but since the future positions will usually
be ̸= 1s, the factor ∆t is needed to scale the angle the plane actually turns. For
small angles, i.e., low rates of turn or high speeds (then ∆t will be small), the
small angle approximation could be used, leaving only the ∆t as a factor, but
this does not work well in the general case. The equation in line 4 is obtained
by inserting (2.1) into (2.2), and then (2.2) into (2.3).

From these variables, the step s can be generated, using

∆longitude = c · sin (b)
∆latitude = c · cos (b) .

If distance returns a value in m, ∆latitude and ∆longitude have to be
divided by earth’s radius to convert them to rad. In the python code, this is the
case, but in an embedded system, distances should be kept in rad at all times to
save computation time and to prevent numerical errors stemming from repeated
conversion. As step size in altitude, the linear approximation value in z-direction
is used. s can then be used the same way as in Algorithm 3, but it has to be
recreated with the adjusted bearing (line 9) after every iteration because of the
change in direction.

If the prediction passes through a thermal, an adjusted prediction is computed
in Line 13 in the same manner as in Algorithm 3.

2.3 Parameters

2.3.1 User Inputs

In the algorithms above, many parameters were used. At the current state, the
size of the aircraft is the most crucial one to be provided by the user. Whether
or not to add a safety factor onto it and how large it should be is to be decided

2. Trajectory Prediction 12

primarily from real-life testing data and experience, but the user might be able
to advocate for a safer value or for one that keeps false alerts to a minimum.
Another parameter that a pilot could decide, at least to some degree, is how far
the predictor should look into the future. A choice between, e.g., 30, 45, or
60 seconds could be given. The pilot could then choose one according to his or
her preferences, flight style (for a very acrobatic style, 60s will not be worth the
computation time), and traffic density to keep the prediction running smoothly.

The type of the aircraft could also be put to good use, especially to get a
best possible first estimate of the glide ratio of the plane, which is an essential
parameter for thermal detection (Section 3.2). For example, sail planes usually
have a ratio around 40 while paragliders’ ratio is about eight to ten. Alternatively,
the glide ratio could be provided by the user if an approximate value is known.
Further use of the type could be to change to a different mode for skydivers (see
Section 7.1).

2.3.2 Other Parameters

Several further parameters have to be set programmatically. One group consists
of the ones that indicate how many positions or how much past time should be
taken into account for the prediction or a decision.

• How many future points will be computed for the prediction. This depends
on the size and speed of the aircraft. This parameter is recalculated at the
beginning of every prediction as seen in Algorithm 1, line 1.

• How many past positions are considered to calculate the speed and ∆t in
updateSpeed. The initial value is 10.

• Time to calculate the speed. This parameter indicates how far back the
method updateSpeed should consider positions. Its current value is 10s.
The value that is reached first between these two parameters is pivotal.

• The number of points that are taken into account when calculating the
linear approximation. This refers to the first, longer approximation that is
made, not the shorter one. The latter looks at 3 positions to gain maximal
flexibility. The former, on the other hand, considers 15 past points.

• How many points have to be indicating a turn in the same direction to allow
a turn. This is explained in more detail in the explanation to Algorithm
1, Line 11. To make the algorithm adaptive, it is set to 3, which is the
minimal value so that the calculations can be performed at all.

• How many points are considered to calculate the average rate of turn. The
use of this parameter is explained in Algorithm 4. At this state, 10
positions are considered. Taking into account more positions would increase

2. Trajectory Prediction 13

stability during calm flights while less would render the turn prediction
more sensitive to quick changes (e.g., a slalom course).

The second group are the threshold values.

• Threshold for accepting the straight line approximation (σ). It is compared
to the MSE and is set to 1m, which might seem like quite a low bar. But
if σ is not met, the more adaptive prediction Lshort is computed for sure,
guaranteeing that at least one straight prediction is made.

• The threshold τ = 3m for the current position p, against which p is tested
whether it is too close to make a turn credible.

• A threshold for |∂2z
∂t2
|, deciding if a change in vertical speed might have

occurred recently.

Apart from the very first of these parameters, the values are chosen only from
simulation experience, which is likely to be biased. They need some thorough
testing and adjusting before the system can actually be deployed. To find suitable
values, a statistical approach could be used that keeps the information on which
predictions were made. Later on, this data can be used to check if the actual
manoeuvre that has just been flown was one of the predictions, and accordingly
adjust the values.

The values could also be found using machine learning. This would cause
a demand for vast amounts of data, which could be taken from websites like
xcontest [3].

Some form of learning on the device itself would be beneficial as well. Then,
the device could continue learning from real data and the thresholds can be
personalized to the pilot’s flight style. Different profiles can be made for different
scenarios (in a competition, the flight style might differ from the casual Sunday
afternoon flight), multiple pilots using the same plane, or a pilot using different
planes, especially different types of aircraft.

Chapter 3

Thermal and Wind detection

3.1 Thermal model and its limits

Thermals are modeled as vertical cylinders, described by the center point of the
bottom area, their height, and their radius. At the moment, a constant strength
is assumed within the whole cylinder. This model can be improved in different
ways.

As one possible improvement, the cylinder should be allowed to be askew.
This is important whenever there is more wind than just a light breeze, or the
thermal lies close to mountainsides because thermals can stick to them rather
than climb vertically.

The assumption of constant strength throughout the thermal is less accurate
the higher from the ground a thermal is observed. This is due to an effect
that makes the center of a thermal become stronger and could be modeled by
making the strength a function of the distance to the center. As a basis for
the improvement of the thermal model, the master’s thesis by Christopher E.
Childress on An empirical model of thermal updrafts using data obtained from a
manned glider could come in handy. [4]

3.2 Detection and handling

Variables used in the algorithm:

p′′ The position right before p′, i.e. usually, the position 2s ago

zp The altitude of position p

∆z The altitude gain since p′

∆v The change in speed

∆zv The loss of altitude due to gain of speed, or, vice versa, the altitude that
was bargained for by losing speed

14

3. Thermal and Wind detection 15

∆zgr The expected altitude that should be lost due to the gliding property of
the aircraft

∆zth The altitude gain that is unaccounted for by the other variables, i.e., that
is caused by a thermal

Algorithm 5: Procedure ThermalDetection

1 ∆z ← zp − zp′ ;
2 vold ← distance(p′,p′′)

tp′−tp′′
;

3 vnew ← distance(p,p′)
tp−tp′

;

4 ∆v ← vnew − vold;

5 ∆zv ← (∆v)2

2g · sign(∆v);

6 ∆zgr ← distance(p,p′)
glideratio ;

7 ∆zth ← ∆z +∆zgr +∆zv;
8 vsth ← ∆zth

tp−tp′
;

9 if vsth ≥ ϑ then
10 add p to a thermal;

Algorithm 5 checks if the current positions lies within a thermal using the
energy conservation law and the principle of a glide ratio. The glide ratio indicates
how much altitude is lost when a glider travels a certain distance forward. It is
almost constant in the weight of an aircraft and varies only slightly at operational
velocities, thus a constant value works well in a first model and is used in this
thesis. From the glide ratio, the expected altitude loss since the last position can
be calculated (line 6).

A second factor is the altitude gained or lost due to a change in speed. It is
calculated in lines 2 to 5, using

1

2
·mv2 = mgh (3.1)

⇔ h =
v2

2g
, (3.2)

where g = 9.81m
s2

is the gravitational acceleration. Inserting ∆v, which is the
difference between the current speed and the speed at the last stored position,
into (3.2) yields the absolute value of the height gain or loss due to deceleration
or acceleration, respectively. To get a signed value indicating whether height was
gained or lost, the value is multiplied by the sign of the difference in velocity in
line 5.

The third component is the actual height loss based on GPS, which is com-
puted in line 1. As long as the plane is gliding (i.e., not motorized) and there is

3. Thermal and Wind detection 16

no thermal, these three values should sum up to 0. Note that ∆z is the height
gain while ∆zv and ∆zgr denote the loss of such. As a consequence, if the sum
does not add to 0, the difference has to be caused by a thermal. In lines 7
to 8, the vertical speed of the thermal is calculated and in line 9, this value is
then compared to a minimum strength of ϑ = 0.5m

s . The threshold filters GPS
imprecision by not allowing small values. The value of ϑ might also be adjusted
if several consecutive positions have a smaller value. In that case, continuous
imprecision becomes highly unlikely because it would mean that the GPS shield
provides increasingly faulty data. Since planes usually have the ability to break,
sink areas can not be reliably noticed with that procedure. Especially in com-
mon approach paths, many sink areas would be detected where, in fact, there are
none, hence not the absolute value is taken in line 9.

A possible improvement concerns the glide ratio. A more detailed model
could be developed, allowing for a speed dependency. This relation would have
to be learnt from experience during use to continuously improve the precision
of detected thermals. It is very aircraft specific, and would require a pilot to
reliably swap profiles when flying different aircraft to prevent wrong calculations
from being made.

There is still one situation that cannot be solved with the model described
in Algorithm 5. If a plane is flying against a strong headwind and that wind
diminishes in between two polled positions, the plane will very quickly accelerate
(with respect to the ground, as only ground speed (GS) can be measured) without
losing altitude. In the model, this would lead to a wrongfully detected thermal.
A solution to this issue is explained in Section 3.3.1.

3.3 Wind

With only GPS positions as a basis to determine wind, there are two options,
both of which are hardly acceptable if a reliable prediction in windy conditions is
to be made. The first is to use the minimal airspeed of the aircraft, which would
have to be provided by the user. If the ground speed (which is the speed that
can be measured through GPS) falls below the minimal indicated airspeed (IAS)
but the aircraft is not losing altitude quickly (which would be the measurable
component of a stall), there must be headwind keeping the aircraft in the air.
With this information, only one direction of the wind can be determined, though.
Thus, to determine the x and y component of the wind, two aircraft have to be
in such a state, heading in different directions. This, however, still only leads to
a lower bound of the wind speed. In a similar manner, an upper bound could
be determined if the maximum indicated airspeed is known, assuming it is never
exceeded. For this to be useful, though, an aircraft has to be flying quite close
to that limit.

3. Thermal and Wind detection 17

The second option is to analyze the flight path. If an aircraft is climbing
within a thermal, its course has approximately the form of a helix. If the helix is
askew, this is most likely due to the airmass moving sideways. The circle pattern
can be recognized by looking at the heading of the aircraft. Then, after a full
circle has been flown, the lateral shift in position must be due to wind, assuming
once again a more or less constant turn. This assumption is what renders this
approach mediocre at best since an aircraft will rarely describe a near-perfect
circle, be it due to a terrain blocking the path, the sun glaring into the pilot’s
face, the wind blowing in the opposite direction of the pilot’s intention, or another
aircraft that has to be avoided.

3.3.1 Improvement ideas

To improve wind and thermal detection, a solution that obviates the need for
these options would be helpful. One element that can achieve this are indicated
airspeed sensors. They can be installed on the wings and provide real-time speed
data to the predictor. The wind detection would tremendously profit from their
information, but also the thermal detection and, ultimately, the turn prediction
if the sensors are attached at the wingtips. As for the wind detection, the speed
calculated from the GPS data can be compared to the IAS, the difference yielding
the wind speed. There are still at least two aircraft needed, flying in different
directions, but because the comparison can be made at all times, this is not really
a constraint anymore. This poses a strong improvement to the first method of
wind detection without sensors, namely because it can happen every few seconds
and because it does not only result in an upper or lower bound. But it also
presents an improvement on the second approach, which needs to look at a large
part of the flight history, because it can be calculated using only a few data points
and does not need a few minutes of flying before the first wind can be detected.

The IAS sensors can also solve the mentioned problem of wrongfully detected
thermals. If the model uses IAS instead of GS, rapidly changing wind does not
influence ∆v and thus the thermal recognition.

In order to keep the data on a thermal up to date, the strengths at known
positions could be weighted according to how far in the past they have been
discovered. Thus, if a thermal is not observed for some time and its strength
changes, new data points will quickly outweigh older ones. This allows the pre-
dictions to quickly adapt to the natural cycle of thermals.

Chapter 4

Interaction with other aircraft

4.1 Communication

Aircraft have to frequently exchange the data of their predictions so that every
aircraft in the vicinity can check for collisions. There are multiple possible ap-
proaches to achieve that. The simplest would be for every airplane to broadcast
its position every second, marked with a unique ID. Then, other aircraft could
build a history for every aircraft in the area, and predict their movement from
these data points. This would lead to an unnecessarily high number of calcula-
tions, though, since each trajectory will be calculated by every aircraft, leading
to a computation time of O(n2), where n is the number of aircraft around.

As a correction, solving the problem of each trajectory being computed mul-
tiple times, an aircraft could compute its own trajectories and then send them
to the other planes. While this concept solves the computation time issue, it
will overload the radio frequency very quickly since a lot of data has to be trans-
mitted. In situations where an aircraft is, say, initiating a turn while inside a
thermal, there will be 10 different predictions, each possibly containing 100 future
positions. Sending these 10 predictions will take multiple seconds (this is still per
aircraft!). Thus, this approach is not feasible, even though the computation time
for each aircraft is O(n).

To reduce the data that is transmitted, the trajectory data is sent in the
second form explained in Section 2.1.1. General information is hereby only
sent once per transmission, i.e., the current position and direction, the size, and
the speed of the plane. There are two possible directions because there is a small
difference depending on whether a turn or a straight trajectory is assumed for a
certain prediction (see the difference between d and b in Algorithm 4). There
could be a bit indicating how many directions are sent to save some data in case
only straight lines or only turns are predicted. Trajectory specific data is sent
as 2-tuples containing the trajectory type, and rate of turn in case the type is a
turn. As of now, the trajectory type is a binary variable (straight or turn), but
this could change later, so, in the calculation below, 2 bits are reserved for it. In
Table 4.1, an estimation of the amount of data that has to be transmitted is

18

4. Interaction with other aircraft 19

shown.

Parameter Description Bytes
Position 4 numbers (lon, lat, alt, time) 4 · 32bit = 16B
Direction 2 · 3 numbers (x, y, z) 6 · 32bit = 24B
size collision radius of the plane 16bit = 2B
speed - 16bit = 2B
sum sum of constant bytes 44B
type type of the trajectory 2bit

rate of turn - 30bit

sum per trajectory - 4B

Table 4.1: Overview of transmitted data

As an example, let us extend these numbers to the transmission of ten tra-
jectories, which is a rather high but well possible number. In this case, the total
data sums to 44Byte + 10 · 4Byte = 84Byte. Assuming a transmission rate of
R = 5kB/s, this would, in theory, allow for up to Smax·R

84B = 21.9 aircraft, where
Smax = 1

e = 0.368 is the maximum throughput of a slotted ALOHA transmission
protocol. This is only a rough estimation, though, as the retransmission rate is
ignored. Since the length of a transmission will fluctuate considerably, a fixed
window size as used in slotted ALOHA is not a good choice either. Using an
approach with variable window size could hence improve the number of aircraft
that can be supported. When the number of aircraft grows too large, some tra-
jectories could be omitted. This would have to be handled by the predictor as it
could decide which predictions are the least likely.

Periodically, knowledge about thermals or wind has to be exchanged. This
may happen every few seconds, but can be adapted in case the radio frequency
is already heavily in use.

4.2 Collision Detection

In this section, the algorithm to detect collisions from the generated data is
propounded.

Variables used in the algorithm:

T A list of the aircraft’s own positions

U another aircraft’s trajectory

d the distance below which it is considered a collision

L An array-like object storing all collisions that are found

4. Interaction with other aircraft 20

Algorithm 6: Function Detect Collision
Input: T ,U , d

1 Function Detect Collision:
2 L ← ∅;
3 t0 ← earliest t ∈ T ;
4 forall u ∈ U : u earlier than t0 do
5 if distance(t0, u) ≤ d then
6 L ← (t0, u);
7 forall (t−1, t, t1) ∈ T 3: t−1, t and t1 consecutive do
8 forall u ∈ U between t−1 and t1 do
9 if distance(t, u) ≤ d then

10 L ← (t, u);
11 return L;

Algorithm 6 compares every point of the trajectory of aircraft A with the
closest points of the trajectory of aircraft B (closest refers to time). Thus, every
point is compared to at least two points of the other trajectory. If the time gap ∆t
of aircraft A is larger than the one of another aircraft, a point p of A’s trajectory
will be compared to all points that lie, on the time scale, between point p itself
and the next point in A’s trajectory, which has a timestamp of ∆t more than p.

Since sudden movements cannot be foreseen, collision spheres can be made
bigger than the size of the aircraft itself. How large could be made dependent on
a security factor entered by the user to take into account his or her flight style,
and from experience during testing. It might also be adjusted programmatically
based on how many aircraft are close by to give the device a chance to prevent
itself from getting overloaded. If the collision distance is too big, warnings might
occur frequently when there is no actual danger.

A bargain could be to have two different sphere sizes that are compared. If
only the larger ones collide, a weaker warning can be issued so that the pilot can
differentiate. In all cases, an avoidance suggestion can be made based on trajec-
tories that have been calculated anyways. Since these trajectories are plausible
future trajectories, they will usually be feasible in flight. As a short example,
consider an aircraft that is ending a turn. Its predictor will likely be calculating
both a straight trajectory in the current direction and a turn whose trajectory
is close to the continuation of the turn. If a collision is detected on the straight
flight path, the system could trigger an advice to keep turning if no collision was
detected there. If, on the other hand, the turn will lead to a collision, the pilot
could be advised to end the turn and fly straight. Since the straight trajectory
has just been checked for collisions, this is, at least in that moment, a safe advice.

Chapter 5

The Simulation

Alongside the algorithm, a simulation was created so that the ideas could be
visualized and tested. To accelerate implementation, python was chosen as the
programming language for both the implementation of the algorithm and the
simulation. As environment for the simulation, Panda3D was elected. Being a
3D engine made for game development, it promised to provide a lot of useful
functionality in modelling aircraft and thermals.

To stay as close to reality as possible, total decoupling of the Predictor
class from the simulation was targeted. To simplify this step, an Aircraft class
was created that simulates the plane and invokes the different functions of the
predictor. The decoupling ensures that only data that would be provided in
reality as well is used by the Predictor.

An Aircraft provides a fly method that moves the model in the environ-
ment. There is an option to add some noise to the flight to create a more authentic
setting. It can be toggled and adjusted from the user interface (UI). When noise
is turned on, the fly method also adjusts the speed according to altitude lost or
gained by said noise. The noise is modeled by a two-step Gaussian distribution,
meaning that every second, three drifts Di are determined by

Di ∼ N (0, σ), i ∈ {x, y, z},

with σ the standard deviation that can be adjusted in the UI. The engine provides
a parameter dt that indicates the time that has passed since the last frame. fly
is called every frame to move the aircraft smoothly. During each call, a random
x, y, and z movement are determined by

i ∼ N (Di, dt · σ), i ∈ {x, y, z},

where the factor dt is taken into the distribution. It does not have to be squared
since σ denotes the standard deviation and not the variance.

The class also visualizes the predictions that are made by the Predictor as
well as any thermals known to the latter. Further, it provides methods to send
and receive prediction data, replacing the radio transmission, as well as one to
start the collision detection based on the received data.

21

5. The Simulation 22

Figure 5.1: An aircraft right before and inside a thermal. Please note that only
every other prediction sphere (yellow) is shown for simplicity.

The UI allows creating new aircraft and thermals at runtime using buttons,
and trajectories of existing planes can be changed in an options dialogue, and
aircraft can be deleted. Further, scenarios can be loaded at runtime and noise
can be toggled and its value adjusted. While the simulation is paused for these
dialogues, it is also possible to pause it by button or by pressing P, allowing to
move the camera to a more informative angle or to analyze a situation in more
detail.

In Figure 5.1, an example of the simulation is depicted. The black spheres
are the positions obtained from the GPS shield. From these, the predictions,
which are illustrated in yellow, are calculated. The blue sphere represents the
collision sphere of the aircraft and the green spheres portray a thermal.

In the top image, the aircraft has been flying in a straight line and is about to
enter the thermal. Thus, two predictions are made, that is, prediction 1 assuming
the thermal is still present, and prediction 2 ignoring the thermal in case it has
dissolved (see Algorithm 3, lines 4 to 5).

In the bottom image, the aircraft is amidst the thermal, which is why there
are twice as many predictions now. Prediction 4 corresponds to L1 in Algorithm
3 (Line 3) while prediction 3 (L2) additionally adds the strength of the thermal,
considering the event that the current climb is not due to the thermal, yet there

5. The Simulation 23

Figure 5.2: A screenshot of the simulation featuring the collision highlighting.

is a thermal in front of the plane (which is the current state of information).
This event is quite unlikely, but the calculation is similar to prediction 5, which
in turn is crucial that it be computed. Prediction 4 also factors in that we might
not yet have detected the full extent of the thermal (because no plane has flown
there yet) as its trajectory keeps going in the exact same direction as the recent
points.

Prediction 6 covers the case where either the thermal ends at the current
position of the aircraft because the thermal’s size has changed, or because the
climb was not caused by the thermal in the first place and ends now. Prediction
5 assumes that the climb is caused by the thermal and will continue until the
thermal as it is currently known ends.

In Figure 5.2, a second example is shown. It displays a simple scenario to
show the collision detection. The collision detection algorithm did at no point
use any of the game engine’s tools for collisions. Rather, the positions in the
predictions are compared, colliding ones stored, and using the latter the scene
is searched for the yellow spheres at the collision location so that they can be
coloured in red.

Chapter 6

Analysis

6.1 Time Analysis

There are three crucial components that have to be examined for the time anal-
ysis.

1 Trajectory prediction

2 Computation of received trajectories

3 Trajectory comparison

The trajectory prediction is a swift process as it involves at most 10 trajec-
tories that need to be computed. The constant part consists mainly of the linear
approximation, but since only 15 positions are considered, this computation is
not very time intensive. Further, the prediction time does not depend on the
surroundings, namely thermals or the number of other aircraft. The average
time of the prediction is about 0.015 seconds while the maximum is around 0.065
seconds. This times were achieved on an Intel i7 with 16GB of RAM.

As only parameters describing a trajectory are exchanged between aircraft,
each of these trajectories has to be converted into a list of positions. This accounts
for 50− 60% of the total collision detection time, the other 40− 50% originating
from the trajectory comparison.

The sum over all comparisons between two trajectories has a runtime of O(nt ·
m), where nt is the number of trajectories an aircraft has computed as its own
predictions, and m is the total number of received trajectories. But because
the number of trajectories an aircraft computes has a fixed upper bound of 10
trajectories, we have O(nt) = O(1) and O(m) = O(nt · n) = O(n), where n is
the number of aircraft in the area.

When looking at the total number of comparisons nc = nt ·m that are made,
the linearity is conserved as O(n2

t) = O(1). This relation is shown in Figure 6.1.

24

6. Analysis 25

Figure 6.1: Computation time as a function of the total number of comparisons
that are made

The blue dots are single data points, and the red dots represent the mean com-
putation time for a given number of comparisons. The variance between neigh-
bouring red dots comes from the fact that not every number of comparisons nc

can be achieved from every nt or m. Computing an additional trajectory takes
significantly longer than an additional comparison. This can be reasoned from
the proportions mentioned above. While there are m trajectories that have to be
computed, there are nc = nt ·m comparisons, but both take roughly the same
amount of time to execute.

In a scenario with 4 aircraft flying through thermals, the average time con-
sumed by the computation of trajectories was 0.032s while the comparison took
0.025s, giving an average collision detection time of 0.057s. The peak values
accumulated to 0.11s, 0.10s, and 0.21s. This is still well below the one-second
limit that was aimed at for the frequency of these calculations.

6. Analysis 26

6.2 Limits of the Algorithm

If one or two planes are added to the scenario described above, the linear growth
is still visible. But in situations where several aircraft change their trajectory at
the same time, the simulation cannot keep up with the amount of calculations
that should be done every second, for the computation cannot be distributed
on different machines but has to be made on the same device, hence gaining a
quadratic runtime. With two more planes (that makes eight in total, or twice
as many as in the original scenario), the simulation exceeds its limit and does
not work properly anymore. Factoring in the quadratic runtime, this translates
to a factor of 4 for the algorithm running on the aircraft in a distributed man-
ner. Not wanting to run close to the operational limit, about 10 aircraft can be
accommodated.

As the implementation on the device is planned to be written in C, the
computations will likely run a lot faster, allowing the the algorithm to reliably
work among more aircraft.

Turns are predicted under the assumption that the rate of turn is constant
over the last few data points. This makes it hard to anticipate turns or their
ending. If a turn is initiated slowly but steadily, the current model will not
predict an accurate trajectory.

When presented with faulty data, the algorithm will consequently compute
imprecise outputs. Some sort of input filter is necessary, deciding if an input is
amiss.

6.3 Conclusion

The simulation shows that predictions are made in a way that seems logical when
a human looks at them. Of course there are some that seem counter-intuitive in
most situations, but cover a special case and are thus nevertheless important. It
can further be concluded that collisions based on the predictions are recognized
accurately since trajectories do not touch each other without being detected.

The simulation can be used to implement future ideas and test them without
the need of many flight hours. Panda3d also provides a C + + interface, thus
this could even be done closer to the language that will be used for the device.

Thermals, the core element of this thesis, are detected and used in the predic-
tions. Wide-spread solutions like FLARM, which is designed for powered aircraft,
do not consider thermals, rendering their collision warnings rather inaccurate in
regions with lift areas. Since this is where gliders of any kind will usually fly, this
is a crucial functionality to be provided to these planes.

Chapter 7

Further Work

7.1 Future Ideas

There are several parts of the trajectory prediction that can be examined in more
detail, and other interesting usages of the device. Here, a few that have not been
mentioned in the related chapter will be presented.

• Terrain data. The collision avoidance advisory does not yet account for
obstacles. Yet, obstacles like mountains are omnipresent in the world of
gliders. Taking terrain data into account for the course advisory would
increase safety. In the current version, a pilot has to check for obstacles
before he or she can safely engage in the advised flight path. In a situa-
tion where a collision may be imminent, this might be beyond any pilot’s
capacity. In such a situation, a highly reliable advisory is invaluable.

• Compass. Using a compass to determine the current heading of the air-
craft could enhance the prediction in different ways. If the current bearing
was known, the decision process could be improved, capitalizing on the
difference between the straight-line and the turn assumption, reversing the
argument in Algorithm 4. Further, from the difference between the head-
ing according to the GPS data and the heading obtained from a compass,
wind could be detected fairly easily. A crucial condition for this is that
the device be fixated to the aircraft in a way that it cannot change its
orientation compared to the aircraft.

• Mode for parachutes. Such a mode would allow a skydiver to be noticed
by aircraft also equipped with the device. The latter could be warned if
they are getting close to an area where a skydiver will be diving through
soon. The data generated by a skydiver could prove useful in wind detection
(requiring a detailed model, though, that takes the change of wind direction
with increasing altitude into account).

27

Bibliography

[1] “Flarm,” 2022. [Online]. Available: https://flarm.com/

[2] “Movable type scripts,” 2022. [Online]. Available: https://www.movable-type.
co.uk/scripts/latlong.html

[3] “World xcontest 2022 [home],” 2022. [Online]. Available: http://www.
xcontest.org/

[4] C. E. Childress, “An empirical model of thermal updrafts using data obtained
from a manned glider,” Master’s thesis, The University of Tennessee, May
2010. [Online]. Available: https://trace.tennessee.edu/cgi/viewcontent.cgi?
article=1659&context=utk_gradthes

28

https://flarm.com/
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
http://www.xcontest.org/
http://www.xcontest.org/
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1659&context=utk_gradthes
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1659&context=utk_gradthes

	Acknowledgements
	Abstract
	1 Introduction
	2 Trajectory Prediction
	2.1 Algorithm
	2.1.1 What a prediction looks like
	2.1.2 Structure

	2.2 General decision process
	2.2.1 Methods used

	2.3 Parameters
	2.3.1 User Inputs
	2.3.2 Other Parameters

	3 Thermal and Wind detection
	3.1 Thermal model and its limits
	3.2 Detection and handling
	3.3 Wind
	3.3.1 Improvement ideas

	4 Interaction with other aircraft
	4.1 Communication
	4.2 Collision Detection

	5 The Simulation
	6 Analysis
	6.1 Time Analysis
	6.2 Limits of the Algorithm
	6.3 Conclusion

	7 Further Work
	7.1 Future Ideas

	Bibliography

