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Abstract

A cosmic ray consists of mostly highly energetic protons that emanate from the
sun, the Milky Way and distant galaxies. By colliding with particles in our at-
mosphere they trigger a chain reaction that leads to so called cosmic-ray showers
of lower energetic particles like pions [1]. In modern biology these are held re-
sponsible for inducing the random genetic mutations that led to the development
of life on our planet as we know it [2].

In the frame of this thesis we will explore how we can make use of these
random mutations of the genetic representation of competing candidates to find
functions that correlate well with the stock market. This will yield a set of
formulaic alphas that are used in quantitative investing to recognise patterns in
a stock’s price development and trade on them accordingly. We will evaluate the
performance of a set of eight formulaic alphas that are generated by a genetic
program on the Nasdaq 100 and realize that they are highly correlated with
the development of the federal reserve’s balance sheet. The assessment of a
simple trading algorithm’s performance increase allows the assumption that the
generated formulaic alphas help to recognise patterns in the stock market.
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CHAPTER 1

Introduction

When looking at the stock market and observing the general price developments
of individual stocks they can mostly be described by the companies predicted
performance, alternative investment opportunities and macroeconomic develop-
ments, like changes in the inflation rate or the promised returns on treasury
bonds. However, the more detailed price movements depend much more on the
combination of the behaviours of all the stock market participants. This could
for example be a learned rule where to set a stop loss or the definition of a buying
signal when a stock price brakes its recently tested highs. The assumption for
this thesis is, that the sum of the behaviours of all the stock market participants
generates patterns. If we are able to find and recognize these we can try to
monetize on our knowledge of probable future behaviour of the collection of par-
ticipants by aligning our trading strategy with the pattern’s price development.
Since finding these patterns comes with the potential to make large amounts of
money, many stock market participants are constantly trying to discover them.
When they do, they change their trading behaviour to monetize on their knowl-
edge. However, when too many participants do this, the pattern itself changes
its meaning and thus the knowledge of it becomes less valuable. This leads to a
race to find the most useful and meaningful patterns and a big secrecy around
which ones a participant discovered and uses for his/her trading decisions.

1.1 Capturing Patterns in Price Developments

To find and make use of patterns in price developments, we first need a way to
describe them. A lot of the time a combination of so called formulaic alphas and
machine learning algorithms are used to capture the dependencies of different
input parameters and to extract a trading decision from them.

1.1.1 Formulaic Alphas

A formulaic alpha (also called "alpha") is a function that takes multiple stock
related parameters of a past time period. The value it returns can be used as
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a signal or prediction for the price of the next time period. In the paper [3]
some of the most well known and most used formulaic alphas are presented. To
understand better what a formulaic alpha is, let us take a look at an example:

Close — Open

Alpha#101 =
phaif High — Low

(1.1)

Let us assume our pattern takes into consideration the Low, High, Opening
and Closing price of a trading day of a stock. The result of this computation
can be used as one of many input signals for a trading algorithm. Thus we can
compute this formula for a specific stock and then use the outcome to decide if
we buy a long or short position.

1.1.2 Trading Bot

Some of the patterns might not be captured by a single formulaic alpha, but
by a certain combination of alphas. A trading bot in this thesis will take a set
of formulaic alphas as features and output a trading recommendation. When
training it on labeled data (the label "1" means that buying at the closing price
today and selling at the closing price of the following day would be profitable; "0"
means unprofitable) the bot will learn that some specific combinations of alphas
are predicting the stock market behaviour better than the individual alphas.
These specific combinations are somewhat a "pattern of patterns" and thus some
of the patterns we extract from stock market behaviour are captured in the
trading bot that combines the alphas predictions to make a trading decision.

1.2 The Process of Finding Formulaic Alphas

The sourcing for novel formulaic alphas is a very hard and creativity seeking task.
In this thesis we will explore how we can make use of genetic programming to
automate this process.

1.2.1 Automation using Evolutionary Algorithms

The term evolutionary algorithm describes a set of machine learning approaches
that are strongly leaning on the concept behind the actual natural evolution
process. This means it’s based on the idea of "survival of the fittest". A set of
candidates is defined that are competing in solving a certain task - in our case:
predicting stock market price developments. By measuring how well a candidate
solved the given task we can choose the best ones and cross them in the hope
that their off-spring will be even better. Genetic programming is one of the ways
to implement this evolution motivated approach. Here we simulate some of the
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coincidences of crossovers of different candidates that happen in real life, and also
introduce some random mutations in the candidates genetic representation.

Since the search space for the optimal solution is very large and for reasons of
computational resources and time constraints can’t be fully explored, we cannot
guarantee to find the best possible solution. It is actually quite improbable for
us to find that best solution. However, evolutionary algorithms - and genetic
programs in specific - are great tools to find decently well performing solutions
in a reasonable amount of time.
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Alphas and Trading Decisions

To make it clear how data is combined into formulaic alphas and then used to
generate a trading decision I will explain the flow of data through the algorithm
in the following.

2.1 Data Sourcing and Feature Computation

In the first step we source the financial inter-day data of all the companies
contained in an index I from YahooFinance!. We denote the data up until
day t of stock s as d;s. Given a certain time period and I we get a set of
data points D1 = {di1 51, di2,s1,ds1,s2, di2,s2, - .. } (where s1,s2 € I and t1,t2 €
[start Date, endDate]) that we can use to train our algorithms and test our re-
sults.

Given a vector of formulaic alphas A = [al as as ... ]T, where a; could
for example be equation 1.1, we denote a;(ds) as the value that the formulaic
alpha a; returns when given the data d; 5. It follows naturally that we describe the
vector of results that a vector A of alphas generates given data d; s as A(dgs) =

[al(dm) ag(dtﬁ) ag(dtjs) ]

2.2 Generating Formulaic Alphas with Evolutionary
Algorithms

As we already saw we can make use of the idea of "survival of the fittest" to solve
problems. But which concrete steps do we need to take if we want to predict stock
market price developments?

First of we need to find a "genetic representation" of our candidates that
can easily be mutated or crossed with the genetic representation of other can-
didates. In our case this will be the tree representation of a formulaic alpha -
but more about this later. The genetic representation also will implicitly define



2. ALPHAS AND TRADING DECISIONS 5

the size of our search space, which - for us - will contain all possible formulas
that take the data defined in d;, as arguments. In an attempt to not overfit
on the given training data and decrease the search space our algorithm will only
consider formulas whos tree representation has a depth that is smaller than a
certain value.

To be able to measure how well a candidate (here: formulaic alpha) performs
on the given task, we need to define a measure of "fitness". For this we will
make use of the information coefficient (IC) as presented in [4] - so the corre-
lation between the value that the formulaic alpha returns and the actual price
development. Since for making reasonable trading decisions it is important to
find a set of alphas that are not too strongly correlated, we will also take into
consideration how similar a candidate’s predictions are to the ones of previously
found formulaic alphas.

The approach of the genetic program is the following. First we will gen-
erate a starting population of candidates (formulaic alphas) and their genetic
representations. In the next step we compute the fitness (IC with actual price
development) value of each candidate. These performance measurements will
then be taken into consideration when composing a new generation of candi-
dates. For creating the new generation we will take on the best ones of the last
generation (this is called elitism), crossover candidates that are pulled from the
previous generation, induce random mutations in well performing candidates and
insert fresh ones. We will repeat the same process of creating a follow-up gen-
eration multiple times until a computational limit or a certain fitness value is
reached. The candidates in the last generation are then a collection of possibly
well-performing formulaic alphas.

This whole process is non-deterministic in the hope that mutations and cross-
overs of random well performing candidates will create even better off-springs.
Thus, different runs of the algorithm will probably and hopefully end up in dif-
ferent local optima of the search space.

To train this genetic program we will need a lot of examples like dy s €
Dgenerate € D and the corresponding possibly realized returns 7. From this
set Dgenerate the algorithm is going to get randomly sampled data for which it
is supposed to predict an expected return. The result of the formulaic alphas is
then compared to the actual return to compute the fitness. The algorithm only
uses non-timeseries data. This means it only takes into consideration a couple

of intraday parameters of a single trading day to predict future behaviour.
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2.3 The Trading Bot

2.3.1 Training a Trading Bot

Let us assume we are trying to train a trading bot that predicts if buying a stock
at today’s closing price and selling it at the closing price after a holding period
of h days will be profitable. We can create labels for historical data of a stock s,
by comparing the closing price on date ¢ with the closing price on date t + h. If
that trade was made, the actual relative return (for a fixed holding period h) is
described by

_— closing(dyn,s) — closing(dy s) (2.1)
ts closing(dy,s) '

How we choose the label for our trading bot depends not only on the actual
return but also on the cost ¢ that a trade triggers (usually around 0.3%). If we
want to teach our bot to only trade if the expected return is bigger than the cost
that is caused, we choose the label as follows:

1, if —c>0
lg=4 e (2.2)
0, ifr,s —c<0

After defining a vector of alphas A, sourcing enough data d¢ s and extracting
optimal trading decision labels l¢ s, we can train our trading bot in a supervised
learning manner. For a layout we choose a combination of multiple decision trees
that each are trained independently. A trading decision is then generated by a
majority vote of the different trees. For the training this setup will take A (d¢s)
as features and lg ¢ as labels.

2.3.2 Decision Trees for Trading

Similar to the paper [5] we will use decision trees to turn a set of formulaic alphas
into a trading decision. However, unlike in [5], we will not use them to rank all
possible investment opportunities in an index and then buy the one with the
highest probability to yield good returns. Our approach will be much simpler.
Our trading bot will just take a stock’s information and decide if buying at the
closing price of the day of the information and selling at the next day’s closing
price will be profitable or not. This of course includes the trading fee of 0.3% per
trade.

We will train three different decision trees (CatBoost, Light GBM and XG-
Boost) individually to make trading decisions. The final trading decision will
then be dependent on the "majority vote" of the three decision trees.



CHAPTER 3

(Genetic Program

3.1 Genetic Representation of Formulaic Alphas

Genetic Representation

For us a formulaic alpha will basically just be function that takes a set of argu-
ments - in our case the open, closing, high, low, return (of the previous day in
percent) and volume of a trading day - and returns a value that correlates with
the stock market closing price of the following day. Let us consider the example
equation that we have already seen 1.1:

Close — Open

Alpha#101 =
phast High — Low

(3.1)

To find a "genetic representation" that we can easily modify by mutating it
or crossing it with other candidates’ genetic representations, we have to think of
other ways to represent this function. One of the more intuitive ways is to think
of a function as a tree, where all non-leaf nodes are sub-functions (like division,
addition, negate, absolute value, sin) and all leafs are either a real number or one
of our input variables. To derive our genetic representation of a formulaic alpha it
is easier to think of the way a function would be implemented if each sub-function
was a method in programming that is called by handing over arguments - like in
3.2.

Alpha#101 = div(sub(Close, Open), sub(High, Low)) (3.2)

Since the arity of every sub-function is clearly defined we can even leave out
the brackets and commas (3.3).

Alpha#101 = div sub Close Open sub High Low (3.3)
We finally save this into a list (3.4).

Alpha#101 = [div, sub, Close, Open, sub, High, Low) (3.4)

7
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In the algorithms implementation this list format of a function 3.4 is its
genetic representation.

However, intuitively it is easier to imagine that we are working with a tree
structure. We will visualize crossovers and mutations with this more understand-
able representation.

div

/\

sub sub

NG U

Close Open High Low

3.1.1 Crossovers and Mutations

In the course of our evolutionary process we will mutate and crossover different
functions to create new off-springs that might perform better than their prede-
CESSOrs.

Crossover

Let us first take a look at how we crossover two given functions. The underlying
idea is that if we have two well performing candidates - the parent and the donor -
the mixture of these could yield an even better performance [6]. To come up with
this "off-spring" we choose random sub-trees in both functions and just exchange
the parentsypiree With the donorgsypree. Let us have a look at an example.

We take 1.1 as parent and the following example program from [3| as donor:

Alpha#41 = \/High x Low — Vwap (3.5)

In the tree representation this is:

sub

N

sqrt  Vwap

mult

N

High Low
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From our donor we now take a random subtree donorg,piree - let’s say:

mult

N

High Low

In the parent we also choose a random subtree parentg,piree - let’s say:

sub

PN

Close  Open

We replace parentgypiree in the parent by donorgypiree. This is how we end up
with a new off-spring:

div

mult sub

P NN

High Low High Low

During this whole procedure, we are careful not to choose donorsypiree as
deeper than parentgypiree. Besides other things this would lead to bloating of
the formulas and possible over-fitting on the given training data on which the
performance of the candidates is evaluated.

Mutation

A mutation follows the idea of genetic mutations as they happen in the real
world [7]. With a set probability we introduce some random changes in the
genetic representation of a function. We have three different types of mutations
that we can use to introduce changes into a parent function:

e sub-tree mutation:

Once we understood the concept of a crossover between two functions, this
is quite simple. Instead of taking another existing function as a donor, we
randomly generate a function - of which we do not know the fitness - and
take that as a donor for a crossover.
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e hoist mutation:

In this mutation we randomly choose a sub-tree of our parent function
parent gupiree- We also draw a random sub-tree of that parentg,piree Which
results in parsubsyptree. Now we simply replace parentgpiree in the parent
by parsubgyptree- This mostly leads to a shortening of the function and thus
helps to counteract the bloating of formulas.

e point mutation:

The point mutation is the most intuitive one. It simply chooses a node
in the parent at random and replaces it with a random node of the same
category. Thus, if that node is a sub-function (like add, div, abs, sin, ...)
we replace that node with another randomly drawn sub-function that has
the same arity. Respectively we do the same thing if the node is a real
number or one of the input parameters.

These mutations are not always applied, since this would tamper with the per-
formance of the generated functions too much. With a certain (quite low) proba-
bility we apply these mutations on off-springs that were created in a crossover of
two functions. The hope is that this will lead to a better exploration of the large
search space and thus enable us to find good solutions that we would otherwise
not be on the path of finding.

3.2 Fitness Evaluation

To decide which ones of our created off-springs and their parents is allowed to
move on to the next generation, we need a measure of their predicting perfor-
mance on the stock market. In the process of genetic programs this is called the
"fitness of a candidate".

3.2.1 Correlation with Stock Market Developments

As suggested by the paper [5] we can use the information coefficient (IC) pre-
sented in [4] to evaluate how well a candidate’s predictions correlate with the
actual stock market. Over the available historical training data it takes the av-
erage Pearson correlation between the development according to the candidate
and the actual return if a long position was bought.

T

1 .
IC e = T Z corr(candidatepredicted(t), returngetya(t)) (3.6)
t=1

For obvious reasons we want to find functions that have an IC that is as high
as possible, since this allows us to be more confident in the prediction that an
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alpha makes. Thus, to evaluate the performance of a candidate we compute
the I1Cyye between its predicted development (candidatepregicteqd) and the actual
price development (returngeyar)-

3.2.2 Correlation with Already-Discovered Alphas

If we just take ICY.e as the measure of fitness of an alpha we find ourselves with
the problem that the results of running the evolution process multiple times are
very likely to converge to similar local optima. To keep exploring the search space
more, we will also take into consideration how different a candidate is to a set
of given "other functions" (others, OF). We do this by looking at the maximum
correlation the candidate’s predictions have with the predictions of others.

T
1 . )
ICothers = fgg}lg‘ T E CO"MF(candzdateself7 predicted(ﬂy Candldatei, predicted(t»
t=1

(3.7)

3.2.3 Overall Fitness

When evaluating the overall fitness of a candidate/potential alpha we have to take
both the ICypye and the ICpers into consideration to make sure that we explore
more of the search space and don’t converge to solutions similar to the "other
functions" others. For this purpose we define a max _ic. Every function that
has a ICypers greater than this value will be inadmissible. From the available
information, this is very similar to the approach that was chosen in [5]:

0, if IC,4hers > max_ic (3.8)
ICtrye, it ICotpers < maw_ic '

fitness = {

However, in the context of our genetic program we will try to already incor-

porate the IC pers before it passes the max ic. We do this in the following
way:

, if ICsthers > max_ic (3.9)
Ictrue —px* ICothersa if ICothers < ma:niic '

fitness = {0

The choice of p here symbolizes how strongly we want the population to
diverge from "other functions" others even before the limit maz_ic is reached.
However, we have to be careful not to choose p too large, since otherwise 1Ctpers
dominates the fitness evaluation. This would mean that from the fitness value
we learn too little about how the candidate actually performs on the true stock
developments ICye. We add this part to the fitness evaluation in the hope that
it will steer the functions in the population away from already found alphas,
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even before the maximal allowed correlation - max _ic - with already discovered
alphas others is reached. This could intuitively be interpreted as already telling
the functions that they are developing into the same direction as "other functions"
other, before they become too similar. Otherwise we suddenly set their fitness
to zero and disqualify a member of the population that could have been used to
search another part of the search space.

While running the algorithm we choose p to be around values in the region
[0.01,0.1]. The reasoning behind this is that when ran multiple times evolutionary
algorithms have a strong tendency of converging to very similar solutions and thus
an ICypers Of close to 1. We are hoping to find functions that have an ICyqye in
the range of [0.05,0.1]. Thus, to make sure that

px* Icothers 75 Ictrue (310)

we have to choose
Ictrue

< 11
b= Icothers (3 )

Which leaves us with approximately p € [0.05,0.1]. Since very short functions
are unlikely to have a good performance ICye, we include even lower values for
p which leads to p € [0.01,0.1].

Because of this we make the punishment for a high correlation with ICopers
in a candidate’s fitness dependent on the depth of the candidate. Through com-
parison of multiple test runs I found the population to explore the search space
quite well while not getting pushed away from the already found alphas too much
for the following developments of p and max_ic (dependent on the depth of the
candidate d, where d € [0, 6]):

p(d) = maz((d*> — 4% d) 0.01, 0.01) (3.12)
max_ic(d) =1—0.06125 x d (3.13)

3.3 Population Choice: Parents vs Off-springs

Given a list of candidates - also called a population - we need to come up with
a next improved population that contains candidates that perform better than
the initial ones. By doing this over and over again we hope to end up with a
list of candidates that are way better at solving the given task than our initial
population. In this context we will look at populations as "generations".
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3.3.1 Generating the Next Population - Algorithm

In the following we will take a look at how we create a next generation when
given a last generation and a list of "other" functions from which we want to
differ. For this we draw random parents from our last generation, cross them and
apply mutations. This creates off-springs that will compete with their parents
for a spot in the next generation. How this process works exactly can be seen in
Algorithm 1 and is described in further detail in the following explanations.

Code: Explanation A

We randomly draw two parents from the given last _gen (last generation). These
are then crossed over to create two off-springs. To introduce "random genetic
changes" we apply the presented mutations with a set probability p to the off-
springs. After evaluating the fitness of the two parents and two off-springs we
create a list - called candidates - that contains the four functions and their fitness
values.

Code: Explanation B

From the candidates list we delete the functions that are already contained in the
list of functions we are creating for the next generation, since we do not want
functions to appear multiple times in the same population. This would be a waste
of resources since these "double functions" could be used to explore another part
of the search space and push the population into similar local optima. However,
since deleting functions in candidates might lead to zero or only one function
being contained in candidates, we need to deal with the case that the functions
left in last _generation are not diverse enough to generate equations different
from the ones in next generation. This is done as described in "Explanation

c".

Code: Explanation C

If the last _generation only contains a maximum of three equations and "doesn’t
manage to create equations that are not contained in the next generation yet" for
more than 20 rounds, we risk introducing equations being double in the popula-
tion. We do this by applying a concept called elitism: we take the best performing
functions from the last generation and copy them into the next generation.



3. GENETIC PROGRAM 14

Algorithm 1 Choosing the next generation

Given: last _gen, others, train_data

next generation < ||

without _change < 0

elitism < best four functions from last gen according to fitness
population _size < len(last _gen)

while len(next _generation) < population_size do
> For the following: Explanation A
parent _a,parent b < random.sample(last _gen)
of fspring _a < crossover(parent = parent _a,donor = parent_b)
of fspring b < crossover(parent = parent b, donor = parent _a)

apply mutations to of fspring _a with probability p
apply mutations to of fspring b with probability p

fit_par a < fitness(parent _a, others, train_data)
fit_par b« fitness(parent b, others, train_data)
fit_of a < fitness(of fspring a, others, train_data)
fit_of b+« fitness(of fspring b, others, train_data)

candidates < [(parent _a, fit _par _a),(parent b, fit _par b)]
candidates.extend([(of fspring a, fit_of a),(of fspring b, fit_of b)])

> For the following: Explanation B
delete functions from candidates that are in next generation

if len(candidates) > 2 then
add the best two functions from candidates to next generation
without _change < 0
remove parent _a and parent b from last _gen
else
without change+ =1
end if
> For the following: Explanation C
if without change > 20 &
len(next generation) < population size &
len(last _population) < 3 then
add best function f from elitism to next generation
delete f from elitism
end if
end while

return next generation
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3.3.2 Elitism

As shown in [8], the usage of the concept of "elitism" can help reduce bloat in
populations and thus speed up the process of finding high quality candidates. The
idea is quite simple: we choose the best performing candidates of the previous
generation and add them to the next generation that we are trying to generate.
It is important that we do not change the candidate at all. By doing this we
make sure that our evolutionary process does not "accidentally forget" about the
best performing candidates.

In our "Parent vs Off-spring" approach of evolving a generation, we only
make use of elitism in cases where we can’t come up with candidates that are
not contained in our next generation ourselves. We know that the candidates we
introduce into the next generation with the "elitism" approach will not be worse
(in terms of fitness) than all the candidates in the last generation.

Later on we will also make use of this idea in a broader sense, when introducing
the "warm__gp" method in Chapter 4.2.

3.3.3 Competition between Parent and Off-spring

While actually generating new functions that will be put into a next generation we
can take a lot of design decisions. For this algorithm we use a competition between
pairs of parents (that are drawn from the last generation) and the off-springs that
their crossovers create. The usage of this concept is roughly mentioned in the [5]
paper and can be researched in more depth in [9].

One of the fundamental ideas is that we can make sure that while stepping
through multiple generations, the performance of our candidates does not get
worse. By having parents compete with their off-springs for a spot in the next
generation, we also encourage our population to stay diverse so that not all
candidates converge to a similar solution.

3.4 Running the Evolutionary Process

In the following we will make a given starting set of functions evolve and compete
with each other. We do this by over and over applying Algorithm 1. Stepping
through multiple generations we are using elitism and the concept of parent-
offspring competition. This results in Algorithm 2. In the code implementation
of this part of the algorithm we also include an "early-stopping" mechanism, that
makes sure that in case the populations stop getting better for a lot of iterations
we stop our algorithm and return the population. This helps us shorten the
real-life run-time of our algorithm.
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Algorithm 2 Running the genetic program

Given: start_pop, others

generation_limit < 200

cur _pop < start__pop

for each g € range(generation_limit) do
new _gen < algol(last _gen = cur _pop, others)
cur _pop < new __gen

end for

> Return the full last population
return cur__pop

3.4.1 Search Space Growth with Function Depth

In the actual implementation of Algorithm 2 the parameter generation limit
(set to 200) - similar to the fitness calculation - is dependent on the depth d of
the candidates in the given start pop. Functions of a lower depth will take less
"iterations" (amount of usages of Algorithm 1) to explore most of the possible
functions of a certain depth, thus we can choose the generation _limit relatively
small. However, the size of the functions’ search space for a growing depth d
increases due to two reasons.

(For simplicity let us only consider functions whose tree representation is
"full", meaning we only use sub-functions with an arity of two and leafs only
exist at the maximal depth the tree has. This will yield a simple lower bound
for the actual growth of the search space.)

1. The length of the function doubles every time we add another level of depth to
the function space. The higher the depth d, the more the length of the function
will grow with a further increase in depth. Thus, the amount of positions that a
candidate "has to fill" grows like in 3.14.

amount _positions = 24 (3.14)

2. With the amount positions also the number of possible choices of func-
tions for these positions functions possible increases. The development of
functions possible dependent on the amount of positions that are to be taken by
a sub-function in a candidate’s tree representation amnt pos for functions
grows like shown in 3.15, where n is the amount of available sub-functions with
an arity of two (like add, sub, div, mult, max, ...).

functions _possible = n@mnt_pos_for_functions (3.15)
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Thus for a fixed n the search space grows proportionally to 3.16 when increas-
ing the depth of the functions, where k is the amount of possible leaf elements in
the tree representation of a function (namely quantized real numbers and given
parameters). The generation limit when exploring this search space for a depth
d should grow proportionally with 3.16 in case we want to guarantee that we al-
low the algorithm to explore the search space of functions with higher depth just
as well as the search space of lower depth functions.

@ (n2d_1 * k2d*2d‘1) (3.16)

In our genetic program, however, a population is very unlikely to explore the
whole search space and will probably get stuck in a local optimum way before
this.

When a population gets stuck in a local optimum it often just keeps losing
diversity when running more evolution steps - according to observations when
running the code. This implies that it loses the ability to explore distant parts of
the search space, since the population loses the diversity of functions necessary
to assemble totally unexplored combinations of sub-functions.

Thus the in 3.16 shown lower bound of the growth of the search space is
interesting to understand from how many possible functions our genetic program
tries to find the small subset that correlates well with the stock market. However,
it should only be in the back of our heads when choosing the generation limit
of the genetic program 2 dependent on the populations’ functions’ depth d.



CHAPTER 4

Alpha-Generating Algorithm

4.1 The Overall Algorithm

In the following we will introduce the overall algorithm used to generate a diverse

set of alphas. It makes use of the just presented genetic program (that we will
call "algo2" in the pseudo-code).

Algorithm 3 Overall Alpha-Generating Algorithm

Given: train_data
final _gp[0] < [[Open], [Close], [Low], [High], [V olume], |[Return_yesterdayl]
max_tree_depth <5
gene__pool _size < 25
startup = []
for each d € range(1, max_tree depth + 1) do
for each f € range(gene pool size) do
pop < warm__gp(gp = final _gp[d — 1][}], startup = startup|d))
best < algo2(start pop = pop, others = final _gp|d][:])
best _cand < best[0]
final _gp[d][f] < best cand

> Recycle the rest of the final population
startupld].extend(best[1 :])
end for
end for

return final gplmaz_tree depth][:]

final gp is a list that contains a list of the best found functions for every

depth d. Of course we start with a set of functions that have the depth zero - so
just the parameters that we are given. To now generate the gene pool at the next

depth d - so the functions contained in final gp[d] - we take into consideration
the list of functions from the previous depth d—1, so final gp[d—1]. We apply a

18
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method warm__gp that will take functions of the lower depth d—1 and recombine
them into functions of depth d that will be used as the starting population pop
for the genetic program.

Now that we have found a population pop of functions that are re-combinations
of functions of lower depth d — 1, we will start a genetic program we call algo2
that implements Algorithm 2. During the whole evolutionary process that algo2
executes we evaluate the fitness with respect to how different a candidate is from
already found functions of depth d, so final gpld][:] (besides looking at the
correlation with stock price developments). Finally the best function found by
algo2 is added to our list of discovered functions of depth d, namely final gp[d].
The rest of the found functions will be added to a list called startup that will be
handed over to the warm __gp method to recycle the other learned functions from
the final generation and initialize the starting population pop for the next genetic
program. When adding to the list startup we are careful to not add candidates
that are already contained in startup.

The rough structure of this procedure is leaned on an idea proposed in [5]:
We first try to find the best possible functions of depth d — 1. We assume that
well performing functions of higher depth d combine the features expressed by
functions of depth d — 1. Thus we iterate through different depths, starting with
our raw parameters at d = 0.

What was not presented in this paper [5] is that we recycle the "non-best"
candidates the genetic program generates. This is done by collecting them in the
startup list and considering them when initializing the next starting population
of the genetic program.

4.2 Warm Gene Pool: warm__gp

As proposed in [5] we are going to try to shorten the train-time and increase
the performance of our final population by using an approach called the "warm
start method". When we choose the initial population from which the genetic
program starts, we could randomly generate functions to make up that starting
population. However, since random functions are really improbable to predict
stock market prices well, at first we are going to randomly generate more functions
than needed. From these we will choose the set of functions that performs best
with respect to the prediction of stock market developments and the difference
to a list of already given functions in others. Later on we will also make use of
the candidates collected in startup that went through the genetic program, but
did not make it into the final gp.

Let us describe our motivation throughout warm _gp shown in Algorithm 4:

We start by generating a lot of functions (factor more x population _size
many) and putting them all into a formula pool. During this we are careful not
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Algorithm 4 warm gp

Given: gp (gene pool), startup, train_data

population size <— 50

factor _more < 10

amount _formulas < (factor _more x population _size)
formula__pool < startup

> Generating missing amount of candidates for the formula pool
while len(formula _pool) < amount _formulas do
f + random draw from sub-functions (like add, sub, sin etc.)
if f.arity == 1 then
gene__a < random draw from gp
fresh _candidate < f(gene a)
else > f.arity ==2
gene__a < random draw from gp
gene_ b < random draw from gp
fresh _candidate < f(gene a,gene b)
end if
formula_pool.extend(fresh candidate)
end while

> Choosing the best candidates of formula pool
pool _ fitness < fitness(formula_pool, train_data)
pool = (formula__pool, pool _ fitness)
sorted__pool < sort pool descending according to pool _fitness

> Try to decrease high correlation among returned candidates
best _cand_twice < sorted__pool|: 2 x population _size]
indeces < [1,3,5, ..., (2 * population _size — 1)]
best _cand < take candidates at positions indeces from best cand_twice

return best cand
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to introduce formulas multiple times. To generate a formula of depth d, we draw
a random "sub-function" f - like add, sub, sin etc. Depending on the arity of the
drawn sub-function, we draw candidates a,b of depth d — 1 from the gene pool
given to the warm gp algorithm in the argument gp. We then simply arrange
the drawn candidates as arguments of f.

In a tree structure this would look like the following: (for arities two and one)

f

/N

a b

and

It can be easily seen that this simply adds another layer to the depth of the
candidates a,b. Thus the depth of the resulting trees is: (d —1) +1 =d.

Given a list of candidates startup we have a better initial guess for the func-
tions to put into the starting population of the following genetic program. This
is why we included the candidates from startup in formula pool. Afterwards
we will look for a subset (of this generated pool of formulas formula pool) that
has the size of the needed population that will be returned. To start this process
we evaluate the fitness of each candidate in the formula pool with respect to the
correlation to stock price developments (fitness).

Since with a growing size of the gene pool of the current depth d also the
amount of candidates provided by startup will grow, we have to be careful not
to return a starting population that is too highly correlated and lacks diversity.
For this purpose we don’t simply take the best population size many candidates
from pool, but only take every second candidate in pool until we have filled our
starting population.



CHAPTER 5

Performance Assessment

Let us have a look at some of the formulaic alphas that the above described
genetic program generates. We trained the algorithm four separate times with
different gene pool and population sizes (mostly close to: Gene Pool Size = 25,
Population Size = 40). Each training took roughly 44h on a GeForce RTX 2080
Ti.

For the following performance assessment we have to keep in mind that we
just searched for alphas that only take the parameters Open, Close, Low, High,
Volume and the yesterday’s Return. There was no additional data provided that a
formulaic alpha can process to return values that correlate with the stock market
development. This includes that no time-series data was used.

We will refer to formulaic alphas that were generated using our genetic pro-
gram as "genetic formulaic alphas".

5.1 Stock Market Patterns

5.1.1 Formulaic Alphas found by the Genetic Program
The Best Generalizing Alphas

Let us have a look at a subset of the formulaic alphas that were found by the
genetic program. The diversity and performance of these formulas was evaluated
on the data set on which the genetic program that generated them was trained,
namely 2014 to 2019. We then chose a subset of formulaic alphas that are weakly
correlated amongst each other but still perform well on the given time frame
(2014 to 2019).

In the following these formulaic alphas and their performance on the stock
market data (Nasdaq 100) from 2014 to 2021 are listed:

22
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1. Correlation to stock market: 0.071

Low . High
Open  Close

Genetic#1 = max < , cos(min(Close, Open))>

2. Correlation to stock market: 0.065

Low Low
o B
Genetict (Close Return) + <C’lose * cos(Return)>

3. Correlation to stock market: 0.057

Genetic#3 = min | 0.938, Lﬂ
Close

4. Correlation to stock market: 0.055

Genetic#4 = min(Low — Open, 0.133)
+ max(cos(Volume), High — Close)

5. Correlation to stock market: 0.051

Low — Cl
Genetic#b = max (min(Low — Open,0.133), ow ose>

V/(High)

6. Correlation to stock market: 0.46

(High — Close) — (Return)

Genetic#6 =
(Low + Return) + 520

7. Correlation to stock market: 0.45

Hq I Hi
cenetiet = mos (O;OQSZ - |fteturnl, min <0;:;’ ozﬂ))

8. Correlation to stock market: 0.40

0.386 Low

_l’_

Genetic#8 =
eneticit Low Close

The average pairwise correlation of formulaic alphas in this set is 0.49.

The maximal pairwise correlation of formulaic alphas in this set is 0.59.

Their average correlation with the stock market is 0.054.
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5.1.2 The Development of Stock Market Patterns

What is interesting about the performance of the formulaic alphas found with
the genetic program is that there seems to be some sort of underlying force that
changes the correlation of the formulaic alphas with stock market developments
year by year.

The varying performance from year 2005 to 2021 of the eight "best general-
izing alphas" can be seen in Figure 5.1.
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2006 2008 2010 2012 2014 2016 2018 2020

Figure 5.1: Best Generalizing Alphas
brown: Genetic#1  green: Genetic#2

blue: Genetic#3 grey: Genetic#4
purple: Genetic#5 red: Genetic#6

pink: Genetic#7 orange: Genetic#8

When we average the yearly performance over the generalizing alphas we can
observe the following development visible in 5.2.

In the set of 101 formulaic alphas presented in [3], there only exist two alphas
that can be computed using the same data as it is available for the candidates
of our genetic program. These are the 101st (seen in 1.1) and the 54th (in 5.9)
alpha.

(Low — Close) * (Open®)

Alpha#54 = —1
phazt i (Low — High) * (Close®)

(5.9)

Their correlation to the stock market price over the time frame 2005 to 2021
can be seen in Figure 5.3, where they are compared to the average performance
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Figure 5.2: Average over Generalizing Alphas

of the "best generalizing alphas" (blue).
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Figure 5.3: Genetic vs 101 Alphas
green: Alpha#101 orange: Alpha#54

When looking at this development, it is important to mention that the al-
gorithms that generated the alphas whose performance we are measuring have
been trained on data from 2014 to 2019. The generating process has not seen
any data before 2014 or after 2019.

In an attempt to understand what drives the correlation development of the
alphas generated with the genetic program (in Figure 5.2) we can look at mul-
tiple parameters that influence financial market behaviour and compute the cor-
relation between the change in these parameters and the observed performance
development of our eight genetic alphas (blue, left scale for the following figures).
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Market Returns

26

Let us have a look at the development of the yearly closing price (in Figure 5.4)
of the market that we evaluate the performance of the found alphas on, namely
the Nasdaq 100 (red, right scale) [10].
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Figure 5.4: Nasdaq 100 Closing Prices
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The Pearson correlation between the Nasdaq 100 and the performance devel-
opment of the alphas is 0.51.

Looking at the resulting annualized returns (red, right

100 in Figure 5.5 we find a correlation of 0.59.
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Figure 5.5: Nasdaq 100 Annualized Returns

Market Volatility

Alternatively we can also take a look at the annualized volatility that the Nasdaq
100 (red, right scale) was exposed to (Figure 5.6). For this we will make use of
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the "CBOE NASDAQ 100 Volatility Index" (VXNCLS) and source our data from

11].
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Figure 5.6: Nasdaq 100 Volatility
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The Pearson correlation between the annualized VXNCLS and the perfor-
mance development of the alphas is 0.54.

Balance Sheet of the Federal Reserve

It gets even more interesting when we take a look at the development of the

balance sheet of the federal reserve [12] (red, right scale) in Figure 5.7.
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Figure 5.7: Fed Balance Sheet

The correlation between the federal reserve’s balance sheet and the alpha
performance from 2005 until 2021 is only 0.41. However, when we take a look
at the changes in the balance sheet from year to year (Figure 5.8) and compare
that to the development of the performance of our alphas we find a correlation

of 0.73.
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Figure 5.8: Changes in Fed Balance Sheet
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To also get a feel for the development of the correlation of Alpha#101 and
Alpha#54 with the just mentioned macroscopic developments we can also con-

sider their correlation which can be found in Table 5.1.

Table 5.1: Annualized Correlations

Alpha#54 | Alpha#101
Stock Market Closing 0.031 0.0
Stock Market Returns 0.0 0.0
Stock Market Volatility 0.230 0.014
Fed Balance Sheet 0.0 0.0
Fed Balance Sheet Changes 0.053 0.066

What is striking about these results is that the formulaic alphas presented
in [3] are almost not at all correlated with any of the considered macroscopic
developments - unlike the genetic formulaic alphas. This allows the assumption
that the alphas that can be found using genetic programs are in general more de-
pendent on developments of the overall stock market than the classical formulaic

alphas.

5.2 Trading Bot with Genetic Enhancements

To get a feel for the performance of the genetic formulaic alphas, we will train
two simple trading bots - one with a subset of the 101 formulaic alphas in [3],
and one which additionally uses the alphas generated with the genetic program.

We then compare the returns these trading bots yield on unknown test data.

We will train the trading bots with data from 05.02.2014 until 04.02.2019,
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and test with data from 05.02.2019 until 05.02.2021. The used data is from the
100 stocks that are contained in the Nasdaq 100 as of December 2021. To train
the trading bots we explore the search space of hyper parameters for the used
decision trees by applying a Bayesian optimization [13] with 500 samples and 20
random explorations. The best hyper parameters that this process returns are
going to be used to train each final trading bot.

It is important when observing the returns of the different trading bots to
consider that in the testing period of about two years with 100 stocks there exist
way more possibilities for trading than trades that can actually be made. One day
contains a trading option for each one of the 100 stocks in the Nasdaq 100. The
trading bot decides for each one of them independently if returns could be made
by buying at the days closing price and selling at the next days closing price.
One strategy would be to evaluate the predicted returns of all stocks for a day,
buy the one with the highest and sell it the next day. With our simple trading
bot it might make sense to spread the money over all trades the bot sees to be
profitable on a day. Thus we cannot make any statement about yearly returns
and absolute figures like "total trade return". What is however interesting is
the average performance of the trades the trading bot decides to make and the
amount of trades it makes relative to the amount of trades it could have made.
This could be interpreted as the amount of patterns the algorithm found.

The shown returns are already reduced by the trading cost of 0.3% per trade.

5.2.1 Trading Bot - using only the 101 Alphas

Since it is tricky to implement all 101 of the formulaic alphas presented in [3] we
will only use a subset of 50 alphas. Most of them work on time-series data that
goes back up until 280 days before the day for which the trading decision (buy
long or don’t buy) has to be made.

CatBoost Trading Bot

We train a CatBoost decision tree with the following hyper parameters that were
found by the Bayesian optimization:

'bagging temperature’: 0.8638296708208457, ’border count’ 186, ’depth’: 4,
‘iterations’ 378, ’12 leaf reg’: 5, ’learning rate’: 0.03342078295759463, ‘ran-
dom _strength’: 1.1005181643333055

On the unseen test data this will yield returns with the performance that can
be seen in 5.9.
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Trading options: 46718

Trades made: 1232

Winning trades: 729

Losing trades: 583

Average trade return: ©.0807420899065847209
Total trade return: 9.142547649123761
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Figure 5.9: CatBoost Trading Bot Returns

XGBoost Trading Bot

We train a XGBoost decision tree with the following hyper parameters that were
found by the Bayesian optimization:

‘alpha’: 0.03207593189500518, ’eta’: 0.025628614081187853, 'gamma’: 0.2902154
7757560384, 'max_depth’: 4, ’eval metric’: 'aucpr’, 'booster’: 'gbtree’

On the unseen test data this will yield returns with the performance that can
be seen in Figure 5.10.

Light GBM Trading Bot

We train a Light GBM decision tree with the following hyper parameters that
were found by the Bayesian optimization:

'bagging fraction’: 0.7556865138865563, 'feature fraction’: 0.6322722245720651,
lambda_11°: 4, ’lambda_12": 25, ’learning rate’: 0.15259903879711864,
'max_depth’: 9, 'min_data in_leaf’: 4574, 'min gain to split’: 1.6814097950
584883, 'num_ leaves’: 2180

On the unseen test data this will yield returns with the performance that can
be seen in Figure 5.11.
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Trading options: 46718

Trades made: 377

Winning trades: 210

Losing trades: 167

Average trade return: 0.006515181781562214
Total trade return: 2.4562235316489547
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Figure 5.10: XGBoost Trading Bot Returns

Majority Vote for a Trading Decision

Now we take the three shown decision trees and make them act together to im-
prove the trading performance. For each possible trade the CatBoost, XGBoost
and LightGBM trading bot give their vote if the trade should be made or not.
If the majority votes for "yes" (1), the trade is made. This leads to returns with
the performance that can be seen in Figure 5.12:

5.2.2 Trading Bot - with Additional Genetic Features

We will train a second simple trading bot that will not only take the subset
of the 101 formulaic alphas from [3] as input features, but also the eight "best
generalizing alphas" presented in 5.1.1. We remember that the genetic alphas
only take the six data points (Open, Close, Low, High, Volume and the previous
day’s Return) that are given for the trading day for which we want to decide if
we should buy or sell.

CatBoost Trading Bot - Genetic

We train a CatBoost decision tree with the following hyper parameters that were
found by the Bayesian optimization:

'bagging temperature’: 0.733659960722984, 'border count’: 28, 'depth’: 6,
"iterations’: 792, ’12 leaf reg’: 20, ’learning rate’: 0.01, 'random strength’:
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Trading options: 46718

Trades made: 4199

Winning trades: 2268

Losing trades: 1931

Average trade return: ©.002657683094081732
Total trade return: 11.159611312049194
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Figure 5.11: LightGBM Trading Bot Returns

Trading options: 46718

Trades made: 1093

Winning trades: 648

Losing trades: 445

Average trade return: 0.008759850026515676
Total trade return: 9.574516078981635
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Figure 5.12: Majority-Vote Trading Bot Returns
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1.7939742879332983

On the unseen test data this will yield returns with the performance that can
be seen in 5.13.

We can see that the average return (from 0.74% to 1.04%) and the amount of
winning trades found (from 729 to 890) both increased when we add the genetic
formulaic alphas.

Trading options: 46718

Trades made: 1496

Winning trades: 890

Losing trades: 606

Average trade return: 9.01047135709716163
Total trade return: 15.665150217353798
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Figure 5.13: CatBoost Trading Bot Returns - Genetic

XGBoost Trading Bot - Genetic

We train a XGBoost decision tree with the following hyper parameters that were
found by the Bayesian optimization:

‘alpha’: 0.051758279717249445, ’eta’: 0.01864992642556822, 'gamma’: 0.6851439
687822579, 'max _depth’: 5, , ’eval metric’: ’aucpr’, 'booster’: ’gbtree’

On the unseen test data this will yield returns with the performance that can
be seen in Figure 5.14.

As we can see the performance of the XGBoost trading bot has dramatically
improved when we enhance the given input features with out generalizing alphas.
Not only did the amount of found winning trades go up from 210 to 1010, but
also the average return per trade was improved from 0.65% to 0.76%.
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Trading options: 46718

Trades made: 1728

Winning trades: 1010

Losing trades: 718

Average trade return: 0.007627006713215816
Total trade return: 13.17946760043693
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Figure 5.14: XGBoost Trading Bot Returns - Genetic

LightGBM Trading Bot - Genetic

We train a LightGBM decision tree with the following hyper parameters that
were found by the Bayesian optimization:

'bagging fraction’: 0.7726724919682233, 'feature fraction’: 0.5834499497443935,
‘lambda_117: 21, 'lambda_12’: 6, ’learning rate’: 0.053237143963974255,
‘max_depth’: 5, 'min data_in leaf’: 515, 'min gain to_split’: 0.79172193339
59962, 'num_ leaves’ 299

On the unseen test data this will yield returns with the performance that can
be seen in Figure 5.15.

Also the performance of the Light GBM based trading bot has improved in
terms of average return per trade. However, it seems like the the genetic features
made the trading bot more careful about making the decision to trade ("Trades
made" went from 4199 to 2634).

Majority Vote for a Trading Decision - Genetic

We take the three genetically enhanced decision trees and make them act together
to improve the trading performance. This yields the returns shown in 5.16.

As we can see, the performance of the overall trading bot did not increase
in the "average trade returns", it actually did decrease a little bit from 0.00875
to 0.00849. However, the amount of successfully identified patterns (winning
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Trading options: 46718

Trades made: 2623

Winning trades: 1496

Losing trades: 1133

Average trade return: 0.006480067762094175385
Total trade return: 12.592435997302204
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Figure 5.15: Light GBM Trading Bot Returns - Genetic

Trading options: 46718

Trades made: 1695

Winning trades: 997

Losing trades: 698

Average trade return: ©.008492490763720405
Total trade return: 14.394771844506087
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Figure 5.16: Majority-Vote Trading Bot Returns - Genetic
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trades) went up from 648 to 997. Thus the average trade will yield a little lower
returns for the genetically enhanced trading bot, but we will find more trading
opportunities then with the standard bot. This makes sense since the found
genetic alphas are supposed to find patterns in the stock market by correlating
with it. Thus, the trading bot should find more patterns when they are included.
In the whole "alpha generating" and "trading bot training" process there was
never a ranking of higher or lower returns of a trade done. It was always just
about profitable vs non-profitable trades (label "0" vs label "1").

This allows the assumption that the generated genetic formulaic alphas indeed
help - even for a simple trading bot - to recognise patterns in the stock market.



CHAPTER 6

Conclusion

As we learned genetic programs - like the one presented - can be used to generate
formulaic alphas that show a correlation to developments of stock prices. In the
frame of this thesis we explored and back-tested the performance of such alphas
that only consider six parameters of a single day to return a value that correlates
to the true stock price development. The natural extension would now be to
implement the same algorithm but also consider sub-functions that take time-
series data as input parameters which will probably yield much better results. For
this it would probably be a good start to quantize the length of the time-series
data, to not increase the size of the search space 3.4.1 too much.

It was interesting to find a high correlation of the performance of genetic
formulaic alphas with the changes in the federal reserves balance sheet. Addi-
tionally, we found that for a simple trading bot adding the generated features
helps to recognise stock market patterns better. The overall approach and al-
gorithm were roughly motivated by the method described in the paper [5]. Due
to missing details for the implementation of the presented AutoAlpha algorithm,
I had to come up with quite many own solutions to make the algorithm work.
These included, but were not limited to the concept of startup in warm _gp,
depth dependent fitness and generation limits and an adaption of the parent vs
off-spring competition.

We can summarize that much speaks in favor of the statement that formulaic
alphas generated with genetic programs are insightful and help with recognizing
stock market patterns. However - unlike classical formulaic alphas like in [3] -
their performance is correlated to some of the macroscopic changes of the stock
market and thus have to be taken with caution when applied in an unknown
economic environment.
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APPENDIX A

Data - Correlation Computations

In the following I will list the concrete annualized numbers that were used when
creating the figures used in the "Performance Assessment" chapter.

Table A.1: Annualized Nasdaql00 Data used for Computation of Correlations

Nasdaql00 Closing | NasdaqlO0 Returns | Nasdaql00 Volatility

2005 1645.2 24.08 16.29

2006 1756.9 111.7 17.97

2007 2084.93 328.03 20.72

2008 1211.65 -873.28 35.51

2009 1860.31 648.66 31.79

2010 2217.86 357.55 23.44

2011 2277.83 59.97 25.02

2012 2660.93 383.1 19.3

2013 3592 931.07 15.14

2014 4236.28 644.28 16.05

2015 4593.27 356.99 18.26

2016 4863.62 270.35 18.17

2017 6396.42 1532.8 14.06

2018 6329.96 -66.46 20.93

2019 8733.07 2403.11 19.06

2020 12888.3 4155.23 32.86

2021 16320.1 3431.8 24.05

Source [10] [10] [11]

Used in | Figure 5.4, Table 5.1 | Figure 5.5, Table 5.1 | Figure 5.6, Table 5.1

A-1



DATA - CORRELATION COMPUTATIONS

Table A.2: Annualized Fed Data used for Computation of Correlations

Fed Balance Sheet | Fed Balance Sheet Changes

2005 814064 39082

2006 845224 31160

2007 872610 27386

2008 1201361 328751

2009 2083665 882304

2010 2317319 233654

2011 2747857 430538

2012 2867655 119797

2013 3479263 611608

2014 4337664 858401

2015 4487953 150289

2016 4472130 -15823

2017 4462194 -9936

2018 4284306 -177888

2019 3930978 -353329

2020 6332639 2401662

2021 8091062 1758422
Source [12] [12]

Used in | Figure 5.7, Table 5.1 Figure 5.8, Table 5.1
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DATA - CORRELATION COMPUTATIONS

Table A.3: Annualized Correlation of Genetic Alphas with Stock Market

Genetic#1 | Genetic#2 | Genetic#3 | Genetic#4

2005 0.0132 0 0 0.0108
2006 0.0421 0.0066 0.016 0.0236
2007 0.0497 0.0161 0 0.039
2008 0.073 0.0501 0.0104 0.0261
2009 0.045 0.0228 0.0049 0.0198
2010 0.0765 0.0574 0.0506 0.0323
2011 0.0697 0.0214 0.0238 0.0305
2012 0.0001 0 0.0074 0.0006
2013 0.0081 0.0017 0 0.001
2014 0.0389 0.0019 0.0041 0.0215
2015 0 0 0.0079 0.0104
2016 0.0112 0.0297 0.0426 0.0194
2017 0.0365 0.0331 0.0069 0.0219
2018 0.0277 0.0333 0.0051 0.0269
2019 0 0.0035 0 0

2020 0.2071 0.2062 0.1424 0.1235
2021 0.0454 0.0564 0.0387 0.025
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DATA - CORRELATION COMPUTATIONS

Table A.4: Annualized Correlation of Genetic Alphas with Stock Market

Genetic#5 | Genetic#6 | Genetic#7 | Genetic#8

2005 0.017 0 0 0.0365
2006 0.0288 0.0207 0.0282 0.0258
2007 0.0425 0.0191 0.0246 0.0221
2008 0.033 0 0.0285 0

2009 0.0303 0.021 0 0.0262
2010 0.0514 0.0355 0.0506 0.0331
2011 0.032 0 0 0.0181
2012 0.0007 0.0035 0.0329 0

2013 0.0074 0.0465 0.0346 0.0029
2014 0.0176 0 0.0349 0.0006
2015 0 0.0083 0.029 0

2016 0.0466 0.0216 0.0607 0.0475
2017 0.0284 0.0171 0.0128 0.0189
2018 0.0412 0.0347 0.0686 0.0387
2019 0.004 0.0004 0 0.0067
2020 0.1254 0.1443 0.0958 0.1516
2021 0.0424 0.0481 0.0277 0.0403
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DATA - CORRELATION COMPUTATIONS

Table A.5: Annualized Correlation of 101 Alphas with Stock Market

Alpha#54 | Alpha#101
2005 0.0133 0
2006 0 0
2007 0.0374 0
2008 0.068 0
2009 0 0
2010 0 0
2011 0 0.0134
2012 0 0.0007
2013 0.0217 0
2014 0.0049 0.0067
2015 0 0
2016 0 0
2017 0.036 0
2018 0 0
2019 0 0
2020 0 0
2021 0.0372 0
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