
Distributed

 Computing

Graph Pattern Mining In Code
Bachelor’s Thesis

Jakob Flunger

jflunger@student-ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Peter Belcák

Prof. Dr. Roger Wattenhofer

May 24, 2022

Abstract

Our goal is to find common patterns in abstract syntax trees with added semantic
information. We use popular python projects on GitHub as our dataset.

We apply classical methods for graph pattern mining to this task. The key
insight is that most traditional methods run out of either time or memory when
encountering wide fanning graphs in the dataset. As a solution to this problem,
we propose two algorithms, BeSick and BeSwole , to circumvent the issues
such graphs create.

While the patterns we find aren’t significantly more interesting than previous
work, our approach remains expandable and can still be useful for statistical
analysis.

i

Contents

Abstract i

1 Problem Description 1

1.1 Frequent Subgraph Mining . 1

1.2 Semantized Abstract Syntax Trees 2

1.3 Subtrees and Subgraphs . 3

1.3.1 Induced Rooted Subtrees 3

1.3.2 Embedded Rooted Subtrees 3

1.4 Complexities . 3

1.4.1 Subgraph Isomorphism . 3

1.4.2 Subtree Isomorphism . 4

1.4.3 DAG Subgraph Reduction 4

1.5 The Dataset . 5

1.5.1 Crawler . 5

1.5.2 Preprocessing . 5

2 Enumeration Strategy 6

2.1 Initial Approach . 6

2.1.1 Sleuth . 6

2.1.2 Gaston . 7

2.2 Canonical Rightmost Path Extension 8

2.3 Cycle Closing Edge Mining . 9

2.3.1 With Occurrence List . 9

2.3.2 Without Occurrence List 9

2.4 Constraints . 10

3 Frequency Computation 12

3.1 Combinatorial Explosion of Occurrence Lists 12

ii

Contents iii

3.1.1 The Advantages of Occurrence Lists 12

3.1.2 Example . 13

3.1.3 Pruning as Solution . 13

3.1.4 Frequency Computation Without Occurrence Lists 14

3.2 Subgraph Isomorphism in Rooted Trees 14

3.2.1 Subtree Isomorphism Algorithm 14

3.2.2 Exclusive Activations . 16

3.2.3 Runtime . 16

3.3 Recovering Occurrence List . 17

3.3.1 Enumerating All Possible Solutions 17

3.3.2 Enumerating All Matching Combinations 18

3.3.3 Lazy evaluation . 18

3.4 Subgraph Isomorphism in Directed Acyclic Graphs 19

3.4.1 Phantom Occurrences . 19

3.4.2 Working With Cycle Closing Edges 19

4 Mining Strategy 21

4.1 Optimistic Mining . 21

4.1.1 Large Pattern Heuristic 21

4.1.2 Double Checking . 21

4.1.3 Performance . 21

4.2 Refinements . 22

5 Results 23

5.1 Termination . 23

5.2 Statistical . 23

5.3 Minimum Interest Constraint . 23

5.4 Refined Patterns . 25

5.5 Comparison to Other Methods 25

5.5.1 Finding More Interesting Patterns 25

5.5.2 Advantages . 25

5.5.3 Future work . 27

Contents iv

Bibliography 28

A Combinations Algorithm A-1

B Occurrence Enumeration Algorithm B-1

Chapter 1

Problem Description

Given a set of graphs we want to find subgraphs, also called patterns, that occur
in many of those graphs.

1.1 Frequent Subgraph Mining

The frequent subgraph mining problem in its general case consists of a set of
graphs known as the graph database, and a min_support value.

Definition 1.1 (Support). For some pattern graph P and graph database D =
G1, ..., Gn: we define

support(P) =
1

n

n∑
i=1

Ii where Ii =

{
1 if P ≼ Gi

0 else
(1.1)

Definition 1.2 (Frequent Pattern). A pattern graph P is considered frequent iff

support(P) ≥ min_support (1.2)

Lemma 1.3 (Anti-monotonicity of Support). Given two pattern graphs P and
P ′ such that P ≼ P ′ then

support(P) ≥ support(P ′) ⇒ P is not frequent → P ′ is not frequent (1.3)

and in particular

Lemma 1.4 (Apriori Property).

P ′ is frequent ⇐⇒ ∀P ≼ P ′ : P is frequent (1.4)

This Apriori property allows for exploration of the frequent pattern space
without exploring the total pattern space. This can be done in two ways:
Apriori algorithms explore the space like a breadth first search. They compute

1

1. Problem Description 2

Figure 1.1: One of the smallest SASTs in our dataset.

all patterns of size n first, then compute patterns of size n+1 by trying to merge
smaller, already mined patterns. Since this comes at a considerable memory
overhead it is rarely used.
Pattern growth algorithms explore the space like a depth first search. Given a
set of starting patterns they attempt to add a node or edge to the pattern and
check if the extended pattern is still frequent. If it is, then the algorithm starts
a recursion on the new extended pattern.
To the best of my knowledge, all classical graph pattern mining algorithms fall
into one of these categories. Each algorithm has its own enumeration strategy,
used to avoid mining duplicate patterns, and its own method of frequency com-
putation.

1.2 Semantized Abstract Syntax Trees

Python source code can be represented by its abstract syntax tree. While this
representation captures program structure well it looses a lot of semantic infor-
mation, such as the same variable being used in multiple places. We aim to
combat this by adding back some of the lost semantic information in the form of
additional nodes and edges. This semantized AST is called a SAST.
Each node in a SAST has a label as can be seen in Figure 1.1.

The particular details of SAST construction are not important to the matters
of this thesis, and may leave room for future experimentation. However the
algorithms presented here assume that no directed cycles are added to the graph.
More formally, we assume that all SASTs are directed acyclic graphs.

1. Problem Description 3

1.3 Subtrees and Subgraphs

Given tree S = (VS , ES) and tree T = (VT , ET) In this thesis we will use S ≼ T
to denote that S is an induced subtree of T , according to the definitions given
by [1].

Definition 1.5 (Label Function). For a graph G = (V,E) the label of each node
is given as a label function l : V → L where L is the set of labels.

Definition 1.6 (Isomorphic Subgraph). Given graph S = (VS , ES) and graph
T = (VT , ET), we say S is an isomorphic subgraph of T iff there exists a one-
to-one (a.k.a. injective) mapping ϕ : VS → VT such that (x, y) ∈ ES ⇐⇒
(ϕ(x), ϕ(y)) ∈ ET

Definition 1.7 (Induced Subgraph). Given graph S = (VS , ES) and graph T =
(VT , ET), we say S is an induced subgraph of T iff S is an isomorphic subgraph
of T and ϕ preservers labels, i.e., l(x) = l(ϕ(x)) ∀x ∈ VS

1.3.1 Induced Rooted Subtrees

ASTs and SASTs have a fixed root node. We can use this to simplify the problem
further. In the rest of this thesis when talking about subtrees we will refer to the
case of induced rooted subtrees. The same definition as for induced subgraphs,
but the graphs in question are rooted trees.

1.3.2 Embedded Rooted Subtrees

Embedded subtrees are more general than induced subtrees. Every induced sub-
tree is an embedded subtree, but the reverse is not guaranteed. The isomorphic
condition is relaxed to (x, y) ∈ ES ⇒ there exists a path from ϕ(x) to ϕ(y) in T
This thesis originally intended to mine embedded subgraphs, but due to vastly
increased computational effort, the project was scaled back to induced subgraphs.

1.4 Complexities

1.4.1 Subgraph Isomorphism

Subgraph isomorphism is the decision problem of T ≼ T ′.
There is neither a proof showing that it is in P, nor any proof that it is in NP,
making it a candidate for the class NP-intermediate. Most importantly, there
are no known efficient (polynomial) algorithms to solve this problem for general
graphs.

1. Problem Description 4

1.4.2 Subtree Isomorphism

For normal trees the subtree isomorphism problem was solved by [2] in O(n
5
2).

We will show a different algorithm, compatible with labelled trees and designed
to work for finding trees in DAGs. The algorithm proposed will be similar to [3]
and run in polynomial time with the caveat of producing some false positives.

1.4.3 DAG Subgraph Reduction

We will show that the subgraph isomorphism problem, restricted to just DAGs, is
still just as difficult as general undirected graph isomorphism. We will formalize
the reduction proposed by [4].

Theorem 1.8 (DAG generality). Undirected subgraph isomorphism can be re-
duced to DAG subgraph isomorphism.

Proof. Given undirected graphs G = (VG, EG) and H = (VH , EH) we want to
compute whether G ≼ H.
We construct G′ = (VG ∪ EG, E

′
G) where E′

G = {(n, e) ∀(n, e) : e ∈ EG and n
is an endpoint of edge e}. We construct H ′ analogously. Note that both G′ and
H ′ are DAGs.

G′ is a subtree of H ′ (1.5)
⇐⇒ ∃ injection ϕ : V ′

G → V ′
H that preserves edges (1.6)

⇐⇒ ∀(x, y) : (x, y) ∈ E′
G ↔ (ϕ(x), ϕ(y)) ∈ E′

H (1.7)
⇐⇒ ∀(u, v, e) : u, v, e ∈ V ′

G ∧ (u, e), (v, e) ∈ E′
G (1.8)

↔ ϕ(u), ϕ(v), ϕ(e) ∈ V ′
H ∧ (ϕ(u), ϕ(e)), (ϕ(v), ϕ(e)) ∈ E′

H (1.9)
⇐⇒ ∀e : e = (x, y) ∈ EG (1.10)

↔ ϕ(u), ϕ(v), ϕ(e) ∈ V ′
H ∧ (ϕ(u), ϕ(e)), (ϕ(v), ϕ(e)) ∈ E′

H (1.11)
⇐⇒ ∀(x, y) : (x, y) ∈ EG ↔ (ϕ(x), ϕ(y)) ∈ EH (1.12)
⇐⇒ ∃ injection ϕ : VG → VH that preserves edges (1.13)
⇐⇒ G is a subtree of H (1.14)

With this knowledge we are reminded that the problem we are trying to solve
is very complex and computationally expensive to solve in the general case. We
have to use the close relation of SASTs to trees to make mining on a large scale
feasible.

1. Problem Description 5

1.5 The Dataset

For authentic mining “in the wild” data we will use python source code freely
available on GitHub. The final dataset contained 9943 python files, which were
split into 96335 function-level graphs.

1.5.1 Crawler

A crawler was used to download the 100 most starred python projects on GitHub.
Due to rate limiting this process requires an API key to scrape the entire dataset
in one operation. Any file with a .py extension was then extracted.

1.5.2 Preprocessing

The python files are converted into SASTs by the sast module. All these SASTs
consist of a root node with type “Module” and typically multiple nodes of type
“Function” below that. To decrease the computational cost we decided to split
these SASTs up into function level graphs. For each node n of type “Function”
we copy the graph rooted at n.
All labels are then converted to integers to speed up computation.

Chapter 2

Enumeration Strategy

The enumeration strategy used by our algorithm will be similar to Gaston [5]
by mining for rooted induced subtrees first, then mining for cycle closing edges.
For the first step we use an enumeration strategy similar to SLEUTH [1], for
the second step we use a variation of Gastons cycle closing edge enumeration
strategy.

2.1 Initial Approach

As mentioned above, the initial approach of this thesis was to be very simple.

1. Mine embedded frequent subtrees in the AST using SLEUTH [1].

2. Use Gaston [5] to mine in the SAST, with the previously found embedded
subtrees as the starting patterns.

However even when limiting the search to induced subtrees for step 1, the com-
putational complexity is far too great for the search to ever terminate on an
arbitrary dataset.
This is because both of the algorithms mentioned above suffer from the combi-
natorial explosion of occurrence lists.

2.1.1 Sleuth

SLEUTH was designed to efficiently mine embedded subtrees. For its enumera-
tion strategy it uses equivalence class based extensions:
An equivalence class is given by a pattern graph P and a list of frequent exten-
sions (x, i), each indicating that the graph P i

x, which is P but with an extra node
with label x attached to node i in P , is frequent. (Nodes are identified by their
DFS number)

6

2. Enumeration Strategy 7

SLEUTH will then construct the equivalence class for each P i
x by checking every

other extension (y, j) in the equivalence class of P if:

1. Node j must be on the rightmost path of P i
x

2. The resulting pattern graph must be canonical

If both conditions are met, then SLEUTH will attempts to add both the cousin
extension (y, j), as well as a child extension (y, k+1) (where k is the last node in
P i
x), to the equivalence class of P i

x.
Before adding an extension to an equivalence class, SLEUTH checks if the re-
sulting pattern is frequent. It does this with an operation called the scope list join.

Given valid initial equivalence classes, this strategy efficiently and non-redundantly
enumerates all frequent embedded subtrees.

In SLEUTH each extension (x, i) comes with a scope list. Scope lists are a
fancy form of occurrence lists, optimized for frequency computation with embed-
ded subtrees. What is important for our purposes is that there is one entry for
every occurrence of P i

x in the graph database.
In particular for given graph database D and pattern P i

x = (VP , EP) the scope
list for (x, i) must track every single edge- and label-preserving injection ϕ : VP →
VG ∀G=(VG, EG) ∈ D.

2.1.2 Gaston

Gaston is a relatively straightforward pattern growth algorithm designed for gen-
eral graphs.
Patterns in Gaston can be either paths, free trees or general graphs. It utilizes
the fact that there is a definitive hierarchy of these classes.

• Paths are first extended into paths, then free trees, then general graphs

• Free trees are first extended into free trees, then general graphs

• General graphs are extended into general graphs

When extending general graphs, Gaston only adds cycle closing edges. This en-
sures that any general graph pattern must grow from a spanning tree, and free
trees are only allowed to grow from their longest backbone path.
However this enumeration strategy may still find patterns more than once. So
Gaston must check against a database of previously found patterns to avoid dupli-
cate computations. The originally published version of Gaston uses the external
Nauty [6] algorithm to check if a new pattern is isomorphic to any previously

2. Enumeration Strategy 8

found pattern.

A pattern in Gaston consists of the pattern graph P = (VP , EP), an indica-
tor of the pattern type (path/free tree/general graph), and an occurrence list.
This occurrence list contains every injection ϕ : VP → VG ∀G ∈ D that preserves
edges and labels, where D is the graph database.
preserving edges: (x, y) ∈ EP ⇐⇒ (ϕ(x), ϕ(y)) ∈ EG

preserving labels: l(x) = l(ϕ(x)) ∀x ∈ VP
This is why Gaston too suffers from the combinatorial explosion of occurrence
lists.

2.2 Canonical Rightmost Path Extension

For our enumeration strategy we will use the rightmost path extensions as defined
by [1].

Definition 2.1 (Tree String Encoding). To obtain the string encoding T (T) of
tree T , traverse the nodes in T by depth-first preorder. For each node v append
the label l(v) to the string encoding, and add a unique up character $ whenever
the DFS backtracks. When sorting, $ is sorted higher than any other label.

Definition 2.2 (Graph Isomorphism). Graphs G = (VG, EG) and H = (VH , EH)
are isomorphic, denoted as G ≡ H iff there exists a bijection ϕ : VG → VH such
that (x, y) ∈ EG ⇐⇒ (ϕ(x), ϕ(y)) ∈ EH and ϕ preservers labels:
l(x) = l(ϕ(x)) ∀x

Definition 2.3 (Canonical Tree). An ordered tree T is canonical if its string
encoding is the lexicographically smallest:

T (T) ≤ T (T ′) ∀T ′ ≡ T (2.1)

Note that T (T) = T (T ′) implies T = T ′, thus the canonical tree is uniquely
defined among its isomorphism group.

To check if a tree is canonical we need to make sure that for all vertices v ∈ T ,
T (Tci) ≤ T (Tci+1) ∀i ∈ [1, k − 1], where c1, c2, ..., ck are the ordered children of
v and Tci is the subtree rooted at node ci. For the proof of this property see [1].

Definition 2.4 (Rightmost Path Extension). Adding a node of label x to tree
T , attached to node i, is a rightmost path extension iff the attachment point i is
on the rightmost path of in T .

It is sometimes called a prefix extension because if we look at trees only by
their string encodings, it is equivalent to adding zero or more up symbols $, fol-
lowed by x to the prefix string T (T). Note that tailing $ symbols are omitted in
T (T).

2. Enumeration Strategy 9

As shown in [1], using this enumeration strategy on the starting set of single node
patterns with unique labels, enumerates all unordered trees non-redundantly.
While this is less sophisticated than the equivalence class extensions used by
SLEUTH, we use this as the tree enumeration strategy for our algorithm.

2.3 Cycle Closing Edge Mining

2.3.1 With Occurrence List

Gaston finds potential cycle closing edges of a pattern graph P = (VP , EP) by
enumerating all occurrences of P in all graphs G ∈ D and counting the frequency
for each potential edge. Since there are less than |VP |2 candidates for cycle clos-
ing edges, and new occurrence lists can be constructed for all of them in a single
pass we achieve a runtime of O(|VP |2|L|) to compute all derivative patterns of
the input pattern P .

The expansion of a pattern, given its occurrence list L, is polynomial in the
size of the pattern, and the size of the occurrence list.
For each expanded pattern, the occurrence list monotonically decreases in size:
|Lexpanded| ≤ |L|
However this does not mean that this algorithm is efficient or even feasible, since
the size of occurrence lists can, and often does in practice, grow exponentially
when adding nodes to a pattern.

2.3.2 Without Occurrence List

We will later demonstrate how to compute the frequency of tree patterns P =
(VP , EP) via subtree isomorphism tests.
The proposed algorithm can be modified to check (somewhat brute force-ish) for
a cycle closing edge e if P ′ = (VP , EP ∪ {e}) is still frequent.
By performing this check for all |VP |2− |VP |+1 possible cycle closing edges. We
can find the initial set of frequent cycle closing edges Ecc = {e1, e2, ..., em}

We proceed now by running a pattern growth algorithm on the edges. Frequency
computation for this process is quite complicated and will be discussed in the
next chapter.
We define a refinement pattern as a tuple of the pattern tree and the set of cycle
closing edges. The initial patterns are Pi = (P, {ei}) for i=1...m.
To expand a pattern R = (P, {ei1 , ei2 , ..., eik}) with k cycle closing edges, we
first find imax = max{i1, i2, ..., ik}. We attempt to expand R by all edges in
{eimax+1, eimax+2, ..., em}
This enumeration strategy ensures that each combination of edges will be gen-

2. Enumeration Strategy 10

erated non-redundantly, while making use of the Apriori property to save on
computation branches.
Eventually every frequent combination of cycle closing edges is found, without
ever enumerating all occurrences of the initial tree pattern.

2.4 Constraints

Beyond occurrence lists, the space of frequent subtrees itself can be incredibly
large, especially as patterns fan out. To reduce the space of frequent subtrees
while keeping as many interesting patterns as possible, Pham et al.[7] came up
with a list of constraints. Their paper aims to find frequent subtrees in Java
ASTs. Since their problem is similar to ours, it makes sense to copy some of their
constraints as follows.

Constraint Variable Value
C1 Maximum # of Leaves 4
C2 Minimum # of Leaves 2
C3 Legal Root Labels Function
C5 Maximum # of Similar Siblings 10
C10 Minimum # of Nodes 8

C11.1 Interesting labels Function, If, While, For, Match
C11.2 Minimum Interest 0.5

The naming convention is consistent with both Pham et al. [7] and the code of
this project. Note that only constraints C1 - C5 were taken from Pham et al. [7].
C10 is self explanatory.
C11 works as follows:

Definition 2.5 (Interest). Given a labelled pattern graph P = (VP , EP) and a
set of interesting labels Linteresting, then P has interest I(P)
Let Vinteresting = {v ∈ VP | l(v) ∈ Linteresting}

I(P) = |Vinteresting|
|VP |

(2.2)

Constraint C11 dictates that any pattern P must have I(P) ≥ min_interest as
given by C11.2

Constraints C1, C3 and C10 adhere to anti-monotonicity. Once they are vio-
lated by pattern P , there is no extension P ′ of P that satisfies the constraint
again.

2. Enumeration Strategy 11

This means that C1, C3, and C10 vastly improve computation speed, as they
disqualify entire computation branches at once.
C11 is not completely compatible with the enumeration strategies presented so
far. It is used as if it was anti-monotonic, as a tool to vastly decrease the size of
the result space. But it is not anti-monotonic. To ensure that we loose as few
patterns as possible, we use the heuristic of making all interesting labels lexico-
graphically smaller than all other labels.
This flaw to minimum interest will become apparent in the results chapter.

Chapter 3

Frequency Computation

To compute the frequency of a pattern P in a graph databaseD = {G1, G2, ..., Gn}
we perform a subgraph isomorphism check on each Gi ∈ D. This may seem like a
brute force approach at first, but is actually asymptotically faster than tracking
occurrences. This is because of the following problem:

3.1 Combinatorial Explosion of Occurrence Lists

3.1.1 The Advantages of Occurrence Lists

Occurrence lists make it very easy and elegant to expand patterns. Let P =
(VP , EP) be a pattern and L be the occurrence list of P .
When extending with a cycle closing edge, the benefits were already discussed in
the previous chapter. To reiterate, we can compute all frequent extensions and
their respective occurrence lists in O(|VP |2|L|). Furthermore for each resulting
pattern (Pextended, Lextended) it holds that |Lextended| ≤ |L|.

When extending with a node the results look polynomial as well:
We can compute all frequent extensions and their respective occurrence lists in
O(|VP ||F1||L|) where F1 is the set of frequent labels. For each resulting pattern
(Pextended, Lextended) it holds that |Lextended| ≤ |L| ·max_deg.
This multiplicative factor comes from the fact that when extending with label x
attached to node i and given occurrence ϕ, there may be max_deg neighbors of
ϕ(i) with label x, where max_deg is largest out degree in the database. Each
such neighbor constitutes a new occurrence ϕ′ spawning from ϕ.
While all of the bounds above are polynomial, in practice, we are expanding pat-
terns over and over.
With each expansion possibly adding a multiplicative term to the size of the oc-
currence list, the number of occurrence we have to track quickly balloons beyond
a feasible size.

12

3. Frequency Computation 13

A

B1 B2
... Bk

Figure 3.1: Example Graph G

A

B1 B2
... Bn

Figure 3.2: Example Graph H

3.1.2 Example

Assume we have two wide fanning trees:
G = (VG, EG) = ({vroot} ∪ {v1, v2, ..., vk}, {(vroot, vi) ∀i ∈ [1...k]})
H = (VH , EH) = ({vroot} ∪ {v1, v2, ..., vn}, {(vroot, vi) ∀i ∈ [1...n]})

further assume that k ≤ n, l(vroot) = A and l(vi) = B ∀i ∈ [1...m].
To track all occurrences of G in H is to find all edge- and label-preserving injec-
tions ϕ : VG → VH . It is easy to see that the number of ways to fit G in toH is

(
n
k

)
Assume now that we don’t have G predefined and are instead enumerating all
frequent subtrees in the graph database D = {H} with min_support = 1.
Every graph G with 1 ≤ k ≤ n will be frequent in this problem instance.
Thus the total number of occurrences encountered during the mining process is

n∑
k=1

(
n

k

)
= 2n − 1 (3.1)

With this worst case scenario established, we can say that the number of occur-
rences enumerated when mining with occurrences lists is o(2n) where n is the
number of nodes in the graph database.
This lower bound is enough to demonstrate the flaws of occurrence lists for the
purposes of this thesis. But we conjecture without proof that this bound is in
fact tight, i.e. Θ(2n).

3.1.3 Pruning as Solution

If we limit the width of candidate patterns as described in the Constraints sec-
tion to 4, then the example above would only produce at most

(
n
4

)
occurrences.

In this case the explosion of the occurrence list only depends on the database
graph. One might be inclined to prune any database graph that produces too
many occurrences.

This does in fact work in practice, but even with high min_support (15%),

3. Frequency Computation 14

and allowing up to 106 occurrences per graph, it still forces us to prune over 25%
of the dataset.
We decided against this approach, instead working on an algorithm that could
handle the full spectrum of SASTs.

3.1.4 Frequency Computation Without Occurrence Lists

The true solution to this problem is to compute the frequency of a pattern P in
dataset D without computing all of its occurrences.
By the definition of frequency we do not care how often P appears in each graph
Gi ∈ D. It suffices to perform a subgraph isomorphism check and count the
number of graphs for which P ≼ Gi.
We track for each pattern P which graphs it was not contained in. Once P is
confirmed not to be contained in graph Gi, any extension P ′ ≽ P will also not be
contained inGi, due to the Apriori property: P ̸≼ Gi =⇒ P ′ ̸≼ Gi ∀P ′ : P ≼ P ′

This saves on expensive subgraph isomorphism checks.

3.2 Subgraph Isomorphism in Rooted Trees

3.2.1 Subtree Isomorphism Algorithm

For the following section let tree G = (VG, EG) be the pattern tree as we want to
decide if G is contained in tree H = (VH , EH). To check for subtree isomorphism
we propose the Bottom-up Exlcusive-activations Subtree Isomorphism ChecK,
or BeSick for short. It first divides the graph into levels, then starts from the
bottom (the level furthest from the root) and proceeds upwards, level by level.

Definition 3.1 (Activation). In BeSick a nodeH ∈ VH is said to activate as
nodeG ∈ VG iff the subtree rooted at nodeH contains the subtree rooted at
nodeG.

With bottom-up execution we can assume that activations have been cor-
rectly computed for all children CH = {c1H , c2H , ..., cmH} of nodeH . Let CG =
{c1G , c2G , ..., cnG} be the children of nodeG. Each child might have multiple ac-
tivations.

The subtree rooted at nodeH contains the subtree rooted at nodeG
⇐⇒ ∃ injection ψ : CG → CH that respects activations:

cG ∈ activations[cH] ∀(cG, cH) ∈ ψ

In other words we need to find a way to choose a single activation for each child
such that nodeH has at least one child activated as ciG for each child ciG of nodeG.

3. Frequency Computation 15

Algorithm 1 BeSick Algorithm for solving G ≼ H with exclusive activation
function IsSubtree(G,H, exclusive_activations)

divide graph into levels 0 ... L
for l in [L,L− 1, ..., 0] do

for nodeH in levelsH [l] do
for nodeG in G do

if CanActivate(nodeH , nodeG, exclusive_activations) then
activations[nodeH].append(nodeG)

end if
end for
if activations[nodeH] contains rootG then

return true
end if

end for
end for
return false

end function

function CanActivate(nodeH , nodeG, exclusive_activations)
if label(nodeH) ̸= label(nodeG) then

return false
end if
if nodeG in exclusive_activations then

if exclusive_activations[nodeG] == nodeH then
return true

end if
return false

end if
if nodeG is a leaf in G then

return true
end if
requirements = {childG for all direct children of nodeG in G}
activation_providers = {childH for all direct children of nodeH in H}
provided_activations = ∅
for childH of nodeH in H do

for childG in activations[childH] do
▷ indicate that childH can fulfill requirement childG

provided_activations = provided_activations∪{(childH , childG)}
end for

end for

Vb ← activation_providers ∪ requirements
Eb ← provided_activations
bipartite_graph← (Vb, Eb)
M ← FindMaximalMatching(bipartite_graph)
if |M | == |requirements| then

return true
end if
return false

end function

3. Frequency Computation 16

This assignment can be found with a maximal matching algorithm. If the max-
imal matching M covers all children of nodeG, then M forms an injection and
the above condition is met.

A
id: 0

req: [1, 3]

B
id: 1

req: [2]

B
id: 3

req: []

C
id: 2

req: []

Figure 3.3: Example
graph G with ids and re-
quirements

A
act: [0]

B
act: [1, 2]

B
act: [2]

C
act: [3]

C
act: [3]

[1, 2] [3] [2]

B
act: [2]

A
act: []

 [3] [2] []

Figure 3.4: Example graph H with activa-
tions

3.2.2 Exclusive Activations

The exclusive activations parameter is a partial mapping χ : VG → VH that must
be a part of any injection (occurrence) used to confirm subtree isomorphism.
This is easy to enforce by only allowing nH to activate as nG. The ability to
provide partial mappings will be crucial for mining cycle closing edges later.

3.2.3 Runtime

We examine the pseudocode for BeSick :
Since each node in H can only be in one level of levelsH , the first two for loops
in total iterate once over all nodes in H. Therefore CanActivate is called
O(|VH ||VG|) times. Ford-Fulkerson algorithm [8] can find a maximal bipartite
matching in O(|Vb||Eb|) for a bipartite graph Gb = (Vb, Eb).

Theorem 3.2 (Subgraph Isomorphism Runtime). BeSick terminates in O(|VH |2|VG|)

Proof. Given the analysis above we can say that for two nodes nG ∈ G and
nH ∈ H the bipartite graph B = (VB, EB) used to find a maximal matching will

3. Frequency Computation 17

have |VB| = deg(nG) + deg(nH). Due to its bipartite nature we also know that
|EB| ≤ deg(nG)deg(nH). We can then determine the runtime:

O
(∑

Li∈levelsH

∑
nH∈L

∑
nG∈G

|VB||EB|
)

(3.2)

≤ O
(∑

Li∈levelsH

∑
nH∈L

∑
nG∈G

(deg(nG) + deg(nH))(deg(nG)deg(nH))

)
(3.3)

= O
(∑

Li∈levelsH

(∑
nH∈L

∑
nG∈G

deg(nG)deg(nH)2 +
∑
nH∈L

∑
nG∈G

deg(nG)
2deg(nH)

))

≤ O
(∑

Li∈levelsH

(
|VG|

∑
nH∈L

deg(nH)2 + |Li+1|
∑
nG∈G

deg(nG)
2
))

(3.4)

≤ O
(∑

Li∈levelsH

(
|VG||Li+1|2 + |Li+1||VG|2

))
(3.5)

≤ O
(
|VG||VH |2 + |VG|2|VH |

)
(3.6)

≤ O
(
|VG||VH |2

)
(3.7)

Note that 3.7 holds because 0 ≤ |VG| ≤ |VH |

3.3 Recovering Occurrence List

Occurrence list mining algorithms know all occurrences of a pattern by updating
the list as the pattern grows step by step. When given just graphs G and H it
is considerably more difficult to find all occurrences of G in H. The algorithm
above can be modified to enumerate all occurrences. We propose BeSwole , the
Bottom-up Exlcusive-activations Subtree isomorphism With Occurrence Lazy-
Enumeration.
Analyzing the exact runtime is of little use when the algorithm can produce an
output exponential in the size of the input. But BeSwole can compute the next
occurrence in polynomial time, and will enumerate all occurrences eventually.

3.3.1 Enumerating All Possible Solutions

While BeSick is content with finding a single way for nodeH to activate as nodeG,
BeSwole must find all possible ways. This means finding all maximal matchings
of the bipartite graph constructed by BeSick .
To do this we use the algorithm proposed by Uno [9], which can enumerate all
maximal matchings in O(mn

1
2 + nNm) where Nm is the number of maximal

3. Frequency Computation 18

matchings.
For the implementation we used the Python implementation by Jason [10].

3.3.2 Enumerating All Matching Combinations

To obtain all occurrences we must proceed recursively. Assume nH activates as
nG. Without loss of generality, we will treat occurrences as sets of tuples. The
goal is to compute all occurrences of the subtree rooted at nG in the subtree
rooted at nH , denoted as ΦnH ,nG = {ϕ(1)nH ,nG , ϕ

(2)
nH ,nG , ..., ϕ

(Noccs)
nH ,nG }

If nG is a leaf then there is only one mapping: ΦnH ,nG = {(nH , nG)}

Else we need to compute all maximal matchings of size |children(nG)|:
Mmax = {M1,M2, ...,Mm}. Each matching
Mj = {(cH , cG) : cH ∈ children(nH), cG ∈ children(nG)} is itself an injection
children(nH)→ children(nG)

ΦnH ,nG =
⋃

Mj∈Mmax

(
{(nH , nG)} ∪ ϕ′

∀ϕ′ ∈ AllCombinations(
{
Φ
c
(1)
H ,c

(1)
G

,Φ
c
(2)
H ,c

(2)
G

, ...,Φ
c
(k)
H ,c

(k)
G

}
)
)

Where Mj = {(c(1)H , c
(1)
G), (c

(2)
H , c

(2)
G), ..., (c

(k)
H , c

(k)
G)}.

As you can see the AllCombinations output alone can contain an exorbitant
amount of elements. Explained intuitively, for every way to match nH to its
children, we output every combination of ways those children can match to their
own subtrees.
This is a recursive definition of all possible edge- and label-preserving mappings
in ΦnH ,nG . In the case of trees, all these mappings will be injections. Since the
algorithm is implemented according to this recursive definition we will not argue
the correctness of BeSwole any further.

3.3.3 Lazy evaluation

Amazingly, all of the recursive elements of BeSwole can be implemented using
lazy evaluation.

• Uno [9] can lazily compute the next maximal matching in O(mn
1
2 + n)

• To produce the next occurrence we need at most O(|VH |) new maximal
matchings

• We can lazily enumerate all combinations of a list of lazy evaluated lists L.
Computing the next element in the worst case scenario takes O(|L|)

3. Frequency Computation 19

The upper bounds given above are very generous and could likely be tighter. But
they show that BeSwole is able to not just enumerate all occurrences, but always
produce the next occurrence in polynomial time. In other words, BeSwole is
an enumeration algorithm with polynomial delay, as defined by [11].

3.4 Subgraph Isomorphism in Directed Acyclic Graphs

The algorithms presented above can also be used to check if a tree G is contained
in a DAG H. However both algorithms treat merging branches as if they dupli-
cated the merge point and the subtree rooted there. In practice this means that
means that BeSick will sometimes produce false positives.

3.4.1 Phantom Occurrences

Definition 3.3 (Phantom Occurrence). A phantom occurrence of G = (VG, EG)
in H = (VH , EH) is a mapping ϕ : VG → VH that preserves labels and edges, but
is not injective.

If such a mapping exists, then BeSick will return true, even if G ̸≼ H.
To catch this one-sided error we can use BeSwole to enumerate all occurrences,
and check if they are injective. Once the first injective occurrence is found we
can determine that G ≼ H and we can stop the enumeration.
The downside of this approach is that in the worst case we must enumerate the
entire occurrence list, which may be very large.

3.4.2 Working With Cycle Closing Edges

We use exclusive activations to simulate cycle closing edges. As previously stated,
exclusive enumerations allow us to force certain nodes in H to activate as certain
nodes in G.

When mining for cycle closing edges, a pattern P = (T,E) is given by its tree
pattern T = (VT , ET), and a list of cycle closing edges E.

Definition 3.4 (Edge Occurrence). Given pattern P = (T,E) and graph G =
(VG, EG) We define an edge occurrence as an injection ψ : E → EG such that
there exists an occurrence of T in G that ψ is compatible with. More precisely,
for any occurrence ϕ : VT → VG, it holds that ψ((uT , vT)) = (uG, vG)⇒ ϕ(uT) =
uG ∧ ϕ(vT) = vG ∀(uT , vT) ∈ E.

As you can see by the definition above, such an edge occurrence can be ex-
pressed as a list of exclusive activations.

3. Frequency Computation 20

With this system we can track all ways the cycle closing edges can map to edges
in the graph. Sadly this once again means we are back to tracking occurrences,
however this form of occurrence list is significantly smaller than the complete
occurrence list of the pattern graph.

Chapter 4

Mining Strategy

4.1 Optimistic Mining

4.1.1 Large Pattern Heuristic

Let us revisit the example from 3.1.2. In this worst case scenario, the number of
occurrences is

(
n
k

)
where k is the width of the pattern and n is the width of the

graph.
(
n
k

)
reaches its maximum at k = n

2 and decreases back to 1 as you get
further away from that point.
Based on this we conjecture that as patterns are grown, their occurrence count
tends to increase quickly, but eventually decreases again. If we somehow manage
to mine only large patterns, then checking frequency with occurrence lists could
be feasible.

4.1.2 Double Checking

We optimistically mine for frequent subtrees in SASTs, using BeSick for fre-
quency computation. This can produce phantom patterns that are wrongfully
considered frequent. Constraints are used to output only patterns with 8 or more
nodes. BeSwole is then used to double check the frequency of these patterns.

4.1.3 Performance

In theory optimistic mining could produce an exorbitant amount of phantom
patterns, that are not actually frequent in the dataset. However in practice our
dataset is so similar to a tree-only dataset that BeSick is rarely wrong and there
are very few phantom patterns.
This second step however still comes with a large computational cost.

21

4. Mining Strategy 22

4.2 Refinements

Borrowing the term from the terminology of Gaston [5], refining refers to the
process of adding cycle closing edges to patterns.
Once we have mined frequent tree patterns for some minimum support smin, we
can then mine for frequent refinements with minimum support s′min ≤ smin.
Lowering the support value is useful since the resulting DAG patterns tend to be
far less frequent than the trees patterns they are based on.

Chapter 5

Results

5.1 Termination

The biggest accomplishment of our method is that it terminates on a very large
and uncontrolled dataset of directed acyclic graphs. Any algorithm that relies
on occurrence tracking would encounter a wide fanning graph very soon, and get
hung up enumerating its occurrences until the memory or time limit is exceeded.

5.2 Statistical

We ran our method with minimum support values of 10%, 15% and 20%. The
setup with 5% did not terminate within the given computation time (7 days),
but we can extract information from the other three runs.

We also analyze the frequencies of each label in the patterns found. From this we
conclude that interesting labels are generally very rare in patterns of such high
support values.

5.3 Minimum Interest Constraint

Setups with a minimum interest constraint set to 50% were run usingmin_support
values 5%, 4%, 3%, 2%, 1%. Curiously the 4% run terminated in time, finding
only 900 patterns, while all other runs found over 4700 patterns and exceeded
the maximum computation time (7 days).
This indicates that the minimum interest constraint interferes with the enumer-
ation strategy far more than expected. In essence this constraint removes com-
pleteness guarantees from the canonical rightmost path extension strategy. It
may disqualify a pattern from being extended even if that pattern is the only one
that can be extended into several interesting patterns later down the line.

23

5. Results 24

Figure 5.1: Number of patterns found

Figure 5.2: Sizes of patterns found

Figure 5.3: Frequency of labels in the found patterns

5. Results 25

As mentioned earlier we took steps to mitigate this problem but it seems to have
helped very little.

5.4 Refined Patterns

While we made strides in mining patterns from this dataset, in practice the final
step of adding cycle closing edges is still computationally expensive. It takes
roughly 2 hours on all 20 cores of a Dual Deca-Core Intel Xeon E5-2690 v2, as
well as 200 Gigabytes of memory to mine refinements for a single pattern.
Because of limited resources we cannot perform this operation for all the mined
patterns, but here are a few hand-picked examples. The support values used were
10% for the initial mining step, and 0.5% for the refinement mining step.

5.5 Comparison to Other Methods

5.5.1 Finding More Interesting Patterns

We have proposed a traditional graph mining approach to mining ASTs with
added semantic information. Allamanis et al. [12] use a process they call coiling,
which is similar to the implementation of SASTs used in this thesis. They use
probabilistic tree grammars instead of full graph pattern mining and manage to
find more interesting patterns while bypassing the issues of graph pattern mining.

The same can be said about the work of Sivaraman et al. [13], who used a more
complex process to add semantic information. They call this process dataflow
augmentation and their mining approach once again foregoes graph mining in
favor of non-parametric Bayesian methods.

It must be noted that these methods restrict themselves only to loop-level graphs,
a further simplification to function-level graphs used by our method.

5.5.2 Advantages

Our algorithms are not dependent on the exact implementation of SASTs. As
long as the representation is a connected DAG, our methods will be compatible.
The results, and specifically the amount of phantom patterns found, will come
down to the specific implementation of SASTs.

With the two-step mining approach it is possible to avoid some of the work-
load of the second step by filtering for interesting patterns as an intermediate
step.

5. Results 26

Figure 5.4: Some hand picked interesting patterns.

5. Results 27

5.5.3 Future work

To improve upon our method, one could implement a more advanced enumera-
tion strategy for the first mining step.
Also given a specific implementation of SASTs, one might come up with a spe-
cialized version of our method that handles that implementation more efficiently.

However there will always be one bottleneck to traditional graph pattern mining
approaches: How well are we able to define what makes a pattern “interesting”
by constraints and parameters.
For this reason alone it may be beneficial to use graph neural networks for such
applications in the future.

Bibliography

[1] M. J. Zaki, “Efficiently mining frequent embedded unordered trees,” Funda-
menta Informaticae, vol. 66, no. 1-2, pp. 33–52, 2005.

[2] D. W. Matula, “Subtree isomorphism in o (n5/2),” in Annals of Discrete
Mathematics. Elsevier, 1978, vol. 2, pp. 91–106.

[3] P. Olivares, R. Pagli, F. Luccio, A. Enriquez, P. Rieumont, and L. Pagli,
“Bottom-up subtree isomorphism for unordered labeled trees,” 07 2004.

[4] D. E. (https://cstheory.stackexchange.com/users/95/david eppstein), “Is
dag isomorphism np-c,” Theoretical Computer Science Stack Exchange,
uRL:https://cstheory.stackexchange.com/q/25976 (version: 2017-12-24).
[Online]. Available: https://cstheory.stackexchange.com/q/25976

[5] S. Nijssen and J. N. Kok, “A quickstart in frequent structure mining can
make a difference,” in Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, 2004, pp. 647–652.

[6] B. D. McKay et al., “Practical graph isomorphism,” 1981.

[7] H. S. Pham, S. Nijssen, K. Mens, D. D. Nucci, T. Molderez, C. D. Roover,
J. Fabry, and V. Zaytsev, “Mining patterns in source code using tree mining
algorithms,” in International Conference on Discovery Science. Springer,
2019, pp. 471–480.

[8] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Cana-
dian journal of Mathematics, vol. 8, pp. 399–404, 1956.

[9] T. Uno, “Algorithms for enumerating all perfect, maximum and maximal
matchings in bipartite graphs,” in International Symposium on Algorithms
and Computation. Springer, 1997, pp. 92–101.

[10] J. (https://stackoverflow.com/users/2005415/jason), “All possible max-
imum matchings of a bipartite graph,” Stack Overflow,
uRL:https://stackoverflow.com/questions/37144423/ (version: 2017-5-23).
[Online]. Available: https://stackoverflow.com/questions/37144423/

[11] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, “On generating all
maximal independent sets,” Information Processing Letters, vol. 27, no. 3,
pp. 119–123, 1988.

28

https://cstheory.stackexchange.com/q/25976
https://stackoverflow.com/questions/37144423/

Bibliography 29

[12] M. Allamanis, E. T. Barr, C. Bird, P. Devanbu, M. Marron, and C. Sutton,
“Mining semantic loop idioms,” IEEE Transactions on Software Engineering,
vol. 44, no. 7, pp. 651–668, 2018.

[13] A. Sivaraman, R. Abreu, A. Scott, T. Akomolede, and S. Chandra, “Mining
idioms in the wild,” arXiv preprint arXiv:2107.06402, 2021.

Appendix A

Combinations Algorithm

Given a set of sets of sets of sets AllCombinations computes the union of all
combinations of the first order sets.
Example: AllCombinations(

{{
{1}, {2, 3}

}
,
{
{A}, {B,C}

}}
) =

{{1, A}, {1, B,C}, {2, 3, A}, {2, 3, B,C}}
It treats each of the given set in the input like a wheel on a combination lock.

Algorithm 2 AllCombinations pseudocode
function AllCombinations(wheels)

all_combinations = ∅
if wheels = ∅ then

return {∅}
else

(w, remaining_wheels)← wheels
for elem in w do

for suffix in AllCombinations(remaining_wheels) do
all_combinations = all_combinations ∪ {{elem} ∪ suffix}

end for
end for

end if
return all_combinations

end function

A-1

Appendix B

Occurrence Enumeration
Algorithm

Algorithm 3 BeSwole Algorithm for enumerating occurrences of G in H with
exclusive activations

function EnumerateOccurrences(G,H, exclusive_activations)
run BeSick(G,H, exclusive_activations) but store every matching
occurrences = ∅
for nodeH in H do

if noderoot in activations[nodeH] then
occs = EnumerateOccurrencesFromNode(nodeH , noderoot)
occurrences = occurrences ∪ occs

end if
end for
return occurrences

end function

function EnumerateOccurrencesFromNode(nodeH , nodeG)
if nodeG is leaf then

return {(nodeH , nodeG)}
end if
all_occurrences = ∅
for matching M in activations[nodeH][nodeG] do

child_combo_elements = ∅
for (cH , cG) in M do

child_occs = EnumerateOccurrencesFromNode(cH , cG)
child_combo_elements = child_combo_elements ∪ {child_occs}

end for
child_occurrences = AllCombinations(child_combo_elements)
for child_occ in child_occurrences do

occurrence = child_occ ∪ {(nodeH , nodeG)}
all_occurrences = all_occurrences ∪ occurrence

end for
end for
return all_occurrences

end function

B-1

	Abstract
	1 Problem Description
	1.1 Frequent Subgraph Mining
	1.2 Semantized Abstract Syntax Trees
	1.3 Subtrees and Subgraphs
	1.3.1 Induced Rooted Subtrees
	1.3.2 Embedded Rooted Subtrees

	1.4 Complexities
	1.4.1 Subgraph Isomorphism
	1.4.2 Subtree Isomorphism
	1.4.3 DAG Subgraph Reduction

	1.5 The Dataset
	1.5.1 Crawler
	1.5.2 Preprocessing

	2 Enumeration Strategy
	2.1 Initial Approach
	2.1.1 Sleuth
	2.1.2 Gaston

	2.2 Canonical Rightmost Path Extension
	2.3 Cycle Closing Edge Mining
	2.3.1 With Occurrence List
	2.3.2 Without Occurrence List

	2.4 Constraints

	3 Frequency Computation
	3.1 Combinatorial Explosion of Occurrence Lists
	3.1.1 The Advantages of Occurrence Lists
	3.1.2 Example
	3.1.3 Pruning as Solution
	3.1.4 Frequency Computation Without Occurrence Lists

	3.2 Subgraph Isomorphism in Rooted Trees
	3.2.1 Subtree Isomorphism Algorithm
	3.2.2 Exclusive Activations
	3.2.3 Runtime

	3.3 Recovering Occurrence List
	3.3.1 Enumerating All Possible Solutions
	3.3.2 Enumerating All Matching Combinations
	3.3.3 Lazy evaluation

	3.4 Subgraph Isomorphism in Directed Acyclic Graphs
	3.4.1 Phantom Occurrences
	3.4.2 Working With Cycle Closing Edges

	4 Mining Strategy
	4.1 Optimistic Mining
	4.1.1 Large Pattern Heuristic
	4.1.2 Double Checking
	4.1.3 Performance

	4.2 Refinements

	5 Results
	5.1 Termination
	5.2 Statistical
	5.3 Minimum Interest Constraint
	5.4 Refined Patterns
	5.5 Comparison to Other Methods
	5.5.1 Finding More Interesting Patterns
	5.5.2 Advantages
	5.5.3 Future work

	Bibliography
	A Combinations Algorithm
	B Occurrence Enumeration Algorithm

