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Abstract

Encointer is a cryptocurrency using a novel consensus mechanism called Proof-
Of-Personhood which is based on people meeting physically at regular intervals
in order to attest each other’s personhood. After having a digital identity which
is provably linked to a real human being, each user receives a universal basic
income in one of Encointer’s local community currencies. The protocol requires
complex logic to be calculated on the blockchain like verifying geolocations or
assigning users to meetups in order to guarantee the security of the system. To
ensure Encointer’s scalability to a large number of users it is crucial that those
computations are as efficient as possible which is not yet the case. In this thesis
we present solutions to three major scalability problems of Encointer, evaluate
them in terms of runtime and security and provide implementations that are
ready to be merged into Encointer’s production system.
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Chapter 1

Introduction

1.1 Motivation

Since the publication of Bitcoin[1] in 2008 a lot has happened in the blockchain
space. Many ecosystems like Ethereum[2] or Polkadot[3] emerged and evolved
but also limitations of those technologies came to light. One of them being the
consensus mechanisms used at the core of the blockchain systems. Bitcoin’s
Proof-Of-Work has the issue of giving power only to the owners of specialized
hardware and not being very friendly to the environment, while Ethereum’s
Proof-Of-Stake solves the environment issues but gives all the power to the rich.
A new approach to this issue is called Proof-Of-Personhood, which aims at es-
tablishing a One-Person-One-Vote paradigm. Encointer[4] is a cryptocurrency
that implements Proof-Of-Personhood and issues a universal basic income to all
its participants. Like many other blockchain systems, Encointer suffers from
scalability problems.

1.2 Goal

The goal of this thesis is to design solutions for three major scalability problems
of Encointer as well as implementing them into the existing codebase.

1.3 Outline

In Chapter 2 we introduce the theoretical background of this thesis and Chap-
ter 3 discusses related work. Chapter 4, Chapter 5 and Chapter 6 cover the three
scalability problems by introducing the problem, presenting and evaluating our
solution and giving directions for future improvements. Finally, Chapter 7 con-
cludes the thesis.
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Chapter 2

Background

Encointer[4] is a blockchain ecosystem that allows for the creation of local com-
munity cryptocurrencies which provide their users with a universal basic income
(UBI). In order to prevent sybil attacks on the issuance of a currency, users have
to attend regular key signing meetups (ceremonies) where participants attest the
personhood of each other - therefore the term Proof-Of-Personhood. The cere-
monies take place every 41 days at high sun and shortly before the ceremonies
take place, users are randomly divided into groups and assigned to a meetup
location. In order to prevent attackers from attending multiple meetups in one
ceremony phase, the meetup locations need to have a minimum distance between
each other. Because the meetup time is determined by the position of the sun,
distance is measured in solar trip time instead of meters (see Definition 2.1).

Definition 2.1 (Solar Trip Time). The time delta between the time it takes for
a human to travel from A to B and the time it takes the sun to travel the same
distance relative to the earth. If positive, a human is traveling slower than the
sun.

A new community currency needs to be initiated by providing the geographic
bounds of the community and the meetup locations where the key signing cere-
monies will take place. In addition a setup ceremony with 3 to 12 bootstrappers
has to be held. After a community is setup, the protocol is divided into the
following phases that repeat every 41 days:

1. Registration
Participants register for a ceremony at least 24 hours ahead of time.

2. Assignment
Users are randomly assigned to meetup locations in groups of 3 to 12
persons.

3. Meetup
Participants meet at their assigned locations and attest the physical atten-
dance of each other using the Encointer mobile app.

2



2. Background 3

4. Witnessing and Validation
All users submit their attestations to the Encointer blockchain, where the
attestations are validated. Successful validation grants the user the right
to the UBI and gives her reputation for the coming ceremony phases.

5. Reward
A UBI is rewarded to all participants that passed the validation, meaning
that there is proof that they physically attended their assigned meetup.

Encointer uses a demurrage[5] mechanism, by which currency is constantly
being destroyed in order to incentivize users to spend their money and thus ac-
tively take part in the economy. Recently, Encointer was getting more attention
as they are aiming to become a Polkadot parachain and a security analysis of
the protocol was performed by external researchers[6].

2.1 Polkadot and Substrate

Encointer is built on top of Polkadot[3], which is a heterogeneous multichain
protocol allowing for blockchain interoperability and pooled security of multiple
blockchains. It consists of a relay chain that is responsible for consensus and of
multiple so-called parachains that are secured and connected to each other via
the relay chain. Encointer aims at becoming a parachain of Polkadot and uses
Substrate[7], a development framework that lets developers create blockchains
that will be interoperable with the Polkadot relay chain. We also used Sub-
strate’s native benchmarking framework[8] in order to benchmark the algorithm
in Chapter 4.

2.2 Rust

Most of the code in this thesis is written in Rust[9], a programming language con-
cerned with writing fast and reliable code and bridging the gap between high-level
convenience and low-level flexibility. Rust has a powerful standard library[10]
but as Substrate’s runtime code is compiled into a WebAssembly[11] binary,
which should be as light-weight as possible, one has to develop the blockchain
logic without the standard library.

2.3 Geohashing

Geohashing[12] is a technique of mapping a geolocation specified by its latitude
and longitude to a hash value of constant length, where one hash value corre-
sponds to a rectangular area on the earth. The more digits the hash value has,
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the smaller is that area. As in traditional hashing we call a geohash value and
its corresponding area a bucket. At the equator, the area of a geohash bucket is
a square and with increasing absolute latitude the area becomes rectangular, as
the distance around the world decreases the closer we get to the poles.
For example, the ETH main building is located at coordinates 47.376305,

8.547467, which map to the hash value u0qjd. A visualization of this geo-
hash bucket can be found in Figure 2.1.
Geohashing forms the basis of more complex data structures to store and retrieve
geolocations efficiently, like for example GeoTree[13].

Figure 2.1: Geohash bucket containing the ETH main building, encoded with a
hash length of 5 characters

Source: https://www.movable-type.co.uk/scripts/geohash.html

2.4 Modular Arithmetic

To understand Chapter 5, basic knowledge of group theory and modular arith-
metic is required. In this section we give a very brief overview of concepts
necessary to understand this thesis.
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2.4.1 Cyclic Groups

For any n, the integers modulo n form a cyclic group under the addition opera-
tion. Any group element that is coprime to n is a generator of this group. When
choosing a random prime number p that might be greater than n, we know by
the Euclidean algorithm[14] that the remainder r = p mod n is coprime to n
and therefore also a generator of the group. If n itself is a prime number, any
non-zero group element is a generator by definition.

2.4.2 Modular Addition and Multiplication

When adding numbers modulo m, the following holds:

(a + b) mod m = ((a mod m) + (b mod m)) mod m (2.1)

A similar equation holds for multiplication:

(a ∗ b) mod m = ((a mod m) ∗ (b mod m)) mod m (2.2)



Chapter 3

Related Work

In the following, we present a broad area of topics related to this thesis.

3.1 Proof-Of-Personhood

Many approaches exist to bring more democracy to blockchain ecosystems. The
main attempt of these protocols is to achieve a shift of paradigm from ”One-
CPU-One-Vote” (Proof-Of-Work) or ”One-Dollar-One-Vote” (Proof-Of-Stake)
to ”One-Person-One-Vote”. Those protocols are summarized under the term
Proof-of-Personhood (PoP)[15]. PoP tries to establish a concept called account-
able pseudonyms[16], such that users can be anonymous but can be held account-
able at the same time. One interesting approach is PoPCoin[17], which relies on
physical meetups called pseudonym parties similar to Encointer.

Another broader term found in the literature is Self Sovereign Identity, which
refers to technologies that create decentralized identity systems with the aim of
improving financial and social inclusion of vulnerable populations[18].

Kleros is a decentralized protocol built on top of Ethereum providing general
mechanisms for decentralized decisions[19]. They provide a protocol that aims to
solve Proof-Of-Humanity[20], which combines the concepts of web of trust[21],
reverse turing tests to distinguish real humans from sybils and decentralized
dispute resolution.

Many creative solutions exist to solve PoP. For example one protocol that
also carries the name Proof-Of-Humanity, gives users voting power based on the
amount of money they donate to non-profit organizations[22].

3.2 UBI Tokens

Building on PoP protocols, a range of cryptocurrencies emerged that give a
UBI to their users. Based on the Proof-of-Humanity protocol mentioned in

6



3. Related Work 7

Section 3.1, Kleros built a contract on the Ethereum blockchain that mints a
universal basic income to its users[20].

Other UBI tokens are MYUBI[23], where it is not clear how it solves the
problem of sybil attack in a decentralized way, or UBIC[24], which relies on
modern passport features, which makes the system centralized.

Even though it is not aiming at providing a UBI to its users, also worth men-
tioning is Freicoin[25], a cryptocurreny that uses Proof-Of-Work but implements
similar demurrage mechanisms as Encointer.

3.3 Delauney Triangulation Approach for Location
Validation

There have been prior attempts at Encointer to solve the scalability issue of the
location validation algorithm. Originally the idea was to store a global Delauney
triangulation[26] along with all the registered locations in order to be able to later
retrieve only the closest neighbors of a given location[27]. We investigated this
idea at the beginning of this thesis and discontinued it in favor of the geohashing
solution because efficiently inserting nodes into and removing nodes from a global
Delauney triangulation in non-trivial.



Chapter 4

Verification of Geolocations

In this chapter we describe the first scalability problem of Encointer, present a
solution and evaluate it. As mentioned in Section 2.2, all meetup locations need
to maintain a minimum distance to each other. This problem is concerned with
the validation of locations in terms of this minimum distance.

4.1 The Problem

In the current implementation of Encointer, when a community is bootstrapped,
all locations for that community have to be provided and are validated at once
using a naive approach that compares each location to every other location.
Algorithm 1 shows a pseudocode implementation of this algorithm for the case
when a community with just one location is added to the system. As we can see,
this algorithm has complexity O(n) for n locations that are already registered.
All the locations are stored in a map that maps each community identifier (cid)
to a vector of locations. So for each cid there needs to be a database lookup
which means that the number of database lookups is linear in the number of
registered communities.
Algorithm 1 is a slight simplification of the real algorithm, as it is possible to
add communities with more than one location. In this scenario, all the added
locations are compared to each other and then Algorithm 1 is applied to all
of them, which results in a complexity of O(m2 + m ∗ n) for m newly added
locations and n already registered locations. We make this simplification here as
the algorithm will be better comparable to our proposed solution, where locations
will be added one by one. The goal will be to reduce to complexity of Algorithm
1 from O(n) to O(1).

8



4. Verification of Geolocations 9

Algorithm 1 Naive Algorithm for Location Validation

Storage:
cids := cid[]
locations := map cid→ location[]

Input: Location to be validated
Output: Boolean indicating if the input location has a distance larger

than THRESHOLD to every already registered location

1: function validateLocation(location)
2: for cid in cids do
3: locations← locations[cid]
4: for l in locations do
5: d← solarDistance(l, location)
6: if d < THRESHOLD then
7: return false
8: end if
9: end for

10: end for
11: return true
12: end function

4.2 Improved Algorithm

As mentioned in Section 4.1, there were two main improvements necessary for
the location validation algorithm. The first was to allow for incremental commu-
nity building, which means that locations do not all have to be specified when a
community is bootstrapped, but more locations can be added later in separate
transactions. Also we implemented a feature that allows locations to be removed
from a community, which might be necessary if a location becomes unreachable
for some reason. The second improvement concerns the actual asymptotic com-
plexity of the algorithm. Algorithm 2 shows a pseudocode implementation of
our improved version.
The central element of the new algorithm is geohashing, where a location is
mapped to a rectangular area called bucket. The idea is to narrow down the
number of comparisons by only comparing the locations within a certain ”ra-
dius” of the input location P. The naive approach would be to simply compare P
only to locations within the same geohash bucket. This is too simple as locations
of the neighboring buckets could also be closer to P than the minimum distance.
To improve this situation, we could compare P to all locations inside its geo-
hash bucket and to all locations from neighboring buckets. This approach would
be safe as we chose a geohash length of 5, which means that a geohash bucket
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has a size of 4.9 km x 4.9 km at the equator, which is large enough to cover
all locations within the minimum distance. Note that geohash buckets decrease
in width with increasing/decreasing latitude. We refer to Subsection 4.2.1 for
detailed explanations why it is always safe to only consider the direct neighbors
of the bucket containing P.
Still there is an optimization than can be made: Instead of comparing locations
of all neighbor buckets, it suffices to only consider buckets that are closer to P
than the minimum distance. As you can see in Figure 4.1, we can compute the
direct distance from P to every neighbor bucket and only consider the buckets
that have a distance to P smaller than the specified threshold.

Figure 4.1: Example of neighboring geohash buckets

As the use of geohashes demands for a different data model, we had to adjust
the data structures to store the locations. We came up with the following two
main data structures:

1. locations
This is the main data structure. It is a double map mapping from com-
munity identifier to geohash to location. It simply adds a layer for the
geohash concept between cid and location.

2. cidsByGeohash
When only considering the locations data structure from above, one can
note that it is not possible to efficiently retrieve all locations for one given
geohash bucket without looping over all community identifiers. This is
why a second data structure was introduced, which maps from geohash
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to community identifier and acts as an index to the locations double map
described above.

Algorithm 2 Improved Algorithm for Location Validation

Storage:
cidsByGeohash := map geohash→ cid
locations := map cid→ geohash→ location[]

Input: Location to be validated
Output: Boolean indicating if the input location has a distance larger

than THRESHOLD to every already registered location

1: function validateLocation(location)
2: Compute geohash of location
3: Find position P of location inside geohash bucket
4: Compute distance of P to edges and corners of geohash bucket
5: relevantBuckets← all nearby neighbour buckets
6: for bucket in relevantBuckets do
7: cids← cidsByGeohash[bucket]
8: for cid in cids do
9: locations← locations[cid][bucket]

10: for l in locations do
11: d← solarDistance(l, location)
12: if d < THRESHOLD then
13: return false
14: end if
15: end for
16: end for
17: end for
18: return true
19: end function

In order to convince the reader that Algorithm 2 has complexity O(1), we
quickly go over the 3 loops and describe why each of them iterates only a constant
number of times.

1. Line 6
We loop over all the relevant neighbor buckets, plus the bucket in the cen-
ter. When considering all the neighbors, the maximum number of iterations
for this loop is 9.

2. Line 8
This loop iterates over all communities that are contained in a certain
geohash bucket. As communities will usually be larger than one geohash
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bucket (4.9 km x 4.9 km), we expect this loop to do only one iteration. In
certain cases there might be 2 or 3 iterations for geohash buckets that are
shared by neighboring communities.

3. Line 10
Here we loop over all locations in one geohash bucket. As the locations
need to maintain a minimum distance to each other, there can only be a
constant number of locations in one geohash bucket. Assuming a minimum
solar trip time of 1s between locations, which corresponds to roughly 850
meters at the equator, one geohash bucket could contain a maximum of
(4900/850)2 ≈ 33 locations.

4.2.1 Excluded Zones

As the ceremonies take place at high sun, there are some problematic areas that
would allow for attacks if not treated accordingly. Those are areas close to the
dateline (longitude +/- 180◦) and areas close to the poles. In this section we
provide calculations that form the basis for excluding certain areas of the world
from the system in order to make it safe.

Poles

Two things need to be considered near the poles. Firstly, the sun’s relative
speed to the earth decreases with increasing/decreasing latitude, which means
that it becomes easier for a human to travel from one meetup location to another
between the two corresponding meetup times. The seconds point is that geohash
buckets decrease in width with increasing/decreasing latitude.

In the following, we compute bounds on latitude that account for the two
problems mentioned above. We start by deriving the latitude above which the
sun’s relative speed is faster than 83 m/s, which is Encointer’s assumed maxi-
mum speed of an attacker.

The earth rotates once per day, where one rotation corresponds to 360◦. From
this we get that the sun moves relative to the earth at a pace of

3600 ∗ 24s

360◦
= 240s/◦ (4.1)

This means that it takes the sun 240 seconds to traverse one degree of longi-
tude at latitude x.

The distance in meters of one degree of longitude at latitude x is

cos(x◦) ∗ 111319 (4.2)
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(one degree of longitude corresponds to 111319m at the equator)

Assuming a speed of 83 m/s, a human can travel with a pace of

cos(x◦) ∗ 111319

83
(4.3)

at latitude x.

Combining 4.1 and 4.3 we get:

cos(x◦) ∗ 111319

83
= 240 (4.4)

Solving for x, we get x = 79.6917◦. Thus, above a latitude of 79.6917◦or be-
low -79.6917◦, a human can travel faster than the sun when traveling at constant
latitude.

We continue by computing a bound on latitude below which it takes a human
more than 1 second of solar trip time (see Definition 2.1) to traverse one geohash
bucket.
We make the following assumptions:
Minimum solar time between two locations = 1 s
Maximum human speed = 83 m/s
Geohash length = 5 (Bucket size is 4.9 km * 4.9 km at equator)

Using 4.2 and 4.1, we calculate the sun’s relative speed to the earth at latitude
x:

cos(x◦) ∗ 111319

240
m/s (4.5)

And following from this, we get the time it takes for the sun to traverse one
geohash bucket:

4900 ∗ cos(x◦)
cos(x◦)∗111319

240

(4.6)

Similarly, a human will need

4900 ∗ cos(x◦)
83

s (4.7)

to traverse one geohash bucket.

Now, combining 4.7, 4.6 and the assumption that two locations need to apart
at least 1s in terms of solar trip time, we get the follwoing equation:

4900 ∗ cos(x◦)
83

− 4900 ∗ cos(x◦)
cos(x◦)∗111319

240

= 1 (4.8)
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Solving for x, we get x = 78.7036◦. So below 78.7036◦or above -78.7036◦it
takes more than 1 second solar time to traverse one geohash bucket horizontally.
Thus it is safe to only consider the direct neighbors of the the geohash of the
location being validated when computing all locations that might be in conflict.

Using the bounds calculated above, we decided to exclude all locations with
an absolute latitude of more than 78.7◦in order to simplify the algorithm. We can
accept this simplification, as the northern most settlement with more than 1000
inhabitants is at 78.2◦[28] and the southern most settlement is at -54.93◦[29].

Dateline

Similar considerations have to be made for locations close to the dateline. A
possible attack scenario at the dateline would be an attacker moving in the
opposite direction of the sun and arriving early enough at a second meetup
location. Like this, she could attend at two meetups in one ceremony phase.
Figure 4.2 shows an illustration of this attack.

Figure 4.2: Illustration of the attack scenario at the dateline

In the following, we derive a formula to exclude certain areas close to the
dateline:
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The time difference in seconds between high sun at P and high sun at Q
using the sun’s relative pace from 4.1 is:

360◦ − 2 ∗ y◦ ∗ 240s (4.9)

The distance in meters from P to Q counterclockwise at latitude x can be
calculated using 4.2:

2 ∗ y ∗ cos(x◦) ∗ 111319 (4.10)

So, we get the time in seconds it takes a human with a speed of 83 m/s to
travel from P to Q in the opposite direction:

2 ∗ y◦ ∗ cos(x◦) ∗ 111319

83
(4.11)

This leads us to the following equation:

2 ∗ y◦ ∗ cos(x◦) ∗ 111319

83
= 360◦ − 2 ∗ y◦ ∗ 240 (4.12)

If we solve for y we get a formula for the number of degrees that need to be
excluded at each side of the dateline depending on the latitude x, because for a
distance larger than 2*y a human cannot travel from P to Q faster than the sun
in the opposite direction. Solving the equation, we get:

y =
3585600

19920 + 111319 ∗ cos(π∗x◦180 )
(4.13)

A visualization of this equation can be found in Figure 4.3 a). It can be seen
that with this solution, one would have to exclude a very big area which is not
desirable. Following attempts could be made to mitigate this issue:

1. Relax assumptions of maximum human speed
For now, Encointer assumes a maximum human speed of 83 m/s or 300
km/h. This is an extreme assumption, because it would require a helicopter
or similar to conduct a successful attack. Figure 4.3 b) shows a visualization
of the excluded zone assuming a maximum human speed of 23 m/s which
corresponds to approximately 82 km/h.

2. Custom exclusion zones
Figure 4.3 c) shows how an excluded zone could look like if the excluded
zone would not be spread evenly on both sides of the dateline. This could
be beneficial in order to not have to exclude large areas like New Zealand.

3. Excluded zone not including the dateline
In order to maximize the number of human settlements included in the
system, one could create a safety zone at a different longitude than the
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dateline. This would require the ceremony phase to start at the moment
of high sun at the left border of the excluded zone and end at high sun at
the right border. This would also lead to ceremonies not all taking place
on the same date. Figure 4.3 d) shows an example of this.

In consultation with the Encointer engineers we decided to implement neither
of those ideas and just exclude a constant 1000km on each side of the dateline
for reasons of simplicity. Like this we accept some theoretical attacks, which are
infeasible and thus unlikely. Our above calculations form a basis for possible
future changes to the protocol, which would only take a few lines of code to be
implemented into the system.
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(a) (b)

(c) (d)

Figure 4.3:
(a) Linearly excluded zone assuming human speed of 83 m/s
(b) Linearly excluded zone assuming human speed of 23 m/s
(c) Custom excluded zone assuming human speed of 23 m/s
(d) Custom excluded zone assuming human speed of 23 m/s

Source: https://www.google.com/maps, lines drawn using pyKML library[30]
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4.3 Implementation

The implementation of the algorithm was done using the Rust programming lan-
guage and the Substrate framework. It was built on top of the existing Encointer
codebase. For computing geohashes we forked an existing library for Rust[31]
and adopted it to use fixed-point instead of floating-point numbers and got rid of
all features from the std library. Both changes were requirements by Encointer
and Substrate, respectively.
All newly implemented features were unit tested.

4.4 Evaluation

In this section we present the evaluation of the performance difference between
Algorithm 1 and Algorithm 2. In order to measure the runtime of each algorithm,
the Substrate benchmarking framework was used. The experimental setup was
as follows: A number of locations are added into a newly created Encointer
environment before the experiment and then we measure how long it takes to
add one new location to the system. Two different experiments were conducted
concerning the pre-registered locations. In the first setup, all locations were
registered in the same community and in the second, locations were registered
in communities of size 10000. The number of pre-registered locations ranged
from 2 to 500000, measurements were taken in steps of 50000 locations. We
measured each datapoint four times and took the median as the final result.
Test locations were generated using Algorithm 3 which evenly spreads latitudes
between -40◦and 40◦and longitudes between -140◦and 140◦. Info Box 4.1 shows
an overview of the benchmarking environment.

MacBook Pro (15-inch, 2019)
OS: macOS Catalina, Version 10.15.7
CPU: 2.3 GHz 8-Core Intel Core i9
Memory: 16 GB 2400 MHz DDR4

Info Box 4.1: Specification of the benchmarking environment

Algorithm 3 Algorithm to get the ith test location

1: lat← (i/1000) ∗ 0.08− 40.0
2: lon← (i%1000) ∗ 0.28− 140
3: return (lat,lon)

Below we will discuss the two experiments mentioned above in more detail.
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4.4.1 All locations in one community

In the first experiment, we registered a number of locations in one community and
measured how long it takes to validate and add one more location to the system.
Figure 4.4 a) shows that the initial algorithm has an asymptotic complexity of
O(n) while our improved algorithm has constant complexity O(1). Figure 4.4 b)
shows only the runtime of the new algorithm. In Figure 4.4 c) we can see that
both algorithms have a constant number of database reads. The spike in the line
of the new algorithm is random and has to do with the random nature of the
locations. In this case the location is most probably close to another geohash
bucket and therefore one more database read for that corresponding bucket has
to be made. For more details on this, please refer to Figure 4.1. The slight
increase in runtime between the first and the second datapoints we attribute to
the substrate database and caching mechanisms.

(a) (b)

(c)

Figure 4.4: Results of the experiment with pre-registered locations in one com-
munity
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4.4.2 Locations in communities of size 10000

In this section we show the results of the experiment where the pre-registered
locations were grouped in communities of size 10000. As in the previous ex-
periment, we can see in Figure 4.5 a) and b) that the improved algorithm has
constant complexity. What we can also see in Figure 4.5 c) is that for the old
algorithm the number of database reads grows in the number of pre-registered
communities, because a database lookup has to be made for each community.
Our improved algorithm also mitigates this issue by only considering nearby lo-
cations and has a constant number of database lookups. The bump in the orange
line is similar to the one in Figure 4.4 c).

(a) (b)

(c)

Figure 4.5: Results of the experiment with pre-registered locations in communi-
ties of size 10000

4.5 Future Work

The only aspect of this problem that is not fully implemented yet is the issue
at the dateline. In Section 4.2.1 we provided several solutions that solve this
problem.



Chapter 5

Assigning Participants to
Meetup Locations

In this chapter we discuss the scalability problems that Encointer faces in the
process of assigning users to meetup locations on the blockchain, present a solu-
tion and evaluate it.

5.1 The Problem

After users registered for the meetup phase, they have to be randomly assigned
to meetup locations in order to prevent collusion between meetup participants.
In addition to the unpredictability of the assignments, there are the following
constraints:

1. There are 4 categories of users in Encointer. Each group should be dis-
tributed equally among all meetups:

• Bootstrappers are founding members of the community

• Reputables are users that successfully attended a meetup in the past
and therefore have reputation

• Endorsees are users that were labeled trustworthy by a bootstrapper

• Newbies have never attended a meetup before

2. There should be a minimum of 3 and a maximum of 12 participants per
meetup.

3. No meetups should exist without at least one community bootstrapper or
user with reputation.

4. The percentage of users without reputation should be less than 25% for
every meetup. We will refer to this percentage as newbie ratio.

21
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Encointer uses a straight-forward approach to calculate random permutations
and store them on-chain, the core functionality of which we will describe in the
following. The algorithm gets as input a list for each category of users (boot-
strappers, reputables, endorsees and newbies) and calculates the permutation as
follows:

1. Calculate the number of meetups that can take place based on available
locations and number of registered bootstrappers and reputables.

2. Calculate the number of newbies that can participate in order to ensure
the newbie ratio of 25%.

3. Shuffle each list of users separately using a random permutation.

4. Concatenate the shuffled lists.

5. Loop over the concatenated list and distribute the users to the locations
in a round robin fashion.

6. Store the result in the blockchain storage.

Those steps are repeated for every community. While this approach is de-
signed to fulfill all the constraints described above, the problem is that calculating
permutations for every category of users in every registered community is very
time consuming and does not scale if there are many communities registered
in the system. Also storing all the permutations on-chain is inefficient. In the
following section we will describe a new approach to solve the assignment prob-
lem, which saves time and storage space at the cost of weakening some of the
constraints to a certain extent.

5.2 Proposed Solution

In the following we describe our proposed solution for assigning users to meetup
locations. Basic knowledge of modular arithmetic is required to understand this
section.

5.2.1 Basic Concepts

The basic idea for our solution is to avoid having to compute and store all the
permutations on-chain by making the assignment implicit using some publicly
known pre-defined function that takes as input a random seed. In the blockchain
transaction, we only have to determine the seed and then every application can
calculate the assignment off-chain given the permutation function. While in the
ceremony phase we need to be able to calculate for a given user her meetup
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location, we also have to be able to find all the users for a given meetup location
later in the verification phase. This means that our assignment function has to
be invertible.
We designed the assignment function with the help of modular arithmetic and
additive cyclic groups. Let’s consider a simplified version of the assignment
problem, where we have to distribute a number of users N to a number of
locations n. The users and locations are identified by their index in [0, N) and
[0, n) respectively. We know that a group is cyclic under addition mod N and
that any group element coprime to N is a generator of this group. So in order to
shuffle the users in an unpredictable way, we choose a random prime number s1
which is by definition coprime to N (and if s1 > N , then s1 mod N is coprime
to N , see Subsection 2.4.1) and therefore a generator of the group and calculate
for every user u ∈ [0, N) a new index

u ∗ s1 mod N (5.1)

which will map every u ∈ [0, N) to another number in [0, N).
Now, in order to distribute the users to the meetup locations we simply calculate

(u ∗ s1 mod N) mod n (5.2)

which will map each user to a location in [0, n).

In the following sections we will discuss problems of this approach in regard
with our constraints described in Section 5.1 and do a step-by-step refinement
of the formula and the process of defining s1 and N .

5.2.2 Problem 1: Index Zero

One problem with Equation 5.2 is that the user with index 0 will always be
mapped to location 0, as can be easily verified. To mitigate this problem, we
introduce a second prime number s2 to act as a random offset. Note that s2
does not necessarily need to be prime to fulfill this purpose. This gives us the
following formula:

(u ∗ s1 + s2 mod N) mod n (5.3)

The offset s2 does not change anything about the fact that every u ∈ [0, N)
is mapped to another number in [0, N), because we are in a cyclic group.
Separate instances of this formula will be used later in order to distribute boot-
strappers, reputables, endorsees and newbies equally to the meetup locations.
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Now that we have determined our core formula to map users to meetup
locations, we can give its counter-part, namely the formula to determine all
users given a certain meetup location.
Given a meetup location l, we know from Equation 5.9 that

u ∗ s1 + s2 mod N = n ∗ i + l (5.4)

for some i.
Rearranging that formula we get:

u = (n ∗ i + l − s2) ∗ s1−1 mod N (5.5)

We also know that
n ∗ i + l < N (5.6)

because we only consider user indices smaller than N. We can rearrange this
formula to get:

i <
N − l

n
(5.7)

So this leads us to the final formula to determine the set of users U for a
given meetup location l:

U = (n ∗ i + l − s2) ∗ s1−1 mod N ∀i < N − l

n
(5.8)

5.2.3 Problem 2: Predictability

One requirement for the assignment process is that it is not possible for a user
to guess at what location she will have to attend the meetup in order to prevent
collusion. When taking a closer look at Equation 5.9 we can see the following
problem: Let’s consider a setup where there are n meetup locations and N
participants and N is divisible by n. The equation now boils down to

u ∗ s1 + s2 mod n (5.9)

Note that the mod N part cancels out because N mod n = 0. We can now
see that there will be predictable patterns in the assignment regardless of s1 and
s2. We claim that users with indices x+ i ∗ n (users that have indices separated
by steps of size n) will end up in the same meetup location x ∗ s1 + s2 mod n
in this scenario. We provide a simple proof using the rules for modular addition
and multiplication.
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Proof.

(x + i ∗ n) ∗ s1 + s2 mod n

= ((x + i ∗ n) ∗ s1) mod n + s2 mod n

= ((x + i ∗ n) mod n ∗ s1 mod n) mod n + s2 mod n

= ((x mod n + i ∗ n mod n) mod n ∗ s1 mod n) mod n + s2 mod n

= ((x mod n + 0) mod n ∗ s1 mod n) mod n + s2 mod n

= (x mod n ∗ s1 mod n) mod n + s2 mod n

= (x ∗ s1) mod n + s2 mod n

= x ∗ s1 + s2 mod n

As users receive their index based on the order of registration, there is a
potential attack where an attacker tries to register various accounts in a way
that they always have the same gap n between each other and that the final
number of registrations is a number N , which is a multiple of n. Like this the
attacker finds all her sybils in the same meetup and can attest the personhood
of accounts that do not have a real person behind them.
To mitigate this problem, it suffices to not use the number of registered users
as N , but a prime number close to N , because in this way N can never be a
multiple of n. Like this, it will not be possible for a user to find out to which
meetup location she will be assigned before knowing s1 and s2. There are now
two cases that we need to consider that will have different effects on the outcome
of the assignment: Choosing the prime number above N or the prime number
below N . We will quickly discuss both cases below.
We denote the new modulus (prime number above N or prime number below
N) as M .

Prime number above N When using the prime above N as the modulus,
this means that every user u ∈ [0, N) will be assigned a new index in [0,M),
which will then be mapped to a meetup location in ∈ [0, n), as in the following
equation:

f(u) = (u ∗ s1 + s2 mod M) mod n (5.10)

We can now see that there are potential configurations where some meetup loca-
tions do not receive any users, even though there would be enough users. Let’s
consider a simple example: We want to distribute N = 10 users to n = 10
locations. When choosing M as the prime number above N , we get M = 13.
We choose s1 = 19 and s2 = 29. Using Equation 5.10 we get the following
assignment:
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user u location f(u)

0 3

1 9

2 2

3 8

4 1

5 7

6 0

7 6

8 2

9 5

Table 5.1: Mapping of users to meetup locations

In Table 5.1 we find that no user is mapped to location 4 but two users are
mapped to location 2. The problem can be seen easily when looking closer at
users 2 and 8:

f(2)

= (2 ∗ 19 + 29 mod 13) mod 10

= 2 mod 10

= 2

= 12 mod 10

= (8 ∗ 19 + 29 mod 13) mod 10

= f(8)

The problem here is that the user with index 8 maps to 12, which lies in the gap
between N = n and M and can therefore be mapped to an equal location than
another user (in this case the user with index 2).
This issue can become problematic for our case, because we want to ensure that
every meetup location gets at least one bootstrapper or reputable in order to
strengthen the security of the system. If we were to find a configuration as
in Table 5.1 when distributing these users over the locations, this could result
in locations without any bootstrapper or reputable. This is why we will now
consider choosing M as the prime number below N .

Prime number below N When taking M as the prime number below N , we
do not have the issues mentioned above. But there is still one adjustment to be
made. When considering the example above, we note that taking M = 7 would
also result in problems, because now M < n. We can see that

(u ∗ 19 + 29 mod 7) mod 10 < 7 ∀u ∈ N (5.11)

which means that locations 8 and 9 would be assigned no users at all. This is
why we add another constraint to the system that the number of meetups has to
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be smaller or equal than the prime number below Q, where Q is the number of
bootstrappers and reputables registered. Like this we can guarantee that every
meetup location will be assigned at least one bootstrapper or reputable (note
that for newbies and endorsees, we do not have a similar requirement and can
accept some locations without users of those categories). In the above example
this would mean that we would choose n = 7 instead of n = 10, which would
result in the following assignment:

user u location f(u)

0 1

1 6

2 4

3 2

4 0

5 5

6 3

7 1

8 6

9 4

Table 5.2: Optimized mapping of users to meetup locations

In Table 5.2, we can now see that choosing M as the prime number below
N and the additional constraint, every location in [0, 7) is assigned at least one
user.
We can note here that it is no longer necessary for s1 to be a prime number,
because when we choose the modulus M as a prime number, any non-zero group
element will be a generator of our group. So it suffices to choose a random
s1 ∈ [1,M).

5.2.4 Problem 3: Unequal Meetup Sizes

We have now developed our assignment formula and the additional constraint
that the first modulus should be the prime number below N . There is one last
issue remaining with this setup. Recall that our assignment function maps all
N users to a new index in [0,M), where M is the prime number below N and
then maps the new index to a location in [0, n) using the modulo function as
in Equation 5.10. Now there can be configurations of s1 and s2, where most of
the user indices in [M,N) map to the same location, which causes one location
to have over-proportionally many users assigned to it. Consider the following
example, where s1 = 2326, s2 = 1099, n = 427, N = 2761 and M = 2753. The
assignment for user indices looks as follows:
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user u location f(u)

0 245

1 245

2 245

3 9

4 9

5 9

6 9

7 9

8 9

9 9

10 200

11 200

... ...

M = 2753 245

2754 245

2755 245

2756 9

2757 9

2758 9

2759 9

2760 9

Table 5.3: Problematic mapping of users to meetup locations when using the
prime below N as the modulus

We can clearly see at index M = 2753 the pattern repeats, which is to be
expected, because M is our modulus. With this configuration, meetup location
9 will be assigned too many participants compared with the other locations and
we want to avoid that. To mitigate this we introduce a check when choosing
s1 and s2 that makes sure that no location is assigned more than

⌈
N−M
n

⌉
users

with index u ∈ [M,N), which will make sure that the users are distributed more
equally to the meetup locations. We will refer to this as checking the equal
meetup size property. For a more formal reasoning about this constraint and its
effects please refer to Subsection 5.4.2.

5.2.5 The Algorithm

We now have all the tools to develop the final algorithm for determining all
the necessary random numbers and parameters for the assignment function. As
mentioned above, the idea is to use separate instances of the formula to assign
boostrappers, reputables, endorsees and newbies such that those groups are dis-
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tributed equally to all the meetup locations. Bootstrappers and reputables are
distributed together, because they are the trustworthy users of the system and
we want to make sure that every meetup gets at least one of them as explained
in Subsection 5.2.3.
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Algorithm 4 Algorithm for generating parameters for assignment function

Input: Number of boostrappers, reputables, endorsees and newbies
Number of locations

Output: Parameters for the assignment functions:
Number of meetups n
Number of allowed reputables
Number of allowed endorsees
Number of allowed newbies
s1, s2, and M for bootstrappers and reputables (br)
s1, s2, and M for endorsees (end)
s1, s2, and M for newbies (new)

1: function generateAssignmentParams
2: MEETUP MULTIPLIER = 10
3: numMeetups = min(numLocations, primeBelow(numBootstrappers +

numReputables))
4: availableSlots = numMeetups * MEETUP MULTIPLIER
5: availableSlots -= numBootstrappers
6: numAllowedReputables = min(numReputables, availableSlots)
7: availableSlots -= numReputables
8: numAllowedEndorsees = min(numEndorsees, availableSlots)
9: availableSlots -= numAllowedReputables

10: maxAllowedNewbies = (numBootstrappers + numAllowedReputables +
numAllowedEndorsees) / 3

11: numAllowedNewbies = min(numNewbies, availableSlots)
12: numAllowedNewbies = min(numAllowedNewbies, maxAllowedNewbies)
13: availableSlots -= numAllowedNewbies
14: numParticipants = numBootstrappers + numAllowedReputables + nu-

mAllowedEndorsees + numAllowedNewbies
15: n = ceil(numParticipants / MEETUP MULTIPLIER)
16:

17: M br = primeBelow(numBootstrappers + numAllowedReputables)
18: M end = primeBelow(numAllowedEndorsees)
19: M new = primeBelow(numAllowedNewbies)
20:

21: for gorup in br, end, new do
22: while equal meetup size property is not fulfilled do
23: s1 = randomGroupElement
24: s2 = randomGroupElement
25: end while
26: end for
27: return all parameters
28: end function
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Algorithm 4 shows a pseudocode implementation of the parameter generation
algorithm for the assignment functions. Lines 2 to 15 calculate how many meetup
participants there can be based on the number of available locations, the number
of allowed bootstrappers and reputables (recall that every location needs to have
at least one bootstrapper or reputable assigned) and the number of newbies that
want to participate (recall that there should not be more than 25% newbies
per meetup). Note that the parameter MEETUP MULTIPLIER indicates the
target number of participants per meetup. Lines 17 to 19 then find the prime
numbers below the number of participants in each category of users as discussed
in Subsection 5.2.3 and lines 21 to 25 find random group elements that ensure
the equal meetup size property discussed in Subsection 5.2.4. For a detailed
analysis of the algorithm and the properties of the generated meetups please
refer to Section 5.4.

5.3 Implementation

The implementation of this problem was conducted in two steps. First, we im-
plemented a prototype of the algorithm in Python. Along with that prototype,
we developed a benchmarking framework which allowed us to run experiments in
order to check the desired properties of the meetup assignments. We also setup
a cloud infrastructure in order to run the experiments remotely as those exper-
iments usually ran for multiple hours even though we parallelized independent
experiment runs in order to minimize runtime.
After multiple iterations of developing and benchmarking, the algorithm was im-
plemented into Encointer’s codebase using the Rust programming language and
the Substrate framework.

5.4 Evaluation

In this section we evaluate the runtime of the algorithm given in Subsection 5.2.5,
as well as the properties of the meetups generated by our approach. Most anal-
yses presented are based on two empiric experiments conducted:

1. Experiment A: Small number of participants
In this experiment we simulated 1440000 meetup assignments, ie. running
1440000 instances of Algorithm 4, calculated for every meetup location its
participants using Equation 5.9 and validated the correctness of the com-
putation using Equation 5.8. As inputs, random configurations were used
with numReputables <= 12, numEndorsees <= numBootstrappers ∗ 50,
numReputables, numNewbies < 10000 and numLocations < 50000. A
total of 837273490 meetups were simulated.



5. Assigning Participants to Meetup Locations 32

2. Experiment B: Large number of participants
As a second experiment we simulated 63888 meetup assignments with
numReputables <= 12, numEndorsees <= numBootstrappers ∗ 50,
10000 <= numReputables <= 200000, 10000 <= numNewbies <= 100000
and 10000 <= numLocations < 200000. A total of 920412879 meetups
were simulated.

5.4.1 Predictability

Before we analyze the algorithm runtime, we would like to discuss the unpre-
dictability property of our algorithm. Recall that the previous naive implemen-
tation by Encointer calculated a random permutation of all the N users and we
use the formula u ∗ s1 + s2 mod N to get a similar result. When comparing
the two approaches, we see that for the naive approach, there are N ! different
permutations and for our approach there is only a subset thereof with (N − 2)2

possible permutations, because every combination of s1 and s2 gives a different
permutation and s1, s2 ∈ [1, N − 1]. Although our solution does not guarantee
the same true randomness as the previous approach, we argue that it is still im-
practical enough for a user to guess her meetup location. To validate this claim,
we describe and analyze a possible attack scenario in the following. Let’s assume
the attacker can guess s1. She can do so with a chance of 1/N . Knowing s1
she can assume s2 = 0 and register her sybils with indices i0...is in a way that
those all map to new indices j0...js that are congruent mod n, which means
that they will all map to the same location, if the assumption s2 = 0 holds. Even
if this assumption does not hold, at least 50% of the sybils will be assigned to
the same location, because s2 only is an offset. Assume k0...ks is a sorted list of
the indices j0...js. So, if k0...ks are are congruent mod n then k0 + s2...kp + s2
will be congruent mod n, where kp is the largest index such that kp + s2 < N .
The same holds for kp+1 + s2...ks + s2, and in either of the two sets there are at
least 50% of the indices.
To sum this up, from a theoretical perspective, an attacker has a 1/N chance
that she can craft a meetup where she controls at least 50% of the participants.
In practice there are many factors that make this attack more infeasible:

1. For the attack to be successful the attacker also has to know n and N .
This is possible to a certain extent, because she can register more or less
sybils which will lead to a different amount of participants and meetups.
On the other hand, the control is limited because the amount of newbies
that are allowed in the assignment process is limited.

2. Assuming that there are no endorsees and the amount of meetups is large
enough such that the bootstrappers become negligible, the attacker still
has to guess s1 for the assignment of reputables and s1 for the assignment
of newbies correctly. Also because it is not sufficient that the attacker’s
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reputables are together in one meetup and the attacker’s newbies are in
another, the attacker also has to guess the offsets s2 for the assignment of
reputables and newbies. This drastically decreases her chances of winning
to 1/N2

newbies ∗ 1/N2
reputables which is in the order of 1/N4. Note that there

is another attack where the attacker floods the system with sybils to get a
large probability that at least one of the sybils will be assigned to the same
meetup where she also controls a majority of the reputables. This attack
will be discussed in more detail in Section 5.5.

3. The scenario in item 2 only works if the attacker controls enough users
that already have reputation. So in the best case scenario for the attacker,
she would have to control 3 reputables for every sybil, because the ratio of
newbies that are allowed in each meetup has to be below 25%.

4. It is not trivial for an attacker to register her sybils at the indices of her
choice, because there are also other participants registering themselves and
some other participant could take the attackers desired index.

Even though we have to suffer the loss of some randomness with our ap-
proach, we argue that the above points are still enough to guarantee the system’s
practical security.

5.4.2 Algorithm Runtime

As described in Section 5.1, the implementation by Encointer computed and
stored random permutations directly on the blockchain. The optimal runtime
for computing random permutations is O(n) for n elements to be permuted
[32], so the runtime of their algorithm is O(N) with N being the number of
users registered for a meetup ceremony. When looking at Algorithm 4, we can
see that there are no loops except for the while-loop in line 22, which is used to
determine bad configurations of s1 and s2 in order to make the equal meetup size
property hold. So without this loop Algorithm 4 would clearly have a runtime
of O(1). In theory the loop could iterate infinitely, which is undesirable. This
is why in practice one should implement a maximum amount of iterations, after
which the loop should terminate even if the equal meetup size property is not
fulfilled. This would mean that in the case of this premature loop termination,
we would have to accept one or two meetups with significantly more participants
than the others. In order to find out the number of loop iterations we should
allow, we counted the number of loop iterations for all the simulated meetup
assignments.
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(a) Experiment A (b) Experiment B

Figure 5.1: Number of loop iterations for bad configurations of s1 and s2

Figure 5.1 shows that for Experiment A, where there were a total of 3 ∗
1440000 = 4320000 instances of the loop, the maximum number of loop iterations
was 33 and in Experiment B with 3 ∗ 63888 = 191664 instances, there was a
maximum number of 1 loop iteration. Not the logarithmic scale on the y-axis of
the plots.
Those experiments suggest that we could choose to cap the amount of loop
iterations at for instance 100. We also know that the body of the loop has
to check all numbers between a given N and the prime number below it (M).
Assuming a maximum community size of N = 10 billion users, our analysis
shows that the maximum gap between any two prime numbers between 0 and 10
billion is 210 (between 20831323 and 20831533). So we can clearly see that with
capping the number of loop iterations, we can guarantee that our algorithm has
runtime O(1).

5.4.3 Meetup Size

In this section we want to analyze the size of the meetups calculated with our
method. Figure 5.2 shows that no meetups had more than 15 participants and
that most meetups had a size distributed around 10, which is as expected, be-
cause we chose MEETUP MULTIPLIER = 10.
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(a) Experiment A (b) Experiment B

Figure 5.2: Distribution of meetup sizes

Figure 5.3 shows that for most simulated meetup assignments, the meetups
had sizes between 9 and 13, which is desirable. The small meetup sizes (eg.
meetups with only 3 participants) come from configurations where there are
only a small amount of participants registered in the first place and no meetups
of larger size were possible. Note that we do not see any small meetup sizes in
experiment B. Also note the logarithmic scale of the y-axis in both figures.

(a) Experiment A (b) Experiment B

Figure 5.3: Distribution of bounds of meetupsizes

In addition to Figure 5.2, we would like to provide a mathematical reasoning
why there cannot be more than MEETUP MULTIPLIER + 6 users in one
meetup:
We are using 3 instances of Equation 5.10, one for bootstrappers and reputables,
one for endorsees and one for newbies in order to distribute users to meetup
locations. n is the number of meetup locations for all equations and N is the
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prime number below numBr = numBootstrappers+numReputables, numE =
numEndorsees and numN = numNewbies respectively. Taking the endorsees
as an example, we see that there cannot be more than

(N div n + 1) + ((numE −N) div n + 1) (5.12)

endorsees per meetup, where div denotes integer division. The first part of
the equation comes from all the users with index u < N , because those indices are
mapped bijectively to other indices < N . The second part of the equation comes
from all the users with indices in [N,numE) and this holds because of the equal
meetup size property discussed in Subsection 5.2.4. Simplifying Equation 5.13,
we get

numE div n + 2 (5.13)

as an upper bound for endorsees per meetup. Similar bounds hold for bootstrap-
pers/reputables and newbies.

Putting this together, we get an upper bound of users per meetup as follows:

(numBR div n + 2) + (numE div n + 2) + (numN div n + 2)

= (numBR + numE + numN) div n + 6

= (numParticipants) div n + 6

≤ (n ∗MEETUP MULTIPLIER) div n + 6 (Algorithm 4, line 15)

= MEETUP MULTIPLIER + 6

Given this upper bound, we can say that we violate the constraint that
meetup sizes should be smaller than 12, but we argue that our proposed solution
has enough advantages to accept a few meetups with more than 12 participants,
as this number was artificially chosen and increasing it does not have any effects
on the security of the system.

5.4.4 Newbie Ratio

Figure 5.4 shows the distributions of the newbie ratios for all computed meetups
in Experiment A and B. Recall that the newbie ratio is defined as the percentage
of newbies in one given meetup. Note the logarithmic scale of the y-axis of the
distributions in the first row of the chart. The second row of the chart shows
the cumulative distributions of the same data. We can see that the distribution
of newbie ratios is not optimal yet, because it should theoretically be below 0.25
in all cases. Although we do not reach a newbie ratio of 0.25 in all cases, we
can see by means of the orange lines that we almost always get a newbie ratio
below 0.3, namely in 99.7% of the cases in Experiment A and in 99.98% of the
cases in Experiment B. In agreement with Encointer, we decided to accept this



5. Assigning Participants to Meetup Locations 37

solution. With our approach it is hard to guarantee hard bounds, because many
parameters in the process are randomized. The main problem is that newbies
and other participants are distributed to the meetup locations independently and
this can lead to bad configurations where for example the number of reputables
in one specific meetup is rounded down and the number of newbies in the same
meetup is rounded up. One solution to bring down the newbie ratios would be
to tweak line 10 in Algorithm 4 in order to allow fewer newbies overall which
would decrease the probability of large newbie ratios at the cost of allowing fewer
participants to participate in the meetups. In order to guarantee hard bounds
one could potentially use combinatorial optimization in order to determine the
amount of newbies allowed.

(a) Experiment A (b) Experiment B

(c) Experiment A (d) Experiment B

Figure 5.4: Distribution of newbie ratios

5.4.5 Number of Bootstrappers and Reputables

Because of the implemented measures described in Subsection 5.2.3, all simulated
meetups had at least one bootstrapper or reputable as a participant.
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5.5 Resilience to Byzantine Nodes

In this section we want to analyze how our algorithm performs in the presence
of byzantine nodes in the system. A byzantine node can be either of two types:

1. A user that has already gained reputation and becomes an attacker

2. A sybil node without reputation controlled by an attacker

We will describe an attack scenario, where a group of type 1 byzantine nodes
collude and use an unbounded amount of type 2 byzantine nodes to attack the
system.
In order to understand the attack, we first describe the assumptions that we
make and the rules of the system that are relevant for the attack.

5.5.1 Rules

In order to receive the UBI after attending a meetup, each participant has to
fulfill the following rules:

1. A participant is considered a reputable when she had her personhood at-
tested at least once in the past.

2. The reputables in the meetup have a majority vote on the amount of par-
ticipants present and every user has to agree with this vote in order to get
a UBI.

3. Every participant needs to receive at least (number of reputables) − 2
attestations of personhood from other users.

5.5.2 Assumptions

The following assumptions are made:

1. There are no endorsees and we ignore the bootstrappers (there are a max-
imum of 12, and they have the same voting power as reputables)

2. Each meetup consists of 10 persons with 7 reputables and 3 newbies

3. If the attacker guesses s1 correctly, all her nodes will end up in the same
meetup (we omit the effect of s2)

4. The attacker has a 100% chance to register her nodes in the desired slots
(no collisions with legitimate users that happen to register themselves in
the same slot)
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5. The attacker has each a 50% chance of influencing N and n in her favor
by adding more or less nodes in the registration process

6. The attacker controls all newbies in the system

5.5.3 The Attack

We now analyze the effect of an attack, where a group of attackers that already
have reputation start creating more byzantine nodes by letting sybil nodes gain
reputation. In order to do so, the attackers need to win the majority vote in
a meetup. This can be achieved when in one meetup 4 out of 7 reputables are
controlled by the attackers. If the attack succeeds, the 3 newbies in this meetup
will gain reputation. Assuming there are N reputables, of which a percentage r
are malicious, the expected amount of new sybils per ceremony phase is:

3 ∗ ((r ∗N)/4) ∗ (1/N) ∗ 0.5 ∗ 0.5 (5.14)

because there are 3 new sybils added if the attack succeeds, there are ((r ∗N)/4)
potential meetups where an attack could take place (there need to be 4 mali-
cious reputables in the meetup), the attacker has to guess s1 correctly which is
in [1, N ] and she has each a 50% chance of getting N and n right.

5.5.4 Results

In order to measure the effect of this attack on the entire community, we decided
to use inflation as a metric, because each legitimate participant’s money loses
value when an attacker creates an oversupply of money. Figure 5.5 shows the
annual inflation due to the attack over a period of 100 years with the assumption
of 1%, 10% of 30% malicious reputables (type 1 byzantine nodes). Each plot
shows 5 curves for different community sizes. We analyze the effect of up to 30%
malicious reputables, because we want to test the resilience of our assignment
algorithm which does not have perfect randomness and a related analysis[6] shows
that above 30%, attackers can make profit even if the distribution is perfectly
random.
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(a) (b)

(c)

Figure 5.5: Annual inflation caused by byzantine nodes

We assume that an annual inflation of 2% is acceptable and find that the
only scenario in which this is exceeded is with very small community sizes. The
percentage of malicious reputables only has a secondary influence on the inflation
caused. We also have to note that the assumptions made for this analysis are very
favorable for the attacker, so we conclude that the system has a good resilience
against byzantine nodes if the attacker controls less than 30% of the nodes.

5.6 Future Work

As discussed in Subsection 5.4.1, with our proposed algorithm we do not get
full randomness when permuting the participants before assigning them to the
meetup locations. Full randomness is not feasible with the approach of creating
the permutation from a single seed because for an input size of n elements,
in order to enumerate all the n! permutations we would need a seed length of
log2(n!) bits. We get this formula by solving
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2x = n! (5.15)

for x.
So already for an input size of 1000, a seed length of approximately 8529 bits
would be necessary and for an input size of 10000 a seed length of 118458 bits.
Although this does not seem feasible, a trade-off can be made by choosing a
seed length of x bits and getting 2x possible permutations, which is exactly
what has been done in our approach. We believe that our approach is sufficient
to ensure Encointer’s practical security (see Subsection 5.4.1). After observing
the algorithm in practice on a testnet with bot-communities, the design choices
should be reevaluated and if more randomness is needed, another - potentially
larger - subset of permutations can be chosen.
Should a necessity for full randomness at the cost of a lot of blockchain storage
space arise during the testing phase, we propose the follwoing procedure to create
a fully random permutation from a seed input. It is based on the Fisher-Yates
shuffling algorithm[33] which basically works as follows: For an input list l,
choose a random element from l and delete it from l. From the remaining list
choose again a random element and so on. So we note that we need l random
numbers, but not all of the numbers need the same amount of bits. The first
random number needs to have a length of dlog2(n)e bits where n is the length of
l, the second random number needs dlog2(n− 1)e bits and so on. So in total we
need

k =

n∑
i=1

dlog2(i)e (5.16)

bits of randomness for this approach to work.
After a seed of k random bits is stored on chain, the off-chain applications could
simply run the procedure described in Section 5.1, using the Fisher-Yates algo-
rithm for shuffling.
If the blockchain storage becomes a bottleneck with this solution, an alternative
approach would be to store a shorter seed on-chain and use a pseudo-random
generator like Mersenne Twister[34] in the off-chain applications in order to de-
terministically create the random permutation.
Although those solutions create better randomness, they push more complexity
to another place. As mentioned in Subsection 5.2.1, the permutation should be
efficiently invertible in order to find all the participants for a given meetup lo-
cation. With the solutions above, this is not given. One would have to compute
the entire permutation in order to find all users for a given location.



Chapter 6

Issuance of the Currency

6.1 The Problem

The third scalability problem concerns the issuance of the currency. In order to
issue the UBI to the participants, the protocol has to check for each participant
if she is eligible for the UBI and if so, issue the specified amount. Up until now
this was implemented as a simple for-loop that performed the issuance for all
users. The problem with this approach is that for a large amount of users this
takes longer than the block time and therefore is not feasible. In the following
we will present our solution to this problem.

6.2 Proposed Solution

The solution to this problem is straight forward. We changed the implementation
such that the issuance of the currency becomes lazy, i.e. each user has to claim
the UBI herself in a separate transaction. When a user claims her UBI, all other
users that were participating in the same meetup will also receive their UBI,
because it is more efficient to load all the personhood attestations for one meetup
only once. This makes it necessary to keep state of which meetup participants
already claimed their UBI in order to prevent users from claiming the currency
twice. The algorithm for claiming the UBI for participant p can be summarized
as follows.

1. Find the meetup index m for user p

2. Check if currency was already issued for meetup m

3. For all users of meetup m, check if they are eligible for UBI

4. Issue the currency to all eligible users in meetup m

5. Record into storage that the UBI was issued for meetup m

42
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6.3 Implementation

The proposed solution of this problem was implemented and unit tested in Rust
using the Substrate framework.

6.4 Evaluation

It is easy to verify that doing the issuance lazily avoids the bottleneck of looping
over all participants. Even though the overall complexity of the algorithm is
not reduced (n ∗O(1) is equal to O(n)), this pragmatic approach still solves the
scalability problem by removing the bottleneck.

6.5 Future Work

There is one subtle aspect of this new approach that introduces some unfairness,
namely the fact that one participant has to pay the transaction fees and all other
participants that attended the same meetup will get their UBI without paying
any fees. It would be fair to issue a little more currency to the claimer and
deduct a fraction of this amount of all other participants in order to compensate
for the transaction fees. The problem here is that the transaction fees are paid in
the blockchain’s native currency while the UBI is issued in the local community
currency. So as long as there are no exchange rates available, it is not possible
to calculate the amount of compensation necessary. In the future there might
be exchanges for established community currencies and oracles making those
exchange rates available on-chain. Then it would be possible to implement a
scheme as described above.



Chapter 7

Conclusion

In this thesis we solved three major scalability problems of Encointer and im-
plemented the solutions into the existing codebase. For the location validation
problem we found an algorithmic solution based on geohashing which reduces
the runtime from O(n) to O(1). A very pragmatic solution was chosen for the
currency issuance problem. We removed a current bottleneck by changing the is-
suance of the currency to be conducted in a lazy fashion. The meetup assignment
problem was the most challenging and therefore has the most complex solution.
We used an approach based on modular arithmetic to generate invertible random
permutations based on a random seed input in order to reduce computing time
on the blockchain from O(n) to constant time. In multiple iterations over the
solution we had to cautiously handle trade-offs between different requirements
defined by Encointer. As the entire system consists of many free parameters, it
is impossible to formally prove its security. Therefore we conducted an exten-
sive simulation of the system as well as theoretical analyses of different attack
scenarios which all indicate that the system is sufficiently secure. Nevertheless it
will be important to closely observe the algorithm performing on a testnet and
in the early beta stages of the live system in order to evaluate the design choices
made in this thesis.
All code developed in this thesis was merged to Encointer’s production system
which will soon launch its first community currency in Zurich.
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