
Gauging Risk in Resource Optimizations

on Stateful Packet-Processing Devices

Master Thesis

Author: Patrick Wintermeyer

Tutors: Maria Apostolaki, Alexander Dietmüller, Edgar Costa Molero

Supervisor: Prof. Dr. Laurent Vanbever

April 2021 to September 2021

Abstract

Resource constraints on programmable switches are a serious challenge when developing net-
working applications. Recent research has explored different avenues to tackle this problem on
stateful devices using traffic insights and semantically non-preserving optimizations. However,
these methods either involve the programmer to supervise and approve (speculative) optimiza-
tions or are very conservative in their optimization approaches.

In this work, we attempt to bridge the aforementioned gap by systematically assessing the
impact of resource optimizations on the semantic equivalence of stateful programs. We present
a novel framework to classify optimizations with respect to their packet correctness and state
consistency, apply our method to two state-of-the-art optimizations, and build a prototype
classifier using symbolic execution.

i

Contents

1 Introduction 1

2 Framework for Correctness Guarantees 2
2.1 Architecture . 2
2.2 Packet Properties . 3
2.3 Framework Design . 3

3 Application on State-of-the-Art Optimizations 5
3.1 Memory Reduction Optimization . 5

3.1.1 Related Work . 5
3.1.2 Offloadability Classification . 6

3.2 Dependency Optimization . 12
3.2.1 Related Work . 12
3.2.2 Detection of Misspeculated Dependency Removal 12
3.2.3 Mitigation of Misspeculated Dependency Removal 13

4 Implementation 16
4.1 Related Toolchains . 16
4.2 Design . 16

4.2.1 System Overview . 16
4.2.2 SMT Basic Functionality . 17

4.3 Building the SMT Translator . 17
4.3.1 Translating P4 Components . 17
4.3.2 Translating Offloadability Types . 20

5 Evaluation 21
5.1 Effectiveness . 21
5.2 Scalability . 22

6 Outlook 24
6.1 Limitations . 24
6.2 Future Research Directions . 25

7 Summary 26

References 27

A Appendix I
A.1 Exploration of Solutions to Guarantee Packet Correctness for Offloadability B . . I
A.2 Exploration of Alternative Solutions for Dependency Misspeculation Mitigation

using Recirculation . I
A.3 Example Program Illustrating Dependency Optimization Mitigations III

ii

Chapter 1

Introduction

Hardware resource budgets on networking switches are notoriously tight. Resources such as
memory (SRAM, TCAM), pipeline stages, and arithmetic logic units (ALU) are common limit-
ing factors when deploying networking applications. However, the emergence of software-defined
networking (SDN) and OpenFlow [37] has enabled new resource optimizations. To alleviate
memory allocation bottlenecks, commonly faced for large forwarding tables, abstraction and
offloading mechanisms have been proposed in the past [27, 51, 30].

Fast forward to the day and age of fully programmable switches: while the programmer’s
flexibility has massively increased, the underlying resource scarcity still persists. Thus, more
recent work on P4 switches [10] has proposed leveraging policy [1] or traffic insights (P2Go [48])
to perform more aggressive optimizations. Utilizing traffic profiles, P2Go resizes underutilized
memory allocations or selectively removes unseen dependencies in a P4 program by changing
the control flow. Memory allocations can equally well be used for table entries or stateful data
structures. Dependencies are removed by marking code sections as mutually exclusive, which
increases parallelism on switches. Since these optimizations are not semantically preserving,
P2Go ultimately relies on the programmer to approve all changes.

However, this puts a lot of responsibility on the programmer. Semantically non-preserving
changes can not only lead to wrong forwarding behavior of selective traffic, if a rule in a resized
forwarding table is missing because of a prior optimization. It can also result in the permanent
corruption of stateful data structures. This corruption can then propagate internally and lead
to misbehavior of the overall switch, effectively breaking correct packet processing of all traffic.

In this work, we explore the space of resource optimizations in the context of semantic
equivalence. By refining the notion of semantically preserving optimizations and introducing a
separation between packet processing operations and state modifications, we attempt to better
understand the effects of aggressive resource optimizations on P4 switches.

Our main contribution is a framework to classify optimizations in terms of their impact on
program correctness (Section 2). Furthermore, we apply this model to two types of state-of-
the-art optimizations and propose appropriate mitigations for misspeculations (Chapter 3). In
Chapter 4, we implement a prototype classifier and show the practicality of our approach by
evaluating the classifier on real-world examples (Chapter 5). Finally, we discuss future research
avenues to expand our model to stateful, dynamic, heterogeneous networks (Chapter 6).

1

Chapter 2

Framework for Correctness
Guarantees

In the following sections, we present a framework to classify a given optimization on a P4
program with respect to semantic correctness. To do so, we refine the notion of correctness and
divide it further into packet correctness and state consistency. We give an intuition of the core
insights of our framework before applying its concepts to two state-of-the-art optimizations (see
Chapter 3).

2.1 Architecture

SDN packet processing was revolutionized by the RMT architecture [11] and its flexibility with
respect to match-action pipelines and header extractions. Its stateful successor architecture
model is the Portable Switch Architecture (PSA) [23]. Specifically, it extends RMT by adding
support for stateful data structures, such as registers, to allow access to persistent memory across
packets. Our model targets PSA and optimizations for PSA, which also includes optimizations
for both software simulators(e.g., bmv2 [40]) and hardware devices (e.g., Tofino [6]).

State. We refer to stateful data structures such as registers, meters, and counters as state.
Registers are the most versatile data structure of all stateful data structures available in P4, as
there is practically no restriction on the data stored in them. Indeed, one could implement a
form of meters and counters purely with registers (however, the interface access control will be
more permissive than with meters and counters). Therefore, without loss of generality, we use
state and registers interchangeably.

Note, that we do not consider tables when we refer to state. While this might seem counter-
intuitive at first, tables cannot be updated through the data plane. The data plane can merely
send a packet to the controller which will then take appropriate action. Furthermore, tables are
generally infrequently updated compared to registers and can be synchronized across devices
more easily.

State Modifier. A state modifier M is a function, that transforms an initial state state Si to
a final state Sf . The transformation is triggered by packet p and given table contents (action
arguments) A:

Sfinal = M(Si, p, A) (2.1)

Since the data plane cannot modify table entries and arguments, they can be seen as static or
constant, and we will use the shorter notation Sfinal = M(Si, p).

2

CHAPTER 2. FRAMEWORK FOR CORRECTNESS GUARANTEES 3

In contrast to state modifiers, state can also be read-only, in which case state is only accessed
to retrieve values, but not to write values to state. We refer to state S as being read-only if
there does not exist a state modifier for S.

2.2 Packet Properties

In this section, we define packet properties and behavior that can arise in the context of program
optimizations.

Packet Reordering. Given two packets p1 and p2 reaching the switch at times ti,1 and
ti,2 = tf,1 + τ respectively, where τ > 0, post-processing reordering corresponds to a reordering
of p1 and p2, after they have been processed correctly in order of arrival. In other words, it is
as if p1 had suffered a delay δ > τ in the final egress buffer, such that

tf,1 = ti,1 + tprocessing + δ

tf,2 = ti,2 + tprocessing < tf,1
(2.2)

We define pre-processing analogously. Specifically, once a packet has entered the processing
pipeline, no further reordering inside the switch is allowed.

Misspeculated Packet. A misspeculated packet px traversing the control flow of an opti-
mized program H ′ is a packet that does not adhere to the assumptions of the optimization O.
In other words, it is transformed incorrectly with respect to the original program H, because
the optimization’s requirements do not hold for px, such that:

H(px) 6= H ′(px) (2.3)

For example, if an optimization removes a dependency between two tables, then a packet
px that would justify the dependency between both tables is a misspeculated packet.

2.3 Framework Design

We decompose an optimization into its effects on stateful and non-stateful components of a
P4 program. Specifically, we focus on the consequences of a misspeculated packet px both on
its own correctness and on the correctness of state. Given an optimization O and px, one can
roughly divide this space into four scenarios:

1. Correct packet processing, correct state modification

2. Wrongful packet processing, correct state modification

3. Correct packet processing, wrongful state modification

4. Wrongful packet processing, wrongful state modification

In order to perform this classification, we need to consider all possible structures of P4
programs — a very large space to explore. Thus, for a given optimization, we focus on patterns
of state usage in P4 programs to classify each pattern with respect to previously mentioned
scenarios: where is state used in the program? How does its usage relate to the optimization?
What are the worst-case scenarios that could arise from any given (misspeculated) packet?

Because of the complexity of this multi-dimensional problem, the application of this frame-
work to a given optimization is often complicated and non-exhaustive. As with all optimizations,

CHAPTER 2. FRAMEWORK FOR CORRECTNESS GUARANTEES 4

it is a trade-off between generality, applicability, and payoff. However, the core notions intro-
duced here provide a systematic approach to navigate this complex space and give enough
flexibility to adapt its concepts to any given optimization.

In the following, we define the terminology of our framework. It builds the foundation for
the classification of optimizations in sections 3.1 and 3.2.

State Consistency. As an intuition, state consistency means that all stateful data structures
in the switch have either been transformed correctly or not been transformed at all. In other
words, at no time will only part of the state be transformed correctly by any packet. Therefore,
given a misspeculated packet px, subsequent packets pX+1, pX+2, . . . see the state as if px had
been reordered pre-processing (state unaffected by px) or px will seem reordered post-processing
(following packets have state from after processing of px but are emitted from the switch before
px).

Given a program H with state S and H’s optimized version H ′ with initial state Si = S′i, H
′

is state-consistent, if and only if, at all times, modification of Si and S′i by any given packet p are
identical or S′ remains unchanged. If M and M ′ are state modifiers of H and H ′ respectively:

∀p,M ′(p, Si) = M(p, S′i) ∨M ′(p, S′i) = S′i (2.4)

We can then say that optimization O, such that O(H) = H ′, conserves state consistency.

Packet Correctness. Given a program H and its optimized version H ′, H ′ is packet-correct,
if and only if, modification and forwarding of any given packet p by H and H ′ are identical,
given initial states Si = S′i:

∀p,H(Si, p) = H ′(S′i, p) (2.5)

We can then say that optimization O, given by O(H) = H ′, conserves packet correctness.

Semantic Equivalence. Given a program H and its optimized version H ′, H ′ is semantically
equivalent to H, if and only if, H ′ conserves both packet correctness and state consistency.

Limitations. We require that the program H does not make any assumptions about the
order in which packets reach the switch. This is a reasonable assumption because in general,
packet reordering is a common phenomenon and can even happen under normal operation of
networking devices [9, 22]. We furthermore clarify that only pre-processing or post-processing
reordering is allowed. Similarly, we assume that the network and applications running on the
network support out-of-order processing of packets.

Chapter 3

Application on State-of-the-Art
Optimizations

In this chapter, we apply the previously defined framework for correctness guarantees on two
state-of-the-art program optimizations: memory reduction and dependency removal. Both opti-
mizations attempt to alleviate common resource bottlenecks by making additional assumptions
about the network traffic. Through an in-depth analysis of both optimizations on the effect of
misspeculated packets, we present state and packet correctness guarantees.

3.1 Memory Reduction Optimization

Memory on stateful networking switches is a scarce resource. Specifically, ternary content-
addressable memory (TCAM) is a common bottleneck in networking applications, because it is
oftentimes used for longest-prefix matching (LPM) in forwarding tables. As such, TCAM is a
prime candidate for memory optimization techniques. The purpose of memory optimizations
such as presented in [48] is to free up unused memory by shrinking table allocations. Should it
become necessary to add more rules in an optimized table, a recompilation of the program is
needed, or semantic equivalence is at risk.

In this section, we propose a more dynamic approach: instead of simply reducing table allo-
cations, we offload rules to a remote device with caching capabilities. This allows the dynamic
placement of rules on either the local switch or on the remote cache. However, not all rules are
made equal, because of stateful data structures, that are only available locally. Additionally,
TCAM rules are particularly tricky to handle, because of inter-dependencies between different
rules — one cannot simply offload a given rule Rx, without considering which other rule would
be matched instead if Rx were absent.

Offloadability Problem. Given a TCAM rule Rx and its associated action Ax in a table T ,
is it possible to offload Rx to a remote processing unit without affecting the correctness of a
packet px that would match Rx and without affecting the consistency of state S ?

By applying our previously defined framework for stateful data structures and correctness
guarantees on the example of memory optimizations, we provide a systematic approach to
classify rule offloading with respect to packet correctness and state consistency.

3.1.1 Related Work

Semantically preserving optimizations on static random-access memory (SRAM) and TCAM
have been studied extensively in the field of SDN before stateful switches came around. Our
framework is orthogonal to these studies and strictly needed for optimizations on stateful

5

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 6

switches. For completeness, we mention previous work on network virtualization, single-switch
in-place optimizations, and remote cache offloading.

Previous work has proposed approaches to optimize the placement of SDN policies, by
relying on a global view of the network. The ”One Big Switch” Abstraction [27], Palette [28]
and Difane [50] fall into this category of virtualization and network abstraction. However, we
focus on a single device in the network.

In Devoflow [15], the authors use a form of ”explosion” of TCAM rules to convert them
into SRAM rules and thereby lifting the TCAM bottleneck. Indeed, by replacing wildcards
in TCAM with several SRAM rules spanning the entire set of possible values (cover set), the
semantic equivalence of both tables can be preserved. The inverse operation from SRAM to
TCAM is of course also possible, given TCAM availability and that the grouping of SRAM into
TCAM rules can be done efficiently. This duality can be leveraged to broaden the applicability
space of our framework.

In TCAM Razor [38], the authors use a multitude of minimization approaches to ”squash”
TCAM rules using decision trees, dynamic programming, and redundancy removal. For exam-
ple, instead of matching on a set of fields F , they find a cover set F ′ that uses fewer TCAM rules
while being semantically equivalent. This space has been studied extensively by [3, 18, 34, 17, 47]
in the setting of stateless programs and can be used after the classification by our framework
to optimize rules by their offloadability type.

In CacheFlow [30], N. Katta et. al presented an incremental rule-dependency analysis toolkit
for TCAM, used to offload TCAM rules to remote caches, based on novel cache replacement
strategies. Their key contribution is the splitting of dependency chains efficiently to reduce
rule updates and traffic sent to the cache. Flowcache [42] and FreeCache [32] build on top of
CacheFlow and explore different metrics to optimize dependencies using cover sets and hash
table lookups. However, none of them have studied the impact of rule offloading to remote
caches on semantic equivalence, more specifically on state consistency and packet correctness.

3.1.2 Offloadability Classification

We identify five different offloading “types” for table rules, based on various conditions that differ
in how exactly packets must be offloaded to ensure packet correctness and state consistency.
The existence of state S in the program H and its access type is central to the question of
offloadability. Each type offers different guarantees with respect to state consistency and packet
correctness.

In the following, we first describe the general design of the offloading system, before classi-
fying a given rule Rx in a table T by verifying a set of conditions. For each classification type,
we specify guarantees with respect to state consistency and packet correctness and necessary
modifications to the program H. Note, that the question of which rule should be offloaded is
orthogonal to the classification itself and extremely difficult to answer in the general case (see
Section 6.2).

General Design

In the following sections, we will first describe the general setup of a remote cache and its
functionality. Then we present the rule reduction on the switch and give a code example that
will guide us through each offloadability type.

Remote Processing Unit. To offload rules to a different entity on the network, we assume
a software caching system similar to the one described in FlowCache [42] is in place. In essence,
the remote cache holds a copy of all tables and their entries in memory. Specifically, the cache
holds Tcomplete, the full version of optimized table T , with its offloaded entries {Rx, R

′
x, R

′′
x, . . . }.

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 7

Table T

N◦ IPsrcAddr action argument a statement performed offloadability type

1 172.16.0.1 × drop packet = true; A
2 192.168.0.1 2 egress port = a; B
3 10.0.0.1 1 index = a; C
4 10.0.1.1 2 index = a; D
5 10.0.1.2 2 index = a; TTL=TTL-1; D
6 10.1.0.0 0 index = a; E

Table Tstate

N◦ IPsrcAddr statement performed

7 192.168.0.1 IPdstAddr = read(register, index);

8 10.0.0.1 IPdstAddr = read(register, index);

9 10.0.1.1 write(register, index, IPsrcAddr);

10 10.0.1.2 write(register, index, IPsrcAddr);

11 10.1.0.0 write(register, index, IPsrcAddr);

Table 3.1: Example program used to illustrate offloadability types. The offloadability type
column is the result of applying the rule classification and not part of the actual program.

Rule updates from the controller are sent to the data plane and the cache, which then update
their tables accordingly.

Rule Reduction. Once we identified a set of rules R = {Rx, R
′
x, R

′′
x, . . . } of same offload-

ability type, we introduce a new rule Rm matching exactly like the union of offloaded rules R.
The existence of Rm allows us to differentiate between a misspeculation (cache hit, hit on Rm)
and an actual miss in T . This is vital because we may have to perform different operations
on a cache hit to fulfill certain guarantees. In the general case, more than one rule may be
needed to cover R. Without loss of generality, for simplicity purposes, we assume that one rule
Rm is sufficient to cover R. As shown by Richard Karp in [29], the calculation of a minimal
cover set for R is an NP-hard problem. In the following, we will refrain from investigating
efficient algorithms for this purpose and refer to previous work [38]. It would not be necessary
to create an exact cover of R; however, we would have to consider R’s rule dependencies, similar
to [30]. This could greatly reduce offloadability opportunities if any of the dependencies have
an offloadability type with higher precedence.

We also introduce a new action Am, associated with Rm, whose statements depend on
R and its offloadability type. Am is used for adequate packet processing, laid out below for
each offloadability type. These modifications require one initial patch and recompilation of the
program H (to add action Am).

Example Program. To illustrate the classification, we will refer to a sample program given
by two tables T and Tstate that are applied in this order. We will classify different rules in T
while keeping a close eye on state modifiers in Tstate. Assume for simplicity purposes, that both
tables perform exact matching. Table 3.1 shows the entries in both tables and the respective
actions performed. Note that for comprehensibility purposes, we make abstraction of actions
and directly use statements. Different statements mean that different actions are linked to the
respective entries. The first column in each table is not part of the actual program and simply
refers to a rule number.

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 8

Offloadability Type A

Offloadability type A is characterized by the absence of state accesses after T in the control
flow graph.

To fulfill this condition, there are two possibilities: either there is no state access in any
control flow path after execution of T , or the state access is conditional (condition or table
match) and we can guarantee that for any packet having matched Rx and given rules of all
tables, the state access will not be executed. For example, a packet px that matches entry 1
will not reach any stateful data structure, because it will be dropped.

Packet processing. When a match on Rm happens, we proceed as follows: set the output
port of px to the port of the controller and skip further processing in the ingress and egress
pipelines (using skip and exit constructs in P4). Append a digest of all metadata from the
data plane to px. In the controller, we apply Tcomplete and continue the processing of px like in
the data plane. Since the controller holds an exact copy of all tables from the data plane and we
sent all relevant information to the controller (px and metadata), we can guarantee semantically
equivalent processing of px.

Packet correctness. We can guarantee packet correctness. Packet correctness is not endan-
gered by remote processing, because all remote operations only take as input packet headers or
metadata. Both can be transferred to the controller. However, px will suffer a significant delay.
This corresponds to post-processing reordering.

State Consistency. We can guarantee state consistency. Since state is only used prior to
T , it is independent of whether T was applied correctly or not, and thus state will always be
consistent.

Offloadability Type B

Offloadability type B is defined by reachable state Sx after T , whose access is independent of
the existence of Rx.

Dependency here means that either the state access depends on a condition Cx, which in
turn depends on the existence of Rx, or that the state access itself depends on the match on
Rx and execution of Ax. Note, that this is different from a static dependency between Sx/Cx

and T as reported by the compiler. We are interested in the effect of the existence of Rx in
T . This requires configuration analysis during rule insertion. Please also note that we define
this dependency transitively : there can exist a “proxy” variable written to in Ax and read from
later during state access.

For example, assume we were to remove entry 2. Then, the egress port of px would no longer
be set; however, the state access in rule 1 of Tstate would still be applied correctly. Indeed, rule
2 does not entail a modification of index.

An absence of Rx could mean that px might match another rule Ry instead (so called rule-
shadowing). The associated action Ay could present a dependency with Cx. However, if we
offload Rx we add a rule Rm that replaces all Rx with similar properties (see 3.1.2). Therefore,
we can exclude the case that a rule Ry gets matched in absence of Rx. Thus, we only need to
check if there is a dependency between the existence of Rx, specifically Ax, and Sx (or Cx if it
exists).

Packet processing. To ensure that all state accesses happen correctly (reads or writes), we
send px to the controller at the end of the pipeline. When a match on Rm happens, we set
the egress port of px to the port to the controller. Should any other statement later in the
control flow be able to overwrite the egress port, we set a flag in Am instead and add a simple

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 9

if-condition on the flag at the very end of the control flow to ensure that the packet is sent to
the controller.

Packet correctness. Packet correctness cannot be ensured in the general case. Because of
the replacement of the execution of Ax by Am in which we simply set the egress port, header
and metadata modifications of Ax are no longer executed. However, px continues its path
in the control flow, thereby possibly matching wrongfully on some table Tw and executing
(wrongfully) an action Aw. These modifications are not reversible later on, specifically if the
mapping between rules and modifications in Tw is not invertible. For a more extensive analysis
of the problem and exploration of possible solutions, see Appendix A.1.

State consistency. We can guarantee state consistency since all read and write accesses are
independent of Rx. Therefore, by offloading Rx, Sx remains unchanged.

Existence of such opportunities. Can Sx or Cx not depend on Rx and yet be placed after
T (aside from hardware constraints)? In other words, can this offloadability type even exist?

In the simple case, assume that there is an action that justifies this dependency, but there
is no rule associated to it. Then, the compiler will report this structure as a read-after-write
dependency and use two different stages, effectively placing T before Sx. In the more general
case, consider a scenario where a rule R1 is responsible for the dependency with Sx. However,
if there is no rule dependency between Rx and R1, then Sx does not depend on the presence of
Rx, despite the existence of a rule that justifies the dependency between T and Sx.

Offloadability Type C

For offloadability type C, we specify that there is read-only state Sx after T , which is dependent
on the existence of Rx.

Verification of this condition is fairly simple, as state modifiers (register write in P4) are
syntactically easily distinguishable from packet modifiers with state access (register read in
P4).

In the example, assume we were to remove the execution of the action linked to rule 3.
Then, index would not be set to 1 and the subsequent match on rule 8 would effectively set
IPdstAddr to a wrong value. State is therefore not affected by rule 3, but the correctness of px
can no longer be guaranteed.

Packet processing. Am sets the output port of px to the port of the controller and skips
further processing in the ingress and egress pipelines (using skip and exit constructs in P4).
This allows the controller to keep track of the number of packets affected by this offloadability
type’s misspeculation and dynamically optimize the number of misspeculations (which rules are
offloaded).

Packet correctness. We cannot guarantee packet correctness. Indeed, there exists a read-
only state access, dependent on Rx. This means that the read access on state will be incorrect
upon misspeculation. The values read from state will eventually incur a modification of px with
wrong values, either through direct modifiers of the packet or through incorrectly evaluated
conditional statements. These modifications cannot be reversed later on, since we do not have
access from the remote cache to consistent, timely snapshots of state in the data plane. We
cannot correct px after the misspeculation.

State consistency. We can guarantee state consistency because Sx is not modified depending
on Rx. As such, a misspeculation does not alter state Sx.

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 10

Offloadability Type D

For this offloadability type, we leverage the somewhat arbitrary grouping of statements into
actions by the programmer. Indeed, splitting up actions into their actual statements (through
an intermediate representation) and then regrouping them differently (sometimes even at the
cost of duplicating code) is a popular approach used in both traditional compiler optimizations
(LLVM [36]) and network abstraction tools such as Lyra [21] and Lucid [44].

Conditions. There is state Sx that is written to dependent on Rx. Additionally, we require,
that it is possible to group a set of rules or actions that have the same effect on state, but differ
in effect on packet headers, in a new rule-action-pair Rm ↔ Am.

For example, consider rules 4 and 5. While their actions are different, they set the state
relevant variable index in the same way and the state access in Tstate is also equal. Therefore,
one could merge both entries. However, this would entail wrong processing of packets matching
rule 5, because TTL would not be reduced by 1.

Condition verification. To find an appropriate set of actions whose stateful operations can
be regrouped in a new action Am it is not sufficient to simply consider the actions themselves.
Instead, we need to navigate a two-dimensional space of action statements and table rules.
Indeed, we consider actions and their input arguments (coming from rules) and evaluate their
equivalence with respect to state. In other words, regrouped actions only need to be equivalent
with respect to state under the set of possible action arguments defined by rules. Indeed, it can
even be possible that two rules {Rx, R

′
x} are linked to the same action Ax, but provide different

action arguments. However, if the action arguments relevant for stateful write access are equal,
we can ensure that the state modification is correct upon misspeculation and therefore merge
{Rx, R

′
x} without even considering other actions in that table or generating a dedicated action

Am — reusing Ax is sufficient.

Packet processing. We statically add the action Am to contain all necessary stateful op-
erations to ensure the correctness of state. While it is possible to change rules dynamically,
actions cannot be changed on the fly and need recompilation. Therefore this type of offload-
ability is at the intersection of dynamic and static optimizations. We set the output port in
a way to send px to the controller and let px continue on its path in the pipeline. Again, the
controller can dynamically regroup rules, although this might require recompilation to change
statements in Am. We could also create actions {Am, A

′
m, A

′′
m, . . . } that contain all combina-

tions of action groupings and then simply add at runtime the correct rule groupings with one
of {Am, A

′
m, A

′′
m, . . . }.

Packet correctness. Because of how the action Am and rule Rm are constructed, we neglect
packet header and metadata modifications in favor of correct state modification. Therefore, we
cannot guarantee packet correctness in the general case.

State consistency. We can guarantee state consistency because through Am we can ensure
that state is modified in the same way as if Ax had been executed. In other words, Am and Ax

are semantically equivalent with respect to state Sx and all regrouped rules R.

Offloadability Type E

Any rules that do not fulfill the conditions of offloadability types A-D, cannot be offloaded
without endangering state consistency and potentially impacting large portions of traffic. As
such, we recommend keeping rules that do not fulfill any of the conditions above in the data
plane.

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 11

For example, rule 6 does not have the same effects on the state relevant variable index than
the other rules. As such, it cannot be merged with other rules, given the current table entries,
because we can no longer guarantee state consistency.

Offloadability Precedence

A given rule Rx may be classified as multiple offloadability types simultaneously, because of
the existence of multiple stateful data structure accesses. We employ an ordering between
offloadability types to set the overall offloadability Ω of Rx using an invertible mapping function
f : {A,B,C,D,E} → N, such that:

f(A) < f(B) < f(C) < f(D) < f(E) (3.1)

Given a program H with n stateful data structure accesses after T and a rule Rx with
offloadability types ωi, i ∈ {1, . . . , n}, Rx’s overall offloadability is given by:

Ω = f−1
(

max
i∈{1,...,n}

f(ωi)
)

(3.2)

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 12

3.2 Dependency Optimization

Data dependencies in pipelined architectures, such as PSA, occur when two tables contain
actions that modify or read the same variables; in P4 this corresponds to packet headers and
metadata fields, or registers. Hardware constraints limit the number of dependencies in a
program: if it shows too many dependencies, the compiler will fail to map it to the switch.
As such, state-of-the-art optimizations [48, 1] also attempt to reduce data dependencies. They
leverage insights about the network traffic to speculatively remove dependencies that do not
manifest.

In this section, we investigate the effects of a misspeculation and provide a systematic
approach to detect and mitigate misspeculated packets in removed dependencies.

Dependency Optimization Misspeculation

In the context of dependency optimizations, we can refine the definition of a misspeculated
packet given in 2.2:

Given a program H with a dependency ∆ between two tables AH and BH , its optimized
version H ′ (with tables AH′ and BH′ resp.) where the dependency has been removed through
optimizations (see 3.2.1), packet px scoring hits on both AH and BH is a misspeculated packet
with respect to H ′. Indeed, the optimization was applied because it was assumed, that no packet
hits both tables AH and BH . The misspeculated packet px does not adhere to this assumption.
Because of the removal of ∆ in H ′, px can now no longer hit both AH′ and BH′ .

Given H ′, can we put in place a detection hook for px to notify the controller of a misspecu-
lation without re-introducing ∆? Can we implement mechanisms to provide packet correctness
and state consistency despite the removal of ∆?

Data Dependencies

While there exist different forms of data dependencies, our main focus is on action dependencies.
Both reverse-read and control flow dependencies do not typically require an additional hardware
stage on PSA. Given a program H and two tables A and B applied successively, two actions a1
and b1 of A and B (resp.) and a variable v, an action dependency is given by either:

• a statement in a1 writing to v and a statement in b1 reading from v (read-after-write
dependency), or

• a statement in a1 writing to v and a statement in b1 writing to v (write-after-write depen-
dency)

3.2.1 Related Work

Previous work in P5 [1] and P2Go [48] has shown the potential to reduce dependencies by
leveraging high-level policies or traffic traces. However, they rely on the programmer to super-
vise and approve dependency removal. This puts a lot of responsibility on the programmer: a
misspeculation can have dire consequences for both packet correctness and state consistency.
Through persistent state over several packets, the whole traffic is at stake. In this section, we
provide guidance to the programmer by presenting detection and mitigation mechanisms for
misspeculated packets due to dependency optimizations.

3.2.2 Detection of Misspeculated Dependency Removal

The idea to detect a misspeculation was introduced in P2Go. In Program 1 we present the gen-
eral structure of an optimized program H ′ with respect to an action dependency ∆ previously

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 13

existing between table A and table B. The on miss statement effectively removes the depen-
dency ∆, while a newly introduced on hit structure serves as detection mechanism through a ta-
ble table fix. Note, that this part does not introduce new dependencies as long as table fix’s
actions do not modify or read the same data structures as table table A.

We construct table fix as follows: table fix matches on the same keys and contains the
same entries as table B. table fix has a default action notify controller() that sends the
packet to the controller and terminates the control flow execution for px to avoid wrongful
processing.

Code Snippet 1 Showcasing the control flow of a program with an optimized action depen-
dency between table A and table B in orange, alongside the mitigation hook implemented
through table fix in blue.

1: control
2: apply table A :
3: on miss: . dependency optimization
4: apply table B

5: on hit: . detection & mitigation hook
6: apply table fix

7: end apply
8: . . .
9: apply Y . state modifier

10: end control

3.2.3 Mitigation of Misspeculated Dependency Removal

While detection is the first step towards automatic resolving of misspeculations, it requires
external interaction to resolve the problem. We will go one step further and investigate to what
extent table fix can be enhanced by additional actions to ensure state consistency.

Identification of State Modifiers

During a misspeculation, it will not be possible to execute table B. Thus, to guarantee state
consistency, we need to answer the central question: Does any state modification Y depend on
the execution of table B?

Note that we consider dependencies transitively. To answer this question, we distinguish
two cases:

• There is no state transformation Y such that Y depends on the execution of table B.
Then, independently of the execution of table B, state is transformed correctly.

• There is a state transformation Y that depends on the execution of table B. Dependencies
in general can manifest in the following forms:

– Control Flow Dependency: There is a semantic dependency between Y and table B,
but no data dependency. In other words, this is a constraint on the order in which
the packet is applied to tables. Therefore, Y does not depend on the execution of
table B.

– State Reverse Read Dependency: table B reads state that Y modifies. px will
not be able to read the state, resulting in missing/wrong headers in px. However,
as by definition table B only reads state, the transformation Y does not depend
on table B. The local state will remain consistent independent of the execution of
table B.

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 14

– State Action Dependencies: There exist two subgroups of such dependencies:

∗ State Action-Write-After-Write: table B and Y modify the same state. This is
impossible because state cannot be accessed/shared across stages.

∗ State Action-Read-After-Write: table B reads state and writes to metadata,
which is then, in turn, read from and written to state by Y . Another scenario
is that table B writes to state and saves the result in metadata, which is then
read later on. As such, the important operation here is the writing to state by
table B as in the latter scenario there is no modification of state after table B.

– State Match Dependency: table B writes to metadata that is read in C to apply
Y . Here, C can be a table, a conditional statement or an independent conditioner
(table, condition, switch statement) whose action is Y .

In short, only state match dependencies and state action-read-after-write dependencies are
relevant for state consistency. In other words, consistency of state is endangered, if either any
value from table B is read to modify state or table B itself modifies state.

Ensuring State Consistency

In order to ensure state consistency despite a misspeculation by px, we need to perform the
necessary operations to ensure the correct execution of state modifier Y in table fix. Note,
that we cannot introduce new dependencies between table A and table fix. This leaves little
room for fixes. The question becomes therefore if there is a dependency between state-relevant
modifiers (fields necessary for the correct execution of Y) and table A.

If there is no such dependency, we can perform the necessary operations in table fix to
ensure correct execution of Y , without introducing a new dependency between table A and
table fix. Conceptually, the programmer made a somewhat arbitrary grouping of statements
into actions, while we now perform a grouping with respect to state modifiers.

Should such a regrouping not be possible, we would have to revert the already modified state
in order to guarantee state consistency. However, such a “rollback” or “reversing of operations”
without affecting other packets that have already started the pipeline is not trivial and entails
arguably more overhead than the initial optimization saved. We leave it up to the programmer
to decide whether she would like to optimize the program in view of this risk.

Ensuring Packet Correctness

So far, we disregarded the content of the misspeculated packet px. To deal with px we suggest
sending it to the controller and ensuring correct processing there. The problem of split-brain
processing of px needs to be further investigated, especially when the processing of px relies on
state in the data plane.

Alternatively, px could be recirculated and each table augmented with an additional key
indicating whether px has already matched the table in question. However, all metadata would
have to be carried alongside px upon recirculation, since the respective tables would not be
matched again and that metadata would remain uninitialized on the second run of the pipeline.
This creates non-negligible overhead and questions the usefulness of the initial optimization,
should packet correctness be required by the application. Please see Appendix A.2 for an
in-depth analysis of this problem.

Example Program Structure

For illustration purposes, consider the detailed pseudo-code of Program 1 given in Code Snip-
pet 2. For a full example written in P4, please refer to Appendix A.3.

CHAPTER 3. APPLICATION ON STATE-OF-THE-ART OPTIMIZATIONS 15

Code Snippet 2 Actions and statements linked to table A, table B, table fix and state
modifier Y . In this scenario we can ensure state consistency, thanks to a state irrelevant depen-
dency caused by field srcAddr (blue). Indeed, table fix carries the state-relevant modification
from table B (orange).

1: table A → action a 1 :
2: modify(srcAddr); . state irrelevant dependency

3: modify(srcPort);

4: modify(egress port);

5: table B → action b 1 :
6: modify(srcAddr); . state irrelevant dependency

7: modify(dstAddr);

8: modify(metadata.prevDstAddr); . state relevant modification

9: table fix → action fix 1 :
10: modify(metadata.prevDstAddr); . carried-over modification

11: . . .
12: if (metadata.prevDstAddr == 127.0.0.1)
13: Y → register write(myReg, dstPort);

There exists a write-after-write action dependency between actions a 1 and b 1 of tables
table A and table B respectively. This dependency was removed through optimization con-
structs seen in the control flow in Program 1. However, b 1 also performs a modification of
metadata prevDstAddr, that is relevant for the state modifier Y . By carrying over this modifica-
tion to action fix 1 of table table fix, which does not present a dependency with table A, we
can ensure that the modification is carried out, independently of a misspeculation. Therefore,
state consistency can be guaranteed, even though the packet’s content is not correct.

Chapter 4

Implementation

As a proof-of-concept, we implemented components of the classifier for the memory optimization
(see 3.1) using python and symbolic execution engine z3 [16]. In this section, we present the
overall system design, related toolchains and describe the inner workings of the classification
mechanism.

4.1 Related Toolchains

Previous work [35, 45, 43] in symbolic execution for P4 follows the following workflow: a parser
translates P4 code into an intermediate representation (IR), which is then used to generate code
in a formal verification language. This code is then fed to a symbolic execution engine, such as
K [41], or a theorem prover, such as z3 [16].

Alternative approaches [39] have translated P4 to C code or LLVM IR and then directly
applied symbolic execution frameworks, such as KLEE [12] or crucible [20].

Unfortunately, we could not benefit from this work for multiple reasons. Firstly, only some
implementations were made publicly accessible. Secondly, partial or missing documentation
would have made code adoption difficult. Finally, previous work was written for P414 and it
was questionable whether all necessary features needed for our classification were available.

4.2 Design

To perform the classification presented in Section 3.1 and verifying conditions for each offload-
ability type, we need access to the dynamic runtime configuration of the switch, namely installed
rules. While we can rely on the compiler for static dependency analysis, our constraints go far
beyond what is available to the compiler. Therefore, we resort to symbolic execution. More
specifically, we use Satisfiability Modulo Theories (SMT) as a formal verification method.

4.2.1 System Overview

Figure 4.1 shows the general overview of the system. The core of our classifier is built around
the SMT solver z3. Given a P4 program and associated rules, we generate a set of constraints
that model the program. Using the constraint solver, we classify each rule.

16

CHAPTER 4. IMPLEMENTATION 17

Offloadability Classifier

In
te

rm
ed

ia
te

R
ep

re
se

n
ta

ti
on

Offloadability
Constraints

z3-solver

Input

p4
program

cfg
runtime
config

Output

cfg
classified
config

Classification:

Rule 1: A

Rule 2: B

Rule 3: ...

Figure 4.1: Given a P4 program and a runtime configuration, the offloadability classifier cate-
gorizes rules by their offloadability type. The symbolic execution engine is built around SMT
solver z3.

4.2.2 SMT Basic Functionality

An SMT problem is a decision problem for logical formulas, which can either be sat (satisfied)
or unsat (unsatisfied). The problem is formulated in so-called constraints, a list of equations
to be satisfied. SMTs also support the use of basic data structures such as integers or arrays.

Given three integers x, y, z, a simple SMT problem could be given by :

3x+ 2y − z ≤ 4

x > 0

y 6= 0

0 < z ≤ 42

(4.1)

An SMT solver, such as z3, will then return sat and upon request an interpretation, which
is a set of values that satisfy the problem: x = 1, y = −1, z = 1.

To use SMT, all P4 structures need to be translated into this form of constraints.

4.3 Building the SMT Translator

This section explains how we translate both P4 components and the offloadability conditions
into SMT statements. To allow for different P4 flavors, we built an intermediate representation
(IR) in python and use z3’s python frontend to translate the IR into SMT-LIB [7] statements.
We enrich our IR with a network analysis backend to represent the control flow of a packet,
similarly to the control flow graph produced by the P4 compiler.

4.3.1 Translating P4 Components

A parser is required to automatically translate a P4 program of a given flavor (P414, P416, Tofino
variants . . .) into our python IR. While we did not build such a parser, the data structures
of our IR are built similar to P4 components and employ a modular structure. This makes
building different parsers a trivial, albeit work-intensive, task. Our IR does not implement the
whole specification of P4, we made abstraction of certain features when they were not necessary
for the overall functionality of the classification algorithm.

Building an Intermediate Representation

The intermediate representation of P4 components is conceptually very close to the P4 com-
ponents themselves. The main difference is that each component in the IR is directly linked

CHAPTER 4. IMPLEMENTATION 18

to a directed acyclic graph (DAG), given by the control flow of the program. This allows each
component direct access to its predecessors, successors, or internal components.

Code Snippet 3 Showcasing the modular structure of building IR components in python.
In the background a directed acyclic graph between components is constructed automatically,
giving access to an enriched version of the control flow graph, normally produced by the P4
compiler.

1 drop_action = P4DropAction (" drop_action ")

2

3 set_nexthop_modifier = P4Statement(

4 "set_nexthop_modifier",

5 routing_metadata_nhop_ipv4 ,

6 P4StaticAssignment (),

7 "nhop_ipv4",

8)

9 set_egress_modifier = P4Statement(

10 "set_egress_modifier",

11 standard_metadata_egress_port ,

12 P4StaticAssignment (),

13 "port",

14)

15 set_nhop_action = P4Action(

16 "set_nhop_action",

17 arguments =[" nhop_ipv4", "port"],

18 statements =[

19 set_nexthop_modifier ,

20 set_egress_modifier ,

21],

22)

23 ipv4_lpm_table = P4TableNode(

24 "ipv4_lpm_table",

25 keys=[ipv4_dst],

26 actions =[set_nhop_action , drop_action],

27)

Code snippet 3 shows an extract of the generation of P4 components using our IR. Our
backend automatically generates a DAG (see Figure 4.2), which is then used to translate IR to
SMT statements and generating constraints for each offloadability type.

Translating IR to SMT

In this section, we will describe how we translate our IR into SMT constraints. The result of
each translation is a set of z3 constraints, whose union forms a model of the initial P4 program.

Variables. We translated P4 ”variables” such as headers and metadata as BitVectors in z3,
to make sure we remain as close to the semantics of the P4 program as possible. BitVectors are
a container of bits that support addition, subtraction, etc. through clauses that model digital
circuits (e.g., ripple-carry adders).

CHAPTER 4. IMPLEMENTATION 19

start

ip src == 127.0.0.1

nat table ipv4 lpm table

dst port == 80

stateful flow tracker

end

on false on true

on false

on true

addr translation()

src addr new = src addr mapping;

dst addr new = dst addr mapping;

src port new = src port mapping;

dst port new = dst port mapping;

variable aliasing

Figure 4.2: The graph analysis backend automatically generates a directed acyclic graph (DAG)
from the intermediate representation (IR). The DAG is then traversed in topological order to
translate P4 components to SMT constraints. Variable aliasing also uses the DAG to find the
most ”recently” used alias for a given variable.

Statement Translation. Note that z3 is generally stateless, which means that there is no
form of order between statements. This means that a simple variable assignment in P4 such as

ipv4.ttl = ipv4.ttl - 1 (4.2)

cannot be simply translated into
ttl = ttl − 1 (4.3)

because this would yield unsat. Indeed, there does not exist any value for ttl that can satisfy
this equation. Instead, we need to resort to a form of aliasing, where we introduce new variables
for each assignment:

ttl alias = ttl − 1 (4.4)

Should ipv4.ttl then ever be reused in the code, we need to make sure that we select the
right alias in the z3 model. Our IR is therefore enriched with a DAG that we can easily traverse
to find the right alias for each variable (see Figure 4.2).

Table Translation. Translating P4 tables into z3 is fairly straightforward, because z3 sup-
ports constructs such as Implies (i.e., =⇒) or IfThenElse. Code Snippet 4 shows an extract
of the z3 constraints generated for a table b. A table entry implies the execution of an action,
which itself implies the execution of each one of the statements in that action. The table is
then responsible for managing aliases and ensuring that the right alias is selected later on in
the model, depending on which action was executed.

Registers. We modeled P4 registers using z3 arrays, which support storing and retrieval of
values, given an index. Since we chose BitVectors as data structure over integers, we do not

CHAPTER 4. IMPLEMENTATION 20

Code Snippet 4 Showcasing an extract of the SMT constraints generated by our tool for a
table b with one exact matching entry entry1, that triggers the execution of an action action1,
which sets the variable port to 80.

1 b_entry1 == And(src_addr == 14753) , . Entry exact matching on src addr

2 b_action1 == Or(b_entry1), . Action executed if any of its entries is matched

3 ...

4 Implies(b_action1 == True , . Action executes each of its statements

5 port_b_action1 == 80), . Generation of a new alias for variable port

6 Implies(b_action1 == True , . Actions are mutually exclusive

7 And(b_action2 == False ,

8 b_action3 == False)),

9 ...

10 Implies(b_action1 == True , . Alias management by the table

11 port_b == port_b_action1),

12 Implies(Or(b_action1 , b_action2) == False , . If no action executed, port unchanged

13 port_b == port),

14 ...

have to worry about out-of-bounds register accesses. Indeed, the wrap-around behavior of z3 is
modeled after machine arithmetic of CPUs.

4.3.2 Translating Offloadability Types

We implemented a translation of offloadability types A, B and C. In the following, we describe
how the conditions in Section 3.1.2 are translated into SMT constraints.

We implement an iterative algorithm: we gradually augment our model with constraints for
the next offloadability type, if Rx is not of the previous offloadability type. First, we check
if Rx is of type A, only then if it is of type B, and so on. This implicitly returns the overall
offloadability type, as specified by the precedence relationship explained in 3.1.2.

Offloadability A is characterized by the non-reachability of state after the execution of a
given rule Rx in table T . We model this behavior by requiring that there does not exist a
packet p∗, that matches a rule R∗ in a table T ∗ (successor of T), which triggers the execution
of an action A∗ that modifies state:

@ p : T ∗ is successor of T

∧R∗ rule of T ∗

∧A∗ action triggered by R∗ ⇐⇒ Rx is offloadability type A

∧M∗ state modifier in A∗

∧ p matches R∗

∧ p matches Rx

(4.5)

Offloadability B means that there is reachable state Sx after T , but its access is independent
of the existence of Rx. We model this by effectively duplicating the given program H and its
constraints C into H ′ and C ′. Then, we modify C ′ by removing the execution of the action Ax

linked to Rx. If Stot is the union of all states in the given program and S′tot the union of all
states in the duplicated model, then we require:

∀ p : Stot = S′tot ⇐⇒ Rx is offloadability type B (4.6)

Offloadability C means that there is reachable state Sx after T that depends on Rx, but it
is read-only. This check is trivial because we simply add the constraint that the state access is
not a state modifier.

Chapter 5

Evaluation

In this chapter, we evaluate the application of our framework on memory optimizations pre-
sented in Section 3.1 with respect to its effectiveness and the implementation presented in
Chapter 4 with respect to its scalability.

All experiments are run on a machine with 8GB of RAM and an Intel i5-8250U 8 core CPU.
The evaluation represents a qualitative analysis of our framework and proves the potential of
our approach.

5.1 Effectiveness

To assess the potency of our classification, we statically analyzed the implementations of a wide
range of P4 programs available online. For each program, we were interested whether there
could exist table entries of different offloadability types.

Example Offloadability Type

A B C

NetCache [26] X
NetChain [25] X
NetHCF [31] X
LossRadar [33] X X
PRECISION [8] X X
Dataplane Routing [14] X X X
Speedlight [49] X
P4-Guide [19] X
SP-PIFO [2] X
Blink [24] X

Table 5.1: Offloadability types found in open-sourced P4 implementations of different network-
ing features. Because of the single-feature nature of these implementations, we notice little to
no existence of offloadability types B and C in some programs.

The quantitative question of how many rules of each type exist is not meaningful for our
purpose, because one could artificially inflate the number of entries for a given table by producing
appropriate traffic. This would directly impact the ratio of rules per offloadability type.

Furthermore, as most open-sourced P4 programs are proof-of-concept implementations of
a certain feature, they would not be run individually in a production environment. As such,
the examples present a code pattern, where the given feature is activated based on a ”selector
table”: the feature is activated if there exists a rule in this table. In other words, if a packet

21

CHAPTER 5. EVALUATION 22

matches a rule in this table, it will access state. This goes directly against our classification
where we ask the inverse question to offload rules: Given a match on rule Rx, can we guarantee
the nonexistence of state accesses (i.e., offloadability type A)?

However, given several features in the same program, a potential mutual exclusivity of
features would increase the number of offloadability types. Indeed, the combination of features
would also greatly increase optimization opportunities in general. Thus, the assessment given
here can be understood as a conservative estimation. We leave the merger of features and
evaluation of their rule classification up for future work.

Table 5.1 shows which offloadability types can be found in different P4 programs. Since our
implementation only supports classification of types A, B and C, we did not include offloadability
type D. Note, that all programs contain offloadability type A, while offloadability type C was
only found once. This is partly due to the nature of type C: when state is read, an index is
used that was previously calculated independently of the type of state access (read/write). It is
often also used for write access, which directly leads to a potential offloadability type D. Code
Snippet 5 shows this structure found in many programs: the type of state access depends on the
type of packet and not on the rule, so rules in table index cannot be of offloadability type C.
In view of those results, our analysis remains inconclusive as to the practicality of offloadability
type C.

Code Snippet 5 Pseudo-code of a state access pattern found in many programs, leading to
little offloadability type C rules. Indeed, the type of state access depends on the type of packet
and not on the rule in table index. Intuitively it makes sense that the same index is used for
both read and write accesses, so that only one table is used for this purpose.

1 apply(table_index) . sets index for register access

2 if(packet == SYN) {

3 value = read_from_reg(register , index)

4 }

5 else {

6 write_to_reg(register , index , value)

7 }

5.2 Scalability

Scaling our classification to bigger programs with more rules poses two fundamental problems.
First of all, bigger programs with more components take more time to be translated into SMT

constraints. Secondly, symbolic execution commonly suffers from an effect called path explosion.
Bigger programs lead to an exponential increase in the number of possible branches in the
program code, leading to longer execution times. Applied on the classification of offloadability
types, this translates to longer solving durations of the final SMT problem.

To tackle the first issue, we implemented a caching mechanism where the translation of IR
components into SMT constraints is cached. This allows reuse of translations across different
classifications of rules. Solving the second problem is quite more challenging. While z3 offers
a variety of different strategies, each specialized in solving a certain kind of SMT problem,
chaining them together is difficult and requires a deeper understanding of algorithmic proof
methods.

Figure 5.1 shows the duration of rule classification of the program LossRadar for different
types of rules. The figure reports maximum translation and solving times in milliseconds for 10
runs of classification for each rule, with and without the caching mechanism.

Focusing on the uncached results only, note how the overall classification time for rules 5−7
is significantly higher than for other rules. Indeed, rules 5−7 are of offloadability type B, while

CHAPTER 5. EVALUATION 23

Figure 5.1: Maximum classification duration (over 10 runs) for rules of different offloadability
types with and without a caching mechanism. Rules 5−7 are of offloadability type B, resulting
in longer classification and translation times. For all offloadability types, translation times are
cut down significantly when using caching.

the others are of offloadability type A. This goes in line with the iterative algorithm presented in
Section 4.3.2. Indeed, for offloadability type B, there is an internal duplication of the program
(see Section 4.3.2) which explains both longer translation times and longer solving times of the
SMT problem.

Comparing cached and uncached execution times, we notice two details. Firstly, the trans-
lation of rule 1 using caches takes as long as the method without caches. This is expected,
because on the first run the cache is empty and needs to be filled. Indeed, subsequent runs take
significantly less time. Secondly, the translation time is cut by factors of 12 (offloadability type
A) and 3 (offloadability type B). This shows the potential of more advanced implementation-
specific optimization techniques such as caching. Going one step further, one could make use of
multi-core architectures by classifying rules in parallel, instead of classifying rules sequentially
— currently only one core of the CPU is used for our classification. While this increases overall
”throughput”, we also see more potential for each individual classification. To reduce the solv-
ing time by z3, one could optimize the SMT strategies through novel learning approaches, such
as FastSMT [5].

Chapter 6

Outlook

We dedicate the following sections to the current limitations of our framework and how we
applied it to the memory and dependency optimizations. We also outline possible improvements
and future research directions.

6.1 Limitations

Given the results in Chapter 5, we describe the limitations of the framework itself, of how we
applied the framework in chapter 3 and of the implementation.

Applicability. Results have shown that despite an intuitive separation of offloadability types,
little presence of offloadability type C questions its usefulness in practice. While the nature
of the data set was not representative of production-ready P4 code, it remains questionable
whether the separation between offloadability type B and C is appropriate. More experiments
are also necessary with regards to offloadability type D. While it appears more complex than
other types, we see huge potential in the disassembly of actions into statements.

Concerning the dependency mitigation, we focused on dependencies between actions. How-
ever, our detection and mitigation hook does not work for read-after-write matching dependen-
cies. Detection mechanisms here are even more challenging because if a ”fixing” table were to
match on the same keys as the optimized table, the removed dependency would be re-introduced.

Overhead. The cost of running the offloadability classification analysis is comparatively high
to the usual latency (order of milliseconds) for adding a rule for the control plane. While more
advanced implementation-specific optimization techniques can help, the fundamental problem
of path explosion when using symbolic execution remains. However, the classification can be
run in parallel with the rule insertion, while also parallelizing the classification for different
rules.

For the mitigation of dependency optimization misspeculations, more memory resources
would be needed to install detection and mitigation rules. This then raises the trade-off between
resources. Is it worth having less dependencies but higher memory usage?

Model construction. While the framework lays out a structured approach to classifying
optimizations, applying the concepts to concrete code transformations is not trivial. Balancing
the complexity of the classification and the applicability range to cover a maximum amount
of code structures is an open problem. Code sections can easily be marked as state modifiers;
however, it is not clear how any given resource optimization interacts with each state modifi-
cation. Concretely, the construction of models in Sections 3.1 and 3.2 is currently not easily
portable to other resources.

24

CHAPTER 6. OUTLOOK 25

6.2 Future Research Directions

This work challenges the prevailing definition of semantic equivalence on stateful switches and
advocates a more refined view on packet processing operations. As such, we only scratched the
surface of possibilities in an extremely vast space of semantically non-preserving optimizations.

First and foremost this raises a trade-off between packet correctness, state consistency and
resource optimizations. Applied to the memory optimization: which rules should be offloaded,
given the knowledge of offloadability types and their respective guarantees? Different applica-
tions have very diverse requirements for latency, packet correctness and state consistency. For
example, it may be more desirable to allow miscounting in a bloom filter (i.e., not guaranteeing
state consistency) used for rate limiting, rather than processing a certain type of traffic incor-
rectly (i.e., ensuring packet correctness). Further research is required to translate these notions
altogether into an efficient optimization problem.

Secondly, we focuse on a single special hardware architecture with specific constraints on
packet processing, state modification and resource usage. As touched upon before, different
resource optimizations require different mitigation and classification methods. This raises the
question how our framework can be incorporated into new hardware architectures that offer
different data structure models.

Finally, our model only focuses on a single device and a single optimization at a time. Past
work in stateful network-wide abstractions (SNAP [4], Lyra [21], Flightplan [46]) has shown
resource optimization potential utilizing a global view of the network. Exploiting our differenti-
ation of semantic equivalence into packet correctness and state consistency, and applying these
concepts on a network scale, even more aggressive and powerful optimizations can be unlocked.

Chapter 7

Summary

In this thesis, we explored the impact resource optimizations can have on the semantic correct-
ness of P4 programs. To this end, we introduced new concepts to capture the packet processing
behavior of P4 switches: packet correctness and state consistency. We then theoretically ana-
lyzed memory and dependency optimizations with respect to these concepts.

For memory optimizations, we proposed offloading rules to a remote entity and classified
rules by their offloadability type, in order to capture their effect on stateful data structures and
packet processing. For the dependency optimization, we introduced detection and mitigation
mechanisms for misspeculated packets, under certain structural constraints.

Using a prototype implementation, we evaluated the effectiveness and scalability of our
system and showed the feasibility of an automated classification engine. Our approach is a
promising first step towards aggressive resource optimizations in the setting of partial semantic
correctness.

26

Bibliography

[1] Abhashkumar, A., Lee, J., Tourrilhes, J., Banerjee, S., Wu, W., Kang, J.-M.,
and Akella, A. P5: Policy-driven optimization of p4 pipeline. In Proceedings of the
Symposium on SDN Research (New York, NY, USA, 2017), SOSR ’17, Association for
Computing Machinery, p. 136–142.

[2] Alcoz, A. G., Dietmüller, A., and Vanbever, L. Sp-pifo: Approximating push-in
first-out behaviors using strict-priority queues. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20) (Santa Clara, CA, Feb. 2020), USENIX
Association, pp. 59–76.

[3] Applegate, D. A., Calinescu, G., Johnson, D. S., Karloff, H., Ligett, K., and
Wang, J. Compressing rectilinear pictures and minimizing access control lists. In Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (USA,
2007), SODA ’07, Society for Industrial and Applied Mathematics, p. 1066–1075.

[4] Arashloo, M. T., Koral, Y., Greenberg, M., Rexford, J., and Walker, D.
Snap: Stateful network-wide abstractions for packet processing. In Proceedings of the 2016
ACM SIGCOMM Conference (New York, NY, USA, 2016), SIGCOMM ’16, Association
for Computing Machinery, p. 29–43.

[5] Balunovic, M., Bielik, P., and Vechev, M. Learning to solve smt formulas. In Ad-
vances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018,
pp. 10337–10348.

[6] Barefoot. Barefoot tofino. https://barefootnetworks.com/products/

brief-tofino/, accessed Sept 2021.

[7] Barrett, C., Fontaine, P., and Tinelli, C. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2016.

[8] Ben-Basat, R., Chen, X., Einziger, G., and Rottenstreich, O. Efficient mea-
surement on programmable switches using probabilistic recirculation. In 2018 IEEE 26th
International Conference on Network Protocols (ICNP) (2018), pp. 313–323.

[9] Bennett, J. C. R., Partridge, C., and Shectman, N. Packet reordering is not
pathological network behavior. IEEE/ACM Trans. Netw. 7, 6 (Dec. 1999), 789–798.

[10] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,
Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D.
P4: Programming protocol-independent packet processors. SIGCOMM Comput. Commun.
Rev. 44, 3 (July 2014), 87–95.

27

https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/

BIBLIOGRAPHY 28

[11] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Izzard, M.,
Mujica, F., and Horowitz, M. Forwarding metamorphosis: Fast programmable match-
action processing in hardware for sdn. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM (New York, NY, USA, 2013), SIGCOMM ’13, Association for Com-
puting Machinery, p. 99–110.

[12] Cadar, C., Dunbar, D., and Engler, D. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 08) (San Diego, CA, Dec. 2008),
USENIX Association.

[13] Cisco. Configuration guide for cisco ip sourceguard. https://www.cisco.com/en/

US/docs/switches/lan/catalyst3850/software/release/3.2_0_se/multibook/

configuration_guide/b_consolidated_config_guide_3850_chapter_0110110.html,
accessed Sept 2021.

[14] Costa Molero, E., Vissicchio, S., and Vanbever, L. Hardware-Accelerated Network
Control Planes . In Proceedings of the 17th ACM Workshop on Hot Topics in Networks
(2018), ACM.

[15] Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P.,
and Banerjee, S. Devoflow: Scaling flow management for high-performance networks.
In Proceedings of the ACM SIGCOMM 2011 Conference (New York, NY, USA, 2011),
SIGCOMM ’11, Association for Computing Machinery, p. 254–265.

[16] de Moura, L., and Bjørner, N. Z3: An efficient smt solver. In Tools and Algorithms for
the Construction and Analysis of Systems (Berlin, Heidelberg, 2008), C. R. Ramakrishnan
and J. Rehof, Eds., Springer Berlin Heidelberg, pp. 337–340.

[17] Dong, Q., Banerjee, S., Wang, J., Agrawal, D., and Shukla, A. Packet classifiers
in ternary cams can be smaller. In Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems (New York, NY, USA, 2006), SIGMET-
RICS ’06/Performance ’06, Association for Computing Machinery, p. 311–322.

[18] Draves, R., King, C., Venkatachary, S., and Zill, B. Constructing optimal ip
routing tables. In IEEE INFOCOM ’99. Conference on Computer Communications. Pro-
ceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No.99CH36320) (1999), pp. 88–97 vol.1.

[19] Fingerhut, A. Demo 6. https://github.com/jafingerhut/p4-guide/tree/

5dc2d80c8282f5cb01a803c46e537704bf0f3715/demo6, accessed Sept 2021.

[20] GaloisInc. crucible. https://github.com/GaloisInc/crucible/, accessed Sept 2021.

[21] Gao, J., Zhai, E., Liu, H. H., Miao, R., Zhou, Y., Tian, B., Sun, C., Cai, D.,
Zhang, M., and Yu, M. Lyra: A cross-platform language and compiler for data plane
programming on heterogeneous asics. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (New York, NY, USA, 2020),
SIGCOMM ’20, Association for Computing Machinery, p. 435–450.

[22] Govind, S., Govindarajan, R., and Kuri, J. Packet reordering in network processors.
In 2007 IEEE International Parallel and Distributed Processing Symposium (2007), pp. 1–
10.

https://www.cisco.com/en/US/docs/switches/lan/catalyst3850/software/release/3.2_0_se/multibook/configuration_guide/b_consolidated_config_guide_3850_chapter_0110110.html
https://www.cisco.com/en/US/docs/switches/lan/catalyst3850/software/release/3.2_0_se/multibook/configuration_guide/b_consolidated_config_guide_3850_chapter_0110110.html
https://www.cisco.com/en/US/docs/switches/lan/catalyst3850/software/release/3.2_0_se/multibook/configuration_guide/b_consolidated_config_guide_3850_chapter_0110110.html
https://github.com/jafingerhut/p4-guide/tree/5dc2d80c8282f5cb01a803c46e537704bf0f3715/demo6
https://github.com/jafingerhut/p4-guide/tree/5dc2d80c8282f5cb01a803c46e537704bf0f3715/demo6
https://github.com/GaloisInc/crucible/

BIBLIOGRAPHY 29

[23] Group, P. A. W. P416 portable switch architecture(psa). https://p4.org/p4-spec/

docs/PSA.html, accessed Sept 2021.

[24] Holterbach, T., Molero, E. C., Apostolaki, M., Dainotti, A., Vissicchio, S.,
and Vanbever, L. Blink: Fast connectivity recovery entirely in the data plane. In
16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19)
(Boston, MA, Feb. 2019), USENIX Association, pp. 161–176.

[25] Jin, X., Li, X., Zhang, H., Foster, N., Lee, J., Soulé, R., Kim, C., and Stoica,
I. Netchain: Scale-free sub-rtt coordination. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18) (Renton, WA, Apr. 2018), USENIX Asso-
ciation, pp. 35–49.

[26] Jin, X., Li, X., Zhang, H., Soulé, R., Lee, J., Foster, N., Kim, C., and Stoica,
I. Netcache: Balancing key-value stores with fast in-network caching. In Proceedings of
the 26th Symposium on Operating Systems Principles (New York, NY, USA, 2017), SOSP
’17, Association for Computing Machinery, p. 121–136.

[27] Kang, N., Liu, Z., Rexford, J., and Walker, D. Optimizing the “one big switch”
abstraction in software-defined networks. In Proceedings of the Ninth ACM Conference
on Emerging Networking Experiments and Technologies (New York, NY, USA, 2013),
CoNEXT ’13, Association for Computing Machinery, p. 13–24.

[28] Kanizo, Y., Hay, D., and Keslassy, I. Palette: Distributing tables in software-defined
networks. In 2013 Proceedings IEEE INFOCOM (2013), pp. 545–549.

[29] Karp, R. M. Reducibility Among Combinatorial Problems. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010, pp. 219–241.

[30] Katta, N., Alipourfard, O., Rexford, J., and Walker, D. Cacheflow:
Dependency-aware rule-caching for software-defined networks. In Proceedings of the Sympo-
sium on SDN Research (New York, NY, USA, 2016), SOSR ’16, Association for Computing
Machinery.

[31] Li, G., Zhang, M., Liu, C., Kong, X., Chen, A., Gu, G., and Duan, H. Nethcf:
Enabling line-rate and adaptive spoofed ip traffic filtering. In 2019 IEEE 27th International
Conference on Network Protocols (ICNP) (2019), pp. 1–12.

[32] Li, R., Zhao, B., Chen, R., and Zhao, J. Taming the wildcards: Towards dependency-
free rule caching with freecache. In 2020 IEEE/ACM 28th International Symposium on
Quality of Service (IWQoS) (2020), pp. 1–10.

[33] Li, Y., Miao, R., Kim, C., and Yu, M. Lossradar: Fast detection of lost packets in
data center networks. In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies (New York, NY, USA, 2016), CoNEXT ’16,
Association for Computing Machinery, p. 481–495.

[34] Liu, A. X., and Gouda, M. G. Complete redundancy detection in firewalls. In Data
and Applications Security XIX (Berlin, Heidelberg, 2005), S. Jajodia and D. Wijesekera,
Eds., Springer Berlin Heidelberg, pp. 193–206.

[35] Liu, J., Hallahan, W., Schlesinger, C., Sharif, M., Lee, J., Soulé, R., Wang,
H., Caşcaval, C., McKeown, N., and Foster, N. P4v: Practical verification for
programmable data planes. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (New York, NY, USA, 2018), SIGCOMM ’18,
Association for Computing Machinery, p. 490–503.

https://p4.org/p4-spec/docs/PSA.html
https://p4.org/p4-spec/docs/PSA.html

BIBLIOGRAPHY 30

[36] llvm. Llvm’s analysis and transform passes. https://llvm.org/docs/Passes.html, ac-
cessed Sept 2021.

[37] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L.,
Rexford, J., Shenker, S., and Turner, J. Openflow: Enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar. 2008), 69–74.

[38] Meiners, C. R., Liu, A. X., and Torng, E. Tcam razor: A systematic approach
towards minimizing packet classifiers in tcams. In 2007 IEEE International Conference on
Network Protocols (2007), pp. 266–275.

[39] Neves, M., Freire, L., Schaeffer-Filho, A., and Barcellos, M. Verification
of p4 programs in feasible time using assertions. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies (New York, NY, USA,
2018), CoNEXT ’18, Association for Computing Machinery, p. 73–85.

[40] P4.org. Behavioral model version 2. https://github.com/p4lang/behavioral-model,
accessed Sept 2021.

[41] Rosu, G. Specifying languages and verifying programs with k. In 2013 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (2013), pp. 28–
31.

[42] Ruia, A., Casey, C. J., Saha, S., and Sprintson, A. Flowcache: A cache-based
approach for improving sdn scalability. In 2016 IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS) (2016), pp. 610–615.

[43] Schneider, T. Automatic generation of adversarial workload for programmable
switches. https://nsg.ee.ethz.ch/fileadmin/user_upload/TiborSchneider_

AdversarialWorkload_Thesis.pdf, 2019.

[44] Sonchack, J., Loehr, D., Rexford, J., and Walker, D. Lucid: A language for con-
trol in the data plane. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (New
York, NY, USA, 2021), SIGCOMM ’21, Association for Computing Machinery, p. 731–747.

[45] Stoenescu, R., Dumitrescu, D., Popovici, M., Negreanu, L., and Raiciu, C.
Debugging p4 programs with vera. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (New York, NY, USA, 2018), SIGCOMM
’18, Association for Computing Machinery, p. 518–532.

[46] Sultana, N., Sonchack, J., Giesen, H., Pedisich, I., Han, Z., Shyamkumar, N.,
Burad, S., DeHon, A., and Loo, B. T. Flightplan: Dataplane disaggregation and
placement for p4 programs. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21) (Apr. 2021), USENIX Association, pp. 571–592.

[47] Suri, S., Sandholm, T., and Warkhede, P. Compressing two-dimensional routing
tables. Algorithmica 35 (04 2003), 287–300.

[48] Wintermeyer, P., Apostolaki, M., Dietmüller, A., and Vanbever, L. P2go: P4
profile-guided optimizations. In Proceedings of the 19th ACM Workshop on Hot Topics in
Networks (New York, NY, USA, 2020), HotNets ’20, Association for Computing Machinery,
p. 146–152.

[49] Yaseen, N., Sonchack, J., and Liu, V. Synchronized network snapshots. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication (New
York, NY, USA, 2018), SIGCOMM ’18, Association for Computing Machinery, p. 402–416.

https://llvm.org/docs/Passes.html
https://github.com/p4lang/behavioral-model
https://nsg.ee.ethz.ch/fileadmin/user_upload/TiborSchneider_AdversarialWorkload_Thesis.pdf
https://nsg.ee.ethz.ch/fileadmin/user_upload/TiborSchneider_AdversarialWorkload_Thesis.pdf

BIBLIOGRAPHY 31

[50] Yu, M., Rexford, J., Freedman, M. J., and Wang, J. Scalable flow-based networking
with difane. In Proceedings of the ACM SIGCOMM 2010 Conference (New York, NY, USA,
2010), SIGCOMM ’10, Association for Computing Machinery, p. 351–362.

[51] Zheng, P., Benson, T., and Hu, C. P4visor: Lightweight virtualization and compo-
sition primitives for building and testing modular programs. In Proceedings of the 14th
International Conference on Emerging Networking EXperiments and Technologies (New
York, NY, USA, 2018), CoNEXT ’18, Association for Computing Machinery, p. 98–111.

Appendix A

Appendix

For completeness purposes, we present additional insights and thought experiments in the ap-
pendix. Sections A.1 and A.2 show partially fruitful attempts at improving the classification
and mitigations presented in Chapter 3. Section A.3 contains a full P4 example showcasing the
mitigations presented in Section 3.2.

A.1 Exploration of Solutions to Guarantee Packet Correctness
for Offloadability B

In this section we explore potential solutions to guarantee packet correctness in offloadability B.
We refer to the terminology and notation introduced in Chapter 3. In short, packet correctness
could be guaranteed under very specific assumptions, but we considered these cases marginal,
which is why we did not pursue this research direction. The insight boils down to a reversal
of wrongly modified packet headers in the control plane. However, because of possibly non-
invertible transformations in the data plane, the control plane’s actuation possibilities are very
limited.

Offloadability B is characterized by an independence of the currently classified rule Rx and
state accesses. However, since the packet px has to traverse the whole pipeline after a match
on Rm and because of the miss in T , content in px might no longer be correct. For instance,
there can be a read-after-write dependency between T and TableA with an action ActionA that
modifies a header of px. This modification will now be wrong because of the misspeculation
(absence of Rx). If the mapping between rules and modifications (actions with their arguments)
in TableA is not bijective or statements in actions of TableA not invertible, it will not be possible
to reverse the wrong modification (due to a wrongful match in TableA) in the controller before
correctly applying T . Thus, we need to have access to the state of px right after the execution of
Am. However, cloning/generating digests in PSA “freezes” the state only at the end of ingress
pipeline. We would need T to be at the end of the ingress/egress pipeline to make use of this
feature. Should the latter condition be satisfied, we can guarantee packet correctness.

A.2 Exploration of Alternative Solutions for Dependency Mis-
speculation Mitigation using Recirculation

Early on, we explored the idea that recirculation of packets effectively increases the number of
pipeline stages available to the programmer. Therefore, one might be able to use recirculation
to mitigate misspeculations arising from dependency optimizations. However, this can poten-
tially change the processing order of packets, which in turn can change the functionality of the
algorithm. In the end we no longer pursued this direction, because of technical difficulties when
trying to ensure state consistency.

I

APPENDIX A. APPENDIX II

We distinguish between the following scenarios:

No State. If there are no stateful data structures in the program and no packets are recircu-
lated or cloned to the control plane, then reordering of packets does not alter the functionality
of the algorithm. We can safely reorder packets as we wish.

Monitoring State. If there are stateful data structures in the algorithm, but they only have
a monitoring role, then reordering should only have negligible impact. State purely used for
monitoring purposes could be detected as follows. State is either only written to but not read
from (we read it only from the controller for QoS monitoring or similar). Or state is also read
from but only to notify the controller. This might be hard to detect in practice, but we can
make some reasonable assumptions, such as only allowing cloning and sending the packet to the
controller.

The impact of packet reordering can be described as follows. Let’s say we want to keep
track of average TCP window sizes and sample every tenth packet. If the order of the packets
is changed because of recirculation, our average will be wrong. However, we can consider this
impact negligeable. State is only used for monitoring and as such not crucial functionality of
the code. Furthermore, such changes because of reorderings will not be noticeable in the sheer
volume of correctly monitored packets.

Functional State. State is used for functionality of the program. We need to recirculate all
packets whose state is altered by the recirculation of the misspeculated packet px. This needs
to be done recursively, such that if packet p1 is recirculated because of px and p2 and p1 have
shared state, then p2 needs to be recirculated too.

How can we detect shared state between (loosely) consecutive packets? Depending on the
inter-packet arrival time, packets do not have to be consecutive to be “eligible” for recirculation,
since recirculation takes a few cycles. So how do we know which packets have a dependency
with respect to some data structure? We are given the following constraints:

• We need to know this before the state gets read/modified.

• We do not want to rely on a traffic profile.

• We cannot rely on the dependency graph, because it shows dependencies among data
structures and not dependencies among packets.

The following example shows why we cannot rely on the dependency graph.

1 apply(table_green); // --> modify_field(Y, 0);

2 apply(table_yellow); // --> modify_field(X, 1); modify_field(Y, 1);

3 if (miss) {

4 apply(table_special); // --> read_field(X);

5 }

Notice, that there is no read-after-write dependency on X, as the reading and writing
branches are mutually exclusive and can therefore be put in the same stage. After a P2Go
dependency optimization, the code would look as follows:

1 apply(table_green);

2 if (miss) { // added by P2Go because "unseen dependency"

3 apply(table_yellow);

4 if (miss) {

5 apply(table_special);

6 }

7 } else { // account for misspeculation

8 if (table_copy_yellow.hit()) {

APPENDIX A. APPENDIX III

9 // we have a misspeculation and recirculate the packet

10 }

11 }

Assume the following packets would arrive in this order to the switch: p1 matching ta-
bles table green and table yellow, and then p2 matching table table special. Before the
optimization this would result in:

1 p1:

2 hit table_green -> Y = 1;

3 hit table_yellow -> X = 1;

4 p2:

5 miss table_green ,

6 miss table_yellow ,

7 hit table_special -> read(X) = 1;

After optimization and recirculation this would result in:

1 p1:

2 hit table_green -> Y = 0;

3 hit copy_table_yellow -> recirculated

4 p2:

5 hit table_special -> read(X) = 0;

6 p1 after recirculation:

7 hit table_yellow -> Y = 1;

Note, that the state read by p2 differs in both versions. However, the dependency graph
will not show a dependency between table yellow and table special. However, recirculating
packet p1 will make p2 read a wrong value from X. The fundamental problem is that we don’t
know which state will be modified by a certain packet, before it actually reached that statement
in the control flow. One would need sort of “canaries” to early-recirculate before critical state is
read from/written to, similar to how stack canaries in C programs protect from stack overflows.

However, further exploration of this idea has shown inter-dependencies when using a form of
P4 recirculation canaries resulting in more overhead than the initial dependency optimization
saved.

A.3 Example Program Illustrating Dependency Optimization
Mitigations

For completeness purposes, we show a full example program illustrating the dependency op-
timization mitigation. It contains ipv4 forwarding, udp access control and a form of Source-
guard [13] DHCP snooping. Please refer to the comments in the control flow section for the
original and the optimized versions of the program.

1 #include <core.p4 >

2 #if __TARGET_TOFINO__ == 2

3 #include <t2na.p4 >

4 #else

5 #include <tna.p4 >

6 #endif

7

8 #include "common/headers.p4"

9 #include "common/util.p4"

10

11 struct metadata_t {}

12

13 // ---

14 // Ingress parser

15 // ---

16 parser SwitchIngressParser(

17 packet_in pkt ,

APPENDIX A. APPENDIX IV

18 out header_t hdr ,

19 out metadata_t ig_md ,

20 out ingress_intrinsic_metadata_t ig_intr_md) {

21 TofinoIngressParser () tofino_parser;

22

23 state start {

24 tofino_parser.apply(pkt , ig_intr_md);

25 transition parse_ethernet;

26 }

27

28 state parse_ethernet {

29 pkt.extract(hdr.ethernet);

30 transition select(hdr.ethernet.ether_type) {

31 ETHERTYPE_IPV4 : parse_ipv4;

32 default : reject;

33 }

34 }

35

36 state parse_ipv4 {

37 pkt.extract(hdr.ipv4);

38 transition select(hdr.ipv4.protocol) {

39 0x11 : parse_udp;

40 default : accept;

41 }

42 }

43

44 state parse_udp {

45 pkt.extract(hdr.udp);

46 transition select(hdr.udp.src_port) {

47 0x44 : parse_dhcp;

48 default : accept;

49 }

50 }

51

52 state parse_dhcp {

53 pkt.extract(hdr.dhcp);

54 transition accept;

55 }

56

57 }

58

59 // ---

60 // Ingress Deparser

61 // ---

62 control SwitchIngressDeparser(

63 packet_out pkt ,

64 inout header_t hdr ,

65 in metadata_t ig_md ,

66 in ingress_intrinsic_metadata_for_deparser_t ig_dprsr_md) {

67

68 apply {

69 pkt.emit(hdr);

70 }

71 }

72

73 control SwitchIngress(

74 inout header_t hdr ,

75 inout metadata_t ig_md ,

76 in ingress_intrinsic_metadata_t ig_intr_md ,

77 in ingress_intrinsic_metadata_from_parser_t ig_intr_prsr_md ,

78 inout ingress_intrinsic_metadata_for_deparser_t ig_intr_dprsr_md ,

79 inout ingress_intrinsic_metadata_for_tm_t ig_intr_tm_md) {

80

APPENDIX A. APPENDIX V

81 action discard () {

82 ig_intr_dprsr_md.drop_ctl = 0x1;

83 }

84

85 action special_discard () {

86 ig_intr_dprsr_md.drop_ctl = 0x1;

87 hdr.dhcp.your_ip = 0x0;

88 }

89

90 action send(PortId_t port) {

91 ig_intr_tm_md.ucast_egress_port = port;

92 }

93

94 action static_port () {

95 ig_intr_tm_md.ucast_egress_port = 0x8;

96 ig_intr_dprsr_md.drop_ctl = 0x0;

97 }

98

99 action l3_switch(mac_addr_t new_mac_da , mac_addr_t new_mac_sa , PortId_t port){

100 hdr.ethernet.dst_addr = new_mac_da;

101 hdr.ethernet.src_addr = new_mac_sa;

102 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

103 ig_intr_tm_md.ucast_egress_port = port;

104 }

105

106 action fix_misspeculation () {

107 // ported this statement from the original action of X

108 hdr.dhcp.your_ip = 0x0;

109 }

110

111 action miss() {

112 }

113

114 table ipv4_host {

115 key = {

116 hdr.ipv4.dst_addr : exact;

117 }

118 actions = {

119 send;

120 l3_switch;

121 static_port;

122 discard;

123 }

124 size = 65536;

125 default_action = static_port;

126 }

127

128 table udp_port_acl {

129 key = {

130 hdr.udp.dst_port : exact;

131 }

132 actions = {

133 discard;

134 miss;

135 }

136 default_action = miss;

137 size = 65536;

138 }

139

140 table dhcp_offer_acl {

141 key = {

142 hdr.dhcp.your_ip : exact;

143 }

APPENDIX A. APPENDIX VI

144 actions = {

145 special_discard;

146 discard;

147 }

148 size = 65536;

149 }

150

151 // TABLE COPY USED FOR MITIGATION

152 table dhcp_offer_acl_copy {

153 key = {

154 hdr.dhcp.your_ip : exact;

155 }

156 actions = {

157 fix_misspeculation;

158 }

159 size = 65536;

160 }

161

162 DirectRegister <bit <32>>() test_reg_dir;

163 DirectRegisterAction <bit <32>, bit <32>>(test_reg_dir) test_reg_dir_action = {

164 void apply(inout bit <32> value , out bit <32> read_value){

165 read_value = value;

166 value = value + 1;

167 }

168 };

169

170 action register_action_dir () {

171 hdr.dhcp.gw_ip = test_reg_dir_action.execute ();

172 }

173

174 table reg_match_dir {

175 key = {

176 hdr.ethernet.src_addr : exact;

177 }

178 actions = {

179 register_action_dir;

180 }

181 size = 1024;

182 default_action = register_action_dir;

183 registers = test_reg_dir;

184 }

185

186 apply {

187 // OPTIMIZED WITH HOOK AND CONSISTENT STATE MITIGATION

188 if (hdr.ipv4.isValid ()) {

189 if ((hdr.ipv4.ttl & 0xfe) != 0) {

190 ipv4_host.apply();

191 if (hdr.udp.isValid ()) {

192 switch(udp_port_acl.apply ().action_run) {

193 miss : { if(hdr.dhcp.isValid ()) { dhcp_offer_acl.apply ();

} }

194 default: { if(hdr.dhcp.isValid ()) {

dhcp_offer_acl_copy.apply(); } }

195 }

196 }

197 if(hdr.dhcp.your_ip == 0x1928394) {

198 reg_match_dir.apply();

199 }

200 }

201 }

202 /* ORIGINAL VERSION OF THE PROGRAM

203 if (hdr.ipv4.isValid ()) {

204 if ((hdr.ipv4.ttl & 0xfe) != 0) {

APPENDIX A. APPENDIX VII

205 ipv4_host.apply();

206 if (hdr.udp.isValid ()) {

207 udp_port_acl.apply();

208 if(hdr.dhcp.isValid ()) { dhcp_offer_acl.apply (); }

209 }

210 if(hdr.dhcp.your_ip == 0x1928394) {

211 reg_match_dir.apply();

212 }

213 }

214 }

215 */

216 // skip egress

217 ig_intr_tm_md.bypass_egress = 1w1;

218 }

219

220 } // end of ingress

221

222 Pipeline(SwitchIngressParser (),

223 SwitchIngress (),

224 SwitchIngressDeparser (),

225 EmptyEgressParser (),

226 EmptyEgress (),

227 EmptyEgressDeparser ()) pipe;

228

229 Switch(pipe) main;

	Introduction
	Framework for Correctness Guarantees
	Architecture
	Packet Properties
	Framework Design

	Application on State-of-the-Art Optimizations
	Memory Reduction Optimization
	Related Work
	Offloadability Classification

	Dependency Optimization
	Related Work
	Detection of Misspeculated Dependency Removal
	Mitigation of Misspeculated Dependency Removal

	Implementation
	Related Toolchains
	Design
	System Overview
	SMT Basic Functionality

	Building the SMT Translator
	Translating P4 Components
	Translating Offloadability Types

	Evaluation
	Effectiveness
	Scalability

	Outlook
	Limitations
	Future Research Directions

	Summary
	References
	Appendix
	Exploration of Solutions to Guarantee Packet Correctness for Offloadability B
	Exploration of Alternative Solutions for Dependency Misspeculation Mitigation using Recirculation
	Example Program Illustrating Dependency Optimization Mitigations

