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Abstract

Coughing is the most common reason people seek medical advice and is a symp-
tom of numerous diseases that can end severely if not monitored continuously.
Finding an automated smartphone-based cough detection and counting appli-
cation could potentially quite affordably save lives and reduce health cost by
automatically recognizing a decline in condition in an early stage. This would,
with a high chance, prevent a more critical course of disease as treatment could
be initiated in time. We aimed to improve such a detector from prior work us-
ing residual convolutional neural networks and by examining the postprocessing
stage. For that, audio from 94 adults with asthma was used (mean 43 years;
standard deviation 16 years; female: 57%; male: 43%) with a total of 30’304
cough sounds. The mean cough difference per day between human-annotated
coughs and counted coughs by the automated detector was 0 coughs with a
95% confidence interval of -11.97 and 11.98 coughs or with other thresholds 0.06
coughs with a 95% confidence interval of —11.62 and 11.75. These results are
slightly better than Barata et al. 2020’s cough detector and were achieved with
a new architecture using residual convolutional neural networks. Additionally,
on a different dataset with data from 10 covid-19 patients with a total of 3888
cough sounds the postprocessing stage was assessed and improved by 0.016 MCC
(4+2.1%) which implicates that there is even more potential for improvement of
the cough detector.
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CHAPTER 1

Introduction

Coughing is the most common reason why people seek medical advice [1] [2] [3].
The cause of this symptom may be something like just a common cold, but it can
also be a sign for numerous causes that are much more severe. To name a few,
coughing can be an indicator for chronic obstructive pulmonary disease (COPD),
asthma, tuberculosis, gastro-oesophageal reflux, chronic bronchitis, cystic fibrosis
and even for some heart diseases like congestive heart failure [4] [5] [6]. Thus
monitoring and analysis of coughing behavior have the potential to be a critical
instrument in detecting a change in disease progression. This in turn may prevent
a more severe development. The question asked however should be how does one
monitor and keep a record of cough as a symptom? An intuitive approach is
measuring the symptom severity by monitoring the frequency of coughs or cough
clusters. Unfortunately, the self-assessment and self-record of the cough frequency
are quite unreliable and also inconvenient for the patient [7]. As humans are much
more susceptible to errors than machines, an automatic machine learning-based
cough detection device could be an alternative with a lot of potential. This device
would have to be ubiquitous on a daily basis and possess the required hard- and
software. Nowadays, with the increasing computation power, increasing battery
life, diverse audio hardware, flexible application interface and already societal
established ubiquity, a smartphone seems like a great choice for this task.

A Problem with an audio-based detection device in daily life is all the back-
ground noise and the challenge of the discrimination between different individu-
als on an audio recording. To mitigate this, the application could monitor only
coughs that happen during bedtime, as the recording will most likely only con-
tain audio from the individual in question plus possibly a partner. Additionally,
there is a high chance the recording will have significantly less background noise
compared to a daytime recording.

Quite some work has already been published by various researchers about
cough detection [3], however, there is not yet one that you would call the gold
standard of cough detectors [1] [3] and neither one that uses residual neural
networks specifically. One difficulty when trying to create a good cough detector
is the rareness of the occurrence of a cough when trying to collect data and
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build a well representative model with it. This means there is an extremely
strong natural class imbalance which can be an obstacle when trying to build a
good classifier. Another difficulty is that the computing power and the power
consumption of the detection algorithm are limited to the specifications of the
ubiquitous device, which in our case would be the smartphone. The advantage of
a smartphone compared to a device specifically made for this task is that among
the target society basically everyone has a smartphone available and would only
have to acquire the software via an App-download instead of acquiring and taking
along an additional device.

Such a cough detector, as described above, does exist and in this thesis, the
research goal was to accomplish better Results than said [8] detector with the
newer TensorFlow framework version two. Residual neural networks are reported
to show better results in comparison to conventional neural networks [9]. This
applies especially to deeper networks as with residual connections, crucial infor-
mation from earlier layers can be passed to subsequent layers virtually unchanged
and hence make its way through towards the output. Therefore we aimed to in-
vestigate to what extent neural network-based cough detection can be improved
by employing residual neural networks. Additionally, we considered other non-
architectural approaches with the postprocessing stage as the second main target
and thus aimed to investigate to what extent machine learning-based postpro-
cessing can improve predicted cough counts.
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Related Work

This thesis is based on Dr. Filipe Da Conceicao Barata’s Work [8] [3]. Said
work includes extensive research and a cough detection model that achieved a
Matthews correlation coefficient of 92% regarding pure classification. The count
difference per day between automated and human-annotated coughs was a mean
of —0.1 coughs with a 95% confidence interval of —12.11 and 11.91 coughs. The
data that was used was collected in this study [8|. As for the training data, 650ms
cough and non-cough (noise) audio samples were isolated and centered. The com-
puted Mel spectrogram of the audio samples was labeled and the noise samples
were split into five different datasets for ensemble learning with five times the
same cough sample dataset but five different noise sample datasets. The model
architecture was a convolutional neural network (CNN) classifier with a softmax
function at the end to output the desired probabilities. Said approach focuses
on the weight optimization process of the neural network instead of focusing on
handcrafting the most significant features, unlike most other prior work in this
field. Also, this study did longitudinal overnight testing, which is a much more
representative respectively generalizable evaluation compared to an evaluation
on specifically isolated cough and noise samples.
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Theoretical Background

3.1 Melspectrogram

The discrete Fourier transform (DFT) (k) see equation 3.1 of audio signals has
been known to be a popular feature in audio analysis with which you can extract
the occurring frequencies of an entire audio signal.

N-1 ‘ .
2(k) =) x(n)-e PN (3.1)
n=0

However, if a temporal dependency is required, which in most use cases ap-
plies, the short-term Fourier transform (STFT) S(m, k) see equation 3.2 is better
suited.

N-1 o
S(m, k) = Z z(n+mH) -w(n) - e 2™~ (3.2)
n=0

The STFT basically is a windowed version of the DFT where the vertical result
vectors of the single windows are concatenated horizontally to a two-dimensional
matrix with complex entries. In equation 3.2 w(n) denotes the Hann-window,
H the hop-size and m the window-index. If you take the squared magnitude of
the STFT S(m, k) you get the spectrogram Y (m,k) of the signal which is a
two-dimensional representation of a one-dimensional signal with only real num-
bers [10] see equation 3.3. This can now be treated in a similar fashion as ordinary
images in automated classification tasks.

Y (m, k) = |S(m, k)| (3.3)

To get the Mel spectrogram, the frequency-axis and therefore also all the values
yet need to be skewed according to the Mel scale. See equation 3.4 where m
stands for the frequency in Mel and f the frequency in Hz [11].

f

= 3.4
+=5g) (3.4)
The Mel scale treats sounds linearly not in terms of frequency but in terms of
human perception which is known to give good results in audio classification.

m = 2595 - l0g10(1

4



3. THEORETICAL BACKGROUND 5

3.2 Depthwise Separable 2D Convolution

Convolution layers in general, require quite a lot of computation power. Depth-
wise separable 2D convolution (sepconv) is a convolution method that slightly
tries to mitigate this problem, sometimes for the cost of predictive performance.
To explain the difference between ordinary 2D convolution (ordconv) and sepconv
let us assume we want to perform an mxn convolution with o output channels
on an input with i input channels. In ordinary 2D convolution, the filter size
of one filter is (m, n, i). Its resulting convolution returns one channel per filter,
which means we need o filters for our example scenario. The more filters you
use, the more output channels you obtain. Convolutions with such large filters
are computationally quite expensive, leading to inefficiency where a lot of output
channels are required. In contrast, sepconv involves two separate convolution
stages. The filter sizes of the first convolution stage are (m, n, 1), and exactly
1 of those smaller 1D filters per input channel is applied and optimized in this
stage. Up so far, the sepconv has done as much computation as the normal con-
volution would have if it had only one output channel. The second stage of this
convolution intuitively is just an aggregation of the obtained intermediate results
into one channel in o different ways. The filter size for the second stage is (1, 1,
i). For every desired output channel, exactly one such 1x1 filter is applied and
optimized which returns o output channels. 1x1 convolution is quite efficient
computationwise, therefore this kind of convolution can computationally handle
a large number of output channels compared to ordconv. The number of applied
1D filters per input channel is not strictly bound to 1. Variants of sepconv use a
depth multiplier parameter to specify the number of applied 1D filters per input
channel however this in turn again increases the required computation power.

3.3 Deep Residual Convolutional Neural Networks

Traditional deep CNNs perform quite well in image classification tasks. The
number of parameters and therefore the complexity of the network function in-
creases exponentially with increasing depth. Hypothetically an n-layer network
should be able to outperform an n-1-layer network regarding the training error or
at least be equally good. This comes due to the fact that the complexity of the
representing function from the n-layer network is higher than the one from the
n-1-layer network. For some intuition, let us take the trained n-1-layer network
and add a layer that simply maps the identity function, i.e., the input equals the
output. The n-layer network is naturally equally good as the n-1-layer network.
As a matter of fact, increasing the depth of a CNN really does show a certain
trend of a decreasing training error. However, empirical data has shown that
there is a certain network- and task-specific tipping point where the training er-
ror starts to increase again. For example, see figure 3.1, where the training and
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Figure 3.1: Training error (left) and test error (right) on the CIFAR-10 dataset
with 20-layer and 56-layer CNNs from this [9] paper.

thus testing error of the shallower network is lower. This phenomenon indicates
that not all networks are similarly easy to optimize [9], i.e., that the identity
function isn’t that easily learned by a layer.

Residual CNNs offer mitigation of this problem where the identity mapping
is attempted to be passed along through the whole network. A residual CNN is
a CNN with shortcut connections. Shortcut connections are connections that lie
between two non-adjacent network layers. The output of a specific preceding layer
is usually added elementwise to the input of a specific subsequent layer depending
on the network design. That means a fraction of the input values for the next
layer has in each case skipped the function transformation of the last or last few
layers depending on the architecture see figure 3.2. A comparison example of the
training error of a CNN and a residual CNN with the ImageNet dataset can be
seen in figure 3.3. Notice how the deeper residual CNN outperforms the shallower
residual CNN but the shallower plain CNN outperforms the deeper plain CNN.
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Figure 3.2: Structure of a residual Neural Network: The shortcut brings identity
information from layer n-2 to layer n
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Figure 3.3: Comparison of CNN (left) and residual CNN (right). The thin line
represents the training error, and the bold line represents the validation error [9]
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Methodology

This thesis used and built upon David Cleres’ code, whose goal was the implemen-
tation of Barata et al. 2020’s cough detector in Tensorflow version two [12] [8].
This chapter describes the research process and the methods and tools used in
this project.

4.1 Infrastructure

For the infrastructure, the Euler CPU cluster from ETHZ, along with an NVIDIA
GPU cluster from the Management Information Systems Group and the Infor-
mation Management Group was used. The CPU cluster was mainly used for
evaluation, while the GPUs were mainly used for weight optimization.

4.2 Data

4.2.1 Datasets

For the training, the dataset from Barata et al. 2020 was used in this thesis [§].
Audio from 94 adults with asthma was recorded (mean 43 years; standard devi-
ation 16 years; female: 57%; male: 43%). Out of 704’697 sounds in total, 30’304
were identified as coughs. 650ms cough and noise samples were isolated, cen-
tered and labeled. The noise samples were split into five different datasets (A-E)
to be used for the different classifiers in the ensemble classifier. All the cough
samples remained in one dataset. The five different classifiers that were trained
on the different datasets will be referred to as classifier A through to classifier E
accordingly throughout this report.

For the examination of the postprocessing stage, a covid-19 dataset was used.
It was collected from 10 hospitalized adult covid-19 patients. It contains a total
of 3888 cough sounds and was recorded over 24 hours.
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4.2.2 Datasplits

Using cross-validation in the deep learning task would have been too much of a
computational burden and therefore the asthma dataset was split into disjoint
sets of training-, validation- and test data. Also no two datasets contained data
from the same patient at the same time. The training data was used to optimize
the network weights, and the validation data was used for model tuning and
selection. The testset was used as a generalizable reference on unseen data. The
Validation data was never included as training data.

For the postprocessing regression part, no test data was split off due to the
small amount of data. In this task simply leave-one-group-out cross-validation
(LOGO-CV) with a group being a patient was used such that there could still be
a certain amount of generalizability with the disjoint cross-validation splits.

4.2.3 Data Preprocessing

The audio samples of 650ms first were loaded with a sampling rate of 22050 and
then min-max normalized such that they only contain values between -1 and 1.
After that the librosa library was used to compute the Mel spectrogram with 80
bands, a hop length of 112, an FFT window of 2048 datapoints and as for the
exponent of the magnitude the simple magnitude with power one (energy) was
used, it was not squared [13]. As there was quite a lot of data, the TFRecords
data structure was used to store the processed samples for more efficient memory
management.

4.3 Model Architecture

4.3.1 Optimizer & Loss Function

The Adam optimizer with default parameters and an exponential decay schedule
gave the best results regarding the optimizer [14] [15]. Using 103 as the initial
learning rate gave rather stable results without any major downward fluctuations
over several runs for the architecture without residual connections, therefore this
value was not extensively optimized any further. Also, no exhaustive search
for the best optimizer was conducted. Adding gradient noise, i.e., using a noisy
Adam, was also assessed but seemed to give inferior results [16] in the longitudinal
testing. Also, using the Adabelief [17] optimizer was attempted in hope of faster
convergence, however the predictive performance seemed to be negatively affected
thereby, also no convergence speedup could be observed. This optimizer was
however only assessed on the architecture without residual connections. As for
the batch size the value 128 also seemed more stable compared to higher or lower
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values in the architecture without residual connections and was used throughout
this project.

4.3.2 Network Structure

The network structure was strongly inspired by Barata et al. 2020’s Cough detec-
tor with residual connections as key difference in most Experiments. Early layers
in the architectures tend to use convolution with only horizontal filters, then tran-
sitioning to square filters in deeper layers. This was chosen as primary features
were assumed to be a characteristic time-dependent change in amplitude over the
different frequencies. In almost all the experiments, mainly horizontal pooling
was used instead of two-dimensional pooling between layers as this seemed to
have a higher predictive performance.

4.3.3 Ensemble Learning

To improve predictive performance an ensemble classifier with five classifiers was
trained using the five different noise datasets. As for the cough data, for ev-
ery classifier, the same cough dataset was used. The aggregation was done via
computing the mean of all five cough probabilities. Note that the model archi-
tecture tuning and selection was mainly done only on the single classifier that
used noise dataset A. The alternative, i.e., the ensemble comparison, would have
simply required too much computing power to be able to compare as equally
many architectures.

4.4 Non-architectural Approach

4.4.1 Empirically Derived Postprocessing Rules

Having a strong sample classifier is definitely a major and important part when
building a cough detector or rather a cough counter. In deployment however
a cough detector’s input, unfortunately, does not consist of nicely isolated and
centered cough and noise samples. It rather receives long audio recordings that
have to be preprocessed first. As the exact location of a cough in the audio
recording is unknown to the cough detector, one possible approach is cutting out
strongly overlapping windows. That way, an actual cough will be approximately
centered with a high probability in at least one window. These windows then
would be fed into the classifier and a vector of probabilities would be returned.
This approach however additionally requires some postprocessing as the over-
lapping windows could be detecting a corresponding cough multiple times. The
postprocessing stage’s task would be extracting the correct number of coughs out
of a probability vector. That said, no matter how good the sample classifier is,
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if the postprocessing is not reliable, so will be the cough count. Barata et al.
2020’s empirically derived pre- and postprocessing was used for that matter. The
postprocessing rules depend on two thresholds and go as follows: (1) Only two
consecutive probabilities above the first threshold are considered to be coughs.
(2) Single probabilities are only considered if the mean of the probability in ques-
tion and the following probability is above the second threshold. (3) Whenever
more than eight consecutive probabilities above the first threshold occur, they
are considered as two coughs. These two thresholds had to be optimized for each
longitudinally tested model individually. This was done first using a slight grid
search to get a better sense of the optima, followed by some sort of hill climbing.

This process of extracting the correct number of coughs from the probabil-
ity vectors has a direct and rather large impact on the labeling correctness of
the cough detector. Thus improving this particular process might have a lot of
potential to getting closer to this thesis’ research goal.

4.4.2 Machine Learning Postprocessing

To achieve an improvement of the postprocessing stage, a machine learning ap-
proach was targeted. For this task the covid-19 dataset was used as its data
format was better fitting for future projects. To create the features and labels,
the ensemble classifier of experiment 9 was used to create probability vectors.
The differently sized audio files were split up to 6.5-second files and padded with
zeros whenever their length was not a multiple of 6.5 seconds. The vectors were
also created using the same overlapping window method as mentioned before.
The probability vectors were labeled using the cough-timestamps in the textfiles
from the annotator’s labels. Whenever a cough was located on an edge of a mul-
tiple of 6.5 seconds, the cough count was added to the label of the probability
vector containing the higher cough share. Only the audio with file-timestamps
between 23:00 and 6:59 was used as this application is specifically made for noc-
turnal monitoring. This resulted in a dataset with 750 remaining cough sounds
out of 3888. Furthermore patient four was omitted due to unclean samples i.e.
too much background noise etc. Only Patients 1, 2, 3, 5, 6, 7, 8, 9 and 10 were
used for this experiment. This resulted in a dataset with 594 remaining cough
sounds out of 3888. Only 8 out of those 594 coughs (1,34%) were located on an
edge when splitting the data into 6.5-second files. A support vector machine re-
gression model was optimized on this dataset and assessed using LOGO-CV with
a group being a patient. The model parameters are specified in subsection 4.6.4.
As a reference for improvement, the postprocessing rules were also optimized
and evaluated using LOGO-CV on the same data splits. One downside of using
this dataset instead of the asthma dataset is that the resulting model can not
be included in this project due to the different format and thus not directly be
compared with Barata et al. 2020.
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4.5 FEvaluation

For the majority of the experiments only one weight optimization run was con-
ducted and its evaluation was done on the validation set. This section describes
in more detail how the evaluation was carried out.

4.5.1 Matthews Correlation Coefficient

As evaluation metric, the Matthews correlation coefficient (MCC), a special case
of the in statistics known phi coefficient, was used as it is generally regarded as a
balanced measure even if the data distribution possesses a strong imbalance [18].
The formula can be seen in equation 4.1, where TP, TN, FP, FN denote true
positives, true negatives, false positives and false negatives.

TP-TN —-FP-FN

MCC = (4.1)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

4.5.2 Thresholding

Thresholding is said to be most effective on classification tasks with highly un-
balanced data. As this is the case in our classification task thresholding was used
after the training to get a better sense of the model’s predictive potential.

4.5.3 Validation

Like mentioned, in addition to the validation during the training a thresholded
validation was performed after the training to evaluate the single classifiers more
thoroughly. This also happened on the validation set, the same one that was
also used for model tuning and selection. These datasets still consist of isolated
cough and noise samples. The datasets’ names are "test cough final 4" and
"test other final 4" which can be misleading as they were used as validation
data. The best threshold was grid searched among a value between 0 and 1 in
distances of 0.005. The ensemble classifiers were likewise evaluated using the
same method and the same validation datasets as for the single classifiers.

4.5.4 Testing

The most representative evaluation, i.e., the testing, was done on a separate
dataset of audio recordings from patients where the cough and noise sounds were
not specifically isolated. A window with 650ms length was slid over the long audio
files with 90% overlap between two samples and in that way generated the data to
be predicted or rather tested. After predicting all the probabilities of the testing
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samples per night, a few empirically derived postprocessing rules from Barata
et al. 2020 were applied to get an exact predicted cough time frame. Then the
predicted cough time frames were matched with the labeled cough time frames
for every night individually, followed by the computation of their mean difference
and its corresponding standard deviation. The test dataset was composed of the
following patients: S2, S40, S6, S32, 729, 77, Z18, 744, S27, 736, Z3, S19, 724,
S45, S46.

4.6 Experiments

4.6.1 Non-Residual Architectures
Experiment 1 (Cleres)

To start, Cleres’ architecture was trained and evaluated as a reference. This
architecture can be seen in figure 4.1. A dropout of 0.5 was used before the dense
layer. This architecture was attempted to be improved without using residual
connections first to get a better sense of what could be achieved in that simpler
way.

Experiment 2 (Additional Dense)

Adding dense layers to architecture from experiment 1 was assessed, which how-
ever did rather lower the MCC. The run with the highest MCC of said architecture
was achieved by adding three dense 256 layers and a dense 2 layer after the
global max-pooling.

Experiment 3 (Additional Conv)

Adding additional convolutional layers to the architecture of experiment 1 was
assessed, which did not improve the MCC either. To assess this, simply two
additional convolution layers with relu like the one from layer three were
inserted before the max-pooling of layer three.

Experiment 4 (Half Channels)

To see if the computational burden of this model could be reduced without a
big decrease in predictive performance, the channel size of all layers except for
the first layer in the architecture from experiment 3 was halved. This achieved
similar results as the initial architecture in a few runs. This means the predictive
performance was not improved but a similar result was achieved with less of a
computational burden.
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Figure 4.1: Cleres’ CNN architecture without residual connections as reference
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Experiment 5 (Flattening)

The architecture from experiment 4 was also assessed without global max pooling
in the end but instead with flattening. Also, restore best weights was set to
True. This one was the winner among the non-residual architectures.

4.6.2 Residual Architectures
Experiment 6 (L2 Shortcuts)

For one of the initial residual architectures, the architecture from experi-
ment 1 was used as a base and simply non-regularized shortcut connections
were added around every convolution layer. Its predictive performance was
about equal to the non-residual architecture. Then 1x1 convolutions were
used to 12 kernel regularize the shortcuts with A = be—4, which improved
the thresholded MCC. A run with a higher MCC was one where the first short-
cut was simply added without any convolution nor regularization in contrast to
the other 4 shortcuts which were all 12 kernel regularized with A = 5e—4. Its
structure can be seen in figure 4.2.

Experiment 7 (Flattening Residual)

The next run that achieved a higher predictive performance than the architecture
of experiment 6 was when the global max-pooling layer at the end was replaced
by a flattening layer. This run was done with an early-stop patience of 20 and
restore best weights False.

Experiment 8 (Average Pool)

Replacing max-pooling with average pooling everywhere in the architecture
of experiment 7 led to one of the several architectures with the highest MCC.
This run was done with an early-stop patience of 10 and restore best weights
True.

Experiment 9 (Increased Channels)

The architecture that felt most stable regarding the predictive performance was
achieved by increasing the channel size and adding vertical average pool-
ing twice before the flattening layer. Like in most other experiments, it
uses depthwise separable convolution. Also, like in most other experiments, each
convolution Layer is skipped with a shortcut connection which performs a 1x1
depthwise separable convolution except for the first layer where the output is
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Figure 4.2: First residual CNN architecture that achieved a higher MCC than the
non residual architectures. Merging arrows depict the summation of the tensors.
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simply duplicated 16 times and added to the input without convolution. All the
1x1 convolutions were 12 kernel regularized with A = 5e—4. Before the dense
layer, a dropout of 0.5 was used. The early-stop parameters used for this exper-
iment were restore best weights=True and patience=10. The exact network
structure can be seen in figure 4.3.

4.6.3 Experiment 10 (Depth Multiplier)

A good run with a very similar architecture was achieved when taking the exact
architecture from experiment 9 and changing the depth multiplier parameter
from one to two. And setting the early-stop parameter restore_ best weights
to False and the early-stop patience to 25. This architecture was the one with
the highest testing results from the very few architectures that were evaluated
on the testset.

Experiment 11 (Three 1x3)

This paper [19] suggested replacing early large filters with several smaller filters
so the first layer of experiment 9, i.e., the 1x7 layer, was replaced with three
smaller 1x & layers. Also, the two wvertical pool layers were remowved. Its exact
structure can be seen in figure 4.4.

Experiment 12 (Greater Stride)

Also, an architecture inspired by a paper [20] was assessed. This one does not
only rely on pooling but also on a convolution stride greater than one to
reduce the resolution. The corresponding architecture can be seen in figure 4.5.

Experiment 13 (No Pool)

Another architecture was assessed, where the only means of reducing the resolu-
tion was a convolution stride greater than one, meaning no pooling at all except
for global max-pooling at the end. This architecture was also inspired by this [20]
paper. Its structure can be seen in figure 4.6.

Further Experiments

Many architecture variations were assessed, but the above-named architectures
and changes had the most impact on the predictive performance. What could
be observed was that depending on the architecture, passing a True or False
to the early-stop parameter restore best weights made quite a big difference
of up to 0.02 MCC. Using mixed precision was also tried originally to have a
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faster weight optimization however there was no noticeable speedup and the
predictive performance was even negatively affected by up to 0.02 MCC. It has
to be said it can not be guaranteed that mixed-precision was used correctly as the
application interface was very complicated and seemed to throw one exception
after another. An attention module for Keras was also assessed [21]. CBAM,
squeeze & excitation, channel attention and spatial attention was each used after
each layer. This turned out to slightly worsen the predictive performance, so
it was removed, however this approach was not optimized at all due to limited
time. Also label smoothing with different hyperparameters was assessed, which
also only lowered the predictive performance. As depthwise separable convolution
tends to have a lower predictive performance using normal convolutions instead
of separable ones was also assessed, which surprisingly also gave worse results.
Inserting spatial dropout in early layers was also assessed but did not improve
the predictive performance.

4.6.4 ML Postprocessing Experiment

For this regression task, a support vector machine regressor was used with an RBF
kernel using gamma: 0.41 and a regularization parameter c: 4.3. The scikit-learn
framework was used for the regression model as well as for the cross-validation
evaluation.



CHAPTER 5

Results

5.1 Validation Results of Different Architectures

5.1.1 Non-Residual Architectures

Experiment ‘ MCC Recall Precision
1 Cleres 0.86!  0.861 0.86"
2 Additional Dense | 0.86 0.86 0.87
3 Additional Conv 0.86 0.88 0.85
4 Half Channels 0.87 0.87 0.87
5 Flattening 0.88 0.87 0.90

Table 5.1: Results of Experiments with non-residual architectures. The values
correspond to the one run of the same architecture with the highest thresholded
validation MCC.

5.1.2 Residual Architectures

5.2 Validation Result of the best Ensemble Classifier

A few promising architectures were also trained on the other four datasets and
evaluated as an ensemble classifier. The thresholded MCC of the architecture
from experiment 9 was 0.925 with a recall of 0.926 and a precision of 0.926.
Assessing the chosen architecture with added gradient noise with noise eta=1
resulted in an even higher validation MCC of 0.928, however the longitudinal
test results were lower with the added gradient noise. Also, instead of mean
value aggregation, inverse entropy and majority vote aggregation was assessed,
but they both turned out to have a lower thresholded ensemble validation MCC.

!These values do not correspond to the run with the highest MCC of this architecture, they
approximately represent the average value over several runs.
2The average MCC over several runs of this architecture was only 0.9 approximately.
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Experiment ‘ MCC Precision Recall
6 L2 Shortcuts 0.89 0.88 0.89
7 Flattening Residual | 0.90 0.88 0.92
8 Average Pool 0.91 0.89 0.92
9 Increased Channels | 0.91° 0.91 0.91
10 Depth multiplier 0.91 0.90 0.92
11 Three 1x3 0.91 0.91 0.92
12 Greater Stride 0.89 0.90 0.88
13 No Pool 0.90 0.88 0.92

Table 5.2: Results of Experiments with residual architectures. The values cor-
respond to the one run of the same architecture with the highest thresholded
validation MCC.

The architecture of experiment 10 gave a thresholded MCC of 0.911 with a recall
of 0.910 and a precision of 0.914 which was lower but gave better test results.

5.3 Longitudinal Testing Results

The classifier from experiment 9 was assessed on the longitudinal test set. Its
Bland-Altman plot and histogram with the two thresholds 0.76 and 0.61 can be
seen in figures 5.1 and 5.2. Its Bland-Altman plot and histogram with the two
thresholds 0.71 and 0.59 can be seen in figure 5.3 and 5.4.

Also the classifier from experiment 10 was assessed on the longitudinal test
set. Its Bland-Altman plot and histogram with the two thresholds 0.69 and
0.5658 can be seen in figures 5.5 and 5.6. Its Bland-Altman plot and histogram
with the two thresholds 0.69 and 0.5727 can be seen in figure 5.7 and 5.8. Its
Bland-Altman plot and histogram with the two thresholds 0.71 and 0.5751 can
be seen in figure 5.9 and 5.10. Its Bland-Altman plot and histogram with the
two thresholds 0.7 and 0.623 can be seen in figure 5.11 and 5.12.

5.4 ML Postprocessing Results

The cross-validation MCC of the regression model was 0.744. The cross-validation
MCC of the postprocessing rules was 0.728. The MCC of the postprocessing rules
that were optimized on all 9 patients without cross-validation was 0.778 with a
first threshold of 0.587 and a second threshold of 0.473.
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Figure 5.3: Bland-Altman plot of architecture from experiment 9 with thresholds
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Figure 5.5: Bland-Altman plot of architecture from experiment 10 with thresholds
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Figure 5.7: Bland-Altman plot of architecture from experiment 10 with thresholds
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CHAPTER 6

Discussion

6.1 Principal Findings & Practical Implications

With regard to the research goal mentioned in the introduction, the goal of
achieving better Results than Barata et al. 2020’s cough detector [8] with the
newer TensorFlow framework version two possibly using deep residual convolu-
tional neural networks and other non-architectural approaches was accomplished.
The residual architecture was built, trained and assessed and did perform better
predictively than our reference architecture without residual connections. A big
jump in predictive performance was noticed when replacing global max-pooling
by flattening. The same goes for replacing max-pooling between layers with av-
erage pooling. Barata et al. 2020’s count difference per day between automated
and human-annotated coughs was a mean of 0.1 coughs with a 95% confidence
interval of —12.11 and 11.91 coughs. And our detector achieved a mean of 0 coughs
with a 95% confidence interval of —11.97 and 11.98 coughs or with other thresh-
olds a mean of 0.06 coughs with a 95% confidence interval of -11.62 and 11.75
coughs. The mean difference and the confidence interval are both lower compared
to Barata et al. 2020’s results. The best confidence interval was achieved with
the thresholds of 0.7 and 0.623, but with these thresholds the mean difference
was higher compared to Barata et al. 2020. The computational burden of our
model is much higher compared to Barata et al. 2020 where a single classifier
needed 10.74 million floating point operations. Our model from experiment 9
needs 286 million and our model from experiment 10 needs 431 million floating
point operations for a prediction with a single classifier. This might not be such
a big problem as the computing power of smartphones keeps increasing. The
number of trainable parameters of model 9 is 203’145 and 264’496 for model 10.
This could also be of importance as smartphone applications usually have a size
limit. Referring back to the initially set research goal, unfortunately, it can not
directly be measured to what extent the improvement of the postprocessing stage
would also improve the cough detector. They are a step in the same direction
however. The cross-validated score on the nine patients was improved by 0.016
MCC (+2.1%) compared to the optimized postprocessing rules. This might not
be a major improvement yet, but it implicates that it can yet be improved with-
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out major effort. This would directly affect or rather improve the deployed cough
detector even more.

6.2 Limitations & Potential Future Improvement

The model architecture optimization problem of the cough classifier has a very
large number of possible architectural-, optimization method- and hyperparame-
ter choices. Extensive optimization of every single aspect was not conducted as
it would have required a much larger amount of time and computing power than
available.

Another point to mention is the majority of the experiments were not eval-
uated as ensemble classifier but merely as classifier A. The evaluation of every
experiment as ensemble might have been more representative as the classification
used in the detector pipeline is the ensemble and not the single classifier. This
however would also have required more time and computing power.

Additionally, the CNN’s initialization and weight optimization is a process
that depends on highly non-deterministic algorithms, therefore to have represen-
tative evaluation results, one would have to do several runs over every experi-
ment and then take the average thereof as the actual result. This would have
contributed even more to the mentioned limited time and computation issue.

In the majority of experiments, only one run was conducted and only classifier
A was trained and evaluated, therefore the results should be interpreted with
caution.

Due to time limitations only the data from the asthma study was used in
this project even though additional data from the covid 19 study was available.
In future work, the datasets could be combined to improve the predictive per-
formance of the model even more. Also the Validation data could be included
into the training data before testing, which was not done. This might improve
the testing results due to the larger dataset. Regarding the data, also no outlier
detection and removal was conducted which usually has a big impact and could
improve the detector in future work.

Optimizing a model architecture in a systematic way proved to be more chal-
lenging than originally expected. For future work, it might be rewarding to plan
some time first to think of a good system.

Data augmentation with non-deterministic window offsets instead of centered
windows was not assessed in this thesis and might be a potential improvement
for future work. As a result the window overlap in the preprocessing might even
be reduced which in turn would take some load of the computational burden.

Also, a few approaches or hyperparameters that were not exhaustively enough
assessed are the depth multiplier of the separable convolution, early stop condi-



6. DISCUSSION 33

tions (in particular patience and restore best weights), the attention module,
dropout, spatial dropout, label smoothing and mixed precision. Using the Mel
frequency cepstral coefficients instead of the Mel spectrogram might also have
some potential and taking the squared magnitude of the Mel spectrogram in-
stead of only the magnitude could also make some difference.

Another way of improving the cough detector could be improving or using
the improved postprocessing in future work. This way could be less challenging
compared to other approaches as this has not been optimized as much as other
approaches yet. Also, the ML postprocessing experiment implicates that it is
possible.

A possible approach from a quite different angle would be using Recurrent
Neural Networks. This would save the need of postprocessing and its optimization
and possibly also of the preprocessing and its optimization.



CHAPTER 7

Conclusion

To answer the initially posed research questions, we were able to improve neural
network-based cough detection using residual neural networks with Barata et al.
2020 as a reference. The extent of which can be seen comparing the longitu-
dinal test results. The detector was improved from a per day mean difference
of —0.1 coughs with a 95% confidence interval of —12.11 and 11.91 coughs to
a mean difference of 0.06 coughs with a 95% confidence interval of —~11.62 and
11.75 coughs or a mean difference of 0 coughs with a 95% confidence interval
of —11.97 and 11.98 coughs depending on the chosen thresholds. Furthermore,
a postprocessing regressor with a 0.016 higher (+2.1%) LOGO-CV MCC score
compared to the previous postprocessing rules implicates that the postprocessing
of Barata et al. 2020 can be improved. Regarding the second research question,
unfortunately due to the evaluation on two different datasets, it can not directly
be measured to what extent machine learning-based postprocessing can improve
predicted cough counts. If the different postprocessing approach could have been
included in the testing pipeline the above mentioned testing results would have
with a high chance even been higher.
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