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Abstract

The Transformer is a sequence-to-sequence (seq2seq) neural network architecture that has proven
itself useful for a wide variety of applications. We compare the Transformers performance to sev-
eral baseline models on a video streaming task to predict transmission times. At the moment the
models used for this task are not optimized for seq2seq predictions. To address this we use the
Transformer which is tailored to efficiently find long-term dependencies in the data.

We find that the Transformer does not significantly outperform the other models. We suspect
a lack of long-term dependencies in our dataset or the lack of essential features to find those
dependencies. Nevertheless the Transformer shows better performance than the other models for
the tail loss. A transformer variant using probabilistic regression is able to marginally outperform
the other models in the mean loss. Additionally we describe the adaptations we made to the
Transformer to make it compatible with multi horizon timeseries prediction tasks.
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Chapter 1

Introduction

Motivation Machine learning has been successfully applied to many networking domains includ-
ing video streaming. Machine learning models can be used for a variety of video streaming tasks.
The one we focus on in this thesis is the prediction of transmission times for video chunks. Those
predictions are important for video streaming algorithms as they need to know how long it takes
for a chunk to be loaded so they can make good decisions on which chunk quality to request next.
For video streaming it is important that the performance is not only good on average, but also at
the tail. One bad prediction can cause the algorithm to request chunks that are too big and cause
the stream to stop and wait for the chunks to be downloaded.

There is a paper from Stanford University [15] where they built a video streaming platform to
test their video streaming algorithms. In an ongoing experiment, they collect extensive networking
data from those video streaming session and generously make them available online. Especially
nice is that this dataset is not synthetic and contains data from actual users, which means that it is
much more representative of the real world performance. This makes it the ideal candidate for us
to test our machine learning models. We expect there to be long term patterns in the networking
data that announce changing networking conditions before they happen. We expect this as other
machine learning models used in the Puffer project already are able to predict future network con-
ditions quite accurately. What we want to improve is using a machine learning architecture that is
more specialized for such patterns.

There is a class of models called sequence-to-sequence (seq2seq) models. As the name suggests
they are used for problems where we have an input sequence that has to be mapped to an output
sequence. One example would be natural language translation tasks where we have a sentence
(input sequence of words) that we would like to map to the translated sentence (output sequence
of words). The Puffer dataset consists of video chunks that each contains information about the
networking state and the time it took to send them. For our application we have the information
about the previous few chunks available and we need to predict the transmission times for the
next few chunks in the series. This means we have a input sequence with the information from
the previous chunks that we would like to map to a output sequence of future transmission times.
Because of this similarity we decided to use a seq2seq model.

As of 2021, the Transformer is a promising new seq2seq neural network architecture with models
like GPT-3 [7] being successfully applied to a variety of different tasks. Transformers were first
used for natural language processing, especially for translation tasks. Over time they were found



to be useful for a wide variety of problems and there are whole websites showing applications with
GPT-3 [1]. The Transformers ability to detect long-term patterns (dependencies between elements
in the sequence that are far apart) is the reason we use it for the transmission time predictions.

Task and Goals The goal of this thesis is to find out whether Transformers are well suited for
network transmission time predictions. We want to investigate how the Transformers need to be
adapted to work for multi-horizon time series prediction tasks. We also want to gain insights into
the Puffer dataset and its implications on the use of seq2seq models for video streaming tasks.

Overview In Section 2 we describe the Transformer architecture as well as some video streaming
basics. Section 3 describes the work that was done to get the models running and what we did to
optimize the performance. In Section 4 we compare the Transformers performance to the original
model as well as a probabilistic regression model. In Section 5 we go into other ideas that we think
would be interesting to investigate. In Section 6 we give a short summary of the thesis.



Chapter 2

Background and Related Work

2.1 Background

2.1.1 Transformers

To understand this thesis we first give a short overview of the Transformer architecture [12].

Attention To efficiently learn dependencies between elements in the sequence, the Transformer
exclusively relies on a mechanism known as ’attention’. The attention mechanism consists of a
query, key and value vector for each sequence element. Those are generated by multiplying the
embedding vector of each sequence element with three learned matrices. In Figure 2.1a the function
applied on the left hand side is called the compatibility function between the query and the key.
For each element in the sequence we calculate the compatibility function between its query vector
and all key vectors. We call this output the compatibility vector which tries to capture how much
attention the query element should pay to each key element. We then apply the dot product
between the compatibility vector and the corresponding value vectors. For each sequence element
we get an attention vector out, that is a linear combination of all value vectors weighted by the
compatibility vector. Because each element has both its own key and query vector, the attention is
asymmetrical. That means the attention between two elements changes depending on which of the
elements acts as the query and which as the key. Because the Transformer uses only this attention
mechanism, it can be trained much more efficiently than models with recurrent neural network
(RNN) layers, in particular if there are long-range dependencies in the data. This is the case as
RNN layers need to be trained in sequence while attention layers can be trained more parallel.

Multi-Head Attention For the Transformer, multi-head attention layers are used which consist
of multiple attention layers running in parallel with multiple independent sets of learned matrices.
This multi-head attention is used so that the model can jointly learn different types of attention.
The structure of the multi-head attention layer can be seen in Figure 2.1b.

Positional Encoding Because the attention mechanism processes all elements in parallel, any
information about the order of elements is lost. Positional encoding is applied so that the Trans-
former can make sense of the order of the sequence. It is used to inject information about the
position of an element. The positional encoding used in the original paper is made up of sine and
cosine functions with different frequencies that are added to the sequence. Because each position
gets a different frequency the model should be able to differentiate them.
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Figure 2.1: Attention Diagrams inspired by the Transformer Paper [12]

Model Structure We go into the general elements of the Transformer architecture and give
an overview of the structure in Figure 2.2a. The Transformer can be separated into two parts,
an encoder stack and a decoder stack. On the encoder side we apply the sequence of inputs and
transform it into an embedding that the Transformer can use. Additionally we add a positional
encoding to the sequence so that the Transformer can deduce the order of the sequence. This then
gets into the encoder layer that is made up of the attention layer, batch normalization and feed
forward layer. We can put multiple of those encoder layers in sequence. The original Transformer
uses 6 of those layers. For the decoder side we feed in the previous predicted outputs which are
also transformed to an output embedding. The output also gets a positional encoding added to
it. Afterwards we have decoder layers that are similar to the encoder with the difference that the
output from the encoder side also gets fed into the second attention layer. This is done so that each
position in the decoder can also attend to every element in the input. We can again change the
number of decoder layers we put in sequence. At the output there is a linear layer and a softmax
layer to predict the next output. This can be changed to get the output into the needed format.
Furthermore in the paper they use a customized adam optimizer with a variable learning rate. The
learning rate increases linearly until it reaches the number of warmup steps and then decreases
to the square root of the step number. The learning rate can be seen in Figure 2.2b for a model
dimension of 256 and warmup steps of 4000. A dropout rate of 10% is applied to the output of
each sub layer.

2.1.2 Video Streaming

We are interested in using the Transformer for the prediction of transmission times in video stream-
ing. Videos are not streamed as one big block but they are cut into small pieces called chunks. This
chunking allows it to change the stream quality on the fly depending on the network conditions.
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This is done by having multiple qualities available for each chunk and the client deciding which
quality should be loaded next. To get a continuous stream without interruptions, there is a buffer
that can store the next few video chunks such that we can already load the next parts of the video.
This is done such that we do not need to pause the video playback and wait for the next chunk to
arrive if it should arrive too late. The difficult part for the clients streaming algorithm is to pick
the best video quality chunks that can be transmitted such that the buffer never gets empty and
the video never has to be paused. For this we need a good estimate on how long it takes for the
next requested chunk to be transmitted. Previously, linear regression and fully connected neural
network models were used. We would like to use the Transformer instead.

2.2 Related Work

This paper uses the data generated by the Puffer project [15]. It is also used as a starting point for
comparisons between the Transformer and the model that was used in their project. Several other
papers have used the Transformer for time series forecasting. In [14] the Transformer is compared
to other time series prediction models. The models are tested on predicting the influenza prevalence
for four future time steps using the last 10 as the input sequence. The Transformer outperforms
the other tested models. We found this paper to be similar in structure to ours as they are also
adapting the Transformer for time series prediction but just for a different task. Another paper
using Transformers for time series forecasting is [10]. In the paper they found out that using a
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probabilistic output instead of point estimates can improve the training and performance of the
Transformer. They also found out that changing the layer sizes and number of encoder/decoder
layers did not really affect the performance of the Transformer. We found both of those insights
to be also true in our case. [8] improves on the attention layer of the Transformer to make the
Transformer less affected by anomalies and get faster training times. They use a convolutional
attention layer for the first problem and restrict the attention connections for the second problem.
While we did not use those methods in our work, it helped us understand that the Transformer
might be more susceptible to anomalies.



Chapter 3

Design

Our objective is to compare Transformers with traditional models, using the Puffer [15] dataset as
a benchmark. We use a recreated Puffer model as well as several custom models: a probabilistic
regression model, a Transformer and a model that is a combination of the two.

Frameworks The models described in the following parts were built with the help of PyTorch [2],
PyTorch Lightning [3], scikit-learn [4] and scikit-optimize [5].

Overview In Section 3.1 we go into the general problem structure while we describe the process
of recreating the Puffer model in Section 3.2. In Section 3.3 we describe the probabilistic regression
model which came as an idea while working on the recreated model. In Section 3.4 we explain the
changes for predicting 5 timesteps. In Section 3.5 we describe our work on getting the Transformer
running for our task. Additionally in Section 3.6 we describe a small adaptation of the Transformer
model by combining it with parts of the probabilistic regression model. Finally in Section 3.7 we
go into the loss functions used to compare the models.

3.1 Problem Statement

Task The task of the model is to predict the transmission times of future chunks by using the
information from the previous chunks and the size of the requested chunk. The size of the requested
chunk is necessary as we use the transmission time which is highly dependent on the chunk size.
The transmission time estimate is then used by the streaming algorithm to make decisions on the
requested chunk qualities. This thesis only focuses on the transmission time prediction part.

Dataset The dataset is a collection of video streams consisting of sent video chunks that we need
to transform into a usable format for our models to make them work. Each video chunk consists
of the transmission time and chunk size as well as some networking information. The networking
information is a subset of the tcp_info struct from the linux kernel containing the delivery rate,
congestion window, packets in flight, minimum round trip time and the round trip time. We use
those data points and convert them so that we have one sample per chunk. Each sample contains
all mentioned features for a fixed amount of previous chunks, we call the history window. Likewise
each sample has a prediction window which contains the chunk size and the transmission times for
a fixed amount of future chunks. In the Puffer paper the history window has a size of 8 and the
prediction window has a size of 5.
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3.2 Puffer Model

We start by recreating the Puffer model, a simple fully connected neural network model using a
discretized probabilistic output.

Structure The model used in Puffer [15] is a neural network with 3 linear layers and RELU units
in between. The general structure can be seen in Figure 3.1a. For the output we do not just have
the transmission time but a discretized probability distribution. This is achieved by splitting the
expected output space into small bins and estimate the probability for a transmission time to be
in that bin. Concretely bins of size 0.5s are used with the first bin starting from 0s only being half
the size and the last bin going to infinity. A total of 21 bins are used and can be seen in Table 3.1.
We use the same model structure in this paper but we optimized some of the hyperparameters as
seen in the hyperparameter tuning paragraph below.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 20 Bin 21
[0s,0.25s) [0.255,0.75s) [0.75s,1.25s) [1.25s,1.75s) ... [9.25s,9.75s) [9.75s,00)

Table 3.1: Bins of the Puffer Model

Data Preparation Before we can use the model we need to prepare the data for training and
validation. We start by taking the features for the last 8 timesteps and flatten them. Then we
concatenate the information of the chunk to be predicted to those 8 timesteps but we leave out the
transmission time, so we have a input vector of size 62. If not all timesteps are available we just
pad the missing ones by duplicating the oldest available one to the ones missing.

Prediction To get from the bins and its probabilities to the actual transmission times there
are two possible approaches. In this paper we refer to them as point estimate and probabilistic
approach. The point estimate approach is to take the middle of the most likely bin as the prediction
time. The probabilistic approach is to calculate a weighted mean over the bins with the weights
being the probability of each bin and the values being the middle of the bins. So as an example we
take 3 bins with the bin size beeing 2s. Given the bins [0s, 1s), [1s, 3s) and [3s, c0) and probabilities
0.2, 0.2 and 0.6 respectively we would calculate a value of 3s + 2s/2 = 4s for the point estimate
while we get 0.5s % 0.2 + 25 % 0.2 + 45 * 0.6 = 2.9s for the probabilistic approach. For the last bin
we just add half the bin size to get the "middle” as the intervall to infinity does not really have
a middle. For our testing we use the probabilistic approach as it clearly outperformed the point
estimate.

Hyperparameter Tuning To find the optimal hyperparameters we optimized over the bin size,
number of bins, layer size and learning rate. The number of bins in the original paper were kept
rather small to speed up the calculation of the model predictive control. We do not have that
limitation so we ran a bayesian hyperparameter search algorithm from scikit-optimize [6] to find
the optimal parameters. The best configuration we could find was a binsize of 0.078s, 100 bins,
layersize of 267 and learning rate of 1073,
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3.3 Probabilistic Regression

We also use a probabilistic regression model that predicts a gaussian mixture distribution for each
input. This can be seen as the continuous equivalent to the bin output of the recreated model.

Structure The probabilistic regression model provides a continuous probabilistic density function
in the form of a gaussian mixture distribution as the output. A gaussian mixture distribution
consists of multiple gaussian distributions that are weighted and added together to create a new
distribution.

- 1 (x — i) -

fx(x) = E Q% xexp (————5-) E a; =1 (3.1)
, 2 20; ,
i=1 2mo; i i=1

The idea is that with enough of those mixture components we can emulate nearly every distribution
we need. We can think of it as having a "unlimited” number of bins for our normal model. We
changed the output layer of the recreated model to have 3 seperate linear layers that output the
means, standard deviations and mixture weights of the gaussian mixture components. For our
testing we use 10 mixture components and the negative log likelihood loss for training. The general
structure can be seen in Figure 3.1b.

Data Preparation We can use the exact same data preparation as seen above in Section 3.2 for
the Puffer Model.

Prediction For the standard deviations we square the output to only get positive values and for
the mixture components we add a softmax layer to get the sum of the weights to 1. This is needed
because it would not be a probabilistic distribution function without those two adjustments. We
also square the means to get only results bigger than 0 as transmission times should also be bigger
than 0. But we found that it does not make any difference for the performance if squared or not
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as the model will learn this fact out of the data itself. We left the squaring in so we do not have to
deal with invalid outputs smaller than 0. The resulting probability density function still goes from
minus infinity to plus infinity, but we calculate our predictions as the weighted sum of the means
with the mixture components as weights. Since both of them are positive, the prediction will also
be positive.

3.4 Predict 5 Future Steps

We want the model to predict 5 timesteps into the future as done in Puffer. For the recreated
model and the probabilistic regression model this means replicating the model 5 times and training
every model on a specific future timestep. The only thing that we need to adapt in the input of
the models is to change the chunk size to the one we want to predict with this model.

3.5 Transformer

Even though the Transformer is useful for sequence to sequence predictions we still need to change
multiple things to get it working with our data.

Structure We use mostly the same structure as the original Transformer, but we add linear layers
that transform our sequence elements to higher dimensional embedding vectors. A diagram of the
model can be found in Figure 3.2a. For the prediction we have all features available on the encoder
side but not on the decoder side. This is because our model should not have access to the future
networking features as they are not available at the time of prediction. We could let the model
predict the future networking features such that they are available on the decoder side. We do
not want to do this as the model then would need to predict things we are not directly interested
in. Together with the need of having the same embedding dimensions on both the encoder and
decoder side, we use two different linear layers for them. The decoder side linear layer transforms
the output vector with less features to the same dimension as the encoder linear layer does with
the input vector that has all features. For our model the embedding dimension is 256.

Data Preparation There are two possible ways to create the sequences from the dataset: using
each feature separately as an element of the sequence or using each chunk with all its features as one
element. The first option is to give the Transformer all features described in Section 3.1 separately
but we found that this did not perform great. Also this increased the training time significantly as
the input size grew by a factor of 7. The method we use considers each chunk to be one element in
the sequence. We could then just use the features of this chunk as the embedding but we think the
Transformer needs a much higher dimensional embedding vector (the original Transformer used an
embedding dimension of 512). The added linear layers described above accomplish this task.

Prediction In the same way we did with the other models, we tested different output formats.
We tested the transmission time as the direct model output and the binned approach seen for the
recreated model. With the transmission time as the direct model output we saw the same thing
as with the Puffer model that it did not result in good performance. For that reason we use the
binned approach and set the bins to be equal to the recreated model being 100 bins with size 0.078s.
Trying to optimize the size of the bins there were only small improvements that came probably
down to run-to-run variance so we used the same value for both models to better compare the
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results. We again use the same probabilistic approach as with the Puffer model to get from the
bins to the actual transmission times we want to predict.

Decoder Input Another problem we found was feeding back the previous outputs to the decoder.
When feeding back all the previously predicted outputs we need to use the target mask to mask
the elements we did not predict yet as the Transformer still needs the same dimension for all
decoder inputs. We found the performance to be bad for the fourth and fifth timesteps when using
this approach. We think this might be down to the Transformer getting confused by its previous
outputs and adding up all the previous errors to make the next prediction. We use the previous
output now in such a way that we just feed back the most recent prediction. This allows us to
get better performance for the fourth and fifth timesteps while still getting the same performance
for the other timesteps. Additionally to the last prediction, we also give the model the size of the
chunk it needs to predict for the same reasons already explained in Section 3.1. We use the same
sine cosine positional encoding described in Subsection 2.1.1 but only for the input.

Training For the input we use the source mask to force the Transformer to use the information
in the order they appear in. The source mask is specific to the pytorch implementation and masks
future positions of the sequence by setting them to minus infinity. It accomplishes that the attention
mechanism for each element can only attend to elements that appear before it in the sequence. We
also ran it without the mask and there was no measurable difference in performance. The same
thing can be said about the optimizer. We first used the standard pytorch adam optimizer with
a constant learning rate. After some literature research we changed it to the same optimizer that
is used in the original Transformer paper. It is a adam optimizer with customized parameters and
the variable learning rate shown in Figure 2.2b. The performance differences are minimal at best.
We use it mainly because it is used in the original Transformer. Another thing we had to decide for
training the Transformer is if we want to give the decoder the transmission times it predicted or the
ground truth. Giving the model the ground truth during training is called teacher forcing [13]. We
use teacher forcing for the first epoch, then for the second epoch we use it for 50% of the samples
and then afterwards we use only the previous predictions. The model has first one epoch to train
on the correct data and then one to change from ground truth to its own predictions. We also let
it run with a 50% chance in all epochs and the performance was the same.

GPU Training To be able to train larger data sizes we wanted to also make the model capable
of training on multi-GPU setups. We ran into problems with the different parallelization strategies
provided by pytorch. We describe the problems in more detail in Appendix A.

3.6 Probabilistic Transformer

Analogous to the recreated model, we try out how the Transformer performs if we use a continuous
probabilistic output instead of the binned outputs.

Structure We call this model the probabilistic Transformer and we provide an overview of it in
Figure 3.2b. It is built exactly the same as our other Transformer except we changed the last layer
to multiple linear layers that predict again the means, standard deviation and mixture components
of a gaussian mixture probability distribution function. They are squared and scaled exactly the
same as in the probabilistic regression model seen in Section 3.3.
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Figure 3.2: Architecture Diagrams inspired by the Transformer Paper [12]

Data Preparation The same data preparation as seen in Section 3.5 for the standard Trans-
former is also used for the probabilistic Transformer.

Prediction The transmission time gets calculated by multiplying the means of the gaussian
mixtures with the mixture components. We use 10 mixture components as we already used for the
probabilistic regression model.

Training We found that we could not get the model to converge when trying to train all layers
at the same time. So instead we used our trained Transformer and just swapped out the last layers.
We freeze the Transformer layers and train only the final linear layers. With this approach we get
a model that converges similarly to the other models. We use the negative log likelihood loss like
we used for the probabilistic regression model.

3.7 Loss functions

As validation loss functions we used crossentropy, mean square error, accuracy, 99th percentile
crossentropy and square loss, but found that only the mean square error and 99th percentile square
loss are appropriate loss functions as detailed below.
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Training For the training step we use the crossentropy loss where each bin is considered to be a
category that we would like to predict. So the loss gets bigger the lower the predicted probability
of the correct bin is. For the probabilistic regression models we use the negative log likelihood loss.
We can think of it like having the crossentropy loss with an ”unlimited” number of bins.

Validation For the validation step we used 6 metrics, but found out that some of them are not
really useful. The 6 metrics are accuracy to predict the correct bin, crossentropy loss, 99th percentile
crossentropy loss, probabilistic MSE loss, point estimate MSE loss and probabilistic 99th percentile
square loss. We found the accuracy to predict the correct bin to be a bad metric as it highly
depends on the size of the bins. If the bins are smaller, then it is much harder to predict the correct
bin. The same can be said about the crossentropy loss as well as the 99th percentile crossentropy
loss. The crossentropy loss is still usefull for the training step, it is only bad if we try to compare
the performance of models with different bin sizes. The point estimate MSE loss is taken by using
the point estimate approach and calculating the MSE between the prediction and the ground truth.
There is nothing inherently wrong with this loss but the performance is worse for all cases than
using the weighted average approach (probabilistic approach) to calculate the transmission time.
Since both losses compute the MSE against the ground truth, we can just decide to use the better
approach as we can decide ourself how we calculate the actual predicted transmission time. The
99th percentile square loss is also based on the weighted average transmission time calculation. We
use here the 99th percentile instead of the maximum as it is less susceptible to outliers. We use this
metric because we are also interested in how the models perform in the tail case. In networking
applications like video streaming the tail performance is important as we not only care how good
the experience is for most consumers but we also want to create a good experience for all consumers.



Chapter 4

Evaluation

We first compare the results of our models for the original task of predicting 5 timesteps in Sec-
tion 4.1. We go into the problem of predicting flows that end inside the prediction window in 4.2
and evaluate the models on bigger prediction windows in 4.3. We take a look into the effects of
the training dataset size in 4.4 and investigate the influence of the history window size in 4.5. In
Section 4.6 we discuss the influence of pretraining for the probabilistic Transformer. Finally we
show the differences between predicting transmission times at the start of a flow and during normal
operation in Section 4.7.

4.1 Comparison of the Original Task

We find when comparing the Transformers to the other models that the Transformers slightly
outperform the other models in the tail performance and have a similar mean performance.

Data Preparation We start by comparing the general performance between the models on the
same problem task as seen in the Puffer paper. This means 800k of samples for the training set
and 200k samples for the validation. The sets are taken from the complete dataset collected on
the 27.07.21. Those are around 4.3 Million samples from which we use the train test split function
from sci-kit learn to split the data randomly into the two sets of the stated size. The split function
takes a seed so that we can guarantee comparable results between multiple runs. Additionally for
the evaluation we remove all the samples that do not have at least the prediction window available.
So in the case of a prediction window of 5 we discard all the samples that do not have at least 5
chunks left until the end of the stream. The reason to do this will be discussed in Section 4.2.

Convergence For the training of all the models we use early stopping. The recreated model and
the probabilistic regression model are evaluated every 10 epochs and have a early stopping patience
of 3 while the Transformer gets evaluated every epoch and has a early stopping patience of 5. The
Transformers get evaluated every epoch due to the much longer training times needed per epoch.
To not stop the training process too fast we increased the patience to 5. The Transformers normally
stop at around 25-30 epochs. We searched in other papers how many epochs other Transformer
implementations take and found a paper on training Transformers [11] that uses bigger datasets
where the Transformer converges in only 10 epochs. So we are confident that our early stopping
routine should give the model enough time to reach convergence.

14
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Results The overall results can be found in Table 4.1. We see that the recreated model is the
worst of the four models as it gets consistently worse results for nearly all experiments we ran. The
probabilistic regression model and the probabilistic Transformer are pretty similar in the mean
performance. The Transformers have a small lead in the tail performance metric. This probably
comes from the fact that the Transformers might be more suited to find long term patterns in
special samples that differ from the majority of samples.

Model MSE Tail Loss
Recreated Model 0.0992 1.0631
Probabilistic Regression 0.0932 1.0371
Transformer 0.0956 0.9711
Probabilistic Transformer 0.0925 0.9915

Table 4.1: Performance for the same Scenario as in the Puffer Paper

4.2 Prediction Window Problem

During evaluation we found that the prediction performance was extremely different if we used all
samples which had at least the complete prediction window available in comparison to having also
samples that only have a subset of the prediction window available as the ground truth. So we think
that the last 1 or 2 chunks at the end of a video stream are probably different as they occur if the
user finishes the stream or some other failure happens. The result can be seen in Figure 4.1. Since
we use our Transformer in a way to always predict the complete window we already had to take out
all samples without a complete prediction window. So to make the other models more comparable
we do the same thing and also remove all samples without a complete prediction window. We
believe that this does make more sense as our algorithm is not supposed to predict if the stream is
ending and also because the prediction does not really make sense if the stream is ending anyway.
So for all evaluations we use only the data that has a complete prediction window available.
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Figure 4.1: MSE for Prediction Window availability
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4.3 Larger Prediction Windows

We tried out a bigger prediction window of 10 but found no improvement by using the Transformer.

Data Preparation We prepare the data in the same way as in Section 4.1. We only use the
samples that have the complete prediction window available. In this case we only take samples
that have a prediction window of 10 available.

Results We would have guessed that the Transformer because of its sequence to sequence nature
would be better to predict further into the future but from the graphs in Figure 4.2 we can see
that all models have a pretty similar performance evolution over the predicted timesteps.
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Figure 4.2: Performance for bigger Prediction Windows
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4.4 Training Data Size

We found that using more training samples can improve performance for all models but that it
seems to flatten quickly.

Data Preparation We used again the same data from the 27.07.21 which has around 4.3 million
samples. We split it up so that we have the same 200k samples as the validation set and then we
change the training sample size to 100k, 800k, 1.6 Million and 3.2 Million samples.
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Figure 4.3: Training Data Sizes
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Results As you can see in Figure 4.3a the Transformer performs much worse than the other
models for 100k samples. This is most likely due to the Transformer having more than 10 times
the number of parameters as the other two models. Also we can see that all models benefit from
having more training data but the returns get pretty small after 800k samples. In Figure 4.3b
we can again see the Transformer needing more data than the other models to function properly.
But as soon as the Transformer has enough data, its tail performance is slightly better than the
other models. For the tail loss the non-Transformer models benefit from more data even beyond
1.6 million samples.

4.5 History Window

Transformers are expected to work well when there is long-term dependency in the data. This does
not seem to be the case for the Puffer dataset.

Data Preparation We used different history windows as our input to the model and see how
the performance varies with different history windows available to the model. If a sample has not
gotten enough history available we will use the same padding as in the original Puffer paper. As
a reminder this is just repeating the information of the latest sent video chunk for all previous
unavailable timesteps.

Results From Figure 4.4a we can see that the Transformer benefits from a larger history size.
But we can also see that the other two models have a sweet spot somewhere between a history of
8 and 20. We think this might be due to the size of those model that they just are not able to
handle such big inputs. But the much more important point from this graph is that even for a
history of 1 we are only around 15% worse than the best performance which indicates that the most
important input data point is the latest timestep. This hints that our prediction task is not really
that dependent on the large history window. We can get better performance with the Transformer
and larger history sizes but the improvements are rather minimal. For the tail loss in Figure 4.4b
we can even see that the performance improvements already plateau at around 20 timesteps of
history even for the Transformer. So we do not expect any performance improvements for the tail
loss with even more history available to the model. The finding in this experiment also illuminates
why we do not see the Transformer notably outperform the other models as we would have guessed
before this work. The Transformer needs those long term dependencies to really shine which does
not appear to be the case for this dataset. Nevertheless if tail performance is really important, the
Transformer can give this small bit of improvement.

4.6 Influence of the Pretrain Dataset Size

We find that the pretrained Transformer for the probabilistic Transformer does not really benefit
from having more than 800k samples as training data.

Data Preparation We first train the standard Transformer with one training dataset size and
then freeze those layers and use another training dataset size for the last few probabilistic regression
layers.
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Figure 4.4: History Input Intervals
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Results From Figure 4.5 we can see that beyond a pretrain dataset size of 800k samples we
get nearly no benefit in performance. So from this result we would guess that for training the
probabilistic Transformer we could get away with a 800k sample pretrained Transformer and then
use a bigger datasets just for the training of the last few layers. Pretraining the Transformer with
800k samples takes around 5 hours while it takes approximately 15 hours for 3.2 million samples.
So we would save around 10 hours on the training time. The training of the last layers with 3.2

million samples takes around 3.5 hours .
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Figure 4.5: Pretrainsize vs Trainsize

4.7 Start Up vs Running Flows

In this part we see that there exist differences between predicting the first few packets of a flow

and predicting transmission times of already running flows.

Data Preparation We split up our samples into two sets. The samples of the first set are part of
already running flows with the complete history window available. They are marked as continuous
flows. The others without a complete history window available are marked as start up flows. We
use the samples from both sets for the training and use as validation sets 20’000 samples once
with continuous flow samples and once with start up flow samples. Keep in mind that we can not
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compare the absolute results for this experiment with the previous sections as it uses a different
validation set.

Convergence Problem We found that the probabilistic regression model has problems to con-
verge so we used upsampling to augment the training dataset. We duplicate the much less numerous
short samples (only around 80k) such that we have the same amount of short and long flow samples.
If we run the probabilistic regression model with this training set we get a result that falls in line
with the other models. So we are confident that the graphs seen below represent inherit properties
of the dataset and not something that is model-dependent.
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Figure 4.6: Performance for already running Flows with enough History



4.7. START UP VS RUNNING FLOWS

Results From the graphs in Figure 4.6 and Figure 4.7 we can see that for the tail loss case it is
much easier to predict longer time horizons in already running flows while the error grows nearly
linearly for flows in start up. The story is different for the mean where some of the timesteps have
even better performance but overall the prediction is not as consistent over the whole prediction

window.
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Figure 4.7: Performance for starting Flows without enough History



Chapter 5

Outlook

We have two additional ideas that we think could be interesting to look at. One is changing the
standard Transformer to a temporal fusion Transformer. The other idea is to investigate if having
other /more features might improve the performance.

Temporal Fusion Transformers While working on this paper we found an interesting paper
that adapts the Transformer to be better at multi-horizon time series predictions [9]. The model
they propose is called a temporal fusion Transformer and is able to handle time series prediction
where not all input features are also available for the output. They use both recurrent layers and
self-attention layers to get good performance on local and long-term dependencies. Additionally,
they have specialized components to select relevant features. It might be interesting to see if such
a model would perform better than the standard Transformer for this video streaming task.

Additional Features Another thing that would be interesting to investigate is having more
features. For our dataset we only have a hand selected number of 7 features available to us, but
there might be other features from the tcp_info struct that might be beneficial to a more complex
architecture like the Transformer. It could also be interesting to analyze non-networking related
features like server load or number of concurrent streams.
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Chapter 6

Summary

In this paper we tested the Transformer model on the video streaming task seen in the Puffer
project and found nearly no improvement on the mean performance and a small one on the tail
performance. While we are able to outperform the other models on the base task of predicting 5
timesteps into the future, it is only by a small margin that probably does not make a big difference
in actual applications. We tried predicting 10 timesteps into the future but also found only marginal
benefits when using the Transformer compared to the other models. The models all benefit from
having more data available to them but we already observed diminishing returns. We also tried
giving the models a bigger history window and found that the Transformer models clearly benefit
from it. But the performance benefits are already plateauing beyond a history window of 8. We
found that most of the performance can already be reached by only using the last four timesteps
as inputs and even when using only a history window of 1 the performance is only marginally
worse. These results hint that the video streaming dataset available may not have that big of a
time dependency as foreseen. It is also possible that it is more difficult than anticipated to learn
these dependencies and that we might need other features to find them. We think that those are
the reasons why the Transformer does not clearly outperform the other models as the Transformers
strength is to find long term dependencies in the data.
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Appendix A

Multi-GPU Setup

We tried running the models on a multi-GPU setup but we ran into multiple problems. The training
strategy we first used was ”data parallel” from the pytorch library. This strategy can be used for
one node with multiple GPUs. The problem with this strategy is that it does not scale at all above
2 GPUs, so using 4 GPUs was exactly as fast as using 2. The other problem with 2 GPUs was
that the model just did not converge as fast and took nearly the same time as 1 GPU as it just
took more epochs to reach the same validation performance. We then found out that the ”data
parallel” strategy is not really supported or well maintained in pytorch which might explain the
strange behavior we saw. The other strategy we tried to use was ”distributed data parallel” but
we could not get it running in a reasonable time as each GPU runs a separate instance of the code
which made it difficult to run the validation step with our performance metrics as we needed to
collect all data in one GPU to calculate the score. There is no fundamental limitation to getting
this to work but there was just no time to investigate it further. If there was more time we would
probably rewrite the validation step to safe the results in one file and using one master GPU to
calculate the validation scores.
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