
Distributed

 Computing

ConfSearch 2022
Bachelor’s Thesis

Alex Thillen

athillen@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Dr. Ye Wang

Prof. Dr. Roger Wattenhofer

August 27, 2022

Acknowledgements

I thank Dr. Ye Wang and Prof. Dr. Roger Wattenhofer for supervising my thesis,
giving me invaluable feedback, constructive advice and phenomenal guidance
throughout the project. During our weekly meetings Ye has been able to nudge
me into the right direction, whenever I encountered problems.
I thank Dr. Michael Kuhn for starting ConfSearch in 2007.
I thank all the people from the Distributed Computing Group for testing the web
app, adding data prior to the release.
I also want to say thank you to all the people that will provide trusted data to the
web app or even contribute to further developments and hereby allow ConfSearch
to thrive for years to come.

i

Abstract

Finding a suitable conference to publish your paper can be a tedious endeavor.
Conferences need to match the author’s agenda, cover the right research topics
and have a certain level of prestige.
For this reason, the Distributed Computing Group developed a tool called Con-
fSearch that allows users to find the right conference and display relevant meta-
data in a minimum amount of time and effort.
The goal of this thesis is to develop a renewed version of the 15-year-old search
tool, that provides a more pleasing user experience, issues better search results
and makes the project easier to maintain by using a new project architecture and
employing state-of-the-art frameworks and technologies.
The updated web app is accessible at confsearch.ethz.ch. Further, we do a very
basic qualitative analysis of the search results.

ii

https://confsearch.ethz.ch/

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

2 Related Work 4

2.1 ConfSearch07 . 4

2.2 ConfSearch20 . 4

2.3 WikiCFP . 5

3 Procedure 6

3.1 Overview . 6

3.2 Information retrieval . 8

3.2.1 Goal . 8

3.2.2 Paper titles . 9

3.2.3 Dates & CORE Ranking 11

3.3 Backend & Search Engine . 13

3.3.1 Setup & API Features / Goals 13

3.3.2 Keyword Search : Generation of keywords and weights . . 14

3.3.3 Keyword Search : Matching keywords 16

3.3.4 Author Search . 17

3.3.5 Other search queries : Bookmarking and related conferences 18

3.4 Frontend . 19

3.4.1 Setup . 19

3.5 Features / Goals . 20

3.6 Design Choices . 20

iii

Contents iv

3.7 Deployment . 22

4 Conclusion 24

5 Future Work 25

5.1 Future Work . 25

5.1.1 Mobile application . 25

5.1.2 Frontend . 25

5.1.3 Backend . 26

5.1.4 User Studies . 26

Bibliography 27

A Appendix : Searching for a paper title to find conferences A-1

Chapter 1

Introduction

1.1 Motivation

In academia, researchers are mostly evaluated by their publications which they
make at prestigious (peer-reviewed) conferences and in academic journals. Find-
ing the right venue to publish your work, however, can be challenging due to
the large variety of offered conferences out there. It is tedious to check out the
targeted research focus, submission deadlines and other formal requirements for
a submission – all while bearing in mind whether a publication at the selected
venue will adequately underline the strength of the ideas presented in the research
paper and lead a researcher to world-wide fame.

To resolve this issue, the distributed computing group has engineered a tool
called ConfSearch that allows to search for keywords, authors or related confer-
ences and proceeds by displaying matching conferences alongside meta-data such
as a link to the conference web pages, the submission deadlines or the start of the
conferences. To avoid confusion, the initial version shall be named ConfSearch07
throughout the paper. Even though ConfSearch07 is still a popular tool, one has
to admit it’s flaws.

The technologies used for the initial release have become dated. The initial
web site was developed using Jakarta Server Pages (JSP), a collection of server-
side programming technologies, released in 1999. JSP has lost in popularity
over the last decade. It’s market share is at 0.1%. [1] Reasons for the decline
in popularity include the difficulty to debug and maintain JSP. Knowing that
ConfSearch07 has virtually zero documentation, it is unthinkable to try to adapt
the old project.

From a user’s perspective, the old web app looks like plain html for the most
part and no longer lives up to today’s user interface (UI) expectations. As is
to be expected from a web page that predates the initial release of the iPhone,
ConfSearch’s usability on phones is poor. See Figure 1.1. Since the data used to
populate the tables, stems from this era as well, the conferences available to the
system are obsolete.

1

1. Introduction 2

Figure 1.1: ConfSearch07 (viewed on Google Pixel 5)

1. Introduction 3

To wrap up, the lack of documentation, the sheer outdatedness of the data,
frontend and backend technologies used, yet a still active user base, make it
clear that an update from ConfSearch07 to a new version of ConfSearch, called
ConfSearch22 from now on, is much needed.

Chapter 2

Related Work

2.1 ConfSearch07

ConfSearch07 which serves as the foundation of this project has the same abstract
goal, namely outsource the burden of figuring out at which conference to present
a paper from the author to a search tool. By the means of easy-to-understand
visualizations for when key events take place as well as displaying the most im-
portant information, such as rankings right next to it. ConfSearch07 has been
able to achieve this goal.

The visualizations of the key dates are arguably the main reason for the
success of ConfSearch up until today. There is no similar website, that I know of,
that displays key dates in such a concise way. This type of design that is usually
known from music program (audio tracks) has therefore significantly influenced
the new design. What makes it unique is that you immediately know which
events take place before another event.

The search algorithm assures that the user is only provided with conferences
that have the same research focus as the paper the user wants to publish. The
search algorithm is based on layered graph models. [2] The project uses a 3-tier
architecture. [3] I.e. the client/browser contacts a back-end server, that uses a
database to compile an html web page, which it then forwards back to the client.

2.2 ConfSearch20

ConfSearch20 is a project started in scope of a Bachelor thesis by Lucas Schmid.
[4] His goal was similar to mine - modernize and improve ConfSearch07. We
were not able to run his project in a reasonable amount of time, there was also
a lack of documentation inside his repository. This screenshot 2.1 of his design
convinced us that we wanted to redesign the tool anyways. Next to modernizing
the design, he also tried to automate information retrieval. The idea is that
periodically the server runs scraping code that parses website information. We
tested one of his websites to scrape and found that the URL used has turned

4

2. Related Work 5

Figure 2.1: ConfSearch20

invalid in the meantime. This illustrates that web parsers are very susceptible to
domain name changes or changes to the DOM. To prevent such issues we opted
against making use of automated information retrieval for now, it would however
be a nice to have feature for a future release. (See 5.1.2) The architecture used
was Django for both the backend and the frontend, making use of the Django
template language. Even though the project wasn’t able to replace ConfSearch07
it was able to provide me with invaluable lessons.

2.3 WikiCFP

WikiCFP1 is a semantic wiki, which according to their website is used by over
100’000 researchers every month. It tackles the problem of gathering key dates
for conferences, i.e. submission deadline, notification due date, final version due
date, abstract registration due date, starting and end date of the conference.
It’s updated, as the word wiki implies, by its users. As the community that
drives the wiki is very active, it contains the key dates of many conferences. We
used WikiCFP for scraping many of the dates that can be found in the database
initially. The use of information available on WikiCFP can be further expanded
in future work, e.g. for doing suggestions when editing. (See 5.1.2)

1www.wikicfp.com/cfp/

Chapter 3

Procedure

3.1 Overview

The architectural decisions we have made during the development of ConfSearch22
have been influenced by my analysis of both the strong points and the weaknesses
of ConfSeach07 and ConfSearch20. Both of the previous versions have turned
out to be very difficult to maintain, improve and analyze. They both have an
old-fashioned user interface.

What the two previous version have in common, is their architecture. In both
cases, the user sends a request to some back-end server, this back-end server takes
care of receiving the request, accessing the database, compiling a web page that
includes the results and returning that web page to the user. This means that
the design logic is also programmed on this single server, even though backend
technologies are known to not be particularly good at this. In ConfSearch20, the
back-end server additionally tries to scrape some hard-coded URLs for new infor-
mation to populate its database using the so called background_tasks extension.
See figure 3.1 for an illustration.

Having this kind of complex intertwining of functionality is in my opinion the
root cause for why the previous projects are so difficult to build on and why some
of the functionality, most notably the design or the periodic scraping for data,
performed by a single module turn out to only have mediocre results. In this
regard, I’m on the same page as Edsger W. Dijkstra, who was an advocate for

Browser Server Database

1. GET request

2. Response: .html

interaction

Figure 3.1: Architecture of ConfSearch07 and ConfSearch20

6

3. Procedure 7

the separation of concerns (SoC), a design principle that consists of separating
computer programs into distinct sections.

Edsger W. Dijkstra Let me try to explain to you, what to my taste is
characteristic for all intelligent thinking. It is, that one is willing to
study in depth an aspect of one’s subject matter in isolation for the
sake of its own consistency, all the time knowing that one is occupying
oneself only with one of the aspects. (...) But nothing is gained—on
the contrary!—by tackling these various aspects simultaneously. It
is what I sometimes have called "the separation of concerns", which,
even if not perfectly possible, is yet the only available technique for
effective ordering of one’s thoughts, that I know of. [5]

- Edsger W. Dijkstra

This is why, we chose a radical different approach to structure our project.
Instead of having one big module that takes care of virtually everything from de-
sign to web scraping, we split our project into three separate modules. This way
we are not only able to benefit from all of the classical advantages of modularity
including the ability to reuse code or the improved readability of programs, but
it further allows us to use the best and most suited technology out there for im-
plementing the different functionalities, not needing to pay attention to whether
it fits some rigid development stack.

The basic structure consists of three units. The first unit is the information
retrieval module and consists of the logic required to fetch all of the data needed
to build the search engine around it. It takes care of getting keywords for con-
ferences, scrapes the web for key dates, locations and ranks. The second unit
is the backend or API module, it takes care of handling user request that need
to interact with the database, such as search requests or requests to change the
meta-data of a specific conference. The last unit is the frontend module. It is
in charge of providing a nice user interface, while exchanging raw data with the
API. Each of these aforementioned modules can be replaced in a future version,
provided that they respect the current API conventions.

The new architecture is visualized in figure 3.2. Since information retrieval
only happens prior to the user base interacting with the web application, it is not
represented. Technically, it interacts with the database as well. As will be seen
later, we will also need a reverse proxy to deploy the application. For simplicity,
this is left out for now.

We will not only improve existing functionality, but we will also develop new
ones. Among other things, we will give users the option to download the calendar
dates by generating a .ics file.

3. Procedure 8

Browser

Frontend

API Database

1. GET confsearch.ethz.ch/
2. Response: .html + .js

3. GET /api/search-engine/?query=...4. JSONResponse

5. GET /api/suggestions/?query=...
6. JSON Response

interaction

Figure 3.2: Architecture of ConfSearch22

3.2 Information retrieval

3.2.1 Goal

The goal of the information retrieval module consists of gathering all the data
required to launch ConfSearch22. To enable the search engine, we use keywords.
Each conference is associated with a list of keywords, that is generated based on
the paper titles that were published at the given conference.

We also need the authors and the dates of their papers to enable author
search. Further, we need the important dates (deadline, notification, start of
the event), the location, the website of the conference and the CORE ranking in
order to be able to display all the relevant information to the user.

Thus, the data required consists of the following:

• A list of all the papers, including the conference at which those papers were
presented.

• A list of conferences and their associated ranking based on CORE.

3. Procedure 9

• A list of conferences and the matching important dates.

3.2.2 Paper titles

dblp.org has a very complete collection of papers and meta-data on these. Users
can simply download this collection as a big .xml file. Due to the size of the
.xml file, some parsers such as the provided by the iconic BeautifulSoup4 python
library are unable to cope with the files this big. I finished by minimally modifying
an existing open-source dblp parser based on the lxml python library.

The following xml entries are of interest to us: inproceedings and proceedings.
In simple terms, inproceedings correspond to articles published inside a proceed-
ing. A proceeding of a conference is a collection of papers that were accepted
at this conference. Here are two examples copied from dblp[6]. We marked the
important fields.

1 <inproceedings key="conf/er/Norrie08"
2 mdate="2008 -10 -20">
3 <author >Moira C. Norrie </author > <!-- important -->
4 <title >PIM Meets Web 2.0.</title> <!-- important -->
5 <pages >15-25</pages>
6 <year>2008</year> <!-- important -->
7 <booktitle >ER</booktitle > <!-- important -->
8 <ee>http: //dx.doi.org /10.1007/
9 978 -3 -540 -87877 -3 3</ee>

10 <crossref >conf/er /2008 </crossref >
11 <url>db/conf/er/er2008.html#Norrie08 </url>
12 </inproceedings >

1 <proceedings key="conf/er/2008"
2 mdate="2008 -10 -20">
3 <editor >Qing Li</editor >
4 <editor >Stefano Spaccapietra </editor >
5 <editor >Eric Yu</editor >
6 <editor >Antoni Olivé</editor >
7 <title >Conceptual Modeling - ER 2008,
8 27th International Conference on Conceptual
9 Modeling , Barcelona , Spain , October 20-24,

10 2008. Proceedings </title> <!-- important -->
11 <volume >5231</volume >
12 <year>2008</year>
13 <isbn>978 -3 -540 -87876 -6</isbn>
14 <booktitle >ER</booktitle > <!-- important -->
15 <series href="db/journals/lncs.html">Lecture
16 Notes in Computer Science </series >
17 <publisher >Springer </publisher >
18 <url>db/conf/er/er2008.html</url>
19 </proceedings >

The author corresponds to a person that has written or contributed to writing
the article. The title corresponds to the title of the article. The year to the year

dblp.org

3. Procedure 10

Conference Name Acronym

Table 3.1: Conference Table

Article Title Authors Year Acronym

Table 3.2: Inproceeding Table

of publication. The booktitle contains the acronym of the conference at which the
article was published. The crossref field contains a reference to corresponding
dblp proceeding in the database. One has to point out that the data is partially
corrupted, frequently there are conference names, instead of the acronym being
used as booktitle or there are used several booktitles alongside some location as
booktitles. I.e. the data required lots of processing before being usable.

The title of the proceeding corresponds to the title of a book and not the
name of the conference itself. However, we want to match the papers with the cor-
responding conference, thus we are interested in the name and acronym. There-
fore, we decided to get a list of conference names and the corresponding acronym
elsewhere. Namely from a seperate list available on dblp1 as well. The idea was
that we could simply match papers with their corresponding conferences, based
on the acronym. This turned out to be a very tedious task as we will see shortly.

The first hurdle was, that the information scraped from the list comes in no
coherent ways. Three frequent formatting styles include:

• 3D Data Processing Visualization and Transmission (3DPVT)

• 3DIPM - Three-Dimensional Image Processing, Measurement, and Appli-
cations

• Adaptive and Learning Agents and Multi-Agent Systems; European Sym-
posium on ... (ALAMAS)

After parsing all the different formatting styles, we were left with a table
containing acronym and name.

The next and way more devastating challenge are ambiguous acronyms.

Definition 3.1 (Ambiguous acronyms). An acronym that is used by two or more
conferences.

Our plan to simply match papers with there respective conference based on
the acronym used fails as some conferences use the same acronym as others. For
example ’SAM’ is the acronym of 6 different conferences, among those are : ’Soft-
ware Audit and Metrics’, ’International Conference on Security and Management’

1https://dblp.org/db/conf/index.html

3. Procedure 11

Article Title Authors Year Acronym Conference Name

Table 3.3: Parsed DBLP Table

Acronym Conference Name Deadline Start Date End Date Location

Table 3.4: WikiCFP Table

and ’IEEE Sensor Array and Multichannel Signal Processing Workshop’. About
one in ten conferences uses an ambiguous acronym.

This combined with the fact that many of the booktitles provided by the dblp
database did not correspond to the matching acronym and our scripts not being
able to recover all of the acronyms, required a different approach. We matched
all of the entries we could, i.e. that the xml file contained correct data for and
that did not use ambiguous acronyms. This sufficed for about 3/5 of the total
number of articles. For the remaining entries, we wrote a script that scrapes
dblp by searching for the paper titles and hereby is able to retrieve the respective
conference names and acronyms. Since, this had to be performed on almost a
million entries, we included some tricks to speed up the process and not having
to do 1 millions requests.

At the end of this process, we were left with a table containing the fields
represented in 3.3 for each of the papers.

3.2.3 Dates & CORE Ranking

Now, that we have all the information needed to build the search engine, we
needed to get the data the users are interested in. Namely, the CORE ranking
and the important dates.

For both these ventures, we had to scrape the respective web pages of Wi-
kiCFP2 and CORE3.

WikiCFP

For WikiCFP, we wrote a script that for each of the conference names available
in our dblp database table, sends a search request to WikiCFP. It then proceeds
to parse the table that WikiCFP outputs for each search request. The parsing
is done using BeautifulSoup4, which is an easy to use html/xml parser. After
parsing, the script inserts the new data into a database table of the form seen in
3.4.

2http://www.wikicfp.com/cfp/
3http://portal.core.edu.au/conf-ranks

3. Procedure 12

To merge the two tables using a left join is again not possible as we again
have the ambiguous acronym problem. Also WikiCFP does not use the same
conference name as dblp does, but rather it uses the event title. Since WikiCFP
relies on user data, the naming doesn’t follow any clear conventions. Let me give
you a few examples 3.5.

Conference Name (dblp) Acronym (dblp)

Dependable Systems and Networks DSN
Symposium on Computer SBAC-PAD

Conference Name (WikiCFP) Acronym (WikiCFP)

The 52nd Annual IEEE/IFIP International Conference on Dep ... DSN 2022
The 34th IEEE International Symposium on Computer SBAC-PAD 2022

Table 3.5: Comparison of names and acronym in WikiCFP vs. DBLP

Even though in 3.5 the acronym of WikiCFP appears to be ’<acronym>
<year>’, this is notalways the case. We resolved this problem by doing some
sophisticated matching between dblp entries and WikiCFP entries based on both
the name and the acronym. Among other things, we removed the numbers from
the strings, checked how long the longest shared sub-string of the two conference
names were compared to the size of the strings and whether the acronym of dblp
is contained in the acronym of the WikiCFP. In the end, we ended up with a
decent number of dates for my conferences.

It’s also worth pointing out that the quality and quantity of the data con-
tained on WikiCFP seems to vary over time, e.g. during the initial scraping the
A* conference ’ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing’ appeared on WikiCFP. During a re-scraping it had disappeared from
the Wiki only to reappear a couple of days later. This is additional motivation
for not using repetitive scraping to update data.

CORE Ranking

I used a similar approach to get the data from CORE Ranking. The problems
turned out to be very similar as well:

• different spelling for the same conferences.

• ambiguous acronyms.

I used similar techniques to resolve matching issues as in WikiCFP.

At the end of both these stages we were left with a table containing the
following entries:

3. Procedure 13

• conference name

• conference acronym

• deadline

• start & end

• location

• CORE rank

combined with the article table, consisting of the conference name, acronym,
paper title and authors, we were able to construct a table having all the relevant
information for building the search engine and displaying relevant data to the
user.

Since, the conference names fortunately are not ambiguous, we were able to
join on the conference name, yielding a table with the following fields.

• paper title

• paper authors

• conference name

• conference acronym

• deadline

• start & end

• location

• CORE rank

• WWW (conference website)

This table serves as the foundation of the backend, we are going to build next.

3.3 Backend & Search Engine

3.3.1 Setup & API Features / Goals

The backend is written in python using the Django framework, but it can easily
be rewritten in any other language or framework. We chose Django as it is easy-
to-use, python is my favorite language and it is in the top 10 of the most popular
web frameworks according to the StackOverflow Developer Survey of 2022.[7]

3. Procedure 14

The goal of the backend is to expose an API to the frontend. The user visits
the website of ConfSearch22 and retrieves the frontend. The frontend consists
of all the code contributing to the graphical user interface that the user sees, it
is executed in the user’s browser. Depending on the actions the user takes using
the user interface, the frontend sends requests to the API in order to receive data
that can then be shown inside the frontend.

The final API supports five kinds of requests:

• Editing POST requests that allow to change details of a conference.

• Add POST requests that allow to add a new conference.

• Compute keywords POST requests that allow to compute weighted key-
words.

• Search GET requests that allows to retrieve all the conferences that match
the keywords, are related to the searched for author or conference or cor-
respond to acronym keys - a kind of special bookmarking tags associated
with each conference.

• Detail GET requests that allow to get all the details about a single confer-
ence.

• Search suggestion GET requests that allow to give hints to the user. If he
searched for an author but misspelled, the suggestion will point him to the
correct search query. The same holds for conference names.

I will not dive into every single one of these features. I will explain on a high
level how the search functionality works.

3.3.2 Keyword Search : Generation of keywords and weights

Once the request enters the backend server, it is checked whether it consists of
bookmarking tags aka acronym keys only, an author name or a conference name.
If all of these checks fail, keyword search is performed.

We first create a mapping W for each conference that returns a weight for
each keyword. This mapping is created as follows. We first go over the titles of
all the papers and create a histogram of all the words that appear, called global
histogram. In the nest step we create a histogram for each individual conference,
called local histogram or histogram for conference c. Then we create a matching
algorithm that upon receiving a query, returns a weight for each conference that
represents how good the conference matches the keywords.

3. Procedure 15

Definition 3.2 (Global histogram). A mapping from a word to the number of
occurrences of this word in all the inproceeding titles.

GH : {Words} 7→ N (3.1)

GH(k) = # occurrences of word k in all inproceeding titles (3.2)

Then we create a histogram for each conference. By going over the titles of
each inproceeding individually.

Definition 3.3 (Histogram for conference ci).

Hci : {Words} 7→ N (3.3)

Hci(k) = # occurrences of word k in inproceeding titles published at ci (3.4)

Further, we define the cardinality of the histogram as follows:

|Hci | =
∑

k∈Words

Hci(k) (3.5)

On the basis of these two histograms, we will then generate a weight associated
with each keyword.

Definition 3.4 (Importance of keyword k at conference ci).

Ici : {Words} 7→ R (3.6)

Ici(k) =
1.4

√
Hci(k)

50 +GH(k)1.15
(3.7)

The reasoning behind the importance is as follows:

Hci(k)/GH(k) gives the share of appearances of a given word k at conference
ci with respect to the total number of appearances in all conferences and is thus a
proxy of the relative importance of that word in conference ci taking into account
the general frequency of that word.

To account for very rare words, we add 50 as normalization constant. Other-
wise if a word appeared only once in total, it would get a very high importance
compared to other words. Since, we want to add an additional penalty to very fre-
quent words, we also add 1.15. The motivation behind this is as follows. Assume
that we have:

• GH(”distributed”) = 10′000

• Hci(”distributed”) = 1′000

• GH(”the”) = 400′000

3. Procedure 16

• Hci(”the”) = 40′000

, then in both cases we would get the same importance4 of

Hci(k)

GH(k)1
= 0.1

. However, ’distributed’ is way more meaningful. Using the additional penalty
of adding a power of 1.15, we get

Hci(”distributed”)

GH(”distributed”)1.15
≈ 0.025 > 0.0144 ≈ Hci(”the”)

GH(”the”)1.15

.

The 1.4 is of the root is meant to prevent some keywords from becoming
extremely important, while preserving the relative ordering of the keywords.

Definition 3.5. [Weight of keyword k at conference ci] Let Ai be the array
that contains the 3000 most important keywords of conference ci. Let |Ici | =∑

k∈A Ici(k) be summed importances of the most important keywords. Then the
weight of keyword k at conference ci is defined by

Wci(k) =

{
3000 · Ici (k)

|Ici |
, k ∈ Ai

0 , else
(3.8)

This weight gives at the same time a good proxy for the importance of the
keyword, while assuring that

∀ci, cj .|Wci | = |Wcj | = 3000

, where |Wci | =
∑

k∈W Wci(k). I.e. each conference has the same relevance or
total weight. One has to note that for the support of conferences with less than
3000 keywords, some extra steps are required. This only happens for very little
training data.

3.3.3 Keyword Search : Matching keywords

Definition 3.6 (Match of query). Let k = [k1, ..., kn] be the list of keywords
that the user submitted. Further let k1 = [k1], k2 = [k1, k2], kn = k and so on.
We define the match of a conference ci with a sequence of keywords k as M̄ci(k).

W̄ci(k) =
Wci(k)

maxci∈ ConferencesWci(k)
∈ [0, 1] (3.9)

4We leave out the 50 as normalization factor for the sake of simplicity

3. Procedure 17

M̄ci(k) =
Mci(k)

maxci∈ ConferencesMci(k)
∈ [0, 1] (3.10)

Mci(k
n) =

{
W̄ci(kn) + 4 ·

√
W̄ci(kn) · M̄ci(k

n−1) + M̄ci(k
n−1) n > 0

0 else
(3.11)

The intuition behind this matching is that we take into account the weight of
each keyword that matches, but give strong preference to conferences for which
multiple keywords match.

In the real implementation, we also give a dynamic boost to conferences that
have a high ranking. The dynamic boost factor is given by

b =
1

maxci∈Conference with rank = A*, A, BM̄ci(k)

, which is an indicator of the distance between the best matching conferences and
the best matching, well-ranked conference. The boosted conference then gets an
updated weight according to:

M̄ boosted
ci (k) =

(
M̄ci(k) · b · r + M̄ci(k) · (1− r)

)r′
. The constants r and r′ depend on the rank. The intuition on why we have to
boost famous conferences is twofold:

• it is more likely that people want to have higher ranked conferences in their
search results.

• higher ranked conferences tend to cover a broader spectrum of research
topics and are thus less sensitive to specific keywords.

3.3.4 Author Search

Assume that the user searches for an author name aj . Then we want to output
the conferences that are most relevant for this author. The more often and the
more recent author aj has published at a conference ci, the more relevant this
conference is to him.

Let taj ,earliest denote the earliest year in which author aj has published an
article. In the same way, let taj ,recent denote the most recent year in which author
aj has published an article. Let t(p) denote denote the year at which paper p was
published. Further, we say p ∈ ci if p was published at conference ci, similarly
we say p ∈ aj if p was published by author aj .

Definition 3.7 (Weight of paper p written by author aj based on linear interpo-
lation). Let aj be the be the author of the paper p. Then we say that the weight

3. Procedure 18

of p for author ai is given by:

waj (p) =
t(p)− taj ,earliest

max(1, taj ,recent − taj ,earliest)
+ 0.1 (3.12)

This type of weight is higher for newer conferences, but never 0.

Definition 3.8 (Author conference weight). The author conference weight is an
indicator of the relevancy of conference ci for author aj :

Aaj (ci) =
∑

p∈ci,p∈aj

waj (p) (3.13)

Whenever, the user searches for an author, we output the conferences sorted
by the Author conference weight which is an indicator for relevancy.

3.3.5 Other search queries : Bookmarking and related confer-
ences

There are two more search queries not yet discussed. One of the two has the
purpose to generate URLs for bookmarking. Basically, every conference is asso-
ciated with a key that uniquely identifies the conference - this key is generated
based on the acronym. We call these keys acronym keys or bookmarking tags.
Whenever the user enters two or more of these bookmarking tags, he is displayed
the exact conferences these conferences refer to.

The other type of search query is for looking up related conferences. The user
either enters exactly one acronym key or he enters the exact name of a conference.
For this type of request, the backend looks up the top 25 keywords of the referred
to conference. Let vci be the weight vector of these 25 keywords for conferences
according to 3.5. The indicator for how related / matching some conference cj is
to ci is given by

vTcivcj

.

In all of these searches, the backend sends the top 100 best matching confer-
ences to the frontend running on the client. Except for the bookmarking requests
- they have no matching algorithm.

3. Procedure 19

3.4 Frontend

Figure 3.3: ConfSearch22 : Home Page

3.4.1 Setup

The frontend of a web site consists of the parts that users interact with directly
when surfing a website, it is thus the most important piece when it comes to user
experience. To build the frontend we used the ReactJS framework. ReactJS,
thanks to it’s components, perfectly fits the modular architecture of the rest of
the project. Furthermore, it has been deemed the most popular and second most
popular web framework in the years 2021 and 2022 respectively, according to the
StackOverflow Developer Survey.[8, 7] To build a responsive user interface (UI),
we used Bootstrap CSS styles as the basis of our frontend. Bootstrap is known
to run well on all types of end-devices, it is delivered by fast content-delivery
networks (CDN) and is fully customizable and modifiable. Using it allowed us to
save a lot of time.

When developing a web site, it all boils down to maximizing the UX. The
doctrine that guided us in building the frontend web application is simplicity.
Nielsen’s Usability Heuristics[9] proved especially useful to auto-evaluate the de-
sign, without having to do expensive user studies for which we had neither the
time nor the human resources.

3. Procedure 20

3.5 Features / Goals

In an as easy-to-use as possible way, we want to expose to the user the following
features:

• search for keywords, authors and related conferences

• bookmarking allows store a list of selected conferences

• visualization of the most important dates for conferences

• easy to compare different conferences with respect to different metrics, such
as the rank or the deadline.

• sort conferences according to metrics like the rank or the deadline

• select a subset of the conferences obtained from searching, for further pro-
cessing.

• users can use an edit page to enter new information or update old infor-
mation. They can also add a new conference using the add conference
page.

• the calendar icon allows the user to download the key dates in the form of
a .ics file.

3.6 Design Choices

To make the interface as easy-to-use and as intuitive as possible, we have put
a special focus on not cluttering the screen with information. With the use of
tool-tips, boxes that pop-up whenever the user hovers over a certain area, and
information boxes, boxes that pop-up after the user takes some action, we are
able to provide the user with all the information he needs at the right time, while
keeping a clean surface.

Further, we provide several suggestions (see 3.3) and tips on the home screen
or when editing. These suggestions make sure that the user never becomes stuck,
because he is not capable of performing the desired action.

To illustrate the effectiveness of our design choices, we will how they conform
with the different usability heuristics provided by Nielsen.[9, 10].

3. Procedure 21

Figure 3.4: ConfSearch22 : Edit Page

• Visibility of system status : Through the use of information boxes (see
3.4), we inform the user whenever he completes a request with side-effects.
If he edits a conference, he is informed on whether the changes have been
submitted successfully, analogously he is informed about why his request
failed and what actions he needs to perform next.

• Match between system and the real world : By using icons that
are symbolic for events in the real-world3.5, it is ensured that user needs
little time to adapt to the new interface.

• User control and freedom : At every stage, the user is able to click
on the web page title to return the homepage. Further, he can use a special
home button, whenever he is in the midst of performing critical action like
adding a new conference.

• Consistency and standards : By the use of bootstrap, the styling is
ensured to follow classical design standards. Further, we ensure that the
website is consistent in structure compared to the old web site. This further
reduces adaptation times.

• Error prevention : By requiring the user to confirm his changes, we
ensure that the user checks if he committed any mistakes himself.

• Recognition rather than recall : We reuse designs across the board.
This is is made especially easy thank to ReactJS’s components. E.g. the
editing, details and add conference page are all based on the same style.

3. Procedure 22

• Aesthetic and minimalist design : A simplistic design has been our
mantra throughout the project. It should be clear from the screenshots
that we did not include any unnecessary information.

• Help users recognize, diagnose, and recover from errors : This
is again ensured through the use of special error boxes. (See 3.4)

• Help and documentation : For users that need more information, the
tips on the home page provide detailed information on how to use the
different features provided.

Figure 3.5: ConfSearch22 : Search

The design is a make-or-break characteristic that determines the success of a
web page. Through the use well-known usability principles and renowned frame-
works, we have been able to design a pleasing tool both from an optical and a
practical point of view.

3.7 Deployment

In order to deploy our application and go into production, some minor changes
to the architecture had to be made. Namely, since both the frontend and the
Django API need to be accessible on the same domain, we had to configure a
reverse proxy. All requests have to be directed to the frontend, except if the path
starts with ’/api/’. The architecture thus looks as follows:

3. Procedure 23

Browser Reverse Proxy

Frontend

API Database

1., 3., 5.
2., 4., 6.

1. GET frontend 2. Response: .html + .js

3. GET api/search-query

4. JSONResponse

5. GET api/suggestions

6. JSON Response

interaction

Figure 3.6: Architecture of ConfSearch22 with Reverse Proxy

Due to the fact that we wrote a python application using Django, we also
need a so called WSGI HTTP server. In simple terms, this is a module that can
be contacted by the reverse proxy, this module then translates the request such
that it can passed on to the python application. Thus strictly speaking, we need
another piece between the reverse proxy and the Django API. For simplicity it
is not shown. We used Nginx for setting up the reverse proxy and Gunicorn for
setting up the WSGI HTTP server.

Chapter 4

Conclusion

Even though we faced many backlashes over the course of the project, we have
been able to address all of the key issues identified in previous versions of Con-
fSearch. We have built a simple and modern search tool that is adaptable, rela-
tively easy to maintain and comes with robust documentation.

The user gets to learn the tool with the help of suggested examples and is
ready to get the full potential out of the tool after a few minutes. Thanks to
more than 3’000 additional conferences, which corresponds to a 250% increase
compared to the previously running version, the user can now be sure to find the
best conference for his needs efficiently.

Through the modular approach used, future improvements no longer need to
reinvent to build a new project from scratch but rather they can exchange single
part such as the frontend or parts of the frontend.

24

Chapter 5

Future Work

5.1 Future Work

During the entire process of scraping the data, building an API and designing
the frontend, there were many ideas that entered our thought process, but could
not be implemented due to time constraints. In this chapter, I will go into some
of them.

5.1.1 Mobile application

Thanks to the new architecture, it is now easy to write a mobile app for Conf-
Search22. The app can simply send the same requests as the users browser does
when running the frontend to the API. The API does not have to be changed in
any way. This might come at the cost of requiring additional CSRF configura-
tions.

5.1.2 Frontend

Scraping for data using the frontend

Right now, editing is the most tedious part in using the application. The user has
to look up updated information online and insert it correctly formatted into the
form. There would be the possibility that, once the user visits the edit page, a
scraping algorithm starts running and suggests edits based on the scraped data.
The user can then simply confirm information and no longer has to copy and
paste information from different websites.

Calendar Widget

To prevent users from entering dates in a false format, instead of letting the
user enter a string for the date, on could let the user select the date using a

25

5. Future Work 26

calendar widget. However, this needs to be implemented carefully, as the current
implementation supports multiple dates for deadlines and notification dates.

5.1.3 Backend

Restricted edits

Right now, the user is quite powerful. He can edit every conference in any way he
wants, as long as he respects some basic rules, e.g. he cannot violate the primary
key constraint on the conference name. If it turns out that users exploit this
loose security policy, one has to tighten the security policies. Right now, there
is already a feature that restricts edits to the acronym and name. This can be
enabled by setting the protected field inside the conferences table of the database
to true. This way each conference can be protected separately. If this is still not
enough, i.e. users enter wrong dates or remove correct information, one might
have to add an authentication system. Only registered users are allowed to make
changes to the database.

Scalability

Depending on the number of active users, at some point the search tool might
turn out to not be efficient enough anymore. I.e. there are too many requests and
the server is no longer able to handle them in a timely fashion. Fortunately, there
is an easy way to scale up the maximum supported server load. One can simply
increase the count of workers for gunicorn. This is a parameter found in the
gunicorn.systems file. However, in the current implementation this introduces
race conditions. Right now, the database is loaded into the application when the
server boots, after that it only interacts with the database when a user writes to
the database. If there is only one instance of the application running, there is no
race condition. However, when having two workers and the first worker writes to
A and the second worker reads A, he will still read the old value of A. In order to
resolve this issue, we need to reload all the items from the database, whenever
the user wants to read them. Unfortunately, we did not think of this earlier. For
the same reason, changes made on the Django Admin Page are visible only after
a restart of the server.

5.1.4 User Studies

During the course of this thesis, we had to heavily rely on heuristics and intuition
in order to finish the work. To get a better understanding of how people use the
tool, which features take them the most time to grasp and which features they
desire to have in a future release, one would have to conduct quantitative and
qualitative user studies.

Bibliography

[1] “JavaServerPages,” https://webtechsurvey.com/technology/
javaserver-pages, accessed: 2022-06-22.

[2] M. Kuhn and R. Wattenhofer, “The layered world of scientific confer-
ences,” in Progress in WWW Research and Development, Y. Zhang, G. Yu,
E. Bertino, and G. Xu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 81–92.

[3] “JSP Architecture,” https://www.geeksforgeeks.org/jsp-architecture/, ac-
cessed: 2022-06-22.

[4] L. Schmid, “ConfSearch20,” https://pub.tik.ee.ethz.ch/students/2019-HS/
BA-2019-38.pdf, accessed: 2022-06-22.

[5] E. W. Dijkstra, On the Role of Scientific Thought. New York,
NY: Springer New York, 1982, pp. 60–66. [Online]. Available: https:
//doi.org/10.1007/978-1-4612-5695-3_12

[6] M. Ley, “DBLP - some lessons learned,” Proc. VLDB Endow.,
vol. 2, no. 2, pp. 1493–1500, 2009. [Online]. Available: http:
//www.vldb.org/pvldb/vol2/vldb09-98.pdf

[7] “Stack overflow developer survey 2022.” [On-
line]. Available: https://survey.stackoverflow.co/2022/
#section-most-popular-technologies-web-frameworks-and-technologies

[8] “Stack overflow developer survey 2021.” [On-
line]. Available: https://insights.stackoverflow.com/survey/2021#
section-most-popular-technologies-web-frameworks

[9] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’90. New York, NY, USA: Association
for Computing Machinery, 1990, p. 249–256. [Online]. Available:
https://doi.org/10.1145/97243.97281

[10] J. Nielsen, “10 usability heuristics for user interface design,” https://www.
nngroup.com/articles/ten-usability-heuristics/, (Accessed on 07/02/2022).

27

https://webtechsurvey.com/technology/javaserver-pages
https://webtechsurvey.com/technology/javaserver-pages
https://www.geeksforgeeks.org/jsp-architecture/
https://pub.tik.ee.ethz.ch/students/2019-HS/BA-2019-38.pdf
https://pub.tik.ee.ethz.ch/students/2019-HS/BA-2019-38.pdf
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1007/978-1-4612-5695-3_12
http://www.vldb.org/pvldb/vol2/vldb09-98.pdf
http://www.vldb.org/pvldb/vol2/vldb09-98.pdf
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-web-frameworks-and-technologies
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-web-frameworks-and-technologies
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-web-frameworks
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-web-frameworks
https://doi.org/10.1145/97243.97281
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

Appendix A

Appendix : Searching for a paper
title to find conferences

Since we trained the keyword search engine on paper titles, we decided to do
very basic performance evaluation the performance of our keyword search when
searching for paper titles on a very basic level. We have selected 3 conferences
at random. Then, for each of these 3 conferences we took 15 of the most recent
publication titles. For each of the titles, we looked at the number of the row
in which the conference name matches the name of the conference at which the
publication was actually made.

In the following you can see the conference name at which 15 paper titles were
published. For each conference there is a histogram that shows the frequency at
which a given conference appears with a certain row number in the result table,
when searching for the title of a publication made at this conference.

• International Conference on Distributed Artificial Intelligence

– The Power of Signaling and Its Intrinsic Connection to the Price of
Anarchy

– Uncertainty-Aware Low-Rank Q-Matrix Estimation for Deep Rein-
forcement Learning

– SEIHAI: A Sample-Efficient Hierarchical AI for the MineRL Compe-
tition

– BGC: Multi-agent Group Belief with Graph Clustering

– Incomplete Distributed Constraint Optimization Problems: Model,
Algorithms, and Heuristics

– Securities Based Decision Markets

– MARL for Traffic Signal Control in Scenarios with Different Intersec-
tion Importance

– Safe Distributional Reinforcement Learning

A-1

Appendix : Searching for a paper title to find conferences A-2

– The Positive Effect of User Faults over Agent Perception in Collabo-
rative Settings and Its Use in Agent Design

– Behavioral Stable Marriage Problems
– FUN-Agent: A HUMAINE Competitor
– Signal Instructed Coordination in Cooperative Multi-agent Reinforce-

ment Learning
– A Description of the Jadescript Type System
– Combining M-MCTS and Deep Reinforcement Learning for General

Game Playing
– A Two-Step Method for Dynamics of Abstract Argumentation

Figure A.1: Histogram : International Conference on Distributed Artificial Intel-
ligence

• International Conference on Machine Learning

– Global Optimization Networks
– Spatial-channel Token Distillation of MLP-like Vision Models
– Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph

Representation Learning
– State Transition of Dendritic Spines Improves Learning of Sparse Spik-

ing Neural Networks
– Smoothed Adaptive Weighting for Imbalanced Semi-Supervised Learn-

ing: Improve Reliability Against Unknown Distribution Data

Appendix : Searching for a paper title to find conferences A-3

– QSFL: A Two-Level Uplink Communication Optimization Framework
for Federated Learning

– MonePipe: Accelerating Momentum Network Training with Pipelines

– Bitwidth Heterogeneous Federated Learning with Progressive Weight
Dequantization

– On Collective Robustness of Bagging Against Data Poisoning

– PAC-Net: A Model Pruning Approach to Inductive Transfer Learning

– Generic Coreset for Scalable Learning of Monotonic Kernels: Logistic
Regression, Sigmoid and more

– ProGCL: Rethinking Hard Negative Mining in Graph Contrastive
Learning

– Thresholded Lasso Bandit

– Evolving Curricula with Regret-Based Environment Design

– DynaMixer: A Vision MLP Architecture with Dynamic Mixing

Figure A.2: Histogram : International Conference on Machine Learning

• International Conference on Semantics, Knowledge and Grid

– Knowledge Recommendation Based on Item Response Theory.

– Automatic Wrong Option Generation Based on Confusion Degree.

– Utilize Discourse Relations to Segment Document for Effective Sum-
marization.

Appendix : Searching for a paper title to find conferences A-4

– Recommendation of Research Collaborator Based on Semantic Link
Network.

– A Survey of Probabilistic Resource Space Model.

– The Link between Collaboration and Citation.

– Sentiment Analysis Based on Bi-LSTM Using Tone.

– JEDoDF: Judicial Event Discrimination Based on Deep Forest.

– KB-Transformer: Incorporating Knowledge into End-to-End Task-
Oriented Dialog Systems.

– Learning Tibetan-Chinese Cross-Lingual Word Embeddings.

– Applications of Deep Learning Using Quaternary Hash Codes for Im-
age Retrieval.

– A Mission-Oriented Dynamic Distribution Method of Battlefield Sit-
uation Information with Knowledge-Based Feedback Mechanism.

– Top-k Nearest Keyword Search in Public Transportation Networks.

– GRASP-Based Approach for Minimum Initial Marking Estimation in
Labeled Petri Nets.

– Efforts towards Combining Graphics, Uncertainty, and Semantics: A
Survey.

– Automatic Generation of Survey Paper Based on Template Tree.

Figure A.3: Histogram : International Conference on Semantics, Knowledge and
Grid

Appendix : Searching for a paper title to find conferences A-5

The results indicate that in about 7 out of 9 cases ConfSearch22 is able to
output the conference at which the paper was presented, when searching for the
paper title. In about 1 out of 4 cases, the conference is even among the top 20
best-matching conferences. It also appears that the rank has little effect on these
findings. Considering that there are over 5000 conferences in the system, many
of which are overlapping in research areas, the result in this random experiment
are decently good. Also users are generally capable of using better keywords than
a simple paper title. It is very likely that all of the 100 displayed conferences,
which correspond to the 2% best matching conferences for the query, are in the
right research topic and thus a good match.

Note that the sample size is very low. To get more conclusive results one needs
to introduce bigger sample sizes and additional statistical measures. It is however
difficult to tell whether the search result represents a good match as obviously
the conference at which a paper was presented is not the only well-matching
conference. In many cases there might even be better matching conferences. A
user study in which researchers can give feedback on the search results would be
more conclusive.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation

	2 Related Work
	2.1 ConfSearch07
	2.2 ConfSearch20
	2.3 WikiCFP

	3 Procedure
	3.1 Overview
	3.2 Information retrieval
	3.2.1 Goal
	3.2.2 Paper titles
	3.2.3 Dates & CORE Ranking

	3.3 Backend & Search Engine
	3.3.1 Setup & API Features / Goals
	3.3.2 Keyword Search : Generation of keywords and weights
	3.3.3 Keyword Search : Matching keywords
	3.3.4 Author Search
	3.3.5 Other search queries : Bookmarking and related conferences

	3.4 Frontend
	3.4.1 Setup

	3.5 Features / Goals
	3.6 Design Choices
	3.7 Deployment

	4 Conclusion
	5 Future Work
	5.1 Future Work
	5.1.1 Mobile application
	5.1.2 Frontend
	5.1.3 Backend
	5.1.4 User Studies

	Bibliography
	A Appendix : Searching for a paper title to find conferences

