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Abstract

We analyze arbitrage opportunities on decentralized exchanges on the Ethereum
blockchain with a focus on the Uniswap V3 protocol. In previous works, Uniswap
V3 was not considered as it was only released in May 2021. A relation between
the total value of arbitrage opportunities and ETH price changes could already
be established. In our analysis we further analyze this relation and show a statis-
tically significant correlation between the total amount of arbitrage opportunities
and ETH price changes.
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Chapter 1

Introduction

1.1 Background

1.1.1 Decentralized Exchanges

Decentralized exchanges (DEXes) are one of the fundamental building blocks of
decentralized finance (DeFi). They enable the exchange between two assets using
an underlying smart contract. They do not rely on the exchange itself or any
third party to be a market maker. Rather, most employ the constant product
market maker model (CPMM), which functions without the need for active mar-
ket making. The model is based on keeping the product of the two asset reserves
in a liquidity pool equal to a constant k. A liquidity pool is an Ethereum address
where users can deposit funds and therefore provide liquidity, which is then used
to facilitate the trade of the deposited assets. Liquidity providers (LPs) are in-
centivised by a trading fee that is paid by the users wanting to exchange assets
through a pool. DEXes reach a price equilibrium through arbitrage. Meaning if
the price of an asset in one pool is much lower than the price in a different pool,
a profit can be generated by buying the asset in the cheap pool and selling it in
the expensive one.
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1. Introduction 2

1.1.2 Uniswap V2 and the Constant Product Market Maker

The Uniswap protocol is the largest decentralized exchange, with an average
monthly trading volume of over 50 billion in the last 12 months [1]. The large
growth of trading volume in May 2021 can be attributed to the launch of Uniswap
V3, which brought a lot of attention and liquidity to the protocol.

Figure 1.1: Monthly trading volume of Uniswap [1]

The exchange is built on the Ethereum blockchain and uses the CPMM model
to facilitate the trade of two assets against each other. The price p of a pool is
determined by the fraction of the amounts of each token resx and resy that are
deposited [2]:

p =
resx
resy

The price of the pool is the price of toky in terms of tokx. The inverse of p
therefore is the price of tokx in terms of toky. The constant k is the product of
the reserves of the two assets:

k = resx · resy

In a zero fee pool, after the inception of the pool, k only changes when liquidity is
deposited or withdrawn. It has to stay constant when a user is exchanging assets.
In practice, however k increases with each trade, as the trading fee is added to
the pool and not taken into account when calculating the output amount for the
trade. The equation describes the curve shown in Figure 1.2:
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Figure 1.2: Uniswap V2 Liquidity Curve

From this simple equation, others can be derived that describe how much tokouty

is returned by the pool when a certain amount tokinx is inserted and vice versa.

tokouty =
k

resx + (tokinx · (1− γ))
− resy (1.1)

tokoutx =
k

resy + (tokiny · (1− γ))
− resx (1.2)

Here, γ is the fee as a portion of 1 that is paid to the pool. Notice that tokoutx

and tokouty are negative here, as the equations describe the change of the reserves
from the view of the pool. The pools reserves are then adjusted according to the
amount and the funds are transferred to the user who initiated the swap.
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1.1.3 Uniswap V3

In May 2021, Uniswap launched their new V3 protocol, which aimed to improve
capital efficiency and slippage [3]. Slippage is a measure of the amount that
the expected price of a trade differs from the actual price that the trade was
executed at. These improvements were achieved by making it possible to provide
liquidity in a certain price range, rather than from 0 to ∞. The concept is
called concentrated liquidity. LPs can now choose a range in which they provide
liquidity. The chosen range in relation with the current price defines the ratio
of tokx and toky that the LP has to provide. Further the LPs only receive fee
payments if the price is in their specified range. The space of possible prices is
divided into discrete ticks. The range chosen by LPs always has to be between
two ticks. From the tick i, the price can be calculated as follows:

p(i) = 1.0001i√
p(i) = 1.0001i/2

For technical reasons however, the pools track the square root price, rather than
the normal price. The smart contract also tracks the liquidity L, which is cur-
rently active [4].

L =
√

resx · resy
√
P =

√ resy
resx

Each time when a tick is crossed the liquidity might change. The liquidity of
an LPs position will be subtracted or added depending on wether the crossed
tick was an upper or lower bound. The basic calculation for Uniswap V3 is the
same as for Uniswap V2, however limited to the price range between two adjacent
initialized ticks. When a tick is crossed, liquidity has to be updated, which in
turn might effect the price curve and the output amount. The amount of tokoutx

for a specific price movement can be derived from the Equations (6.14) and (6.16)
from the Uniswap V3 whitepaper [4]:

tokoutx = L · (
√
PB −

√
PA) (

√
PB ≥

√
PA) (1.3)

tokouty = L · ( 1√
PB
− 1√

PA
) (

√
PB ≤

√
PA) (1.4)

PA and PB are prices of the pool at the beginning and the end of a part of the
swap. Equations (1.3) and (1.4) only apply as long as PB and PA lie between
two adjacent ticks. If a tick is crossed, the liquidity might change, which alters
the liquidity and hence the output amount.
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1.2 Related Work

Previous work has focused on the study of cyclic arbitrage on Uniswap V2. The
Cyclic Arbitrage Model was presented and the value of exploitable arbitrage
opportunities was studied by Wang et al. [5].
Further the DEX market was compared to the centralized exchange market. Berg
[6] analyzed cyclic arbitrage opportunities and trade optimizations, showing a
relation between the value of arbitrage opportunities over a time span and the
corresponding ETH price changes.
Qin et al. [7] studied the impact of blockchain extractable value (BEV) on the
security of the blockchains consensus. In their analysis of arbitrage, which is part
of BEV, they found opportunities that amounted to a profit of over 270M USD
from the 1st of December 2018 to the 5th of August 2021.



Chapter 2

Data Collection

Data was collected between March 8th 2021, a few days after the Uniswap V3
contracts were deployed, and January 13th 2022.
A lot of DEXes exist on the Ethereum blockchain, most of which do not have
significant trading volume cf. Figure 2.1. In our analysis only Uniswap V2,
Uniswap V3 and Sushiswap were considered because over the analyzed period,
these three DEXes had the highest trading volume. The Curve protocol also
had high trading volume, but it is an exchange for stablecoins and specifically
designed to facilitate big trades with small slippage. Further selected were the
biggest liquidity pools for each exchange, where most trading volume was coming
from. Another criterion was a significant trading volume on multiple of the
selected exchanges. Pools meeting those criteria are: DAI/ETH, DAI/USDC,
DAI/USDT, ETH/USDT, SUSHI/ETH, UNI/ETH, USDC/ETH, USDC/USDT,
WBTC/ETH, WBTC/USDC. On Uniswap V3, all fee tiers with significant trade
volume for these pairs were analyzed. The fee tiers are either 0.01%, 0.05%, 0.3%
or 1% and they describe how much of the swap input amount the user has to pay
to the pool.

Figure 2.1: Market Share of DEX’s
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2. Data Collection 7

Because DEXes operate on the Ethereum public ledger, all transaction data is
public. Erigon, an Ethereum client, was used to retrieve all the needed data.
Regarding the Uniswap V2 and Sushiswap pools, the state of interest were the
reserves of tokx and toky ("reserve0" and "reserve1" from the contracts). For
Uniswap V3 it is the liquidity, the square root price and the current tick. To be
able to simulate the swaps in a Uniswap V3 pool it was also necessary to know
the amount of liquidity that is added or removed at each initialized tick. We
built a dataset that includes all these values for each analyzed pool and block.
In addition, we gathered ETH price data from Binance [6]. For the analyzed
period we gathered Candlestick data of the ETH/USDT pair for all time frames.
From the candlesticks, the price changes of ETH can be derived by calculating
the percentage difference from the lowest price to the highest price in a single
candle.
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Processing

Rather than simulating the contracts on an Ethereum node, we used our own
implementation that follows the same underlying equations as the contracts de-
ployed to the Ethereum blockchain. The whole data collecting and processing
was done in Python. The code is accessible on Github [8].

3.1 Simulating Uniswap V2

To simulate the swaps for Uniswap V2 and Sushiswap pools, Equations (1.1)
and (1.2) need to be implemented. The procedure first calculates the constant
k by multiplying the two reserves and then returns the output amount. The
boolean variable zeroForOne states whether a user wants to exchange asset x for
asset y or asset y for asset x. Notice, that the output is positive here, unlike in
Equations (1.1) and (1.2) where the left side of the equation is negative. This
is because we are interested in the difference of resx or resy before and after the
swap.

Algorithm 1 Uniswap V2 Swap
1: procedure swapV2(tokin, zeroForOne, resx, resy)
2: k = resx · resy . Calculate k
3: tokin = tokin · (1− 0.003) . Subtract the fee
4: if zeroForOne then
5: return resy − (k/(resx + tokin))
6: else
7: return resx − (k/(resy + tokin))

8
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3.2 Simulating Uniswap V3

In contrast to the calculations of the Uniswap V2 contracts, for which all cal-
culations can be done with two equations, the Uniswap V3 contracts require an
iterative method. One iteration is needed for each crossed tick and each iteration
then does similar computations as for a Uniswap V2 swap. The main part of the
algorithm is a while loop that runs until the input amount of tokens is depleted,
analog to the implementation in Solidity. In the loop, it is calculated how many
tokx are needed to move the price to the next tick and how many toky get out
when moving the price to the next tick or vice versa. This is done by the proce-
dure shown in Algorithm 2. Here PA and PB are the current price and the price
to move to respectively.

Algorithm 2 Uniswap V3 getAmountDelta
1: procedure getAmountDelta(PA, PB, liquidity, zeroForOne)
2: if zeroForOne then
3: if PA > PB then
4: PA, PB = PB, PA

5: return liquidity ∗ ((1/
√
PA)− (1/

√
PB)) . Calculates Equation (1.4)

6: else
7: if PA < PB then
8: PA, PB = PB, PA

9: return liquidity ∗ (
√
PA −

√
PB) . Calculates Equation (1.3)
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3.3 Optimal Swap Size

To find the optimal swap size for two Uniswap V2 pools, Equations (1.1) and
(1.2) can be combined. We define ki, resx,i, resy,i as the constant k and reserves
for pool i where i ∈ {0, 1}. Pool 0 is used to swap from asset x to some asset y
and in pool 1 the asset y is swapped back to asset x. Resulting in the following
equations:

tokoutx =
k1

resy,1 + k0
resx,0+tokin

x
− resy,0

− resx,1

profit(tokinx ) = tokoutx − tokinx

profit′(tokinx ) =
k0 · k1

(k0 − (resy,0 − resy,1)(resx,0 + tokinx ))2
− 1 (3.1)

tokinx =
k0 −

√
k0 · k1

(resy,0 − resy,1)
− resx,0 (3.2)

This model describes the simplest cyclic arbitrage opportunity, with two different
pools with the same two tokens. The optimal input amount can be derived by
setting the derivative of the profit in Equation (3.1) to zero and solving for tokinx ,
see Equation (3.2). For cycles that only contain Uniswap V2 or Sushiswap pools
it is therefore possible to solve for the best input amount by deriving an extended
version of Equation (3.2), one containing more pools.
If there is a Uniswap V3 pool in the cycle, then another approach is needed.
Due to the implementation of the V3 contracts, it is not possible to solve for
the optimal input amount with one equation, rather we need to use an iterative
scheme as described in Section 3.2.
By definition of the CPMM model, it is clear that for each additional token that
we swap in a pool, the price worsens. This applies to Uniswap V2 and Uniswap
V3 pools. The rate of the price change depends on the amount of liquidity in
the pool. The slippage of a trade measures how much the expected price (at the
start of the trade) differs from the actual price, the one the trade was executed
at. Because the price changes for each input token that is swapped in a pool,
the price before and after the trade are not the same. The actual price that the
user paid is between the price before and the price after the trade. When we
know the input and output amounts of the trade, the executed price can easily
be calculated as:

executed price =
tokout

tokin
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The slippage is calculated as:

s =
Pexpected − Pactual

Pexpected

The slippage increases when our expected price decreases, which happens when
the input amount gets bigger. Hence, the slippage is proportional to the input
amount. The slippage is also dependent on the liquidity in the pool, as the
liquidity impacts the rate of the price change.

tokoutx = tokinx · (P0 − s0) · (P1 − s1) · ... · (Pn − sn) si ≥ 0|i ∈ {0, ..., n} (3.3)

tokoutx = tokinx · (Pc − sc) (3.4)

profitx = tokoutx − tokinx (3.5)

Where Pi and si are the price and slippage of pool i, the fee is directly subtracted
from the price and not shown for readability. Pc and sc are the aggregated price
and slippage over the whole cycle respectively.

Figure 3.1: Profit and token output curve. The output curve has the largest
slope at an input of 0. At the same point where the output curve crosses the
input curve, the profit curve crosses into the negative.
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Figure 3.1 depicts Equations (3.4) and (3.5). The curvature of the output function
relates to the amount of slippage the trade is generating. As more input is given,
the ratio of output

input begins to decrease. For infinitely large inputs, the output
input ratio

converges to 0. As long as the output amount is greater than the input amount,
the profit function will be positive. For infinitely large input amounts, the profit
function diverged to −∞. Both, the output and profit function behave unimodal.
A unimodal function must have an m such that for all x ≤ m the function is
monotonically increasing and monotonically increasing for all y ≥ m. Further,
f(m) is the maximum of the function and no other local maximum exists. Because
of this unimodal property, ternary search can be used to find the optimal size
for a cyclic trade. Ternary search runs in Θ(log(n)) time. Optimizing the input
amount for a cycle, starting with 0.1 of the starting token as the upper limit
and 0 as the lower limit proved to be the fastest. Other approaches, such as
starting with an upper bound of an amount equivalent to 1, 10 or 100 USD or 1
ETH, proved to be slower. In each iteration of the ternary search algorithm the
swap is simulated for the whole cycle with the given input amount. The profit
amount of each simulation is compared and the algorithm determines which part
of the search space can be discarded. This process is repeated until a search
space smaller than 10% of the size of the initial space was reached. Setting this
parameter to a lower value would have been ideal, but was not possible due to
a drastic increase in the runtime of the analysis. The maximum of the profit
function for the given cycle must lie in this space. If the found space is close
to the upper limit, then the algorithm is restarted with an upper limit 10 times
bigger than the previous one.
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3.4 Graph Modelling

The current state of the whole market on all exchanges can be modeled as a
graph cf. Figure 3.2. Each coin is represented by a vertex and the pools are the
edges connecting two of the coins. Our set of coins consists of ETH, DAI, SUSHI,
UNI, USDC, USDT and WBTC. The weights of the edges represent the negative
logarithm of the price of the pool.

wxy = −log2(Pxy − fxy)

wxy is the weight of edge (x, y) and Pxy is the best price across all exchanges
from tokx to toky and fxy is the fee of the pool with the best price. Hence, for
each edge e = (x, y) exists another edge e′ with e′ = (y, x). For a coin pair (x, y)
it is possible that edge (x, y) has its weight from a different pool than (y, x).
The fee is subtracted from the price because when analyzing the graph model,
at first, no swaps are simulated and therefore the fee cannot be subtracted from
a given input amount. By including it directly with the price, we discard some
negative cycles that would otherwise be present in the graph. These discarded
cycles however do not represent arbitrage opportunities as they are only viable
if no fees have to be paid.

ETH

USDTUSDC

0.0009

11.7027

−0.0012

11
.5
91

3
−
11.5925

−1
1.
59

10

Figure 3.2: Example subgraph of our model.

The graph models arbitrage opportunities as negative weight cycles. For any
cyclic arbitrage opportunity the price over the whole cycle Pc must be greater
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than 1. Pc is the product of the price Pi of all pools i on the cycle. For an
arbitrage opportunity to be profitable the output amount after the cycle needs
to be greater than the input amount. This is only the case if the product of all
prices Pc (including fees) is greater than 1.

Pc > 1

P0 · ... · Pn > 1

log2(P0 · ... · Pn) > log2(1)

log2(P0) + ...+ log2(Pn) > 0

− log2(P0)− ...− log2(Pn) < 0

The Bellman-Ford algorithm could be used to find just any negative cycle, how-
ever to find the best arbitrage opportunities, all negative cycles need to be found.
This is because the price difference between two exchanges is only enough to de-
termine if a profitable arbitrage trade across the cycle is possible, but not how
profitable this opportunity will be. The reason being that in pools with more
liquidity the slippage increases less than in smaller pools. There can exist two
cycles where one has a much bigger price difference Pc but still is a worse oppor-
tunity because the pools are too illiquid. Following the same reasoning it would
also not be possible to only look at the most negative cycle.
In our case, the graph is small enough to be able to enumerate all cycles and sum
up the weights along them. If a cycle has negative weight, the optimal swap size
is determined as described in Section 3.3.
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3.5 Example Cycle

ETH

USDTUSDC
0.0009 | 0.9994

11.7027 | 0.0003

−0.0012 | 1.0008

11
.5
91

3
| 0
.0
00

4−
11.5925 | 3088

−1
1.
59

10
| 3

08
5

Figure 3.3: Negative weight cycle for ETH → USDC → USDT → ETH. Edges
are labeled as wxy | Pxy

Figure 3.3 shows a negative weight cycle in the graph. The price over the whole
cycle is 1.23, which means that there is a 23% price difference. To use this
opportunity one would first swap ETH for USDC, then USDC for USDT and
finally USDT back to ETH. The graph is nearly identical to the state on the
blockchain at block 14’447’743. This cycle was used by an arbitrageur. The
input was 5’243 ETH and the output was 5’518 ETH [9]. A profit of 275 ETH
was made, which corresponds to about 855K USD at the time of the trade.
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Evaluation

The evaluated period spans 2M blocks, namely from block 12M on March 8th
2021 to block 14M on January 13th 2022. During this period every block was
analyzed and 540M negative cycles occurred. The evaluation of the cycles yielded
125M arbitrage trade opportunities. Over the whole period a total of over 90M
USD in arbitrage opportunities were found, only counting the most profitable one
in each block. Figures 4.1 and 4.2 show the total value of arbitrage opportunities
(TVAO) over the whole analyzed period. Both periods account for about half of
the observed TVAO. In the second period the TVAO is much more distributed
but there is still a period where a big part of the total TVAO is concentrated.
In the second period, the TVAO is more consistent, in the last three months
there was a sustained TVAO of over 200K USD every day. Further, instead of a
spike that lasted a few days, like in May 2021, in late November and throughout
December 2021 the TVAO was consistently around 1M USD per day.

16
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Figure 4.1: TVAO over a period of 1M blocks, which is roughly half a year. The
TVAO is very concentrated around May 2021 where ETH experienced a period
of high volatility (price changes of > 15%).

Figure 4.2: TVAO over a period of 1M blocks, representing the second period of
our analysis. TVAO is more consistent but still experiences some periods where
it is significantly higher than in others.
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4.1 Arbitrage opportunities and ETH price changes

In this section we will focus on the correlation between the TVAO and ETH
price changes. Arbitrage opportunities rely on price differences between different
pools. These price differences are often caused by large changes in the price of
ETH, high trading volume or large swaps that move the price by themselves.
Additionally, irrational behavior of traders, caused by large ETH or BTC price
changes, can lead to selloffs of a particular asset, which in turn can lead to price
differences.
One of the most interesting periods is in May 2021, where the price of ETH
reached new highs and then plummeted again. This led to daily price changes
of over 60% and was the first period of high volatility since Uniswap V3 was
launched.

Figure 4.3: ETH price changes and TVAO over a period of 100K blocks (∼ 17
days). The two data series have a pearson correlation coefficient of r = 0.71. A
statistically significant correlation is observed.

During the highest volatility, namely on May 19th, a peak of TVAO of over
8M USD was found. These findings reappear in other periods of high volatility,
however not in such a short time period. Reason might be the fact that Uniswap
V3 was only introduced a few weeks before and arbitrageurs were not yet in the
position to take full advantage of the price changes, causing prices to diverge more
and thus creating bigger opportunities. Other notable periods with a correlation
between the price change and the TVAO are shown in Figure 4.4. Although the
ETH price changes are not as high as in May, a spike in TVAO is notable.
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Figure 4.4: ETH price changes and TVAO over periods of 100K blocks. Both
periods have a statistically significant correlated between the two data series.

Comparing the three shown periods from Figures 4.3 and 4.4 to the overall ETH
price changes, shows that those periods of high correlation occur in time periods
where the ETH price changes the most.
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4.2 Arbirage opportunities and ETH price

Most arbitrage opportunities involve ETH pools or even start and end with ETH.
This is because ETH is the base currency in the DEX system and most of the
liquidity is in pools where ETH is one of the two assets. This led to the assump-
tion, that the TVAO would increase with an increase in the price of ETH.
This assumption turned out to be false.In the first half of the analyzed period, no
significant correlation between the ETH price and the TVAO could be found cf.
Figure 4.5. Moreover, the spike in TVAO happened during a period of a strong
decrease in the price of ETH. The weak correlation can also be attributed to the
fact that this spike creates a large outlier, which has a large impact on the overall
correlation.

Figure 4.5: ETH price and TVAO over a period of 100K block. No significant
correlation between the two data series can be found.
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Figure 4.6: ETH price and TVAO over a period of 100K block. The pearson
coefficient for the two data series is r = 0.48 and the correlation is statistically
significant.

In the second period, where the price was generally higher than in the first
one, there is a stronger correlation but still much weaker than we have observed
between TVAO and ETH price changes.
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Conclusion

In this paper we provided insight into cyclic arbitrage opportunities. We analysed
the largest DEXes Uniswap V2, Uniswap V3 and Sushiswap. Our data showed
that the TVAO is correlated with price changes of ETH. Specifically, in periods of
high volatility, larger and more arbitrage opportunities exist. Further, we could
not find a significant correlation between the TVAO and the ETH price. Overall
the TVAO got more consistent during the second half of 2021.

22
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Appendix A

Additional Figures

Figure A.1: TVAO over whole period. The May period was clearly the most
active over the whole period. The TVAO is 10 times the amount of the peak of
the second period.

A-1



Additional Figures A-2

Figure A.2: TVAO and price changes/price over the whole analyzed period. The
overall pearson coefficient for the TVAOand the price changes is r = 0.69. The
pearson coefficient with the ETH price is only r = 0.09
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