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Abstract

By estimated the liquidity space of the 0.03% USDC-ETH-Pool of Uniswap v3,
we investigated the conditions under which a liquidity provider replicating the
behavior of other providers is profitable, considering various sources of losses,
including gas fees and impermanent loss. We found that, in general, this replica-
tion behavior can profitable when reducing the amount of adjustments done by
the replicating agent, leading to profits when provided with a sufficient degree of
starting capital.
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Chapter 1

Introduction

Decentralized exchanges (DEXs) facilitate the swapping of cryptocurrency tokens
on the blockchain while foregoing the need for intermediaries. This provides
greater autonomy for the user and trustlessness when compared to centralized
exchanges (CEXs). By directly interacting with smart contracts, users avoid
giving up custody of their tokens. DEXs have become integral to the functioning
of DeFi markets, with Uniswap v3 in turn being the largest one in terms of
24-hour volume at the time of writing.

Different mechanisms are used to implement DEXs, the main ones being
order books and automated market makers (AMMs). While order books work by
matching trades between users directly, usually relying on a peer-to-peer off-chain
network, AMMs are a concept unique to DeFi, swapping tokens in accordance to
a mathematical relationship specific to the protocol. Constant product market
makers (CPMMs) like Uniswap use the following relationship:

x · y = k, (1.1)

with the token reserves x (of token X) and y (of token Y ), and a constant
k, which is related to the total liquidity L contained in the pool by

√
k = L [1].

While Uniswap v1 and v2 are pure CPMMs, the behavior of Uniswap v3 is
considerably more complex due to the introduction of the concept of concentrated
liquidity [1], which is central to the innovation of this version. Concentrated
liquidity gives users the ability to invest their assets within constrained price
regions, leading to much higher capital efficiency when compared to preceding
versions. This innovation necessitated the discretization of the price space to
individual ticks, which act as the start- and endpoints of a position. A tick index
i corresponds to the price

p(i) = 1.0001i (1.2)

A liquidity position can thus be described as a tuple of lower and upper tick,
and the contained liquidity: P = (tl, tu, L). The position P is only active (i.e.
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1. Introduction 2

only accrues fees) when it envelopes the price p = y
x rounded to the closest valid

p(i):

active(P, p) = tl ≤ ⌊log1.0001 p⌉ < tu (1.3)

This property makes Uniswap v3 fundamentally different from ealier version.
Instead of a swap being governed by the CPMM formula for the entirety of the
tick space, equation 1.1 now only holds within the region between two initialized
ticks, changing k and the token reserves x, y when crossing said region, essentially
splitting the price range into multiple fragments of different liquidity.

Only ticks with indices that are multiples of some tick spacing, which is
determined by the fee structure of the pool, can be initialized, while the price
tick can still take on all possible values.

The newfound ability for users to choose position ranges quickly highlighted
the question of how proactively one should manage their invested tokens. A user
might decide to concentrate their liquidity in a narrow range around the price
at the time of investment, representing a larger portion of the in-range liquidity
and thus gaining a proportionally higher fraction of swap fees, at the risk of this
position not earning any fees if the price moves outside of this narrow range.
Should the user now readjust their position bounds, incurring a loss due to gas
fees, wait for the price to come back into range, or would it have been more
profitable to create a broader position in the first place?

This issue of the degree of active management has led to the development of a
multitude of strategies with the aim of providing certain heuristics to the liquidity
provider. This has, in a sense, only pushed the decision problem one (figurative)
layer up, however. Instead of managing their investment on a per-position basis,
liquidity providers now manage various strategies, some of which might provide
higher or lower returns under specific market conditions, gas prices, the size of
the investment, whether the pool in question swaps between stablecoins, etc. One
might argue that the management of strategies has even caused a greater degree
of complexity for the average end user.

Given these circumstances, an intriguing question to ask is whether it is pos-
sible to forego the use of individual strategies in favor of simply replicating the
behavior of other liquidity providers, acting (loosely speaking) as a sort of index
fund for active management.

Referring to the examples given above, a sharp increase in gas prices is likely
to make various strategies nonviable, requiring manual intervention on behalf of
the investor actively managing them, while being reflected by simply replicating
market behavior.

Rather than adjusting strategies when providing liquidity for stablecoins, an
investor might decide to replicate instead, or might do so as an alternative to
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having to actively monitor market conditions or price data. Given the sophisti-
cation of liquidity providers on the largest Uniswap v3 pools, one could imagine
that their behavior in aggregate leads to a valuable strategy.



Chapter 2

Related Work

2.1 The Question of Active Management

Since the introduction of Uniswap, ways that liquidity providers can choose to
actively manage their liquidity, and more generally the recommended degree of
activity, have been suggested, even leading to the creation of protocols with the
aim of optimizing liquidity allocation. Most of these are concerned with Uniswap
v2 however, with a comparatively minor amount of research being done concern-
ing liquidity provision on Uniswap v3. One of the few approaches exploring this
problem is presented in [2], which formalizes the relationship between higher
liquidity concentration, and correspondingly higher fee revenue, and the risk of
price movements making the position inactive.

2.2 On Market Efficiency

An underlying assumption of replicating other liquidity providers is that, as a
whole, one expects them to exhibit some degree of efficiency in terms of liquid-
ity provision. Replicating the behavior of irrational actors makes little sense, so
this question is central to the idea of replicating other LPs. Most focus con-
cerning Uniswap and market efficiency is focused on pools, and on the existence
of arbitrage opportunities between different liquidity pools and protocols, not on
whether liquidity providers active their liquidity in an optimal manner. However,
there is enough research to indicate that a high amount of liquidity providers (at
least in larger pools) are using sophisticated strategies [3], leading to the ero-
sion of risk-free returns (which would indicate obvious inefficiencies). Generally
speaking, given the difficulty of of finding profitable strategies, this work assumes
that, at least when considering the largest liquidity pools available on Uniswap,
the strategies of other actors have achieved a level of sophistication sensible of
replication.

4



Chapter 3

Data Collection & Exploration

The Uniswap v3 subgraph [4] was used as the primary data source for block-level
position adjustments and swaps. Changes in a pool’s liquidity are represented
in the GraphQL schem as PositionSnapshot entities, containing (among other
data) the new liquidity of the position if it underwent an adjustment at that
block. If a liquidity position undergoes multiple changes in a single block, the
PositionSnapshot represents the final state at the end of it.

Swaps are represented in the Swap entity, which contains the input and output
amount, as well as the price tick after the swap occurred. As it is relatively
common for multiple swaps to occur in a single block, they are ordered by their
logIndex within the array of transactions.

Each PositionSnapshot and Swap belongs to a Transaction entity which
contains the gasPrice field. We calculate the mean gas price over all transactions
contained in a block to retrieve historical gas prices with block-level granularity.

This work investigates the USDC-WETH 0.03% pool specifically.

5



Chapter 4

Experimental Setup

Position replications and swap fees are computed separately in two different mod-
els. Due to high computational workload involved, calculations were done on a
5-node TPU cluster hosted on Google Compute Engine, heavily utilizing parallel
processing for most simulations.

4.1 Position Replication

Position replications utilize the JAX library [5], which is a wrapper around the
popular Numpy [6] library but providing the additional functionality of just-in-
time compilation using Tensorflow’s XLA compiler, and automatic differentiation.

The liquidity of each tick in the pool at a certain block number is incremen-
tally built up by applying the changes specified by each position snapshot up to
that point. An internal representation of each position is maintained, against
which every snapshot is compared in order to obtain a delta between the new
and old liquidity of that position. This liquidity delta is then applied to the pool
state, resulting in the new liquidity of each tick.

This real pool state is approximated given a certain set of restrictions and pa-
rameters, which depend on the specific type of approximation used, as explained
in 5.

Due to the Uniswap protocol’s extensive usage of high-precision numbers and
JAX’s restriction of only supporting 32-bit floats when using the TPU backend,
all liquidity and token amounts are internally multiplied with a precision reduc-
tion factor of 10−4 to avoid overflowing the float32 type. This does not lead to a
significant reduction in precision of the output, which was tested empirically.

The replicated positions are then written to a JSON file, following the Posi-
tionSnapshot specification to facilitate seamless comparison during when calcu-
lating swap fees.

6



4. Experimental Setup 7

4.2 Swap Fee Calculation

Swap fees are calculated using the Uniswap Typescript SDK, which implements
a range of functionalities, including (most notably for our purposes) functions for
liquidity calculation and the Pool class, specifically its swap method. By calling
the computeSwapStep function internally, this method considers the changes in
liquidity incurred when swapping ticks. While a swap fee calculation using the
spot price (which does not consider tick crossings) is likely accurate enough for
most applications, our use-case necessitates this function because we are specif-
ically concerned with the fraction of the total liquidity our replicated position
represent at tick.

Following a similar procedure as during position replication (4.1), the pool’s
entire liquidity at each block is adjusted according to the changes specified by the
block’s position snapshots. Each swap is then executed against the pool (in order
of logIndex), yielding a new price tick that the next swap will start from. The
total fee generated is split up among all the liquidity providers at each initialized
tick, in accordance with the fraction of the total liquidity they provide. After the
swaps have been executed, the pool state is updated with the positions produced
in the replication step. This order of operations is necessary to ensure temporal
consistency, as we should only be able to replicate a block once it has appeared on
the blockchain. The replicated positions thus only affect the subsequent blocks,
avoiding data leakage.



Chapter 5

Methods

5.1 Histogram Approximation

5.1.1 Limited Token Amounts

The real token amounts contained in a position Pi denoted by lower price pl,i,
upper price pu,i, and contained liquidity Li, depend on the pool’s current price p
and are given as follows:

p ≤ pl,i:

xi = L

√
pu,i −

√
pl,i

pl,i · pu,i
yi = 0

p ≥ pu,i:

xi = 0 yi = L(
√
pu,i −

√
pl,i)

pl,i < p < pl,i:

xi = L

√
pu,i −

√
p

√
p · pu,i

yi = L(
√
p−√

pl,i)

Thus, the total token amounts of all positions at state S can be written in
vector form as:

TS =

[
xtot
ytot

]
=

∑
Pi∈{P1,P2,...,Pn}

[
xi
yi

]
(5.1)

In order to directly compare the amount of tokens in the replicator’s positions
to the amount contained in the pool, both are converted to units of token x by
taking the dot product of the token vector and the price:

8



5. Methods 9

xS = TS
⊺ ·

[
1
1
p

]
(5.2)

This is done for each position individually, and for the total pool state, pro-
ducing the share of tokens (and liquidity) represented by each position. The goal
of each replication is to replicate this share of liquidity, under consideration of a
few cost minimization strategies.

Cost minimization strategies

Replicating every tick exactly would be highly inefficient, which is why a number
of cost minimization strategies were implemented.

1. Create approximations using the median of all values within a given bin_-
width. In particular JAX’s nanmedian function was chosen, which ignores
NaN values. This is necessary because some values will be set to NaN when
reducing the tick space around the price, as outlined in item 4.

2. Only replicate the pool every nth block. The average Ethereum block time
is between 12 and 14 seconds, which is much lower than the frequency with
which the average liquidity provider (even those conducting active man-
agement) adjusts their positions. By only replicating every nth_block,
a replicator can reduce the number of adjument operations considerably
(mints/burns), while retaining a high degree of accuracy in terms of repli-
cation.

3. Only change the pool state once it diverges enough from what its optimal
replication would be. By considering the divergence from the optimal repli-
cation (defined here as a percentage of the real liquidity), one can avoid the
problem of adjusting ones positions if the real state only diverges by a small
amount. The divergence is calculated by considering a max_err_factor,
which represents the percentage that the summed absolute value of the liq-
uidity difference at each tick (between the approximation and the real tick
state) can exceed before changing.

4. Limit replication to a restricted region around the price tick. Given the
assumption that the price tick is unlikely to move more than some amount
in the span of n blocks, one should be able to achieve the similar rates of of
return while simultaneously reducing the number of position adjustments
by limiting the replicated region to within a range around the price tick.
Due to the changing nature of the price tick however, this might instead
lead to an increase in the number of mints/burns. This tradeoff is explored
later by adjusting the price_range parameter of the model.
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Simulations and Interpretation

The pool’s liquidity state was replicated over its entire history, starting from
block number 12370624 (May 4, 2021) and ending at 1654197822 (June 2, 2022),
corresponding to a total number of x data points (position snapshots or swaps)
in that time span. A sweep of the parameters specified above was conducted,
totaling 17380 combinations.

The result of every strategy is comprised of 6 values that determine the per-
formance of each:

• feesTokenX: The resulting fee amount comprised of token X.

• feesTokenY: The resulting fee amount comprised of token Y.

• totalMints: The number of times a position was minted (before this
change, the position contained 0 liquidity).

• totalBurns: The number of times a position was burned (after this change,
the position contained 0 liquidity).

• totalAdds: The number of times liquidity was added to an existing posi-
tion.

• totalRemoves: The number of times liquidity was removed from an existing
position, without burning it (i.e. reaching 0 liquidity).

While adding and removing liquidity are technically done by the same mecha-
nism as minting and burning (the Uniswap protocol does not differentiate between
these operations), they were considered separately in this analysis due to a dif-
ference in gas costs when minting/burning liquidity for a new position vs. doing
so for an existing one.
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Figure 5.1: Correlation between parameters and results.

The correlation between simulation parameters and results is shown in figure
5.1. As one would expect, there is a strong negative correlation between bin_-
width and the number of position adjustment operations. This relationship is
stronger towards mints and burns than to additions and removals of liquidity,
which can be explained by considering that once the entire tick range is filled with
positions, further changes in the liquidity do not cause more mints or burns (once
a position has been initialized, it rarely reaches 0 liquidity again if the considered
price range is large enough). The total revenue as measured by feesTokenX and
feesTokenY is reduced by a smaller degree, which can be attributed to the higher
degree of liquidity dilution and reduced replication accuracy when compared to
a strategy with a smaller bin_width.

A similar pattern can be observed for the price_range parameter. While an
increase will dilute the invested liquidity, decreasing fee revenues, the number of
mints and burns are simultaneously reduced when compared to a smaller value.
A small price_range leads to ticks on the edges of the considered interval coming
in and out of range repeatedly, increasing the amount of mints/burns in favor of
what would have been adds/removes for a larger range.

Only considering changes at every nth_change multiple of the block number
leads to an expected decrease in the number of operations, also affecting the fee
revenue negatively.

The amounts of initially invested token amounts start_token_x and start_-
token_y have no impact on the number of operations, while exhibiting a direct
increase in revenue.

max_err_factor affects the revenue only marginally, while decreasing the
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number of additions and removals considerably. Mints and burns are reduced
to a smaller degree, which can again be explained by the considered tick range
usually filling up completely (i.e. being entirely covered by replicated positions).
After that point, every change in liquidity will be reflected by additions and
removals.

In order to compare different experiments directly, a strategy’s fee revenue
in terms of token X (USDC in this case) will be used as a stand-in for the total
value of the fees in both tokens combined, in order to simplify formulas and
visualizations. This can be justified by the high degree of correlation between
the the two as seen in figure 5.2.

Figure 5.2: Joint plot between token denominations of fee revenue.

Motivated by the increased revenue observed for smaller price ranges, one
might be interested in the point at which the loss due to position adjustments,
including mints, burns, additions removals, and swaps, exceeds the gain in fees.

Cost Sources and Breakeven Points

The point at which these various strategies reach profitability was established
by first collating historical block-level gas prices on the Ethereum mainnet with
the adjustment operations conducted at that block, and second, by considering
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(a) All investments. (b) Investments with values of less than $20000.

Figure 5.3: Profitability of various parameter combinations. Green points are
profitable, while red ones are not, with sizes indicating profit relative to the
highest absolute value.

various theoretical gas prices, taken as an average across the pool’s history. In-
tuitively, there should be a tradeoff between the losses due to increased gas fees
from higher degrees of active management on one hand, and the associated rise
in returns from better replication or concentration of liquidity on the other.

Another critical aspect to consider besides gas fees however, is the degree of
impermanent loss [7] an LP will incur over time for a given strategy. One might
suspect that this will be one of, if not the biggest source of losses for replicating
strategies as presented here, given that every position adjustment is accompanied
by a swap (except in the case of the price being out or range of all positions),
meaning that losses are actually realized, as opposed to remaining unrealized
as would have been the case had they not been withdrawn. For most liquidity
providers, impermanent loss already exceeds fee revenues [8].

The overall profit is calculated as:

profitX = fee_revenueX − op_costX − imp_lossX (5.3)

The total profit in USDC over a range of parameters is shown in figure 5.3a.
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(a) Normalized profits. Note that there are smaller
values than -30 (the minimum is -3413.02), which are
omitted for visualization purposes.

(b) Positive normalized profits.

Figure 5.4: Histogram of normalized profits. (b) shows the positive section of (a)
in more detail.

What is obvious from this figure is that less active strategies are much more likely
to be profitable, when compared to highly active ones. There is an especially
high influence of bin_width, with small values of this parameter accruing the
highest deficits, and largely preventing profitability, except for very high values
of nth_change. The points in this plot include all investment sizes, while figure
5.3b shows that the investment amount has considerable impact on a strategies
profitability, with those starting with a value of less than $20000 almost never
being profitable, regardless of parameter choices.

Given this high degree of dependency of profitability on investment size, this
relation was next explored by normalizing total profits with respect to the in-
vestment value required to achieve them, calculating normalized profits in the
following manner:

profit_norm =
profitX

investment_tvlX
(5.4)

As can be seen in figure 5.4a, the normalized profits form a long-tailed dis-
tribution, with 32.1% having a positive normalized profit. Normalized profits
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Figure 5.5: Scatter plot of strategies in parameter space, highlighting those with
a normalized profit greater than 1 in blue.

represent return on investment, meaning that strategies with a high normalized
profit are of particular interest. Figure 5.5 highlights the parameter distribution
of strategies with a normalized profit greater than 1, showing a much higher
density at bin widths larger than 20 and, most importantly, small price ranges.
This is due to the high concentration of liquidity around the price occurring for
these values, giving the investor a larger share of fee revenues. It stands to reason
that this should only hold if the price shows relatively little movement between
adjustments. This can either be due to the nature of the pool (tokens with a par-
ticularly volatile nature), or due to our own strategy (choosing nth_change such
that the price moves a lot between adjustments - even if the tokens themselves
are not highly volatile). The latter case is seen in this figure, which shows that
the density of viable strategies (those highlighted in blue) is much higher for low
values of nth_change, dropping of considerably above 1000.

This relationship between price_range and the normalized profit only oc-
curs at high values (defined here as being greater than 0), reversing for negative
normalized profits, as shown in figure 5.6.

While this shows that profitability is possible for a given set of parameters,
this strategy can be improved:

One simple (in terms of formulation) improvement over changing all replicated
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Figure 5.6: Behavior of normalized profit for varying values of price_range,
differentiated by whether norm_profit is positive. Note the different scales

positions when a certain threshold is reached, is to only adjust those positions
that are affected most by changes. With the algorithm given above, even the
adjustment of a single bin leads to liquidity being withdrawn from all other
positions, due to 100% of the available liquidity being invested at all times. This
effect can however be mitigated somewhat by increasing the error threshold.

In order to perform selective tick updates, it is necessary for the liquidity
provider to reserve a set amount of tokens used for covering liquidity deltas not
covered through swaps. A modification of the binning algorithm described above
was used to explore this scenario.

5.1.2 Reserved Liquidity and Unlimited Token Amounts

The general goal of this algorithm is to replicate a constant percentage of the
in-range liquidity, ignoring token amounts. By working in units of liquidity
rather than concrete token denominations, the complexity and cost associated
with swapping is avoided. One can imagine this strategy as representing an
investor with unlimited reserves, whose aim it is to minimize gas fees (by min-
imizing the number of position adjustments and swaps), at the expense of not
gaining fees from these amounts. While unrealistic, considering this scenario can
provide meaningful information about the independent contribution of parame-
ters, and most relevant for this section, on the reserve size needed to minimize
operational costs.
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Implementation Details

Positions are adjusted in such a manner so as to keep the fraction of the unlimited
approximation replicated at a constant value. Note that this differs from the
approach given above in the critical aspect that the total invested amount can
increase. Informally, this method seeks to answer the question: "If I wanted
to represent p% of the unlimited approximation at every block, what size reserve
would I need?", while the above asks: "Given a set amount of tokens, how should
I distribute them such that all positions represent the same q% of their unlimited
approximation?". While q can change across blocks (and almost always does),
p is constant, meaning, that as the TVL (total value locked) in a pool increases
(decreases) over time, the amount invested by the LP will follow suit, increasing
or decreasing in lockstep.

Apart from changing liquidity amounts, this implementation is mostly iden-
tical to the prior one. One problem that becomes apparent when using the same
nanmedian approach as described in the limited token scenario, is that, due to
not having an upper limit on the amount of invested liquidity, a decrease in
the price range (or increase in bin width) will almost always lead to a much
higher fee return. A replication that constrains the tick space tightly around
the price will set all other ticks to N/A, excluding them from providing any
information to the median calculation. This means that a high amount of liq-
uidity around the price (which is usually the case) will be propagated across
the entire bin, producing an unrealistically large amount of liquidity to repli-
cate. An alternative is to set out-of-range ticks to 0. The disadvantage of this
method is its tendency to lead to many 0-liquidity estimations (specifically, when
2 · price_delta < 0.5 · bin_width · tick_spacing), preventing us from gaining
information about a large section of the parameter space. Instead, the approach
taken here is to retain the nanmedian method, but normalizing the simulated
profit by the reserve size needed to achieve it (both converted to a common
token, USDC in this case)1:

profit_norm =
fee_revenueX − op_costX

reserveX
(5.5)

This is argued to be a sensible approach, given that the fee revenue per
position and swap is directly proportional to the fraction of total liquidity the
position represents in the crossed ticks.

1Note that the X subscript refers to the token type the variable is converted into (either
X or Y in the X/Y pool). Before conversion, fee_revenue and reserve consist of both token
types, while op_cost is in ETH (specifically Gwei), at least on the Ethereum blockchain.
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Figure 5.7: Results of replicating 1% of liquidity, δmax = 0.5, nadj = 1000. (Top
left) Total fee revenue in USD. (Top right) Amount of reserve utilized in USD.
Note the order of magnitude difference to fee revenues. (Bottom left) Sum gas
fees for position adjustments (mints, burns, adds, removes) in USD. (Bottom
right) Normalized total profit as seen in equation 5.5.

.

Simulated Reserve Sizes and Profits

In contrast to Uniswap v2, the token ratios present in each pool do not always
follow the price, meaning that the distribution of tokens within a reserve will
may not always contain the specific token amounts needed to replicate every
new change. This discrepancy is increased even further, when only considering a
selected range around the current price. Figure 5.8 shows the development of the
token ratio against that of the price, using a price_range of 500. While generally
following price movements, the tokens ratios of the positions surrounding the price
display a high degree of variance. Given this, the choice was made to distribute
the tokens in the replicator’s reserves according to the initial price, with the total
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Figure 5.8: Ratio of tokens vs. price over block numbers.
.

value of the reserve chosen to satisfy a given replication percentage.

Figure 5.7 shows the output of a simulation replicating 1% of the liquidity
within its range. Price range and bin width were varied while keeping other
parameters at the values price_range = 0.5, nth_change = 1000. One can see
that fee revenues increase for a reduction in price range (for the reason mentioned
in 5.1.2) up until a point, where strategies with a bin width smaller than 50
(not necessarily the least upper bound) peak, before sharply declining, while
the rest continue rising. This indicates that there is a tradeoff between the
overapproximation of liquidity (due to 5.1.2), which dominates for positions with
a large bin width, and the replicative power, which is restricted by a smaller
price range (especially in combination with a small bin width). In these regimes,
the issue with median estimation is less relevant due to small bin widths. This
interaction might seem counter-intuitive, especially given the pattern observed in
the limited-liquidity scenario, but makes more sense when one considers that this
method (in contrast limited liquidity) does not concentrate liquidity in smaller
price ranges, but replicates the same percentage, just as it would have done with
a larger price range.

5.2 Selective Position Adjustment

One obvious inefficiency of the approach outlined so far is the lack of selective
position adjustments. Once the maximum error threshold is reached, every bin
is updated, even if the actual change experienced by this position is minimal.
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The total number of position adjustments thus has an upper bound of n_bins ∗
n_blocks

nth_change , representing the main source of costs.

One can reformulate the approach outlined above, to only adjust the positions
most affected by change. By reconsidering max_err_factor as being per position
(instead of per state), only those positions whose absolute value has changed by
more than the given fraction will be adjusted.

The reserve sizes calculated in 5.1.2 represent the maximum reserve amount
necessary to replicate a given p% of the in-range liquidity at every point in time.
While required to achieve this percentage at every block, a more realistic sce-
nario would most likely not choose the maximum reserve sizes, in favor of simply
not replicating those outliers. By choosing the maximum theoretical reserve, a
replicating liquidity provider would need to either leave a large amount of to-
kens uninvested (to avoid changing the chosen percentage value), or invest those
tokens, changing p and introducing a higher amount swapping overall.

Because of this consideration, reserve sizes were recalculated for a given set
of percentages to replicate, choosing not the maximum token amount at each
adjustment (as done in section 5.1.2), but such that 80 % of position adjustments
can be done without swapping. On average, this leads to a reduction in reserve
sizes of 30 %, which is consistent across different parameter configurations.

While it was unfortunately not possible to investigate this approach for a
parameter set as large as the one used for the approximation method outlined
above, mostly due to computational constraints, it was found that choosing the
reserve in such a manner reduces the amount of liquidity additions and removals
only when considering very small values of max_error_factor and nth_change,
which is sensible, considering that these parameters were chosen with the idea
of reducing adjustment operations in the first place. Overall, the range of pa-
rameters for which a selective position adjustments make sense, only includes
strategies that are subject to high losses to begin with, making the reduction in
gas fees negligible.
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Conclusion

By designing and optimizing a model to approximate the liquidity space of a
Uniswap v3 pool, the profitability and overall behavior of replicating other liq-
uidity providers was explored. It was shown that replicating the liquidity space
in a very detailed fashion was generally unprofitable, due to the high number
of mints and burns required to achieve said replication. By approximating the
tick space to a coarser degree, however, strategies with net profit could be deter-
mined. In conclusion, a replicating agent requires a certain amount of minimal
capital for all strategies, but given this minimum amount, there is a clear ten-
dency for slower moving strategies (with fewer position adjustments) leading to
higher profits.
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