
Distributed

    Computing 

Designing PACAS Pilot
Bachelor’s Thesis

Triyan Bhardwaj

tbhardwaj@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Peter Belcák

Prof. Dr. Roger Wattenhofer

July 29, 2022



Acknowledgements

I am grateful to Prof. Dr. Roger Wattenhofer and my supervisor Peter Belcák
for offering such an enticing bachelor’s thesis to work on and for providing me
their time, support, and resources to see it through to completion. I would also
like to thank the Texas Instruments E2E community for contributing key insights
during development.

i



Abstract

This work implements PACAS Pilot – a prototype embedded system which will
serve as a test bed and development platform for distributed algorithms designed
to prevent collisions between light-sport aircraft (LSA). The final device consists
of a main board with a CPU, a GNSS receiver, a low power, long range radio
transceiver, and a Bluetooth Low Energy (BLE) transceiver. The main system is
assisted by a remote board, which is to be positioned externally on target aircraft,
as it relays back barometric altitude and airspeed data via a BLE connection.

Evaluation of the system showed very good 3D position accuracy (within 5 m
in the worst case) thanks to the GNSS module. Similarly, the differential pressure
sensor performed as expected, providing usable indicated airspeed values while
in motion. Furthermore, testing the transceiver revealed that it is capable of
transmitting large payloads up to approximately 750 m at 5.5 kbit/s.

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 System Design 2

2.1 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Choice of Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 System Implementation 5

3.1 PACAS Remote . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Limitations of microcontrollers . . . . . . . . . . . . . . . 5

3.1.2 Pressure sensor for altitude . . . . . . . . . . . . . . . . . 5

3.1.3 Differential pressure sensor for airspeed . . . . . . . . . . 7

3.1.4 Bluetooth, communication, and configuration interface . . 8

3.1.5 Application design . . . . . . . . . . . . . . . . . . . . . . 9

3.2 PACAS Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 The plug-in module . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Sensor data retrieval . . . . . . . . . . . . . . . . . . . . . 11

3.2.3 GNSS module . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.4 Long range transceiver . . . . . . . . . . . . . . . . . . . . 12

4 System Evaluation 14

4.1 Testing the Sensors and GNSS Module . . . . . . . . . . . . . . . 14

4.2 Testing the Transceiver’s Range . . . . . . . . . . . . . . . . . . . 18

iii



Contents iv

4.3 Analysing Power Consumption . . . . . . . . . . . . . . . . . . . 19

4.4 Measuring Execution Time . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusion 23

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bibliography 24

A PACAS Pilot Documentation A-1

A.1 PACAS Pilot Sub-devices . . . . . . . . . . . . . . . . . . . . . . A-1

A.1.1 PACAS Main . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.1.2 PACAS Remote . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.2 PACAS Pilot Bluetooth Protocol . . . . . . . . . . . . . . . . . . A-3

A.2.1 Packet structure . . . . . . . . . . . . . . . . . . . . . . . A-3

A.2.2 Implemented packets . . . . . . . . . . . . . . . . . . . . . A-3

A.2.3 Central state machine . . . . . . . . . . . . . . . . . . . . A-4

A.2.4 Peripheral state machine . . . . . . . . . . . . . . . . . . . A-4

A.3 PACAS Main C/C++ Library . . . . . . . . . . . . . . . . . . . . A-5

A.3.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5

A.3.2 Classes and data structures . . . . . . . . . . . . . . . . . A-5

A.3.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6

B Schematics and PCB Layout B-1



Chapter 1

Introduction

1.1 Motivation

Airborne collision avoidance systems (ACAS) are safety mechanisms designed to
reduce the risk of midair collisions between aircraft. They continuously moni-
tor the airspace in the immediate vicinity of the aircraft and issue audiovisual
warnings or even resolution advisories (recommended manoeuvres for averting
imminent collisions) to pilots, should a threat arise.

The collision avoidance problem has been solved by the likes of TCAS I and
II, for large aircraft that are equipped with transponders or radar, whose tra-
jectories are quite predictable, and where size, cost, and power consumption of
the system prove to be milder constraints. There exists no universal solution for
light-sport aircraft (LSA) such as gliders, small single engine aircraft, or non-
fixed-wing aircraft. A wide-spread technology in use today, FLARM, is deemed
suitable only for human-controlled, less agile, fixed-wing aircraft, thereby ex-
cluding paragliders, hang-gliders, hot air balloons, and drones, to name a few.
These diverse aircraft tend to cluster densely in uncontrolled airspace around
landmarks or areas of high lift. The absence of a system tailored towards the
aforementioned vehicles presents itself as an opportunity to develop a practical
and reliable embedded device, which competes with FLARM for the purpose of
collision detection and avoidance.

1.2 Related Work

This thesis is part of a larger project – Practical ACAS (PACAS), which aims to
implement a solution geared towards LSAs. While this work focuses on develop-
ing an early version of the actual system, a preceding project designed algorithms
to perform trajectory prediction and collision detection [1]. The proposed algo-
rithms consider the effects of thermals, which is a big advantage over FLARM as
the predictions become more accurate.

1



Chapter 2

System Design

This chapter presents a high level overview of PACAS Pilot’s design.

2.1 Design Objectives

The following features were deemed necessary in order to facilitate collision de-
tection and avoidance:

• an independent power supply for portability,

• a high precision pressure-temperature sensor,

• a pitot tube based airspeed sensor,

• an interface for wireless communication with the above sensors,

• an on-board serial interface for configuration,

• a low power GNSS module,

• a long range, low power transceiver, and

• a central processing unit managing the above and capable of running colli-
sion prediction algorithms

2.2 Overview

The PACAS Pilot device is split into two subsystems – PACAS Main and PACAS
Remote. The former manages the GNSS module, transceiver, and Bluetooth con-
nection to PACAS Remote, a separate board (with both sensors) to be mounted
externally on aircraft. Figure 2.1 shows a block diagram of the device containing
the aforementioned modules and how the microcontrollers (MCUs) communicate
with them.

2



2. System Design 3

Figure 2.1: PACAS Pilot block diagram as per Section 2.2. The grey line sep-
arates PACAS Main blocks from those of PACAS Remote. Red, solid, double
headed arrows indicate a wired serial communication bus, whereas dashed ones
indicate a wireless connection. Red, solid lines represent a wired connection with
no communication.

2.3 Choice of Hardware

The chosen parts had to be easily available, reasonably low cost, and designed
with low power consumption in mind. Texas Instruments’ MSP series of micro-
controllers are well known for their versatility and ultra-low power consumption.
Therefore, they were chosen to be the backbone of the entire system. The criteria
for the sensors were maximum digital resolution, suitable pressure ranges, and
a common communication interface. The remaining parts were picked based on
their flexibility and low power consumption. Table 2.1 lists the concrete parts
for the blocks in Figure 2.1.



2. System Design 4

Block Part name

MCU 1 Texas Instruments MSP-EXP432P401R

MCU 2 Texas Instruments MSP430G2553

Pressure sensor Measurement Specialties MS5607-02BA

Differential pressure sensor Honeywell ABP2MRRN005NDSA3XX

Bluetooth modules DSD Tech HM-19

GNSS module M5Stack GPS with u-blox NEO-M8N

Transceiver Semtech SX1276MB1MAS

Table 2.1: Part listing for PACAS Pilot corresponding to the blocks in Figure 2.1



Chapter 3

System Implementation

This chapter provides detailed insights into both sub-devices of PACAS Pilot
including reasoning behind some of the design decisions.

3.1 PACAS Remote

3.1.1 Limitations of microcontrollers

Before describing the integration of the sensors, it is necessary to consider how
calculations are carried out by the device. The on-board 16-bit microcontroller
is a Texas Instruments MSP430G2553, which features neither a floating point
unit (FPU) nor a hardware multiplier. Thus, all affected operations must be
emulated in software, resulting in slower execution and larger code size. To
tackle this issue, Texas Instruments provides IQmathLib, an optimised 32-bit
fixed point arithmetic library whose functions run considerably more efficiently
than equivalent ones from the standard math.h C library [2].

A brief summary of the number system used is as follows (further details can
be found in the user guide [3]). To approximate real numbers, A 32 bit binary
integer is split into N bits representing the fractional part with M := 32 − N
bits remaining for the integer part. This format has advantages over IEEE-754
floating point such as much higher, uniform precision over its range of values.
There are some caveats, however. Special care must be taken to select the correct
N and convert between different N -formats during a calculation such that all
intermediate results are represented correctly. As an example, multiplications
and divisions necessitate conversion between formats due to the varying scales of
the numbers.

3.1.2 Pressure sensor for altitude

The chosen sensor (a Measurement Specialties MS5607-02BA) provides raw dig-
ital temperature and pressure values. These are combined to calculate a tem-

5



3. System Implementation 6

perature compensated pressure reading in Pascals. The 1976 US Standard At-
mosphere defines a model for how atmospheric pressure P varies with altitude h
above a reference altitude hb, which is given by the barometric formula (Equa-
tion 3.1) [4].

P = Pb

[
Tb + (h− hb)Lb

Tb

]− g0M
R∗Lb

(3.1)

Where:

Pb ≡ reference pressure (Pa)
Tb ≡ reference temperature (K)
Lb ≡ temperature lapse rate (K/m)
h ≡ altitude at which pressure is calculated (m)
hb ≡ altitude of reference above sea level (m)
R∗ ≡ gas constant: 8.314 32 J/(mol·K)
g0 ≡ gravitational acceleration: 9.806 65 m/s2

M ≡ molar mass of Earth’s air: 0.028 964 4 kg/mol

In this model, Pb, Tb, Lb, and hb are multi-valued constants which correspond
to 7 different layers of the lower atmosphere. The subscript b ranges from 0 to
6. Only the values for b = 0 are relevant to this application since the aircraft
involved are not expected to fly higher than 11 km. The values for the first 3
layers up to 32 km are listed in Table 3.1.

b Pb (Pa) Tb (K) Lb (K/m) hb (m)

0 101 325.00 288.15 −0.006 5 0

1 22 632.10 216.65 0.000 0 11 000

2 5 474.89 216.65 0.001 0 20 000

Table 3.1: Constants for the barometric formula – up to 32 km, by layer of
atmosphere

With b = 0, Equation 3.1 can be solved for the altitude h to yield

h = h0 +
T0

L0

( P

P0

)−R∗L0
g0M

− 1

 (3.2)

=
T0

L0

[
e
−R∗L0

g0M
ln
(

P
P0

)
− 1

]
, (3.3)

where the power has been rewritten in exp-log form to suit the available functions
in IQmathLib. The resulting equation is the one implemented on the device and is



3. System Implementation 7

quite computationally intensive, requiring an estimated 13 951 cycles (1.16 ms at
12 MHz) to complete. A second order Taylor series approximation (Equation 3.4)
is also available to reduce CPU usage to 3 695 cycles (0.31 ms at 12 MHz) at
the cost of accuracy at higher altitudes. Figure 3.1 depicts the error of the
approximation.

h = a1 (P − P0) + a2 (P − P0)
2 +O

(
(P − P0)

3
)

(3.4)

Where:

a1 =
Ar
P0

a2 =
Ar(r−1)

2P 2
0

A = T0
L0

r = −R∗L0
g0M

Figure 3.1: Comparison of barometric formula and Taylor series approximation.
The series truncation error is a third degree polynomial in (P − P0). The true
altitudes at which the absolute error becomes 0.1 m, 1 m, 10 m and 100 m are
309.6 m, 671.9 m, 1 471.2 m, and 3 286.9 m respectively.

3.1.3 Differential pressure sensor for airspeed

The Honeywell ABP2MRRN005NDSA3XX differential pressure sensor has two
ports (to be attached to a pitot tube) – one to measure static pressure and the



3. System Implementation 8

other to measure dynamic pressure. Its measurement range is ±5 inH20 (±1 245.4
Pa), ideally allowing for an airspeed of up to 45 m/s. The sensor outputs a raw
digital pressure difference which, when converted to Pascals and combined with
Equation 3.5 – a consequence of Bernoulli’s incompressible flow equation, can be
used to derive an indicated airspeed (IAS) value vind.

vind =

√
2Q

ρair
(3.5)

Where:

Q ≡ differential pressure (Pa)
ρair ≡ density of air at STP: 1.225 kg/m3

The IQmathLib implementation of this formula requires around 3 925 cycles
(0.33 ms at 12 MHz), which is acceptable. Before using it, the sensor should
be calibrated to remove bias. This is achieved by taking the mean of multiple
readings (e.g. 256) and subtracting this from all subsequent readings. For the
best results, calibrations should be performed in a windless environment with
the static and dynamic ports connected (i.e. exposed to the same pressure) while
stationary.

3.1.4 Bluetooth, communication, and configuration interface

Both PACAS Main and PACAS Remote feature the DSD Tech HM-19 BLE
module, which essentially takes a UART connection and makes it wireless. Its
primary function is to relay sensor data to PACAS Main but the hardware also
doubles as a configuration interface for PACAS Pilot. The remote board’s module
is configured in peripheral (slave) mode so that it advertises itself to a central
(master) device, enabling PACAS Main or a smartphone to connect to it. PACAS
Main devices are not capable of being connected to from central devices.

A request-reply based communication protocol has been designed on top of
the Bluetooth link to facilitate data transfer. One transaction consists of a com-
mand/request sent by a central device followed by a response from the periph-
eral device (optionally returning data and the status of the transaction). The
command syntax and state machines are shown in Appendix A. Currently, four
commands are implemented, namely a power-up clear (PUC) request to restart
the device, a sensor data request, a flash write request, and a flash read request.
The sensor data command may be extended to include more sensors if needed.
Expanding the command set to incorporate new functionality is also possible.

When a definite collision detection algorithm is implemented on the PACAS
Pilot device, it will likely make available configurable parameters to the user. If
these parameters need to be persisted in and retrieved from non-volatile memory,



3. System Implementation 9

the flash read and write commands may be used. The MSP430G2553 has 256
bytes of “information memory”, split into four equal segments. One segment is
reserved by the microcontroller for its calibration coefficients, leaving three (192
bytes) for application level data. It should be noted that only one segment may
be written to per request and that a request always erases the entire segment in
question before writing to it (due to the nature of flash memory used).

Currently, an Android smartphone connection is supported through Serial
Bluetooth Terminal [5], which provides a console interface to send and receive
data from Bluetooth devices. A screenshot of the app in use with PACAS Re-
mote is shown in Figure 3.2. The final product should have an accompanying
lightweight, more user-friendly smartphone app if the configuration feature is
used.

Figure 3.2: Sending a read flash command to PACAS Remote with the Serial
Bluetooth Terminal app. The command 52 03 0E seen in the screenshot re-
quests the first 15 bytes stored in segment 0 of the microcontroller’s flash. In
this case, the string Hello, World!<CR><LF> was stored at the memory range
in question.

3.1.5 Application design

Figure 3.3 and Table 3.2 summarise the design of the application running on the
microcontroller.



3. System Implementation 10

Figure 3.3: State diagram of the remote board. The red arrows represent state
transitions, whose labels are events or conditions that must be fulfilled for the
transition to occur.

State Description

S0 Upon powering up, receiving a power-up clear (PUC) request
via Bluetooth, or pressing the reset button, the device begins
setting up GPIO pins and serial communications. Then it
initialises the sensors and calibrates the differential pressure
sensor.

S1 The device actively waits for a central Bluetooth device such
as PACAS Main or a smartphone to connect.

S2 The microcontroller polls the sensors for raw data which are
then low-passed to reduce noise.

S3 The microcontroller goes into low power mode 0 (LPM0), a
power saving state in which the CPU clock is stopped.

S4 The device serves a request received via Bluetooth. Details
regarding the implemented requests and communication pro-
tocol can be found in Appendix A.2.

SError This state is entered if an error is encountered during sen-
sor initialisation. Possible causes are ROM corruption, SPI
glitches, or lack of power. The only way to exit this state is
by resetting the device.

Table 3.2: Application state details as per Figure 3.3



3. System Implementation 11

3.2 PACAS Main

3.2.1 The plug-in module

PACAS Main in its current state is a plug-in module (also referred to as a Boost-
erPack in the Texas Instruments ecosystem) for the MSP-EXP432P401R Launch-
Pad. It interfaces to a DSD Tech HM-19 BLE module, a u-blox NEO-M8N GNSS
module, and a Semtech SX1276MB1MAS transceiver. As with PACAS Remote,
this device may be powered by batteries for portability. The necessary steps are
laid out in Appendix A.1.

The collision detection algorithm is to be implemented on the ARM Cortex-
M4F based MSP432 in either C or C++. It is recommended to program and
debug the microcontroller using the Micro-USB port and the Code Composer
Studio IDE.

3.2.2 Sensor data retrieval

As described in Section 3.1.4, sensor data may be requested from PACAS Remote
via the Bluetooth module. The pacas_main.h library provides a function to issue
the request and set up a transfer of the data into a suitable data structure. The
function only transmits the request. Interrupt service routines handle incoming
data and execute a callback function when all bytes have been received. This
enables other tasks to be executed while PACAS Remote handles the request.

3.2.3 GNSS module

The on-board concurrent GNSS module can simultaneously process signals from
up to 3 of 4 satellite constellations (GPS, GLONASS, Galileo, and BeiDou). It
supports the NMEA 0183 and the proprietary UBX protocols. These protocols
implement “sentences” (packets) with various quantities of interest (e.g. position,
velocity, and time). Although NMEA sentences are more universal, their disad-
vantage lies in the use of ASCII for all data in sentences. This results in poor
information density (especially for numeric data) and higher processing overhead
for the host system. The UBX protocol on the other hand encodes all its sen-
tences in binary format and maintains compatibility with little-endian systems
like the MSP432. Apart from this, data in the payload are aligned to memory
meaning a complex parser is unnecessary, enabling values to be read directly into
C structs (unlike NMEA). Having built a case for UBX, the chosen sentence is the
100 byte long UBX-NAV-PVT which provides a position, ground speed, heading,
and UTC time solution among other, less vital pieces of information. The full
sentence documentation can be found in the protocol specification [6].

The GNSS module’s navigation solution update rate is set to 10 Hz and runs



3. System Implementation 12

in sync with UTC. Polling the module for data is not an option since this may
take 100 ms plus processing time in the worst case if the request is made just after
an iteration finishes. A solution to this problem is the MSP432’s DMA, which can
transfer data from various input channels to memory without CPU intervention.
The GNSS module communicates with the microcontroller via UART, outputting
a PVT message as soon as one is ready. The corresponding DMA transfer has
been configured in the so-called “ping-pong” mode. This mode transfers data
to two separate buffers in an alternating fashion, switching after each iteration.
The user may then request a solution from the most recently updated buffer with
a corresponding call to a pacas_main.h library function. Since the buffers are
updated continuously, using two ensures that data part way through an update
is not visible to the user.

3.2.4 Long range transceiver

PACAS Main supports Semtech’s SX1276MB1MAS shield which features an
SX1276 LoRa modem, matching circuitry, and SMA connectors for antennae.
PACAS Main operates the shield in the licence-free EU868 (863-870 MHz) band.
LoRa is a long range, low power radio technology typically integrated in IoT
devices. A modulation technique similar to chirp spread spectrum (CSS) is used.
Each symbol is encoded by a chirp – a sinusoidal signal whose frequency lin-
early sweeps a range defined by the centre frequency and bandwidth used. The
achievable range and data rate are inversely correlated and depend on the selected
bandwidth (BW) and spreading factor (SF). A summary of expected performance
at different settings is given in Table 3.3.

The radio defines the physical layer, leaving higher level protocols up to users
to implement. A widespread communication protocol is LoRaWAN, which most
use cases employ. However, it requires the network to be arranged in a star
topology with dedicated (ground based) gateway devices in the centre to act
as message forwarders. In the context of PACAS Pilot, this is too restrictive
and inefficient, as the application demands direct broadcasts to all aircraft in
the vicinity. Therefore, the required unaddressed mesh network has been imple-
mented by porting a subset of the RadioHead library, a project started by M.
McCauley [7], to the MSP432.

When designing communication systems with a shared physical medium, ap-
propriate access control mechanisms must be in place for unhindered transmis-
sions. Slotted ALOHA and TDMA (time-division multiple access) are protocols
that were considered. However, these call for clock synchronisation across nodes
on an already bandwidth-limited network. Nevertheless, thanks to the LoRa mo-
dem’s Channel Activity Detection (CAD) feature, sensing the preamble chirps
and in many cases also the payload chirps on a specific channel in an energy ef-
ficient manner is possible [8]. As a result, certain features of CSMA/CA (carrier



3. System Implementation 13

sense multiple access with collision avoidance) are present on the device. When a
frame transmission request is made, the device executes a distributed interframe
space (DIFS) slot in which a fixed number (NDIFS) of CADs are performed to
check the channel occupancy state. If all CADs report an idle channel, another
window is opened where a random number NBO is generated followed by further
CADs being performed, with each idle report decrementing NBO. This back-off
stage ensures a lower probability of frame collisions should multiple transmitters
have started their DIFS slots at the same time. If a CAD reports a busy channel
during a DIFS slot or the back-off stage, the process is reset to the DIFS stage
(without regenerating NBO). A timeout is in place to abort the transmission if
too many unsuccessful DIFS slots occur. Once NBO reaches 0, the frame may be
transmitted.

Spreading Factor Bit Rate (bits/s) Range (km)

SF10 980 8

SF9 1 760 6

SF8 3 125 4

SF7 5 470 2

Table 3.3: Expected transceiver performance with a 125 kHz bandwidth setting,
according to Semtech [9]. The trade-off between bit rate and range is clearly
visible, as increasing the range by 2 km (roughly) halves the bit rate. The
majority of LSAs fly slow enough for a range of 0.5 to 2 km to be adequate.



Chapter 4

System Evaluation

This chapter presents the experiments devised to test various components of
PACAS Pilot along with their results.

4.1 Testing the Sensors and GNSS Module

Experiment setup

The primary targets for PACAS Pilot are gliders and similar LSAs. A typical
glider such as the Schleicher ASK 21 has a nominal stall speed (minimum air-
speed) of 35 knots (18.0 m/s) and a smooth-air never exceed speed of 150 knots
(77.2 m/s). Since access to real gliders was not convenient, the performance of
PACAS Remote and GNSS accuracy were tested on the road. The A51 highway
in the vicinity of Zurich Airport was elected as the venue, allowing for speeds of
100 km/h (27.8 m/s). Weather conditions were good at the time of the experi-
ment (few scattered clouds and a very occasional light breeze). During the test,
care was taken to drive on the rightmost lane, keep distance from other vehicles
to avoid effects from their slipstream, and maintain a constant speed of 100 km/h
while travelling north on the highway.

A pitot tube was constructed for the differential pressure sensor by attaching
a pen barrel to one port and to the other a small plastic tube closed at one end
with a circular opening on its side. Appropriate tubing was used between the
ports of the sensor and attachments to ensure a seal. The PACAS remote device
was enclosed in a box and then mounted firmly on the roof of a car. PACAS main
and the GNSS antenna were placed on the passenger side dashboard in good view
of the sky (i.e. the very right side of the car). Data was updated approximately
every 100 to 200 ms and no Taylor series approximation was used for altitude.

14



4. System Evaluation 15

Figure 4.1: PACAS Remote enclosed and mounted to the roof of a car

Experiment results

GNSS: Figure 4.2 shows the route covered during the test according to the
GNSS data. The GNSS module appears to give accurate results, especially when
moving at higher speeds. Figure 4.3 is an example of a stretch with relatively
high deviation from the expected path.

Figure 4.2: A plot of the coordinates recorded by the GNSS module during the
highway test



4. System Evaluation 16

Figure 4.3: Deviation from the approximate expected path (light blue) is within
5 m. It is worth noting that satellite image accuracy is a limiting factor in this
comparison.

Airspeed: Although a low pass RC filter (in software) was used to reduce noise
for sensor data, the collected airspeed data is still quite noisy. To remedy this,
a slower filter or a second stage may be implemented. During the time frame
denoted T in Figure 4.4, the car was travelling at 100 km/h (with the help of
cruise control). The mean airspeed during this period was 25.78 m/s (σ = 1.02
m/s), whereas the mean ground speed according to the GNSS module was 28.23
m/s (σ = 0.11 m/s). This discrepancy can be attributed to many things, such
as imperfect alignment of the pitot tube into the airstream or the fact that the
calculated value is indicated airspeed (IAS) and not true airspeed (TAS) which
takes actual air density into account. Another source of error may be the wind.
However, this is advantageous since a local estimate of wind speed and direction
can be derived by factoring in ground speed and the vehicle’s heading of motion
(provided by GNSS). This estimate can prove useful in the collision detection
algorithm were it to consider thermals and their evolution.



4. System Evaluation 17

Figure 4.4: Measured airspeed and ground speed. The red interval marks a loss
of GNSS signal due to a tunnel, invalidating the ground speed readings.

Altitude: Three sources of altitude data were considered – the barometer’s
converted reading, the GNSS module’s solution, and a reference elevation profile
generated offline by GPX Studio [10] based on the latitude and longitude data.
It should be noted that the elevation profile is not ground truth since it is derived
from location data with some, albeit small, error. Additionally, results from the
GNSS depend on the positions of the satellites in the sky (satellites close to the
horizon generally do not provide good altitude accuracy). In Figure 4.5, it can be
seen that the GNSS readings exhibit a smooth profile and are in agreement with
the reference. On the other hand, the barometer vaguely resembles the reference
profile and shows more erratic behaviour (especially in the high speed regime)
with sudden dips in altitude which may be explained by turbulent air flowing
over the sensor. This problem is easily solved by constructing a better container
for PACAS Remote. The offset of approximately 40 to 80 m from the reference
is acceptable since all devices will use the same scale (the absolute altitude is of
lesser importance).

Figure 4.5: Altitude measured during the trip from various sources. The red
interval marks a loss of GNSS signal due to a tunnel, invalidating the GNSS
altitude readings and elevation profile.



4. System Evaluation 18

4.2 Testing the Transceiver’s Range

Experiment setup

Having an adequate range is critical to the application’s success. To determine
PACAS Main’s range, a test with two transceivers was carried out in a park
situated next to a suburban area. The channel settings were: 868.1 MHz centre
frequency, 125 kHz bandwidth, spreading factor 7, and coding rate 4/5. These
were chosen for their high bit rate and sufficient range as shown in Table 3.3.
Positioned in line of sight, the transceivers were made to exchange 80 byte long
payloads at various separations and the received signal strength indicator (RSSI)
was recorded for one device. RSSI (measured in dBm) is an indication of the
power of signals received from other transmitters, referenced to 1 mW. Since the
intensity of radio waves follows an inverse square law, a 6 dBm decrease in RSSI
(a reduction in power by a factor of 4) is expected whenever the distance doubles.

Experiment results

The measured RSSI values at various distances are plotted in Figure 4.6. The
transceiver exceeds the minimum desired range of 500 m but does not achieve
the 2 km mark predicted on paper. The transmissions already occur at a power
setting of 14 dBm, which is the limit on the 868.1 MHz frequency (regulated
by ETSI [11]). The transceiver may transmit at 15 dBm in the 869.40 MHz to
869.65 MHz band, which has a limit of 27 dBm. Other ways to increase range
include using a lower bandwidth or higher spreading factor, both of which incur
a cost in transmission speed.

Figure 4.6: RSSI measured at separations of 0.1 m, 1 m, 10 m, 128 m, 194 m, and
743 m. There are 25 measurements for each distance. Messages were exchanged
reliably up to a distance of 743 m. Beyond this distance, the RSSI drops below the
transceiver’s sensitivity on the chosen channel, meaning frames are not always
demodulated successfully. The trendline shows a -19.3 dBm/decade gradient,
which is in line with the expected -20 dBm/decade.



4. System Evaluation 19

4.3 Analysing Power Consumption

Experiment setup

As with any battery operated embedded system, minimal power consumption is a
desirable feature. EnergyTrace is a program in Code Composer Studio provided
by Texas Instruments which allowed the power drawn by PACAS Pilot’s sub-
devices to be measured, provided the current remained below a 75 mA threshold.
The necessary measurement hardware is present on the MSP432 LaunchPad.

PACAS Main’s performance depends heavily on the collision detection algo-
rithm and frequency of transceiver usage. Therefore, only power consumption
for individual operation modes could be determined. For PACAS Remote, mea-
surements were made for the main loop of the application with sensor commands
being served approximately every 100 to 200 ms.

Experiment results

PACAS Main: Table 4.1 profiles the device’s power consumption in various
modes. To clarify, the nominal state for PACAS Main is characterised by the
following:

• The microcontroller is in LPM0

• PACAS Main is connected to PACAS Remote via Bluetooth

• The GNSS module is reporting a 3D fix

• The transceiver is not used (idle mode)

• Periodic interrupts (e.g. DMA and timer) are being served

An estimate for power consumption can be made assuming the final appli-
cation’s main loop takes one second and that this execution time is split up in
the following way: 500 ms in active mode for updating trajectory and collision
predictions, 200 ms for transmission, 300 ms for reception. This split results in
a mean power of 102.5 mW. Two AA batteries in series with a capacity of 2500
mAh (27 kJ) could therefore power the device continuously for 73.2 hours.

PACAS Remote: Figure 4.7 shows the power consumed by the PACAS Remote
application at two different main clock frequencies (12 MHz and 1 MHz). The
average power at 12 MHz and 1 MHz were 13.48 mW and 10.41 mW respectively,
meaning reducing the clock frequency 12-fold reduced the power by 23%. The
reason for this small decrease is the Bluetooth module, which runs independently
at 7.89 mW on average when connected.



4. System Evaluation 20

Mode Mean Power (mW)

Nominal 16.0

Nominal + MCU in active mode 21.8

Nominal + Update sensor data & PVT at 5 Hz 17.5

Nominal + Transceiver in RX mode 49.6

Nominal + Transceiver in TX mode 383.7

Table 4.1: PACAS Main power consumption in various modes (12 MHz clock).
Note that the final measurement was performed using an oscilloscope since it
exceeds EnergyTrace’s current limit.

PACAS Remote’s energy source is a 3 V CR2032 cell. Typically, these have a
capacity of 220 mAh (2376 J). This implies that the device is capable of operating
continuously for 49.0 hours at 12 MHz and 63.4 hours at 1 MHz before needing
a battery replacement.

Figure 4.7: PACAS Remote main loop power consumption at 12 MHz (top) and
1 MHz (bottom)



4. System Evaluation 21

4.4 Measuring Execution Time

Experiment setup

To determine the execution times of various tasks, a software timer with a resolu-
tion of 1 ms was used. Therefore all quoted execution times have an uncertainty of
1 ms. The measured tasks were: polling PACAS Remote’s sensor data, updating
PVT values, and sending messages through the transceiver with one concurrent
transmitter in the same room. To estimate the Bluetooth transmission latency, a
version of the sensor task was measured with a wired UART connection between
PACAS Main and PACAS Remote. Both microcontrollers used a 12 MHz main
clock for this experiment.

Experiment results

Sensor Task: This task has a high variance in execution time since the appli-
cation on PACAS Remote may be polling the sensors when the request is made,
which has a higher priority than serving them. Approximately 25 ms are required
to update and filter raw sensor values. Converting raw values to pressures first
and then deriving altitude and airspeed requires an additional 5 ms. This ex-
plains the range of values seen in the right histogram in Figure 4.8. On average,
the response time without Bluetooth is 11.5 ms. Considering the version with
Bluetooth, the average latency increases to upwards of 5 times that amount. In
less than 1% of cases, the execution time of one request goes beyond 100 ms,
cutting off at about 125 ms.

Figure 4.8: Sensor task execution time with Bluetooth (left) and without Blue-
tooth for comparison (right). There are 1000 requests in each case. With Blue-
tooth, 99% of requests are served within 98 ms, with a median of 59 ms. On the
other hand, the 99th percentile for the UART version is 25 ms, with a median of
9 ms.



4. System Evaluation 22

PVT Update Task: Updating the PVT struct is simply a matter of calculating
a checksum over the received buffer and then copying it to the data structure.
These operations are consistent and efficient, resulting in an execution time of
less than 1 ms.

Transceiver Send Task: Packet transmissions are subject to the stochastic
CSMA/CA procedure described in Section 3.2.4. Execution times vary based on
channel settings, channel occupancy, as well as payload length. Test runs with
two different payload sizes (80 bytes and 4 bytes) and channel settings (spreading
factors 7 and 8) are shown in Figure 4.9.

Figure 4.9: Transceiver send task execution time (including transmission time).
The left and right columns correspond to 80 byte and 4 byte payloads respec-
tively, whereas the top and bottom rows correspond to spreading factors 7 and 8
respectively. There are 500 transmissions in each case. The 99th percentiles for
each case in clockwise order starting from the top left are: 275 ms, 129 ms, 208
ms and 400 ms



Chapter 5

Conclusion

This chapter summarises the thesis and provides an outlook.

5.1 Summary

The design objectives laid out in Section 2.1 are met satisfactorily and the way
has been paved to implement and test concrete algorithms. Splitting PACAS
Pilot into two devices, although necessary, increased system complexity and de-
velopment time. Thanks to the flexibility and ease of use of chosen sensors and
GNSS module, integrating these subsystems did not present itself as a hurdle.
The 3D positional and velocity data provided by the GNSS and the airspeed
measured by the differential pressure sensor all showed good accuracy during
tests. PACAS Remote’s barometer, however, despite its high resolution, behaved
slightly erratically when faced with high speed. Special care must be taken when
mounting PACAS Remote on aircraft to ensure its pressure sensor is exposed to
static air only. PACAS Pilot’s Bluetooth modules enabled seamless connectivity
between its sub-devices and allowed for the implementation of a configuration
interface, which may be employed by the application to change its behaviour ac-
cording to user preferences. Finally, the LoRa based transceiver proved capable
of transmitting data up to a distance of about 750 m at approximately 5.5 kbit/s.

5.2 Future Work

There is potential for the device to be improved and expanded upon. A low
power display should be incorporated to inform pilots whether any collisions are
likely, accompanied by aural warnings if necessary. Apart from this, an IMU
and sensor fusion algorithm could be added to increase the 3D position accuracy
and contribute to redundancy in case the GNSS signal is poor. Furthermore, a
dedicated study could be conducted to determine how to optimise throughput and
enable more reliable communication in the LoRa mesh network before attempting
to scale the system up.

23



Bibliography

[1] P. Oberlin, “Collision Detection Algorithm for a Practical Airborne
Collision Avoidance System,” Mar. 2022. [Online]. Available: https:
//pub.tik.ee.ethz.ch/students/2021-HS/BA-2021-30.pdf

[2] “MSP-IQMATHLIB Fixed Point Math Library for MSP,”
Texas Instruments Incorporated, accessed: 21.04.2022. [On-
line]. Available: https://www.ti.com/tool/MSP-IQMATHLIB?DCMP=
ep-mcu-msp-iqmath-en&HQS=ep-mcu-msp-iqmath-pr-sw2-en

[3] “MSP430 IQmathLib Users Guide version 01.10.00.05,” Texas
Instruments Incorporated, Jan. 2015. [Online]. Available:
https://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/
IQmathLib/01_10_00_05/exports/MSP430-IQmathLib-UsersGuide.pdf

[4] “U.S. Standard Atmosphere 1976,” National Oceanic and Atmospheric
Administration, National Aeronautics and Space Administration,
and United States Air Force, Oct. 1976. [Online]. Available:
https://www.ngdc.noaa.gov/stp/space-weather/online-publications/
miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere_
st76-1562_noaa.pdf

[5] K. Morich, “Serial Bluetooth Terminal,” May 2022, Vers. 1.38, Google Play
Store. [Online]. Available: https://play.google.com/store/apps/details?id=
de.kai_morich.serial_bluetooth_terminal&hl=en&gl=US

[6] “u-blox 8 / u-blox M8 Receiver description Including pro-
tocol specification,” u-blox, Nov. 2021. [Online]. Avail-
able: https://content.u-blox.com/sites/default/files/products/documents/
u-blox8-M8_ReceiverDescrProtSpec_UBX-13003221.pdf

[7] M. McCauley, “RadioHead Packet Radio library for embed-
ded microprocessors,” accessed: 10.05.2022. [Online]. Available:
https://www.airspayce.com/mikem/arduino/RadioHead/index.html

[8] A. Gamage, J. C. Liando, C. Gu, R. Tan, and M. Li, “LMAC: Efficient
Carrier-Sense Multiple Access for LoRa,” in 26th Annual International
Conference on Mobile Computing and Networking (MobiCom ’20), Sep.
2020. [Online]. Available: https://wands.sg/publications/full_list/papers/
MobiCom_20_1.pdf

24

https://pub.tik.ee.ethz.ch/students/2021-HS/BA-2021-30.pdf
https://pub.tik.ee.ethz.ch/students/2021-HS/BA-2021-30.pdf
https://www.ti.com/tool/MSP-IQMATHLIB?DCMP=ep-mcu-msp-iqmath-en&HQS=ep-mcu-msp-iqmath-pr-sw2-en
https://www.ti.com/tool/MSP-IQMATHLIB?DCMP=ep-mcu-msp-iqmath-en&HQS=ep-mcu-msp-iqmath-pr-sw2-en
https://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/IQmathLib/01_10_00_05/exports/MSP430-IQmathLib-UsersGuide.pdf
https://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/IQmathLib/01_10_00_05/exports/MSP430-IQmathLib-UsersGuide.pdf
https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere_st76-1562_noaa.pdf
https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere_st76-1562_noaa.pdf
https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere_st76-1562_noaa.pdf
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal&hl=en&gl=US
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal&hl=en&gl=US
https://content.u-blox.com/sites/default/files/products/documents/u-blox8-M8_ReceiverDescrProtSpec_UBX-13003221.pdf
https://content.u-blox.com/sites/default/files/products/documents/u-blox8-M8_ReceiverDescrProtSpec_UBX-13003221.pdf
https://www.airspayce.com/mikem/arduino/RadioHead/index.html
https://wands.sg/publications/full_list/papers/MobiCom_20_1.pdf
https://wands.sg/publications/full_list/papers/MobiCom_20_1.pdf


Bibliography 25

[9] “LoRa and LoRaWAN: A Technical Overview,” Semtech Corporation,
accessed: 10.07.2022. [Online]. Available: https://lora-developers.semtech.
com/documentation/tech-papers-and-guides/lora-and-lorawan/

[10] “GPX Studio,” accessed: 09.07.2022. [Online]. Available: https:
//gpx.studio/

[11] “ETSI EN 300 220-2 V3.1.1,” European Telecommunications Standards
Institute, Feb. 2017. [Online]. Available: https://www.etsi.org/deliver/etsi_
en/300200_300299/30022002/03.01.01_60/en_30022002v030101p.pdf

https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://gpx.studio/
https://gpx.studio/
https://www.etsi.org/deliver/etsi_en/300200_300299/30022002/03.01.01_60/en_30022002v030101p.pdf
https://www.etsi.org/deliver/etsi_en/300200_300299/30022002/03.01.01_60/en_30022002v030101p.pdf


Appendix A

PACAS Pilot Documentation

Finer details of the implementation are given in this appendix. The reader is en-
couraged to familiarise themselves with the material in Chapter 2 and Chapter 3
first.

A.1 PACAS Pilot Sub-devices

A.1.1 PACAS Main

Assembly and power

The PACAS Main board plugs into the MSP-EX432P401R LaunchPad’s 40 pin
BooterPack header through J1-J4. To achieve this, the jumper on the LaunchPad
labelled “Blue P2.2” must be removed to make way for J14 to connect. PACAS
Main reroutes the connection to the blue LED to P4.1. The Bluetooth module
plugs into J9, GNSS into J10-J13, and transceiver into J5-J8. The assembled
device is depicted in Figure A.1.

The device may be powered through the LaunchPad’s Micro-USB port (e.g.
by a computer or power bank) or by external batteries. For the second option,
it is necessary to remove all jumpers from the LaunchPad’s J101 isolation block
save GND, RXD, TXD, and RST. Only then may a battery pack be connected
to either VEXT or BATT and GND on J15 of PACAS Main. The corresponding
position on switch SW1 must be selected to turn the 3.3 V and 5 V power
regulators on.

A.1.2 PACAS Remote

Assembly, power, and programming interface

The only additional components to be added are a Bluetooth module which
connects to J2 and a pitot tube which connects to the differential pressure sensor’s

A-1



PACAS Pilot Documentation A-2

Figure A.1: Top Left: PACAS Main, Top Right: PACAS Remote, Bottom Left:
PACAS Main power selection, Bottom Right: PACAS Remote power selection
and programming interface

ports (the designation of static/dynamic port is up to the user).

PACAS Remote’s microcontroller, Bluetooth module, and sensors require a
stable 3.3 V power supply. To this end, the board has a CR2032 coin cell holder
and a boost converter designed for the necessary voltage. Setting the slide switch
to the BATT position will use the on-board battery. External batteries (of up
to 3V) may be used instead by switching to the VEXT position and connecting
a battery to the VEXT and GND pins. Finally, a 3.3 V supply sourced from
an external regulator (e.g. from a microcontroller evaluation board) can be used
by selecting OFF on the slide switch and connecting the 3V3 and GND pins to
the source. As the name suggests, the OFF position also switches off the board
(given that the 3V3 pin is left unconnected).

The microcontroller may be reprogrammed and debugged by connecting the
3V3, GND, RSTB, and TEST pins to their counterparts on an eZ-FET debug-
ger which come with MSP430 LaunchPads (such as the MSP-EXP430FR5994
employed in this project). Other methods have not been tested.



PACAS Pilot Documentation A-3

A.2 PACAS Pilot Bluetooth Protocol

A.2.1 Packet structure

The protocol is a request-reply style one where the central device (master) issues
commands to the peripheral device (slave). A packet consists of a 2 byte header
containing the packet type and total byte count including the header. This is
followed by a payload of up to 256 bytes. The first payload byte is usually inter-
preted as settings for the transaction in a request or status in a reply. Timeouts
are in place to protect from incomplete or lost packets.

Figure A.2: Packet structure

A.2.2 Implemented packets

Figure A.3 lists the available packets. Library functions are available to send and
act on these packets. For the sensor data request packet, the settings byte may be
either 0 or BT_SENSOR_SETTINGS_BARO_USE_TAYLOR to choose whether a Taylor
series approximation is used for altitude. In the case of read and write flash pack-
ets, the settings byte is the logical or of BT_FLASH_SEG_M and BT_FLASH_XFER_NB
where M is 0, 1, or 2 and N ranges from 01 to 64. This sets the flash segment
and number of bytes for the transaction. Generally, a status byte 0 indicates an
error-free transaction.

Figure A.3: Available packets (literals are in hexadecimal format)



PACAS Pilot Documentation A-4

A.2.3 Central state machine

Figure A.4: PACAS Main Bluetooth state machine

A.2.4 Peripheral state machine

Figure A.5: PACAS Remote Bluetooth state machine



PACAS Pilot Documentation A-5

A.3 PACAS Main C/C++ Library

A.3.1 Modules

Module name Files Remarks

utils utils.(h/c) Functionality such as delay, ran-
dom number generator and mil-
lisecond counter

serial serial.(h/c) Provides a printf style function

bluetooth btll.(h/c),
btmain.(h/c),
bt_protocoldefs.h

Implements the Bluetooth com-
munication protocol described
in Appendix A.2. Microcon-
troller specific operations are
handled by btll, with btmain
providing higher level function-
ality.

gnss gnss_dma.(h/c),
gnssll_dma.(h/c)

Implements interactions with
the GNSS module as described
in Section 3.2.3. Microcontroller
specific operations are handled
by gnssll_dma, with gnss_dma
providing higher level function-
ality.

radiohead RH_RF95.(h/cpp), low
level drivers

A port of the RH_RF95 module
of the RadioHead project

pacas_main pacas_main.(h/cpp) A module that ties the above
into one header file

Table A.1: Modules in the pacas_main.h library

The only dependency of pacas_main.h is on Texas Instruments’ DriverLib for
the MSP432 which must be included in the project directory.

A.3.2 Classes and data structures

Module utils

None



PACAS Pilot Documentation A-6

Module serial

None

Module bluetooth

None

Module gnss

struct GNSS_PVT_t: A 92 byte large data structure to store a UBX-NAV-PVT
message [6].

Module radiohead

class RH_RF95: Driver to send and receive unaddressed, unreliable datagrams
via a LoRa capable radio transceiver (e.g. SX1276) [7]. An instance of the radio
is declared in pacas_main.cpp.

Module pacas_main

struct PACAS_SENSOR_DATA_t: Stores altitude and airspeed data.

A.3.3 Functions

This section documents most of the available functions, grouped by module.

Module utils

1 // Initialise utils module
2 void Utils_Init();
3

4 // Delay for the given number of ms (goes into LPM0, stopping CPU clock)
5 void delayMS(uint32_t ms);
6

7 // Generate a random integer from the set {from, ..., to}
8 // Uses a seed generated by the ADC and an LCG to generate the numbers
9 uint32_t random(uint32_t from, uint32_t to);

10

11 // Return the number of milliseconds since Utils_Init() was called
12 uint32_t millis();



PACAS Pilot Documentation A-7

Module serial

1 // Initialise EUSCIA0 for UART mode at the baud rate
2 // PRINT_UART_BAUDRATE (default: 115200)
3 void uart_println_Init();
4

5 // Print a formatted string to a host computer
6 // This function may be used exactly like printf()
7 // However, support for floats may need to be configured in the IDE settings
8 void uart_println(const char* str, ...);

Module bluetooth

1 // Initialise state machine and EUSCIA2 for UART mode at the baud rate
2 // BT_UART_BAUDRATE (default: 115200)
3 void BT_Init();
4

5 // Transmit a string of length n
6 void BT_TransmitStr(char* istr, uint8_t n);
7

8 // Request sensor data. The default callback function will transfer results
9 // to dst which may be an array or of type PACAS_SENSOR_DATA_t (or anything

10 // which uses contiguous blocks of memory)
11 // The value of settings may be 0 or BT_SENSOR_SETTINGS_BARO_USE_TAYLOR
12 // which controls whether a Taylor series approximation is used to calculate
13 // the altitude
14 void BT_SendSensorCommand(void* dst, uint8_t settings);
15

16 // Write to PACAS Remote's flash. The default callback function is empty
17 // src is a pointer to the beginning of the data source
18 // settings must be BT_FLASH_SEG_M | BT_FLASH_XFER_NB
19 // Where M is 0, 1, or 2 and N ranges from 01 to 64.
20 // This selects the destination flash segment and number of bytes to be
21 // transferred.
22 // Example to write a byte to flash segment 0:
23 // BT_SendWriteFlashCommand(src, BT_FLASH_SEG_0 | BT_FLASH_XFER_01B);
24 void BT_SendWriteFlashCommand(uint8_t* src, uint8_t settings);
25

26 // Read from PACAS Remote's flash. The default callback function will transfer
27 // results to dst
28 // dst is a pointer to the beginning of the destination
29 // settings must be BT_FLASH_SEG_M | BT_FLASH_XFER_NB
30 // Where M is 0, 1, or 2 and N ranges from 01 to 64.
31 // This selects the source flash segment and number of bytes to be transferred.
32 // Example to read the first 15 bytes from flash segment 3:
33 // BT_SendWriteFlashCommand(dst, BT_FLASH_SEG_3 | BT_FLASH_XFER_15B);
34 void BT_SendReadFlashCommand(uint8_t* dst, uint8_t settings);



PACAS Pilot Documentation A-8

35 // Restart PACAS Remote. This terminates the Bluetooth connection as a side
36 // effect. There is no reply for this command
37 void BT_SendPowerUpClearCommand();
38

39 // Returns a non-zero value if an error was encountered during the previous
40 // command such as a timeout or flash error
41 uint8_t BT_GetLastTransactionStatus();
42

43 // These callback functions are executed after a response is received.
44 // They may be implemented/expanded upon elsewhere in user code.
45 // These functions are called from within an ISR so best practice is to keep
46 // them short.
47 inline void BT_SensorDataCallback();
48 inline void BT_WriteFlashCallback();
49 inline void BT_ReadFlashCallback();

Module gnss

1 // Initialise DMA, EUSCIA1 for UART mode at the baud rate
2 // GNSS_UART_BAUDRATE (default: 115200)
3 // Also enables the PVT message on the GNSS module
4 // A delay of 5 s should be used after calling this function to enable the
5 // GNSS module to start up
6 void GNSS_Init();
7

8 // Disable DMA and PVT message
9 void GNSS_Deinit();

10

11 // Write the most recently received PVT message into pvt
12 // Returns a non-zero value if data is corrupted
13 uint8_t GNSS_UpdatePVT(GNSS_PVT_t* pvt);
14

15 // Return a UNIX timestamp in ns from the given PVT struct
16 uint64_t GNSS_TimestampNS(GNSS_PVT_t* pvt);

Module radiohead

The documentation for the ported RH_RF95 class and low level drivers can be
found on the RadioHead website [7]. Some changes were made to the member
functions of the RH_RF95 class which are described below.

1 // New default constructor for MSP432 with channel settings:
2 // 868.1 MHz, BW 125 KHz, SF 7, CR 4/5, TX power +14 dBm
3 RH_RF95::RH_RF95();



PACAS Pilot Documentation A-9

4 // Executes the CSMA/CA routine before sending a packet
5 bool RH_RF95::send(const uint8_t* data, uint8_t len);

Module pacas_main

1 // Initialise all other modules and connect to PACAS Remote
2 // Use verbose = 0 to suppress progress messages
3 // Returns a non-zero value if a module failed to initialise
4 uint8_t PACAS_SystemInit(uint8_t verbose);

Minimal working example

1 #include <pacas_main.h>
2 ...
3 PACAS_SENSOR_DATA_t sensor_data;
4 GNSS_PVT_t pvt;
5 char radio_buf[19] = {0};
6 ...
7 void main(void)
8 {
9 WDT_A->CTL = WDT_A_CTL_PW | WDT_A_CTL_HOLD; // Stop watchdog timer

10 if(PACAS_SystemInit(1))
11 while(1); // Some module failed to initialise
12 ...
13 while(1)
14 {
15 BT_SendSensorCommand(&sensor_data, 0); // Request sensor data
16 // Do something asynchronously (60-150 ms) here while computation occurs
17 // When you are ready to use sensor data, use the next 2 statements
18 while(BT_STATE != BT_IDLE);
19 if(BT_GetLastTransactionStatus())
20 uart_println("Error updating sensor data.");
21

22 if(GNSS_UpdatePVT(&pvt)) // Now update PVT data
23 uart_println("Error updating PVT solution.");
24

25 snprintf(radio_buf, 19, "%llu", GNSS_TimestampNS(&pvt));
26 sx1276.send(radio_buf, 19); // Transmit UNIX time via transceiver
27 ...
28 }
29 }



Appendix B

Schematics and PCB Layout

The schematics and PCB layouts of both boards are provided for reference.

B-1







PACAS_MAIN PCB Layout



PACAS_REMOTE PCB Layout


	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 System Design
	2.1 Design Objectives
	2.2 Overview
	2.3 Choice of Hardware

	3 System Implementation
	3.1 PACAS Remote
	3.1.1 Limitations of microcontrollers
	3.1.2 Pressure sensor for altitude
	3.1.3 Differential pressure sensor for airspeed
	3.1.4 Bluetooth, communication, and configuration interface
	3.1.5 Application design

	3.2 PACAS Main
	3.2.1 The plug-in module
	3.2.2 Sensor data retrieval
	3.2.3 GNSS module
	3.2.4 Long range transceiver


	4 System Evaluation
	4.1 Testing the Sensors and GNSS Module
	4.2 Testing the Transceiver's Range
	4.3 Analysing Power Consumption
	4.4 Measuring Execution Time

	5 Conclusion
	5.1 Summary
	5.2 Future Work

	Bibliography
	A PACAS Pilot Documentation
	A.1 PACAS Pilot Sub-devices
	A.1.1 PACAS Main
	A.1.2 PACAS Remote

	A.2 PACAS Pilot Bluetooth Protocol
	A.2.1 Packet structure
	A.2.2 Implemented packets
	A.2.3 Central state machine
	A.2.4 Peripheral state machine

	A.3 PACAS Main C/C++ Library
	A.3.1 Modules
	A.3.2 Classes and data structures
	A.3.3 Functions


	B Schematics and PCB Layout

