
Distributed

 Computing

Data Curation Mechanisms for
Algorithm Learning

Bachelor’s Thesis

Alec Pauli

paulia@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Peter Belcák, Benjamin Estermann

Prof. Dr. Roger Wattenhofer

July 25, 2022

Abstract

Data Curation is one of the essential bases of machine learning. Moreover, while
image or speech tasks are implementable quite well via current machine learning
models, the same success remains hidden for highly structured data such as tasks
on code. One fundamental reason is the lack of large enough and suitable curated
datasets. Therefore, in this thesis, I wanted to develop a web-based tool that
resolves the problem of efficiently and quickly curating large datasets. To solve
this task, I present a webpage that allows efficient and easy curation of such large
datasets.

Keywords: Data Curation, Data Curation website, machine learning, ma-
chine learning on code, machine learning on highly structured data, prevention
of SQL insertion, Aquarium, Lightly

i

Contents

Abstract i

1 Preface 1

1.1 My Motivation . 1

2 Introduction 2

2.1 Data Acquisition and Curation 2

2.2 State of the technology . 4

2.2.1 Aquarium Learning . 4

2.2.2 Lightly . 5

2.2.3 Data Curation for Code 5

2.3 Code Search Net . 6

3 The developed application 8

3.1 Overview over the application . 8

3.1.1 The entry point . 8

3.1.2 The progress view . 9

3.1.3 The upload view . 10

3.1.4 The detailed data view . 12

3.1.5 The preselect page . 14

3.1.6 The table view . 16

3.1.7 The settings view . 17

3.1.8 The add user view . 18

3.1.9 The add group view . 19

3.1.10 The stat user view . 20

3.1.11 The privileges of the user 21

3.1.12 The privileges of the groups 22

3.2 State diagram . 22

ii

Contents iii

4 Technology Stack used 24

4.1 General Setup . 24

4.2 Concrete Setup . 24

4.2.1 Setup in Visual Studio Code 24

4.2.2 Get started with adding functionality 24

4.2.3 Setup of PostgreSQL . 25

4.3 Concrete setup of the database 25

4.3.1 users . 25

4.3.2 upload . 25

4.3.3 uploadeddata[unique id] 26

4.3.4 actionstab . 26

4.3.5 groups . 27

4.3.6 grouptable . 27

4.3.7 useraccess . 27

4.3.8 useringroup . 27

4.3.9 stattab . 28

4.4 The JavaScript implementation of ordering in the details view . . 29

4.5 SQL Injection and the testing . 30

4.5.1 What is SQL Injection 30

4.5.2 How do I find SQL Injection vulnerabilities ? 30

4.5.3 Used tool . 31

4.5.4 Results of Model 1 . 31

4.5.5 Results of Model 2 . 31

5 Evaluation 33

5.1 Further Improvements . 33

5.2 Closing Words . 33

Bibliography 34

Chapter 1

Preface

1.1 My Motivation

I am fascinated by the possibility that human-made machines can learn. Also, the
philosophical questions that arise from that are purely outstanding and lead to
understanding basic human processes better. We also need to evolve the model of
what a human is and how we differentiate ourselves from learning machines as the
space of machine learning evolves. However, as I am so fascinated by the whole
area, I wanted to do a Bachelor’s thesis in machine learning. Machine learning
is not only the application of mathematical models to data. It is also about
gathering high-quality and vast amounts of data sets to which the algorithms
are applied. It is no coincidence that the ones with the best performing machine
learning models primarily also train on the most complete data sets. Furthermore,
it is a symbiosis of the data with the abstraction algorithms applied. Although
there are unsupervised machine learning techniques, supervised learning is always
the way to go if we have high-quality data available and superior to unsupervised
learning. That is mainly because, in unsupervised models, we try to increase the
probability of labels. Thus, we maximize the possibility that a particular label is
really of a given class. However, in unsupervised learning, a possibility of 1 or 100
percent cannot be reached. Therefore this information gain can be maximized if
we can determine the actual label of the given data. Therefore, the situation is
also in the future improbable to change. That reasons get me so excited about
the work of efficiently curating data. It is basically at the foundations of machine
learning and will most likely remain or even increase its importance.

1

Chapter 2

Introduction

2.1 Data Acquisition and Curation

As stated previously, Data Acquisition and Curation are essential components in
the machine learning pipeline and have some pitfalls and points to watch out for.
In the following, I want to give a short overview over them, and later on, I also
want to analyse which and how these issues are addressed by the developed data
curation tool. First, let us look at the ultimate and fundamental goal of Data
Curation: the structuring and labelling of data. The structuring and labelling
are done in order to prevent data swamps. Data swamps are the unstructured
gathering of data that cannot be used in its raw format without ’cleaning’ it up.
Problems of such a swamp can be, for example:

• Bias: Already in the underlying data, potential biases should be eliminated

• Inaccurate or falsely represented

• Ambiguity

Generally, a given Data Swamp should go through multiple steps of prepro-
cessing to generate a good and reliable data set used for training machine learning
models. Generalised, these steps include the following:

• Formatting: Bringing the datasets to a general representation and merg-
ing them, if scattered, into one large dataset

• Labelling: Annotate the label to the data fields for the intended purpose.
Thus, for example, when using the MNIST dataset to classify images by
their content, the labels would be the numbers from 0-9

• Cleansing: Suboptimal parts, such as little errors, are removed

• Extraction: Features are extracted for optimization. For example, if we
consider the classification of chemical molecules, extracting a chemical fin-
gerprint that already models some features is advantageous and can reduce

2

2. Introduction 3

the overall model complexity of the machine learning algorithm consider-
ably

The following presented and in this thesis developed data curation tool mainly
helps in the labelling and cleansing step. Also, it is helpful in the merge step and
the formatting step.

2. Introduction 4

2.2 State of the technology

This subsection will analyse the already existing data curation solutions and their
strengths and weaknesses.

2.2.1 Aquarium Learning

Figure 2.1: The aquarium Data Curation Tool website.

Aquarium Figure 2.1 is a Data Curation tool mainly focused on the curation and
labelling of images. Although it is also possible to edit text, it is pretty unadapted
for text or, more significantly, for program code curation. Its main advantage is
tight integration into other ML pipelines. However, this can get a disadvantage
too if the used methods are not supported by aquarium. Also, aquarium supports
in their base model ’only’ 100’000 data points. For each additional 100’000 data
points, they charge 800 USD more per month. Thus, creating and curating large
datasets that can take multiple months or even years until they are ready is hard
to finance without serious funding. Also, with already a base price of 12000 USD
per year for five users.

2. Introduction 5

2.2.2 Lightly

Figure 2.2: The Lightly Data Creation Tool website.

Also, Lightly’s fig. 2.2 (a Zürich-based software company) main strength lies in
Image Data Curation. Both tools seem to be developed with it in mind and later
expanded to some text curation functionality but also here, code edit ability is
relatively poor.

2.2.3 Data Curation for Code

Most Data Curation tools focus on image, audio or video curation. Some have
a curation process for text, but this seems mostly left behind. Program Code
seems to be a niche, and no Software is yet fully tailored to classify or labelling
code. Although this development is not astounding, as the areas of image and
audio are also the spaces where deep learning techniques are good applicable, we
also want to create datasets, especially for areas where deep learning models are
not yet further advanced, to enable research in the respective areas. Moreover,
this is not possible without a high-quality underlying dataset.

2. Introduction 6

2.3 Code Search Net

Since the idea of focusing on Code Curation was motivated by the paper from
Husain et al. [1], I want to give a short summary of the paper in the following.
The paper’s authors motivated that no relevant code datasets with their respec-
tive natural language queries are available.
In the paper, they have a look at semantic code search. Semantic code search
involves getting relevant code from natural language queries. It is also impor-
tant to note that Deep Learning techniques are used everywhere but struggle to
be useful for highly structured data such as code. Here, standard information
retrieval techniques do not work because of the lack of shared vocabulary. That
is also why the area of machine learning on highly structured data is of high
research interest. Furthermore, the authors created the CodeSearchNet Corpus
(with about 6 Million functions) and a Code Search Net Challenge. The Corpus
is an expert-created dataset. The Corpus dataset was created by automatically
fetching GitHub and pairing code with documentation. The necessary prepro-
cessing steps taken for the Corpus dataset were:

1. The projects are ranked according to their popularity and licence.

2. Then consider only those methods documented → Tuple (code, documen-
tation)

3. The documentation is shortened to the first entire paragraph

4. Too short documentations are removed

5. test functions and defaults are removed

6. Duplicates/near duplicates are removed

The created dataset is also noisy because of different languages or forms of lan-
guages and outdated commands.

The Code Search Net Challenge consists of 99 natural language queries with
about 4000 expert annotations of likely results. It is built on top of the Corpus
dataset. To ensure the representatives of the natural code queries, they got
common code search queries from Bing and ranked them according to the click-
through rate and StaQC [2]. Many problems were incurred when fetching the
code. In the following, the most imported ones are listed:

• Although the code comes from popular repositories, the code quality can
be low. (for example, bad security practice, readability, slow or hard to
parallelize)

• Natural Language ambiguity that is hard to parse

2. Introduction 7

• Library and Project specific code is hard to filter out but of little interest
in the query search

• Directionality: It was hard to differentiate, for example, the natural lan-
guage queries from string to int or from int to string

We can create a baseline with different models for the Code Search Net Chal-
lenge. The baseline was created with a 90/10/10 train-test-validate split. The
models used in the created baseline are ’bag of words’, RNNs, CNNs, and at-
tentional models. This baseline is then used to facilitate the expert annotations.
In the evaluations done in the study, the self-attention model performed best for
the Code Search Challenge. Nevertheless, code semantics cannot be exploited by
existing methods.

Chapter 3

The developed application

3.1 Overview over the application

3.1.1 The entry point

Figure 3.1: The entry point of the Curation program

When starting the application, the user gets an overview of all datasets attributed
to him where he has either a read, a write, or full permission. He can quickly
see the size of the datasets and has the option to start curating with a random
sample out of the yet undone samples. Alternatively, the user can get a more
fine-tuned overview of the dataset where the user can search or filter according to
other criteria. Also, the user can access statistics of the curation process or add

8

3. The developed application 9

data to the given dataset. In the menu bar, the user can jump to the permissions
settings where he can manage his credentials or, depending on the ’privilege’
mode, manage the access to datasets, the users of the groups and many other
things. See the following sections, for example: 3.1.11 for further information
concerning the user privileges and dataset access modes.

3.1.2 The progress view

Figure 3.2: The ’progress’ view of the Curation program

This view displays a per dataset progress. Each action of all users that can do
actions on the dataset is logged and presented in the table. Also, the overall
progress of curating the dataset can be found.

3. The developed application 10

3.1.3 The upload view

Figure 3.3: The ’upload’ view of the Curation program

The upload view is used two times, once if a new data set is created and a second
time if data is added. Here, a JSON file can be uploaded, and each field can
be assigned a type. For example, it is also possible to upload images in Base64
encoding besides the basic types like code and text. In order to avoid repeti-
tions in the uploaded dataset, the repeating part of the Base64 String (’data:
image/png;base64’) should not be included. With that, memory can be used
even more efficiently, especially in datasets with extensive image collections. For
hand designing datasets, the web page mentioned in the Bibliography [3], where
images can be converted to Base64 images, comes in handy. For automatically
creating datasets, for example, the following C# code [4] comes in handy.

using (Image image = Image.FromFile(Path))
{

using (MemoryStream m = new MemoryStream())
{

image.Save(m, image.RawFormat);
byte[] imageBytes = m.ToArray();

// Convert byte[] to Base64 String
string base64String = Convert.ToBase64String(imageBytes);
return base64String;

}
}

Alternatively, as for creating large structured datasets primarily, Python is used.
Here is also a short python snipped [5] to create Base64 strings out of images.

3. The developed application 11

import base64

with open(’sampleimage.png’, ’rb’) as img_file:
b64_string = base64.b64encode(img_file.read())

print(b64_string)

As in code or images, often we have some special characters, a general escaping
technique with the possibility to add the character: ’"’ at the beginning and
the end was introduced. The advantage is that large code blocks and other
long entries can quickly be escaped. Then after implementing the above design
choices, I wanted to add a part of the CodeSearchNet dataset as it was one of
the primary motivations to develop the Data Curation tool. However, the format
of the Dataset was JSONL and not JSON. JSONL[6] is a format where each
line is a valid JSON format. However, it was not compatible with the current
implementation of the upload functionality. Therefore, I needed to generate
a conversion mechanism. I leveraged the already underlying JSON processing
and added the functionality to automatically convert JSONL files to JSON files.
That gives the advantage that the user can import its file without inconvenience.
However, only one interface is used in connection to the back end. Therefore,
potential errors could be debugged quickly and resolved therefore faster. As for
convenience, the second conversion of file type from CSV to JSON was added.
It can also be expanded to more file types. These conversions happen on the
client side, which is an additional advantage of this design choice since, on the
back-end, a single optimized gateway can be maintained.

3. The developed application 12

3.1.4 The detailed data view

Figure 3.4: The ’details’ view of the Curation program

This page is the most important one of the application. Of course, in the end,
it is a combination of all different views, but here, since the curation process is
mainly done in this view, it is of major importance to guarantee high customiza-
tion. That is particularly hard since the data cannot be predetermined since the
user can add its own data sets with variable size and order. For that, various
customization options were added, such as changing the order of the elements
leaving some out and changing the sizes, for example. It is also of major concern
to present data compactly and cleanly. For that, typically, frameworks like Bulma
[7] or Flexbox [8] are particularly suitable. However, both had major downsides
that reduced efficiency in data curation. First, Bulma interpreted each row and
ordered all elements according to the biggest element in the row. See fig. 3.5 for
an example of the problem. For Flexbox, which is also usable out of Bulma, there
is an automatic ordering algorithm. This algorithm has, at least for our usage,
one disadvantage that cannot be overlooked. The elements cannot be in a fixed
order. It just minimizes the overall ’lost’ space.

3. The developed application 13

Figure 3.5: An illustration of the problem of considering all objects in a row as
connected

Therefore, especially with the wish to adjust ordering, this approach could
not fulfil the needs. A third approach was the idea to use the jQuery draggable
and resizeable attribute and give the user complete control over their wished
design. Nevertheless, after using this approach, the downside of changing the
size of the attributes was quickly discovered. No user design could fulfil both
overview-ability and, at the same time, fit all different sizes of attributes that are
changing from sample to sample. Therefore, after implementing the Bulma and
the jQuery approach, the final option to dynamically customize the design each
time via JavaScript was chosen. With that approach, finally, the freedom was
given to customize the design as wanted fully. The JavaScript function just each
time computes based on the screen size and the wished parameters from the user,
such as ordering or size the optimal fitting solution. With that, the downside of
the Bulma framework is overcome, and the productivity of the detailed view
is increased. Also, to further increase productivity, it was observed that many
entries that need to be changed are out of a small set of values. Therefore, a
’quick’ choice option was added. This option allows for each field to quickly
choose predefined custom options. To not have to change the value when we are
satisfied, I added the auto-selection of the feature. The auto-selection means that
the given entry is compared to the user-defined discrete set of options, and the
most likely one is chosen. Also, with the buttons, I tried to focus on usability.
Since the full view can be compared to a questionnaire, I was inspired by the
following analysis of the positioning of buttons[9]. According to it, the most

3. The developed application 14

intuitive way, or at least the way that reduces the overall time to go through the
questions, is to use a horizontal design with next/ forward on the right side. This
approach was also chosen with a third option, ’dismiss’ I decided to place this
button between the other two buttons since the cursor is when going quickly to
samples already in that area. Also, it is most likely the least used option. Or
at least it was when I tested the design’s usability. Therefore, it is best to place
it at a prominent location but not at the two corners where the two most used
buttons should be located.

3.1.5 The preselect page

Figure 3.6: The ’preselect’ view of the Curation program

This page acts as an intermediary between special entries of the dataset and the
user. It has the option to get the favourite entries, previously selected, quickly.
Get done entries or undone entries, or search for a wanted attribute in the search
functionality. In the following, I attached a short draft of this site before it was
developed. This draft was created before I decided to switch to another sidebar
design. Therefore the “old” sidebar was still integrated.

3. The developed application 15

Figure 3.7: The ’preselect sketch’ view of the Curation program

3. The developed application 16

3.1.6 The table view

Figure 3.8: The ’table’ view of the Curation program

This view gets opened after the prefilter view. In it, the user can quickly sub-
mit or revoke entries without actually opening them or interacting with them
in other ways. This view primarily aims to facilitate quick interactions if the
corresponding entry is correct. To change the fields of the corresponding entry,
a quick option to edit the fields is provided. That option loads the entry into
the detailed view, where the user can edit the entry as usual. Furthermore, it
is possible to mark specific entries as favourites for faster access in the future.
Another feature included here is, as in the detailed view, the possibility to limit
the table to specific entries and shorten certain long fields to increase overview
ability. That increase in overview ability comes especially handy if we have a
dataset with a large number of fields.

3. The developed application 17

3.1.7 The settings view

Figure 3.9: The ’settings’ view of the Curation program

Foremost, here the user password can be updated. Also, there are more function-
alities for admin users. They are able to add groups or users. A corresponding
modal is opened through the add button in the right bottom corner. Also, they
are shown an overview of all groups and users in the system. From there on,
each user can be assigned individual privileges for each data set or via groups a
whole list of users can be assigned a group of privileges. For each user, there is
additionally the possibility to get detailed statistics on his or her usage of the
application and how he or she interacts with the datasets.

3. The developed application 18

3.1.8 The add user view

Figure 3.10: The ’add user’ view of the Curation program

Here, a user with the respecting role can be added. The roles of admin and a
regular user are available.

3. The developed application 19

3.1.9 The add group view

Figure 3.11: The ’add group’ view of the Curation program

Here, a group can be created. For then creating the access rights and the cor-
responding rights on the dataset in the background, the following SQL query is
used (in the following, I added the writeable check):

Select * FROM upload INNER JOIN ((Select useraccess.tableid,
useraccess.userid FROM useraccess where (state = ’Wd’ or
state =’Writeable’) and userid=’" + id + "’)
UNION (SELECT grouptable.tableid, useringroup.userid
FROM grouptable INNER JOIN useringroup
ON useringroup.groupid = grouptable.groupid where
useringroup.state = ’True’
and (grouptable.state = ’Wd’ or grouptable.state = ’Writeable’)
and userid=’" + id + "’)) AS cr ON cr.tableid =
cast (upload.id as text);

This query generates for each user the list for which tables she or he has the
writeable permission. Permission is given if the user has either direct permission
via the user view or the user is in a group where the corresponding group has the
ability to do this action. The highest permission gets extracted in the back end
for each API call applied in a second query that uses these results.

3. The developed application 20

3.1.10 The stat user view

Figure 3.12: The ’stat’ view of the Curation program

Here, a detailed analysis of the user’s interaction with the datasets is given. The
last logins are recorded and graphically presented. We also have three informative
pie charts showing the datasets with which the user most interacted. The first
pie chart shows the actions over all datasets. The following pie chart limits the
time to the last week. (Here, last week is always the last seven days). Moreover,
the third pie chart shows the three datasets with whom the user interacted most.

3. The developed application 21

3.1.11 The privileges of the user

Figure 3.13: The ’user privileges’ view of the Curation program

Here, each user can be assigned one out of 4 states: Readable, Writable, Full
access and No Access. As the corresponding names say, Readable means that only
read actions can be performed, and no changes can be performed. Especially also
no submissions. Writable gives the user the right to change entries to submit them
or revoke them, but she or he cannot add or delete entries. With full access, the
user can basically do the same as an admin on the particular dataset. Moreover,
with No Access, the user cannot access the dataset, the name or the size.

3. The developed application 22

3.1.12 The privileges of the groups

Figure 3.14: The ’group privileges’ view of the Curation program

This view consists of two sub-parts. One has a complete list of the users on the
system and lets us easily add or remove users from the selected group. Then
on the other side, we can decide on which dataset which of the 4 (same as in
privileges of the user) privileges is assigned.

3.2 State diagram

On the following page, I created a state diagram of the application. Some trivial
parts were not added in the interest of overview ability. The given diagram should
help to get a basic overview.

Login

After successful login

Main view
Selector per table

SelectorSidebarSidebar

Add data

Open for searching etc

Progress

Preselect
Detailed

Opens random undone samples

Entry

Upload

Direct upload

Sidebar

Settings

Add user and add privileges Priv. Group

Opens a preview of entry in detailed view

Give user read, write or full permission

Priv. User

Add group
Add user

Add a user

Add groups

Get detailed statistics over the user

Stat. user

Add additional data

Preview

Chapter 4

Technology Stack used

4.1 General Setup

I used a stack of PostgreSQL, Node.js and multiple front-end packages such as
Material Design Lite [10], Ace [11], Bootstrap[12],Quill [13], Bulma[7] and Axios
[14]. For the development process, I used Visual Studio Code and Postman. The
web page is tested in Edge (Chromium-based), Google Chrome and Firefox. With
that, most of the major browsers are tested. For PostgreSQL, I used Version 14.3.
For Edge, I tested it with Version 103.0.1264.44 . For Chrome, I tested it with
Version 102.0 . For Postman, I used Version 9.23.0 .

4.2 Concrete Setup

4.2.1 Setup in Visual Studio Code

Moreover, as soon as the project is imported into Visual Studio Code and all
defined dependencies of the project are loaded, the project can be started by
inputting ’npm start’ (created shortcut for nodemon index.js) into the console.
Afterwards, it can be accessed via localhost:5000 in any web browser.

4.2.2 Get started with adding functionality

When starting to do modifications, please first see the README.md and the
corresponding linked commands in the files. There I have added a programmatic-
specific explanation to get started modifying the code. But generally, as a short
introduction, it can be said the following: As an entry point, the index.js file is
used. In it, the corresponding API calls are handled with the help of supporting
classes. Then all data is written and accessed via the postgres.js class. The
front-end primarily consists of an HTML, JavaScript and a CSS file.

24

4. Technology Stack used 25

4.2.3 Setup of PostgreSQL

A user ’me’ needs to be generated for setting up the back-end database. The
default password is ’antenne’. The default host is ’localhost’. The default port
is 1919, and the default database is ’web’. This ’default’ can also be changed on
demand in postgres.js, where they are accessible right at the top. Further, the
table users, upload, groups, useraccess, useringroup,grouptable, actionstab, and
stattab have to be created. Pre-written queries for that are listed in testsql.txt

4.3 Concrete setup of the database

The webpage was extended to support file sizes up to 5 GB. This extension is done
in the index.js file and can easily be increased by increasing the corresponding
parameter. All data sets larger than the corresponding upper limit must be
uploaded in multiple uploads. This can be done via the add data functionality.
The program uses the following tables in the back end:

4.3.1 users

This table consists of the attribute’s id, email, password, role, and parent. Where
email is the username that is most likely the email, as the email is often the chosen
username; therefore, it was called email. Id is a unique id for this user. Then we
have the password. The password is stored in a sha256 hash format to ensure
security. By the way, it is also only transmitted in this format. The role is either
that of an admin or a user and last but not least, the parent is the user who
created the user.

id email password role parent

37 example@ethz.ch 497a......65 admin none
38 example2@ethz.ch 497a......65 noadmin example@ethz.ch

4.3.2 upload

This table stores each upload that is done. It has the following table entries:
id, which is, as usual, just a unique id. Name is a uniquely created internal
name that is not used in the front end. It facilitates the join operation via
easier identification of corresponding entries and dismisses the problem of the
same names as public names. Next, an entry key is added, containing a JSON
object of the fields titles and their corresponding type. This JSON can be used
to determine the type quickly and, in some instances, only query this sub-view
of the data. Then we have the entry users, which hold the name of the creating
user. In the following field, we have the publicname, which is the name that the

4. Technology Stack used 26

user gave the table. And then, we have also a count that holds the number of
entries in the dataset.

id name keys users public name count

1 u.dat....211264 {program:code} example@ethz.ch Java 23000
2 u.dat ...211223 {image:image} example@ethz.ch Java 55000

4.3.3 uploadeddata[unique id]

Because of performance reasons, it makes sense to encode a dataset directly into
a PostgreSQL dataset. The problem that arises here is that a standard approach
with setting parameterized values into a query does not work. However, this is the
standard approach for PostgreSQL, especially with regard to the danger of SQL
Injection. But the only approach to efficiently encode the database queries goes
over dynamically on demand creating the query. Because otherwise, we could not
leverage the very efficient implementation of the underlying database since the
alternative would be to encode all data entries in one field. Therefore, I created a
dynamic query that then gets later parsed. To prevent SQL insertion, I used the
newly added and sadly still undocumented escaper functions of PostgreSQL. To
test and evaluate the security, especially of these queries, I added later a section
that evaluates the security of these queries. So to explain the effect of the given
program code, here is a short example: Let us assume the fields that get uploaded
are Program code, what the code does and visualization of the code via code flow
then, the corresponding SQL table directly corresponds to these values. It would
look like this (For reasons of clarity, the field ’id’ is omitted here):

Program code what the code does visual. of the code via code flow

some program code 1 some explanation 1 some base64 value
some program code 2 some explanation 2 some base64 value

4.3.4 actionstab

In this table, all actions on the tables get recorded. We again record an id, a
username that is the name of the user that initiated the action, a tablename that
is the id of the table where the action is performed and the action and the time
it was done. Again here is a short mock database to visualize the entries:

id username tablename action time

1 example@ethz.ch 3 submitted an entry 13.07.2022
2 example@ethz.ch 3 revoked an entry 13.07.2022

4. Technology Stack used 27

4.3.5 groups

This table contains all groups in the system. We have an id, then a name field
which identifies the name of the group and a field show that determines whether
the group is active or not. A short visualization is:

id name show

1 Java curation true
2 Python curation true

4.3.6 grouptable

Then we have a corresponding table for managing the access rights of the different
groups. It is composed of an id as in each database, then the groupid that
identifies the group, and then we have a tableid that identifies the corresponding
table. Moreover, most importantly, we have the state that determines the group
permissions. A short visualization is:

id groupid tableid state

1 2 1 Writeable
2 2 2 False

4.3.7 useraccess

This database determines the access of a single user to the different datasets.
It consists of the same basic blocks as the useringroup despite the fact that the
information does not need to be joined before it can be accessed; it is like the
resulting table after joins in the corresponding tables. It consists of the entries
id, tableid, userid and state. They have the same functionality as above.

id tableid userid state

1 23 13 True
2 2 2 Writeable

4.3.8 useringroup

And at least in terms of database design, the last piece of the puzzle of user
access rights can be added with the database that stores the users that belong to
a particular group. This database consists of an id and the groupid that identifies
the group. As next, we have the unique userid that identifies the user, and in the
last field, we have the state of the belonging.

4. Technology Stack used 28

id groupid userid state

1 2 1 True
2 2 2 False

4.3.9 stattab

This table is for creating the statistical overview per user and consists of the
following fields: id, username, tablename, action and time. Username is the
user’s id that created the actions, while the tablename is the unique id of the
table the action was performed on. The action is a string that determines the
action, and the time is the time of the action in milliseconds. And again, here is
a short visualization:

id username tablename action time

1 23 13 submit 1655745416056
2 2 2 login 1655753725403

4. Technology Stack used 29

4.4 The JavaScript implementation of ordering in the
details view

So the central part of this algorithm is located in the order.js class. The entry
point is the reorderbox function that takes the arguments: keys, order, and
numofrender. The first holds the names of the corresponding boxes previously
created. The order is a transposition of the standard ordering (natural numbers
from 1 to the corresponding length) that was inputted previously via the modal
questionnaire and stored locally on the users’ device. As next, the gethandles
function gets pointers to the corresponding boxes, and the size of the view that
holds the boxes on the current device is determined. The algorithm has gathered
and preprocessed all information to be ready to loop over the boxes and reposition
them. This reposition is done in the position function in the following way: There
are three variables for the ’thirds x’ values and three variables for the ’third y’
values. Then we have the same again for the two respectively four half variables;
thus, we initialize the following values: thirdx, third1x, third3x, thirdy, third1y,
third2y, halfx, half1x, halfy, half1y and initialize them in the following way that
is best explained in the following short drawing:

Figure 4.1: The initialization of the fields

Simply put, they mark the top left corner of the respecting size. The finest
size here is one-third, and therefore it works only to take a third as the smallest
unit. However, in general, if the respecting class should be generalized for even
smaller sizes (which would optically have a hard time), then we could simply
add more variables. We do not have a full variable in the function since the two
half sizes can model it. That is not the case for the half through the thirds.
Nevertheless, as a next step, we determine the size of the respective box that
should be ordered. With its size, we determine whether it has the size of an
entire row, half of a row or a third of a row and proceed accordingly. If, for
example, it has the full size, we compute the maximum of all y values, thus the

4. Technology Stack used 30

maximum of (thirdy’s and halfy’s). As the last step, we can now simply add the
border’s size, and then we place the box at halfx and the previously computed
y coordinates. Since all corresponding sub boxes are now filled, we can set all
y coordinates of (thirdy’s and halfy’s) to the previously computed max plus the
border plus the size of the current box. The cases for the half and the third sizes
happen analogously. They just have to previously determine which of the two
respective three positions is the minimal and then only add the y values at those
positions they overlap.

4.5 SQL Injection and the testing

4.5.1 What is SQL Injection

SQL injection is the process of running unauthorized queries in a database. They
can reach from getting information out of the database that the user is not allowed
to obtain until the deletion of specific objects in the database. Its primary cause is
the use of unchecked information directly obtained from the user in the underlying
databases. It has been estimated that it is one of the most popular techniques[15]
to gain access to a web page. That is because many web pages are still vulnerable
to such attacks.

4.5.2 How do I find SQL Injection vulnerabilities ?

First, I assumed two models of attackers. The first one has no login privileges
and wants to try to get access to the webpage via SQL Injection. Because most
APIs require a login check before, the attack surface of the first user is quite
limited. Also, as I did not need to build the query dynamically, it is protected by
the standard SQL insertion protection of the PostgreSQL framework. Therefore,
this attack should not be too interesting, and the tests should pass easily. The
second model is as powerful as a single user on the system can get. It is an admin
user that has ’full’ access to his part of the system. Here I used also dynamic
queries that are protected by the new escaper methods. Therefore, this is the
primary reason to do these tests; if something fails, it is most likely in this test.
As a side note, it is essential to note that at all login-protected APIs, the login
protectionism was removed at the time of the testing. However, this should not
change the result, as the login checks are not connected to a backend database
at this stage of the program. Therefore, here also, no attack surface for SQL
Injection exists.

4. Technology Stack used 31

4.5.3 Used tool

As an automatic injection discovery tool, I used JSQL, which can be found under
the following link on GitHub: https://github.com/ron190/jsql-injection. It is
also the SQL Injection tool used by Kali Linux, a Linux distribution primarily
famous for its ’hacking’ tools.

4.5.4 Results of Model 1

As expected, the respecting API directly exposed to the web is secure according
to the following test result of JSQL. I tested it once for each parameter (injection
in this parameter) and once with an injection on all parameters denoted with a
* for the respecting parameters in the tool.

Figure 4.2: A screenshot of the test results for the auth API

4.5.5 Results of Model 2

Also, no SQL Insertion is possible after testing the API that in the back-end
generates dynamic queries and uses the above-mentioned undocumented escaper

4. Technology Stack used 32

functionality for protection. This is a very pleasing result. It also shows that
an attacker with access to the system cannot break in via SQL Insertion. In
addition, it shows the usability of the new feature in PostgreSQL and its potential
advantages over static queries.

Figure 4.3: A screenshot of the test results for the ’create new add table’ API

Chapter 5

Evaluation

5.1 Further Improvements

In my opinion, curating highly structured data is much easier and more efficient
with the tool developed in this bachelor thesis. The situation with this webpage
is now the following: There are tools for curating images language and with
this tool also code. But, it turns out that it is usually most accessible and
therefore most efficient to accomplish everything in one tool, and while the tool
developed here is specialized in code, the curation of images is possible but not
as mature as with the already existing tools. As a future development, it is
undoubtedly advantageous to expand the functionality here. It is also possible to
integrate certain machine learning functionalities directly into the tool and thus,
for example, always use the data point for curation where the uncertainty is most
significant. But, one must always be careful not to destroy the i.i.d. assumption
of the data. However, here would certainly also be an area in which one could
make the tool more intelligent.

5.2 Closing Words

In my opinion, the further development of humanity depends significantly on the
progress of artificial intelligence. However, the basis for this is a well-founded
and, above all, easy-to-create data collection. With my bachelor thesis, I was
able to contribute to the fact that today’s still human editors can cure this data
quickly and efficiently.

33

Bibliography

[1] Hamel Husain Miltiadis Allamanis, “Code search net evaluating the state of
semantic code search,” 2019.

[2] Ziyu Yao Daniel Weld Weu-Peng Chen and Huan Sun, “Staqc: A systemat-
ically mined question-code dataset from stack overflow,” 2018.

[3] “Convertion of an image to base64,” in https://www.base64-image.de/, 2022.

[4] Stackoverflow, “C# code,” in https://stackoverflow.com/questions/21325661/convert-
an-image-selected-by-path-to-base64-string, 2022.

[5] appdividend, “Python code,” in https://appdividend.com/2020/06/23/how-
to-convert-image-to-base64-string-in-python/, 2022.

[6] I. Ward, “Json lines (jsonl),” in https://jsonlines.org/, 2022.

[7] “Bulma,” in https://bulma.io/, 2022.

[8] “Flexbox,” in https://css-tricks.com/snippets/css/a-guide-to-flexbox/, 2022.

[9] Mick P. Couper Reg Baker Joanne Mechling, “Placement and design of nav-
igation buttons in web surveys,” 2011.

[10] “Material design lite,” in https://getmdl.io/, 2022.

[11] “Ace,” in https://ace.c9.io/, 2022.

[12] “Bootstrap,” in https://getbootstrap.com/, 2022.

[13] “Quill,” in https://quilljs.com/, 2022.

[14] “Axios,” in https://axios-http.com/, 2022.

[15] “Sql injection frequency,” in https://outpost24.com/blog/SQL-injections-
cyberattacks, 2022.

[16] “Data curation,” in https://towardsdatascience.com/machine-learnings-
secret-source-curation-e8c3107dcc13, 2022.

[17] André Freitas and Edward Curry , “Big data curation,” in
https://link.springer.com/chapter/10.1007/978-3-319-21569-36, 2022.

34

	Abstract
	1 Preface
	1.1 My Motivation

	2 Introduction
	2.1 Data Acquisition and Curation
	2.2 State of the technology
	2.2.1 Aquarium Learning
	2.2.2 Lightly
	2.2.3 Data Curation for Code

	2.3 Code Search Net

	3 The developed application
	3.1 Overview over the application
	3.1.1 The entry point
	3.1.2 The progress view
	3.1.3 The upload view
	3.1.4 The detailed data view
	3.1.5 The preselect page
	3.1.6 The table view
	3.1.7 The settings view
	3.1.8 The add user view
	3.1.9 The add group view
	3.1.10 The stat user view
	3.1.11 The privileges of the user
	3.1.12 The privileges of the groups

	3.2 State diagram

	4 Technology Stack used
	4.1 General Setup
	4.2 Concrete Setup
	4.2.1 Setup in Visual Studio Code
	4.2.2 Get started with adding functionality
	4.2.3 Setup of PostgreSQL

	4.3 Concrete setup of the database
	4.3.1 users
	4.3.2 upload
	4.3.3 uploadeddata[unique id]
	4.3.4 actionstab
	4.3.5 groups
	4.3.6 grouptable
	4.3.7 useraccess
	4.3.8 useringroup
	4.3.9 stattab

	4.4 The JavaScript implementation of ordering in the details view
	4.5 SQL Injection and the testing
	4.5.1 What is SQL Injection
	4.5.2 How do I find SQL Injection vulnerabilities ?
	4.5.3 Used tool
	4.5.4 Results of Model 1
	4.5.5 Results of Model 2

	5 Evaluation
	5.1 Further Improvements
	5.2 Closing Words

	Bibliography

