
Distributed
    Computing 

Exploring Game Engine Architecture and
building an experimental Voxel Renderer with

Rust and Vulkan
Bachelor’s Project

Moritz F. Kuntze
mkuntze@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Quentin Kniep

Prof. Dr. Roger Wattenhofer

December 2022

 



Acknowledgements

First and foremost, I would like to thank my family — my mother Martina, my father Ulrich,
and my brothers Marius and Jan — for their continued support throughout my life and my
studies, always enabling me to pursue my dreams and explore my interests.

Secondly, I would like to extend my gratitude to my supervisors, Prof. Dr. Roger Wattenhofer
and Quentin Kniep for allowing me to undertake this project as a part of their group.

Finally, I would like to acknowledge Yan Chernikov, who singlehandedly re-ignited my interest in
game engine development through his YouTube channel The Cherno, and Victor Blanco, whose
Vulkan Guide allowed my to better understand the Vulkan API, allowing me to implement this
project in the first place.

i

https://www.youtube.com/@TheCherno
https://vkguide.dev/


Abstract

This project implements Orion, a partial modular game engine fully written in the Rust program-
ming language and using the Vulkan graphics API as its rendering backend. Additionally, this
project demonstrates how Orion can be extended by implementing an experimental rendering
system for voxel-based geometry. Orion is shown to be capable of rendering scenes with many
large triangle meshes and quickly converting large voxel objects into mesh-based geometry
through the use of compute shaders.
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Introduction

Rust is a general-purpose programming language, originally started by Graydon Hoare at
Mozilla [12] and now developed by volunteers under the umbrella of the Rust Foundation. It
has gained significant traction over the past years, rising to no. 20 in the TIOBE index in Dec.
2022 [13] and being rated “Most loved programming language” in the StackOverflow developer
survey for seven years in a row [14]–[20]. It claims to be a high-performance language [21],
being a natively compiled language, making heavy use of zero-cost abstractions and ensuring
memory safety without the use of a garbage collector through a unique compile-time borrow
checker system. It is heralded by some as a potential replacement for C and C++ [22] and was
recently made the second official language of the Linux kernel [23].

Game engines are the backbone of the modern games industry, an industry that is estimated to
have a global revenue of 196 billion US$ [24], making it larger than the global film industry [25].
As one of the most complex software systems in wide deployment that are typically written in a
low-level language like C++ for performance reasons [1] it is a natural question whether Rust
would be a suitable replacement for C++ in this domain of software development. In addition to
the question of whether the language and its features by itself are a suitable match for common
abstractions and patterns found in game engine development, the question arises, whether the
Rust ecosystem (in particular the available libraries) are in a state that allows the development
of a game engine without implementing everything from scratch or having to resort to the C
foreign function interface too often.

The goal of this project was to answer these questions by attempting to implement a (partial)
game engine in Rust and making use of available libraries where it makes sense, noting the
quality of these libraries and situations where a library would be useful but none (or none that
is sufficiently advanced) exists.

The Vulkan graphics API was chosen to enable the rendering and general-purpose GPU needs
of this work, as it is the most modern cross-platform graphics API available (with OpenGL
being the alternative).

1.1 Structure of this report

This report is split into the following parts: Chapter 2 introduces some background information
on game engines in general and their architecture in particular, in addition to introducing some
background on the GPU rasterization rendering pipeline and projective geometry.

Chapter 3 describes the architecture of the Orion game engine implemented in this project and
some implementation details, including details on the triangle mesh renderer that is part of
Orion.

Chapter 4 implements an experimental voxel renderer within the framework of the Orion engine

1
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described in chapter 3. This voxel renderer is evaluated by its own merit as a voxel renderer but
also serves as an evaluation tool for the architecture of the Orion engine by reporting the ease of
adding additional functionality to the base engine.

Finally, chapter 5 evaluates the current state of the Rust ecosystem and some of the aspects of the
Rust programming language with regard to the ease of game engine development in Rust.
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Background

2.1 Fundamentals of Game Engines

The Oxford English Dictionary defines a game engine as “a software framework underlying a
video game, which performs basic functions such as graphics rendering and sound playback” [26].
This definition is correct, although it omits the manifold other subsystems and tools that define
modern commercial game engines like Epic Games’ Unreal Engine and make them not only the
software framework underpinning video games but also the toolset enabling their development
in the first place and fulfilling functions that are more and more complicated as time and the
industry moves on. Game Engine Architecture [1, p. 39] shows an overview of common systems
found in modern game engines.

In terms of architecture, a game engine can be split into three kinds of subsystems:

1. Supporting libraries, providing standalone functionality that is independent of other engine
functions.

2. Supporting subsystems, being subsystems that are responsible for providing data or
functionality that is used by other subsystems and enable those subsystems to interact
with each other.

3. Core subsystems, being subsystems that are central to the gameplay experience and the
production of games in general.

Supporting libraries include functionality such as providing fast mathematics, windowing and
other operating system interfaces.

Supporting subsystems include functionality for debugging or logging, event handling, asset
management and game state management. Game state management is a particularly important
supporting system as it interacts with almost all other components of the engine, most of which
depend on or modify the state of the game world.

Core subsystems are systems like the graphics renderer, the audio engine, the physics engine or
the animation system. These systems each enable vital parts of the user experience but usually
don’t directly interact with each other but instead interact via a supporting system (the notable
exception being the animation system which usually interacts heavily with both the renderer
and the physics engine).

Game engines arose with the growth of the video game industry in the late 1980s through the
desire to re-use existing codebases for game development and as an additional revenue stream
for game studios licensing their engine to other studios. Many of the most widely used game
engines in industry have a long development history reaching back into the 1990s for some
(such as the aforementioned Unreal Engine, which was originally released in 1998 and Valve

3
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Software’s Source engine, which derives from the Quake engine, which was used in id Software’s
1996 release Quake).

2.2 Fundamentals of Rust

Rust is a multi-paradigm, general-purpose programming language with a focus on high-
performance and safe code. In particular, Rust is compiled to machine code through LLVM and
attempts to ensure memory safety, type safety and thread safety through various mechanisms in
its type system. Rust’s borrow checker allows the compiler to track an object’s lifetime and scope
at compile time to ensure memory safety and prevent unsafe concurrent accesses without the
use of a garbage collector or automatic reference counting.

Rust is syntactically similar to other C-like languages like C, C++ or Swift but makes heavy use
of type inference, syntactic sugar and zero-cost abstractions to make its code seem more like
higher-level, dynamically typed languages like JavaScript. Rust’s standard library makes heavy
use of generics which are monomorphized at compile time.

While Rust has features of object-oriented languages, such as the ability to attach methods to a
data structures, it lacks some features common in object-oriented languages, in particular the
concept of inheritance. Common functionality is described through traits which are similar to
Java’s interfaces but cannot inherit from each other.

One of the core principles of Rust is the notion of “safe” and “unsafe” code, aimed at preventing
undefined behavior (UB) from ocurring in Rust. Safe code should not be able to cause UB and
thus cannot perform certain actions that may cause UB, such as dereferencing a raw pointer
(which may be null or out of bounds). Unsafe code (marked using the unsafe keyword) can
perform these actions and it is up to the developer to guarantee that no UB occurs, creating a
safe wrapper.

2.3 Fundamentals of Real-Time 3D Graphics

Real-time 3D computer graphics — specifically real-time rendering — is the process of com-
putationally producing depictions of a three-dimensional scene at a frame rate that allows
interactivity. The common boundary for real-time rendering is set at 24 or 30 frames rendered per
second (FPS). Rendering complex scenes in a realistic manner at these frame rates requires the
use of hardware graphics accelerators, commonly known as GPUs. This section introduces the
graphics pipeline, the set of fixed-function, configurable and programmable stages implemented
by modern GPUs to enable real-time rasterization rendering.

Rasterization rendering is the commonly used term for the mechanism by which modern graphics
hardware produces images and is often contrasted with ray tracing, the technique often used for
photorealistic rendering in non-real time rendering applications. Ray tracing techniques work
by simulating the behavior of light rays bouncing around in a virtual scene and interacting
with materials in the scene to produce an image via the interaction of these rays with a virtual
camera or eye. Rasterization techniques, on the other hand, do not fully simulate light rays but
project the scene’s geometry onto a virtual plane, which is then rasterized, i.e. converted to
pixels, sometimes also called fragments, in rasterization rendering [2, p. 21].
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2.3.1 Coordinates and Transforms

Homogeneous Coordinates

Most 3D rasterization renderers operate using four-dimensional homogeneous coordinates instead
of the usual three-dimensional Euclidean coordinate system. This coordinate system confers
the advantage that affine transformations, i.e. transformations that include a translation, can
be represented using matrices and applied through regular matrix-vector multiplication [3, p.
74]. Additionally, homogeneous coordinates allow us to represent projective transformations as
matrices as well.

In homogenous coordinates, we add a fourth real-valued coordinate to our vectors, usually
denoted as F. Each point (G , H , I) in 3D Euclidean space is represented by a line in 4D
homogeneous space defined by (GF , HF , IF ,F) where F < 0. Points in homogeneous space
where F = 0 do not have a direct equivalent in 3D Euclidean space and are considered “points
at infinity”.

Conceptually, we can differentiate between points and vectors in 3D space using homogeneous
coordinates: Vectors are not affected by translation and represented using points at infinity
with a F coordinate set to 0 (i.e. as (G , H , I , 0)). Points in 3D space are affected by translation
and feature nonzero F coordinates in homogeneous space (usually F = 1, as this avoids
multiplications or divisions of the first three coordinates when converting from or to Euclidean
space).

Common Transforms

To further illustrate how homogeneous coordinates are useful, we examine a few common
transformations we can perform using homogenous coordinates. Firstly, we can perform
any rotation, scaling or shearing transformations (or any general 3D linear transformation)
represented by a 3 ⇥ 3 matrix ! using homogenous coordinates by augmenting the matrix L as
follows to produce a 4 ⇥ 4 matrix

!� =
✓

! 0
0) 1

◆

where 0 represents the three-dimensional zero vector.

A translation by the vector (CG , CH , CI) can be represented using the 4 ⇥ 4 matrix

)� =
©≠≠≠
´

1 0 0 CG

0 1 0 CH

0 0 1 CI

0 0 0 1

™ÆÆÆ
¨
.

One can easily observe that multiplying this matrix by any homogenous point (GF , HF , IF ,F)
yields the point (GF + CGF , HF + CHF , IF + CIF ,F). Dividing the G , H and I coordinates by F

to retrieve the corresponding 3D point yields (G + CG , H + CH , I + CI), showing the desired effect.
One can similarly observe that the translation matrix has no effect on points at infinity.

Finally, we examine how a perspective transformation can be expressed as a matrix using
homogeneous coordinates. Perspective transformations transform points inside the so-called
view frustrum into the canonical view volume, expressed in normalized device coordinates. Perspective
transforms must not be confused with perspective projections, the latter being non-invertible
transformations that project points (expressed in homogeneous coordinates) from 3D space
onto a 2D plane. Perspective projection is the result of applying a perspective transform and
then discarding the I (and F) coordinate.



2. B��������� 6

Figure 2.1: An exemplary view frustrum with the near, top and right clipping planes highlighted.
© MithrandirMage / Wikimedia Commons / CC-BY-SA-3.0

The view frustrum, as depicted in figure 2.1, can be defined through several equivalent sets of
parameters; in this case we will use the parameters =, being the distance of the near clipping plane,
5 , being the distance of the far clipping plane, ) being the horizontal field of view and 0 = width

height
being the aspect ratio of the view frustrum. We choose our source coordinate system such that
the camera is located at the origin, the H-axis is pointing down and the camera is facing the I

direction1, call this coordinate system view space and denote coordinates in view space using a
subscript E. The near clipping plane is given as the rectangle at

IE = =

with
GE 2


�= · tan

)
2 , = · tan

)
2

�

and
HE 2


�=

0

· tan
)
2 ,

=

0

· tan
)
2

�
.

The far clipping plane is defined similarly, replacing = by 5 . The side clipping planes are defined
by connecting the edges of the near and far clipping plane. The goal of the perspective transform
is to transform this view frustrum into the canonical view volume, which is a cuboid given by
G3 , H3 , I3 2 [�1, 1] ⇥ [�1, 1] ⇥ [0, 1] in Vulkan [4, Sec. 26 .9]. We call this final coordinate system
normalized device coordinates (NDC) and denote NDC coordinates using a subscript 3.

To derive the transformation matrix, we examine the transformations of each coordinate of
our source point (GE , HE , IE) individually: The GE coordinate of our source point is transformed
according to

G3 =
1
IE

· GE

tan )
2

.

1this coordinate system is chosen for ease of derivation, as it matches Vulkan’s conventions; note that Orion uses a
slightly different view space coordinate system as described below.

https://en.wikipedia.org/wiki/User:MithrandirMage?rdfrom=commons:User:MithrandirMage
https://commons.wikimedia.org/wiki/Main_Page
https://creativecommons.org/licenses/by-sa/3.0/
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Similarly, the HE coordinate is transformed according to

H3 =
1
IE

· HE · 0
tan )

2

.

Finally, for the IE coordinate we seek a transformation of the form

I3 =
1
IE

(�IE + ⌫)

that maps IE = = to I3 = 0 and IE = 5 to I3 = 1. Solving this system of equations yields

� =
5

5 � =

and ⌫ =
= · 5
= � 5

.

As we can clearly see, each of these transformation equations consist of some affine transformation,
followed by a division by I3. As the conversion from homogeneous coordinates to Euclidean
coordinates involves a division by the F coordinate, we can implement this division by I3 by
placing I3 into the F coordinate of the result of our transformation. We also assume that the
inputs to our transformation matrix have F = 1. This yields the perspective transformation
matrix

% =

©≠≠≠≠≠
´

1
tan )

2
0 0 0

0 0

tan )
2

0 0

0 0 5

5�=
=· 5
=� 5

0 0 1 0

™ÆÆÆÆÆ
¨
.

Coordinate Systems

In 3D rasterization rendering, we use multiple coordinate systems, related through homogeneous
coordinate transforms. The coordinate systems used by Orion are the following:

Each mesh is defined in a coordinate system called model space. This is the coordinate system
in which a model’s vertices are defined when loading that particular mesh from disk and it is
defined with respect to some arbitrary model origin, e.g. the model’s center of gravity.

The game’s world is defined in a coordinate system called world space, defined by some arbitrary
world origin. All objects, including the camera, are placed in world space. A mesh’s model space
coordinates can be transformed into world space through the model transform " which is given
by

" = ) · ' · (
where ( is a scale transform, ' is a rotation and ) is a translation.

For rendering, all objects are transformed into view space, which places the camera at the origin.
In Orion, view space is defined as a right-handed, H-up coordinate system, i.e. the camera’s
“right” direction is the G-axis, the “up” direction is the H-axis and the camera is looking in the
negative I direction. World space coordinates can be transformed into view space with the view
transform + .

For rendering, points are transformed from view space into (four-dimensional) clip space using a
perspective projection matrix %. Perspective division (division by the F coordinate) transforms
points from clip space into 3D normalized device coordinates.

Finally, the viewport transform transforms normalized device coordinates into pixel coordinates
inside the game’s viewport before screen mapping places the viewport on the user’s monitor.
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2.3.2 The Graphics Pipeline

The graphics pipeline, for the purposes of this discussion, can be split into four major stages [2,
p. 13]:

1. the application stage

2. the geometry processing stage

3. the rasterization stage

4. the pixel/fragment processing stage

This general pipeline, including substages, is shown in figure 2.2.

Figure 2.2: The general graphics pipeline, as implemented by most graphics APIs. Adapted
from [2, pp. 12ff .].

The Application Stage

The application stage is usually executed on the CPU (but can be partially executed on the GPU
through the use of compute shaders, as demonstrated in the implementation of the voxel renderer
in Chapter 4) and is tasked with the preparation of a set of primitives (points, lines or triangles)
to be fed into the geometry processing stage [2, pp. 13f.].

The Geometry Processing Stage

The geometry processing stage operates per-vertex or per-triangle and can be split into the vertex
shading, projection, clipping and screen mapping sub-stages2. The vertex shading sub-stage is
usually fully programmable in modern graphics hardware through the use of a vertex shader. The
vertex shader is a program that is designed to be run per-vertex and is tasked with computing
per-vertex attributes and transforming vertex positions from model space into view space [2,
pp. 15f.].

The projection stage is usually executed as part of the vertex shader and transforms view space
into clip space through the use of some sort of projection transform, usually a perspective
projection in game development.

Following the projection stage, primitives are clipped at the edges of the canonical view volume,
meaning that vertices outside the view volume are discarded and primitives that intersect the
boundaries of the volume are cut at the boundary. At the end of the clipping stage, all geometry
that remains is fully contained within the canonical view volume [2, pp. 19f.].

2The tesselation and geometry shader stages have been omitted as they are optional and not used in this project.
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The final stage of geometry processing is screen mapping, which transforms vertex coordinates
to screen space coordinates, i.e. coordinates on the user’s display.

The Rasterization Stage

The rasterization stage can be split up into the triangle setup and triangle traversal sub-stages [2,
pp. 21f.].

The triangle setup stage is a fixed-function stage that generates per-primitive data such as edge
equations that is needed for triangle traversal. Triangle traversal generates a fragment for each
pixel in screen space that is covered by a primitive. Per-vertex attributes generated by the vertex
shader are interpolated across primitives in this step [2, p. 22].

The Fragment Processing Stage

The fragment processing stage is composed of the fragment shading and the merging sub-
stage.

The fragment shading stage is fully programmable and executes a user-defined fragment shader
that is executed per-fragment and is given the interpolated vertex attributes as inputs and tasked
with generating a color for each fragment.

The merging stage combines the fragment colors generated by the fragment shading stage with
the data already present in the output framebuffer in some usually user-configurable way. It
also performs visibility testing by discarding fragments that are covered by other fragments; the
exact conditions under which fragments are discarded is also usually user-configurable [2, pp.
24f .].

Parallel computations

As can be seen from the above description of the graphics pipeline, several stages involve
per-something computations (e.g. the per-vertex calculations of the vertex shader) which are
easily parallelized. As machines designed and optimized to perform these specific parallel
calculations, GPUs usually operate under a single instruction, multiple data (SIMD) paradigm [2, p.
31]. This places restrictions on the complexity of shader programs, as programs with complex
control flow greatly reduce the effectiveness of SIMD data processing.

Common Data

Throughout the graphics pipeline, in particular the programmable vertex shader and fragment
shader stages, the programmer may want to access data besides the per-vertex or per-fragment
data that is provided to these shader programs by default. This data access is facilitated through
the use of push constants, images, uniform buffers, and storage buffers in the Vulkan graphics API [5,
p. 5]. Push constants are a usually small set of constants that are directly submitted to the
GPU with each invocation of the graphics pipeline (a so-called draw call). Sampled images and
uniform buffers are buffers which can be read by the shader stages but not written to, whereas
storage images and storage buffers can, in principle, be written to by the shader stages. Due to
the highly parallel nature of graphics pipeline computations, care must taken when writing to
shared buffers in order to prevent data races.
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The Engine

3.1 Goals of this Engine

Commercial game engines are immensely complex projects usually totalling millions of lines of
source code 1. It is clearly infeasible for a single developer to implement a fully featured engine
in any reasonable amount of time and as such beyond the scope of this project.

Instead, the goal of this project was to implement a partial game engine, called Orion, focusing
on a few core subsystems, but allow continued development after the end of this thesis and
the future integration of further features to make Orion a more viable engine for actual game
development use. In line with this goal, a central architectural guideline during the development
of Orion was the desire for modularity where different, parallel, implementations of a particular
subsystem were deemed likely in the future.

To facilitate the development within the timeframe of a Bachelor’s project, the list of implemented
subsystems was cut down to the absolutely essential supporting subsystems, namely game
state management, input handling and asset management, and a single core subsystem, namely
the graphics renderer. Nevertheless, the implementation of further subsystems is planned
in the future and therefore the engine architecture must facilitate the addition of further
subsystems.

An additional goal of the engine was the desire to be multiplatform, i.e. to run on Windows,
Linux and macOS operating systems. Game consoles were excluded from this, as they often
require the use of proprietary APIs, e.g. for graphics functionality, and there is no cross-platform
graphics API that covers all current generation consoles.

3.2 Engine Architecture

3.2.1 Game State Management and Runtime Object Model

The most basic architectural layer of the Orion engine is its game state management system. The
game state management system connects all other subsystems, manages the game world, and
executes the game loop. In order to decide on an architecture of the game state management
system, one has to decide on a runtime object model for all objects or entities in the game
world. Game Engine Architecture [1] lists two different approaches to the runtime object model:
Object-centric and property-centric architectures. In an object-centric architecture, each game
entity is a class instance and its behaviors are derived from the class and its superclasses, whereas
in a property-centric architecture each entity consists of a set of properties which implicitly
define that entity’s behavior [1, pp. 1043ff.]. To select an approach, we examine how one might
implement each approach in Rust.

1The Unreal Engine totals 33 027 271 lines of C and C++ code in its 5.1.0 release.

10
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Considering the object-centric approach, one must notice that Rust does not support inheritance
in the classical object-oriented programming sense, which makes complex class hierarchies
difficult to implement. As an alternative, one might attempt to pursue an object-centric
architecture by implementing entities as structs with shared behaviors implemented as traits.
Instead of inheritance, blanket trait implementations provide a way to automatically implement
shared behavior for all structs that implement some other trait. However, this approach naturally
pushes us to reason about shared behaviors which is more akin to a property-centric design and
does not really reflect a true object-centric architecture and object hierarchy.

A property-centric approach seems to be the more natural approach for an engine implemented
in Rust, as it maps naturally to the composition over inheritance principle that is part of Rust’s
design. Listing 1 shows how one might implement a trait-based property-centric architecture in
Rust.

1 trait Render {

2 fn render(&self, renderer: &mut Renderer);

3 }

4

5 trait Collide {

6 fn collision_step(&mut self, world: &World);

7 }

8

9 struct Cube {

10 // ...
11 }

12

13 impl Render for Cube { /* ... */ }
14

15 impl Collide for Cube { /* ... */ }

Listing 1: Example of a trait-based property-centric architecture

This trait-based approach has its drawbacks however, when it comes to querying the game world
for specific properties: It is not a simple operation in Rust to ask for all objects which implement
a certain trait, e.g. all objects implementing Render in order to call their respective render()
method. It also presents issues if one wants to implement a function that takes any possible
implementor of a specific trait as a parameter. To implement such a behavior, the function
would either have to be generic over all types that implement that specific trait or accept a trait
object, which is a wide pointer consisting of a pointer to the base object and a vtable pointer to
enable dynamic function dispatch. Generic functions could result in a significant increase in
binary size due to monomorphization, if the trait is implement by a large collection of structs
and trait objects may result in decreased performance due to dynamic dispatch, leaving both of
these options suboptimal.

Instead of attempting a property-centric architecture using traits, one might attempt to follow
the Entity Component System (ECS) pattern where entities are composed of components, again
following the composition over inheritance pattern. However, as opposed to the trait-based
approach, instead of having a struct per type of entity and composing traits to implement
shared behavior, each component is represented by a struct and shared behavior is implemented
through systems which act on all entities with specific components. In this approach, an entity
is solely defined by its components and can simply be represented as a tuple of its constituent
components.

In an ECS architecture, the components may be stored in a struct-of-arrays approach, meaning
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that the game world is represented by a struct containing a list for each component encountered
in the game world (e.g. a list of all positions, a list of all orientations etc.) and each entity is
simply a unique ID with pointers into these lists. This approach makes certain queries, e.g. for
all entities having a certain component, very fast as one can simply iterate over the list for that
particular component. Additionally, an ECS architecture may optimize certain more complex
queries by recognizing common archetypes, i.e. common combinations of components.

There are several ECS implementations available as Rust crates, the three most popular being
bevy_ecs, a part of the Bevy game engine, specs and legion. In line with the goal to test the
Rust ecosystem’s readiness for game engine development, we chose to make use of one of these
available libraries, specifically the legion ECS as the game state management system.

3.2.2 Asset Management

The asset management subsystem is tasked with loading and preparing various resources, such
as level data, meshes, voxel chunks, materials, etc. for use by other engine components. It is
also responsible for ensuring that assets stay loaded as long as they are needed.

The first task of the asset management subsystem is accomplished through the use of generics
and the Asset trait, as shown in listing 2. Any struct implementing this trait is required to
provide a function that loads the asset given a file path to the asset and a second function to
create said file path given a base directory and asset ID.

1 pub trait Asset: Any + Send + Sync + 'static {
2 type CreateContext;

3

4 fn load_from_file(path: &Path, ctx: impl Deref<Target = Self::CreateContext>)

5 -> Result<Self, EngineError>

6 where

7 Self: Sized;

8

9 fn construct_path(id: &SID, base: &Path) -> PathBuf;

10 }

Listing 2: Asset trait, taken from assets/asset_manager.rs.

Assets are identified by their type and a hashed string ID (represented by the SID type).
Internally, the asset manager leverages Rust’s safe dynamic typing capabilities through the Any
trait, provided by the standard library and simply stores a hash map mapping hashed string
IDs to pointers to assets.

Hashed string IDs consist of a string and a numerical hash of that string. By keeping track of
the hash of the string, expensive hashing operations when searching for the ID in a hash map
can be avoided while retaining the user-friendliness of string identifiers.

When requesting an asset from the asset manager, the user simply calls the appropriate
specialization of the asset manager’s get() function with the hashed string ID of the desired
asset. The asset manager then performs the following tasks:

1. It checks its internal hash map if the asset is already loaded.

2. If the asset is loaded, it returns a reference to the requested asset.

3. If the asset is not loaded, it calls the asset type’s load_from_file() function, loading the
asset into memory. The asset is then inserted into the internal hash map and a reference is
returned to the user.

https://crates.io/crates/legion
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To fulfill the second task of the asset manager, namely ensuring that assets stay loaded for the
right amount of time, the asset manager relies on reference-counting smart pointers. Instead
of “raw” pointers, whose use is discouraged in Rust, the Arc<T>2 and Weak<T> smart pointers
provided by the standard library are used for storing references to assets in the internal hash map.
When loading an asset, the user can specify whether the asset should be loaded permanently, in
which case an Arc holding the asset is used, or loaded only temporarily, in which case a Weak
pointer is used. Use of Weak ensures that the refrence held by the asset manager does not prevent
the asset from being dropped when all other references to the asset go out of scope, while still
allowing the asset manager to avoid second loads of an asset if it is still available.

Finally, the asset manager exposes the AssetHandle trait, which allows the implementation
of thin wrappers around string IDs (associating the ID with a specific asset type). These thin
wrappers are held by the game state management systems instead of references to the assets
themselves, to allow for easy serialization of scene data.

3.2.3 Input Handling

The final supporting subsystem implemented in this project is the input handling subsystem.
It is tasked with taking the “raw” inputs from interface devices or the operating system and
transforming them into game actions. These game actions are pushed to a queue, which is a part
of the GameEventQueues structure, for handling in the main game loop. The GameEventQueues
structure is intended as a general mechanism for passing event-like information between
subsystems, even across frames.

While the event queue system may be sound for passing information between subsystems, it
has shown itself to not be an ideal abstraction for input events, particularly for common actions
like translational movement. To illustrate this, we consider the “move forward” action as an
example, commonly bound to the “W” key on a keyboard. When the user presses the “W”
key, the operating system issues three kinds of events3: key down, key repeat and key up. For
games, we usually don’t care about these events but instead care about the current state of the
button, which would be most easily abstracted as a global input map, that can be queried in
the game loop. The event queue abstraction works well for mouse movement events, as mouse
movements are given as a sequence of small steps, which all need to be processed in-order to
reconstruct the correct movement.

The input handling system clearly needs more work and should probably be restructured to
differentiate between “state-like” actions, like a button being pressed, and “event-like” actions,
like mouse movements or the completion of a specific button sequence, and handle each type of
input in a way that is fitting for that input.

3.2.4 Renderer

One of the most complicated and important core systems of a modern game engine is often its
(graphics) renderer, i.e. that subsystem which is tasked with producing images, in real-time,
to be displayed to the user. The renderer is often constructed on top of an abstraction layer,
allowing the use of different graphics APIs (e .g. DirectX, Vulkan, OpenGL, Metal) backing
the rendering process. As the Vulkan API is sufficiently cross-platform for PC systems and
consoles were not a focus of this project, no such abstraction layer is implemented as part of
Orion. However, as extensibility is one of the major design considerations in Orion’s architecture,

2Arc stands for atomically reference counted.
3a similar thing occurs when operating on a raw interface basis and interpreting signals from the hardware

directly
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care was taken to allow the integration of a different renderer, potentially featuring multiple-API
support, in the future.

To achieve the desired extensibility, renderer functionality is split into traits providing backend-
agnostic interfaces and any application requiring a specific set of functionality is required to
pick a renderer implementation that implements the necessary traits. The complete set of traits
currently available and implemented by the “reference” VulkanRenderer is shown in listing
3.

1 pub trait GraphicsRenderer {

2 fn begin_frame(&mut self, cam: &Camera,

3 dir_lights: &[(Rotation, Color, DirectionalLight)],

4 point_lights: &[(Position, Color, PointLight)])

5 -> Result<(), EngineError>;

6

7 fn finish_frame(&mut self) -> Result<(), EngineError>;

8 }

9

10 pub trait EguiRenderer {

11 fn render_gui(&mut self, gui: &mut Gui) -> Result<(), EngineError>;

12 }

13

14 pub trait MeshRenderer {

15 fn render_mesh_solid(&mut self, transforms: &[(&Position, &Rotation, &Scale)],

16 mesh: Arc<Mesh>,

17 mat: Arc<SolidMaterial>)

18 -> Result<(), EngineError>;

19

20 fn render_mesh_textured(&mut self, transforms: &[(&Position, &Rotation, &Scale)],

21 mesh: Arc<Mesh>)

22 -> Result<(), EngineError>;

23 }

24

25 pub trait SkyRenderer {

26 fn render_sky(&mut self, rotation: &Rotation,

27 mat: &SkyMaterial,

28 cam: &Camera)

29 -> Result<(), EngineError>;

30 }

31

32 pub trait VoxelRenderer {

33 fn meshify_voxel_chunk(&mut self, chunk: Arc<VoxelChunk>)

34 -> Result<(), EngineError>;

35

36 fn render_voxel_chunk(&mut self, position: &Position,

37 rotation: &Rotation,

38 scale: &Scale,

39 chunk: Arc<VoxelChunk>)

40 -> Result<(), EngineError>;

41 }

Listing 3: Renderer traits, taken from renderer.rs.

The GraphicsRenderer trait is the basic trait that should be implemented by all renderers and
provides functions to mark the beginning and end of a frame, which must be called before and
after a sequence of render_* functions respectively. This allows the renderer implementation to



3. T�� E����� 15

internally prepare state that can be modified by the render_* functions and finally submit the
desired list of rendering commands to the GPU with the finish_frame function.

3.3 Mesh Renderer Implementation

As mentioned before, the default mesh renderer of Orion is implemented using the Vulkan
graphics API. There are several options for integrating Vulkan with Rust, most notably perhaps
the ash and vulkano crates. Ash provides auto-generated bindings to the Vulkan API and
exposes Vulkan in it’s full complexity and feature set. As Ash directly exposes bindings to a C-
like API and does not validate API usage, all functions provided by Ash are unsafe. Vulkano, on
the other hand, provides hand-written safe wrappers around Ash’s unsafe bindings, extending
Rust’s idea of safe code to Vulkan API calls, ensuring that all API calls are standard-compliant. In
order to accomplish this safe wrapping, Vulkano introduces some further abstractions that are not
present in the Vulkan API specification (such as the idea of a GPU future, representing the result
of some action on the GPU that may or may not be ready yet). However, in most cases, Vulkano
stays relatively close the the abstractions presented in the Vulkan specification. For Orion’s
renderer implementation, Vulkano was chosen for its safe wrappers around Vulkan.

3.3.1 Some Vulkan Background

In order to understand the mesh renderer and voxel renderer implementations, we must examine
a set of Vulkan objects that are central to Vulkan’s operation. These objects are the Device, Queue,
Command Buffer, Pipeline and Descriptor Set.

Devices and Queues

In Vulkan, “Device objects represent logical connections to physical devices. Each device
exposes a number of queue families each having one or more queues” [4, Sec. 5.2].

The device and queue handles are used to submit operations to be executed on the GPU. In
order to define their roles more accurately, we need to distinguish between two different kinds
of operations: Highly parallelized operations, usually called commands in the context of Vulkan,
and non-parallelized operations such as the allocation of buffers or configuration of graphics or
compute pipelines.

Non-parallelized operations are submitted to the GPU via the device object, while commands are
submitted to a queue. The type of operation that can be submitted to a queue depends on that
queue’s family. Device and queue objects are created as a single step and are closely tied to each
other. Multiple queues may be created on a single device to allow further explicit concurrency
of GPU command execution, as work on separate queues may be performed concurrently, while
work on a single queue obeys at least some weak ordering guarantees [4, Sec. 7.2].

Command Buffers

Submitting work to be executed by a queue is an expensive operation [4, Sec. 6.5], as it incurs
overheads on the allocation of command storage on the GPU, transfer of commands to the GPU
and the ramp-up and ramp-down of the parallel processing pipelines themselves. To minimize
this overhead, commands are grouped into command buffers which are then submitted to the
GPU as a batch.

In Vulkan, the command buffer itself is an opaque object and gets filled by recording commands.
Recording is performed by calling specific functions that modify the state of the command
buffer, each representing a specific command or set of commands to be executed.

https://crates.io/crates/vulkano
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Pipelines

As discussed in section 2.3.2, the graphics pipeline on the GPU consists of several fixed function,
configurable or fully programmable stages. Compute operations are executed in similar stages,
although the number of stages is greatly reduced in a compute pipeline compared to a graphics
pipeline. In order to perform work on the GPU, the compute or graphics pipeline needs to be
configured to allow that work to be performed.

In Vulkan, Pipeline objects represent a particular configuration of the compute or graphics
pipeline. They encapsulate the configuration of the configurable stages and the shader code for
any fully programmable stages in addition to the structure of external inputs and outputs of
pipeline [4, Sec. 10]. This I/O configuration of the pipeline is referred to as it’s layout [4, Sec.
14.2.2]. An overview of the stages of the Vulkan pipeline is shown in figure 3.1.

When recording command buffers, one of the first operations consists of binding a pipeline
object, providing the context in which subsequent commands are executed.

Figure 3.1: An overview of fixed function and configurable stages in Vulkan pipelines, including
resources used by them. Taken from [4, Sec. 10], © The Khronos Group Inc.

Descriptor Sets

Quoting from the specification, “A descriptor is an opaque data structure representing a shader
resource such as a buffer, buffer view, image view, sampler, or combined image sampler.
Descriptors are organized into descriptor sets [. . . ]” [4, Sec. 14]. Like pipelines, descriptor sets
have a layout and are bound during command buffer recording. When binding descriptor
sets, their layout must be compatible with the layout of the currently bound pipeline and the
descriptor set layout/pipeline layout can be viewed as the formal specification of the interface
between a shader program and its resources. When writing shader code, resources are annotated
with a descriptor set number and descriptor binding number (within that specific set) to clearly
indicate where the GPU can access the needed resource.

3.3.2 Application Stage

When rendering meshes, the application stage must perform several tasks: First, the application
stage must prepare the GPU for rendering by initializing a command buffer to record into, then
uploading all necessary resources to the GPU (or ensuring resources are already uploaded),
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binding the required graphics pipeline and descriptor sets and finally issuing the rendering
command, usually referred to as draw.

When discussing the resources needed by the shaders, we must differentiate between vertex
input data and uniform data. Vertex input data is data that is different for each vertex of a mesh (or
mesh instance), while uniform data remains constant for all shader invocations. Vertex data is
passed to the shader through vertex buffers, while uniform data is accessed through descriptor
sets.

Vertex and Index Buffers

A data structure must be chosen to store the mesh data, such that it is available to the GPU
for rendering. In rasterization rendering it is common to store this mesh data in the form of
vertex buffers, where attributes are associated with each vertex of the mesh and only a list of
vertices and their attributes is stored. This list of vertices is referred to as the vertex buffer. [4,
Sec. 22.1]

In order to reconstruct triangles from the vertex buffer, the GPU must interpret the data contained
in the vertex buffer according to a pre-defined ruleset. This ruleset is known referred to as the
primitive topology in Vulkan [4, Sec. 21.1].

Vulkan supports five primitive topologies for triangle meshes, three of which we will examine
here: Triangle lists, triangle strips and triangle fans.

Triangle lists are perhaps the simplest way of interpreting vertex data, where “each consecutive
set of three vertices defines a single triangle primitive” [4, Sec. 21.1.5]. The 8-th primitive (i.e.
triangle) is defined through the equation

?8 = {E38 , E38+1 , E38+2}.

Triangle lists have the obvious disadvantage that, when rendering connected meshes, vertices
must be duplicated as each triangle is represented by its own group of three vertices and there
is no way of sharing vertices between triangles. Indexed rendering is one method of reducing the
impact of this restriction (see below) but other topologies can also be chosen to re-use vertex
data in connected meshes.

For triangle strips, primitives are generated through the following construction: We begin with
a single triangle, defined through three consecutive vertices in the vertex buffer. Each successive
vertex in the vertex buffer generates a new triangle with the two vertices that precede it in the
buffer. Equivalently, “one triangle primitive is defined by each vertex and the two vertices that
follow it” [4, Sec. 21.1.6]. This can be expressed through the equation

?8 = {E8 , E8+(1+8%2) , E8+(2�8%2)}

where % is the modulo operator. Triangle strips can also suffer from vertex repetition, like
triangle lists.

Finally, when using triangle fans, each triangle is defined by a vertex, its preceding vertex and a
shared “central” vertex [4, Sec. 21.1.7]. This is expressed in the equation

?8 = {E8+1 , E8+2 , E0}.

Indexed rendering is a technique that reduces the impact of vertex repetition, which makes
it particularly useful for rendering with triangle list or triangle strip topologies. In indexed
rendering, instead of defining the topology through the vertex buffer directly, a secondary buffer
called the index buffer is used to define the triangle topology. All vertices and their attributes
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are still stored in the vertex buffer but each vertex need only be stored once. The index buffer
contains indices into the vertex buffer and defines the mesh topology according to the chosen
primitive topology ruleset.

In Orion only indexed triangle list rendering is used, as this is the most general format and
default representation for many 3D formats, including the Wavefront OBJ format used for mesh
assets in Orion.

Regardless of topology, the vertex shader is executed once for each vertex contained in the vertex
buffer [4, Sec. 9.8].

To enable further reuse of mesh data, Vulkan supports instanced rendering, where multiple
instances of each mesh can be rendered, each having a potentially different set of attributes.
Instance attributes are also passed to the vertex shader through vertex buffers, although these
particular attributes are marked with a special input rate flag [4, Sec. 22.2] to inform Vulkan
that these vertex buffers are to be accessed based on the instance index instead of the vertex
index.

Descriptor Sets

Data that is shared between vertex shader invocations, i.e. uniform data, is accessed through
descriptor sets. Vulkan specifies that hardware must support a minimum of four descriptor sets
being bound to a pipeline at once [4, Sec. 45.1]. This limit forces us to reduce the number of
descriptor sets used in our application as much as possible. Additionally, binding descriptor sets
is an expensive operation, so we would like to minimize the number of re-binding operations
we need to perform.

To reduce the overall number of simultaneously bound descriptor sets and minimize binding
operations, Orion groups resource descriptors into sets by binding frequency. Specifically, Orion
binds at most two descriptor sets at once, binding set 0 per-frame and set 1 per-mesh.

Set 0 thus contains descriptors for all resources that are constant for each frame being rendered,
e.g. the scene lights or camera information. Set 1 contains material information.

Buffer Preparation

Before submitting draw commands to the GPU, the application stage must ensure that all
necessary resources are available and fill the used descriptor sets appropriately.

At the start of each frame, camera and light data is placed into GPU-accessible buffers in CPU
memory and descriptor set 0 is filled with descriptors pointing to these buffers.

For each render_mesh_solid call (as described in Listing 3) the application ensures that the
mesh data is loaded (mesh data is uploaded to the GPU asynchronously, so the mesh data may
not be ready yet) and skips rendering of that particular mesh if it’s data is not available yet.
Additionally, buffers are allocated for material data and the set of transforms supplied to the
render call.

Draw Call

Finally, the application binds the necessary pipeline, vertex buffers, index buffer and descriptor
sets, if they aren’t bound already, and issues a vkDrawIndexed command.

https://www.fileformat.info/format/wavefrontobj/egff.htm
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3.3.3 Vertex Shader

The vertex shader used in the mesh rendering pipeline4 computes the clip space and world
space positions of each vertex as well as the world space normal vectors at each vertex. The
clip space positions are passed to the GPU for perspective division, clipping and viewport
transformation through a special pre-defined output variable (gl_Position in GLSL). The world
space positions and normals are passed to the fragment shader as regular vertex shader outputs,
which are interpolated across each triangle by the rasterizer.

3.3.4 Fragment Shader

The fragment shader is tasked with computing the color of each pixel, given the pixel’s position
in world space, its normal vector, the position and properties of each light and the material
properties of the pixel in question.

Orion’s fragment shader implementation is based heavily on the fragment shader of Google’s
Filament Engine, described in [27], which is in turn based on the physically-based shading model
used at Disney and described in [6].

In physically-based shading, the interaction of light with a surface is described through the
Bidirectional Scattering Distribution Function (BSDF), which is a probabalistic measure of how rays
hitting the surface are scattered. The BSDF can be split into two components: The Bidirectional
Reflectance Distribution Function (BRDF), describing the behavior of reflected rays, and the
Bidirection Transmittance Distribution Function (BTDF), describing the behavior of rays transmitted
into the surface. Our shading model does not deal with rays transmitted into objects and thus
our BSDFs are only composed of the BRDF component.

Our BRDF model can be further broken down into two terms: One term describing diffuse
interactions and one term describing specular interactions.

Our diffuse term models ideal Lambertian reflectance, i.e. the diffuse reflectance follows
Lambert’s cosine law stating that the reflected luminous intensity is proportional to the cosine of
the angle between incident ray and surface normal. This is an approximation, as real materials
do not exhibit ideal Lambertian diffuse reflectance.

Our specular term follows the Cook-Torrance specular reflection model, described in [7] and
given by

5A(E , ;) =
⇡(⌘ , �)⌧(E , ; , �)�(E , ⌘ , 50 , 590)

4(= · E)(= · ;)
where E is a unit vetor pointing towards the camera, ; is a unit vector pointing towards the light,
= is the surface normal vector, ⌘ is the half-angle vector between the incident light vector ; and
the view vector E, � is a roughness parameter, 50 is the Fresnel reflectance at normal incidence
and 590 is the Fresnel reflectance at a grazing angle. ⇡ is the microfacet normal distribution
function, ⌧ is the geometric shadowing function and � is the Fresnel reflectance function.

This reflection model is based on microfacet theory, which models rough surfaces through a
collection of microscopic flat surfaces called microfacets, each with a microfacet normal <. ⇡

describes the statistical distribution of these microfacet normals. In the microfacet model, not
all microfacets take part in a light interaction, as some may be shadowed by other features of the
microscopic surface geometry. This shadowing is described through the geometric shadowing
function ⌧. The product ⇡ · ⌧ describes the distribution of visible microfacet normals [2, pp.
331ff.]. The Fresnel reflectance function � describes the intensity of the specular reflection,
which is based on the optical properties of the material in question and the viewing angle.

4defined in shaders/glsl/SimpleMesh/main.vert
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Several models exist for the microfacet distribution ⇡, including the Beckmann distribution,
Phong distribution and GGX distribution. Orion uses the GGX distribution, described in [8],
which is an empirical model.

As the geometric shadowing function �, the Smith model [9] is used, which sets

⌧(E , ; , �) = ⌧1(E , �)⌧1(; , �)

where ⌧1 depends on the microfacet model used. [8] gives a ⌧1 that matches their GGX
microfacet distribution.

For the Fresnel term � an approximation by Schlick [10] is used, that is fast to compute.

The exact implementation of this model is given in shaders/glsl/SimpleMesh/main.frag and
bsdf.glsl.

The given model describes local illumination, i.e. the illumination that is caused by light following
the path light source – surface – camera. Orion does not implement global illumination effects
caused by lights bounding multiple times, nor does it implement the casting of shadows.

3.4 Benchmarks

All benchmarks were performed on a machine equipped with an AMD Ryzen 9 5900X CPU, an
Nvidia RTX 3080 GPU and 32 GB of RAM operating at 3200 MT/s. Apart from the Debug vs.
Release mode comparison, all benchmarks were performed using the Release build configuration.
All benchmarks were rendered at a resolution of 1920x1080 pixels.

3.4.1 Debug vs. Release Mode Builds

In order to test the performance differences between debug and release configuration builds,
we render the “Sponza” mesh in both build configurations. The Sponza mesh is based on the
atrium of the Sponza Palace in Dubrovnik, Croatia and is a widely used reference mesh in
computer graphics; it consists of 262’267 triangles. The results of this benchmark are shown in
figure 3.2, the rendered scene is shown in figure 3.3.

0 0.5 1 1.5 2 2.5 3 3.5

Debug

Release

Frame time in ms

Figure 3.2: Comparison of frame times in Debug and Release build profile, whiskers show
maximum and minimum. The median frame time in Debug mode is 2.78 ms, the median in
release mode is 0.33 ms, indicating that frame times are approximately 8.4x higher in Debug
mode.
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Figure 3.3: The Sponza model rendered with a uniform grey material.

In order to gain more insight into the cause of these differences, we investigate the time
composition of an exemplary frame, this is shown in figure 3.4.

3.4.2 Rendering Multiple Meshes

As a next benchmark, we investigate how the engine performance scales when rendering
multiple meshes. The benchmark scene is set up to render = copies of the “Suzanne” monkey
head5 placed at random positions and orientations within the view frustrum. Note that this
example does not use instanced rendering but renders each mesh using a separate draw call to
simulate rendering different meshes. Figure 3.5 shows the results of this benchmark. Figure 3.6
shows the scene with 200 monkey heads.

3.4.3 Large Meshes

As a final benchmark of the mesh renderer we investigate how performance scales with the
number of triangles in a mesh. For this benchmark, we use the result of the voxel based mesh
generation described in section 4.2 and render various versions of a voxel torus, excluding the
time to generate the triangle mesh from the voxel source data. The results of this benchmark are
shown in figure 3.7.

5“Suzanne” is a default mesh in the Blender graphics software.
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Figure 3.4: Frame time composition when rendering the Sponza scene in the Debug and Release
build profile. UI rendering takes up a considerable amount of time when rendering using the
Debug profile. The shown frame exhibits a total frame time close to the median.
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Figure 3.5: Frame time composition of a close-to-median frame when rendering multiple copies
of the “Suzanne” monkey head. We can easily see that frame start, frame finish and unprofiled
overhead are increase most dramatically. This is most likely due to a) the need to wait longer for
the GPU when starting a frame, b) the increase in command buffer size when submitting data to
the GPU when finishing the frame and c) increased overhead in the game state management
system.
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Figure 3.6: Rendering 200 randomly positioned and oriented monkey heads.
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Figure 3.7: Frame time composition of a close-to-median frame when rendering voxel-based
torus meshes. This benchmark shows at most a slight upwards trend in frame time when
varying the number of vertices in the scene over multiple orders of magnitude. This clearly
demonstrates that our application is not GPU-constrained as the increase in triangle count
purely affects the GPU load and has minimal impact on the CPU load.
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The Voxel Renderer

In order to evaluate whether the goal of implementing an extensible engine architecture is met,
the engine is extended with the capability to render voxel-based geometry. This voxel renderer is
designed around the observations that a) modern GPUs can perform parallelized computations
very effectively using compute shaders and b) the memory available on GPUs has grown
significantly in recent years, enabling techniques that focus less on memory efficiency.

4.1 Traditional Voxel Rendering Techniques

When rendering voxel-based geometry, one can either render the geometry directly through ray
tracing techniques or construct a triangle mesh from the voxel data that can then be rendered
using any mesh rendering system, such as the renderer described in section 3.3. In this case, we
focus only on the second option, as our goal is to render voxels using modern GPUs, which are
fundamentally designed for rendering triangle meshes.

A commonly used technique for extracting triangles from voxel-based geometry is the Marching
Cubes algorithm described in [11]. Marching Cubes can be parallelized using techniques similar
to the one implemented in this renderer, however, this algorithm yields an approximation of a
smooth surface arond the voxel geometry, which may be undesirable for artistic purposes.

A different algorithm is described in [28], which attempts to create a surface that looks identical
to the voxel model while minimizing the total vertex count. This algorithm suffers from the fact
that it cannot easily be parallelized.

4.2 Parallel Triangle Mesh Generation

The voxel renderer implemented in Orion is fundamentally similar to the culling mesh generation
technique shown in [28] but generates triangles in parallel on the GPU using a compute shader
instead of generating the triangle mesh on the CPU. This produces a suboptimal mesh, as
surfaces may contain superfluous vertices that may not be necessary but it avoids a mesh copy
operation from CPU to GPU memory, as the vertex data is directly generated on the GPU as
well as enabling parallelization of the surface generation.

Fundamentally, the algorithm performs the following steps for each of the six faces of each
voxel:

1. Check if the neighboring voxel on that side is opaque. If it is, do nothing for this face,
otherwise continue.

2. Compute the four vertices of that face and their normals.

3. Increment an atomic counter that is shared between all invocations of the shader.
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4. Insert the four vertices and normals into a buffer at an index based on the value of the
atomic counter.

This method only generates vertex data for faces that are potentially visible and produces a
buffer that may be used as the vertex buffer in traditional triangle mesh rendering.

4.2.1 Implementation Details

The algorithm described above is implemented in shaders/glsl/Voxels/meshify.comp. Voxels
are stored as a 3D texture, giving each voxel a unique color. As the output buffer of the meshing
operation needs to be pre-allocated, we run the algorithm twice, simply counting the number
of generated vertices in the first iteration, then allocating the buffer and finally running the
algorithm again to actually generate the vertex data.

4.3 Improvements and Adaptations

There are several ways in which this simple voxel rendering algorithm could be extended to
different use cases or to allow more efficient calculations.

First, this algorithm could be augmented to use marching cubes for surface generation instead
of generating flat Minecraft-esque surfaces. Second, the 3D texture could contain texture
information instead of colors, to enable the rendering of textured voxels instead of voxels with
flat colors. Third, mipmapping could be used to create lower-resolution versions of the voxel
texture, allowing the generation of lower-resolution meshes, e.g. for rendering objects that are
far from the viewer.

Finally, mesh shaders [4, Sec. 25], could be used to directly generate the vertex data in the
graphics pipeline, skipping the compute and vertex shader stages and potentially saving buffer
allocations and the double execution of the compute shader. However, mesh shaders would
not allow caching of the generated mesh, so all meshes would need to be generated each
frame.

4.4 Benchmarks

To test whether the triangle mesh generation approach above is sufficiently fast for use in a
game, we tested the system for voxel meshes of several sizes. The results of this test are shown
in Figure 4.1. For these experiments a thin-walled torus of various sizes was used as the test
object. The number of rendered voxels compared to the total grid size is shown in figure 4.2.
The shown relationship approaches a linear relationship, as would be expected: The number of
rendered voxels scales with the surface area of the torus, which is proportional to the product of
the major radius and minor radius of the torus, while the total size of the grid is proportional
to the product of the major radius squared and the minor radius. A screenshot of one of the
rendered tori is shown in figure 4.3.

4.5 Architecture Evaluation

Integrating the voxel renderer into the rest of the engine did not require major changes to
the codebase. The ECS and asset management system were extended with the VoxelChunk
component as an alternative to the Mesh component. A new VoxelRenderer trait was intro-
duced and implemented by the VulkanRenderer renderer system. Notably, implementing the
VoxelRenderer trait did not require major changes to the architecture of VulkanRenderer. As
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Figure 4.1: Time to convert a voxel model to a triangle mesh. As we can see, the time to convert
a voxel grid to a triangle mesh seems to scale linearly with the number of “surface” voxels, i.e.
voxels that are actually rendered/included in the triangle mesh. The fact that the time scales
sublinearly in the total size of the grid seems to suggest that the limiting factor is the atomic add
operation that only gets carried out if a voxel is actually rendered.
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Figure 4.2: Number of rendered voxels vs. grid size/total number of voxels for the example
object of a thin-walled torus.

the final piece of integrating the voxel renderer, the ECS was extended with a system acting on
all entities with a VoxelChunkHandle component.

As a result of this, the Orion engine is now capable of rendering voxel-based geometry, while
still retaining all previous functionality (e.g. rendering mesh based geometry). An Orion scene
may contain both voxel-based and mesh-based geometry, enabling maximal flexibility in the
use of both of these technologies for the game developer.
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Figure 4.3: A voxel-based torus measuring 170 ⇥ 48 ⇥ 170 voxels in size.
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Conclusion

5.1 Viability of Rust for Game Engines

This project shows that the Rust programming language is a viable candidate for the development
of game engines. The benchmarks in section 3.4 clearly demonstrate that rendering relatively
complex scenes at more than 60 FPS is feasible, even without significant hand optimization
in the engine codebase. However, the overhead seen in section 3.4.2 shows that there still is
potential for further optimization potential in the CPU-side application code.

The use of a “safe” wrapper around the Vulkan API in the form of the vulkano library did not
seem to impact performance in a significant way, showing that using Vulkan without a large
number of unsafe code blocks is possible.

The libraries for foundational tasks, such as windowing, mathematics and graphics are available
in a relatively polished state, as can be seen by the winit, ultraviolet and ash and vulkano
libraries used by Orion. Libraries for higher-level systems such as an Entity Component System
are available but do not seem as polished or optimized as the aforementioned foundational
libraries.

Architecturally, Rust’s idioms map particularly well to the composition over inheritance style of
programming, that is employed in an ECS based game engine architecture. Rust does not map
well to inheritance-based structures, making the implementation of a hierarchichal entity system
in a game engine difficult.

In conclusion, one can assert that Rust is definitely capable of being used as a language for game
engine development. Projects such as the Bevy game engine, which present more mature engines
than Orion, lead to the same conclusion, although we are not aware of any large Rust-based game
engine projects that use Vulkan as a backend. As a caveat, it is unlikely that we will see game
engine development based on Rust in the games industry at-large, as fully from-scratch engine
projects are very rare, especially at big game developement studios. This is due to the fact the
development of a new engine would presents a significant financial burden, regardless of the
programming language used. However, we might see hybrid development approaches similar
to the approach taken by the Linux kernel, in that rewrites of certain old or the development of
new modules could take place using Rust.

5.2 Outlook

After the conclusion of this project, the source code of Orion will be made publicly accessible
under an open-source license. We hope to continue development of Orion, bringing in more
contributors, and moving towards a more feature-complete engine.

In the immediate future, we plan to extend Orion with a physics engine and move the renderer
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towards a deferred rendering-based system and adding some global illumination features
including shadowing. In conjunction with this major renderer change, we might move from
vulkano to ash as the backing graphics library in order to gain access to bleeding-edge Vulkan
features such as hardware ray tracing or mesh shaders, which are not available using vulkano
yet.
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Source Code

The source code of the Orion engine and this LATEX document is available here for ETH members.
The commit hash at the end of the Bachelor’s project is eb4149af..., tagged v1.0.0. The source
code repository is mirrored at https://gitlab.com/Zortac/orion for access to the general
public.
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List of Rust Libraries used

Rust libraries are permanently listed on crates.io, which should be consulted for further
information.

• atomic_refcell, an atomic variant of the RefCell container

• bytemuck, a library containing utilities for safely converting between “plain old data”
types

• chrono, a library containing various time and date utilities

• egui, a pure-Rust GUI library inspired by Dear ImGui

• egui_winit_vulkano, glue code for using eguiwith winit and vulkano.

• figment, a configuration handling library

• legion, an Entity Component System library, used as the main game state management
system in Orion

• nohash-hasher, a hash function that does nothing

• nom, a parser combinator library

• obj-rs, a Rust implementation of the Wavefront OBJ file format

• once_cell, a container that can only be written to once

• qoi, a Rust implementation of the Quite OK Image Format (QOI)

• qoi-3d, a custom extension of the QOI format to handle voxel data/3D images, source
code is available here

• quote, a library containing helpers for writing procedural macros in Rust

• rand, a library containing utilities for random number generation

• rustc-hash, a library containing a fast, non-cryptographic hash function

• serde, a framework for serializing and deserializing Rust data structures

• serde_json, the JSON backend for serde

• syn, a library containing helpers for writing procedural macros in Rust

• toml, the TOML backend for serde

• ultraviolet, a high performance mathematics library for computer graphics applications

• vulkano, a safe wrapper library of the Vulkan graphics API
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• vulkano-shaders, macros for compiling GLSL shaders to SPIR-V at compile time for use
with vulkano

• vulkano-win, integration of vulkanowith winit

• winit, a cross-platform windowing library


