
Distributed

 Computing

MMP: An Object-Oriented
Multi-Machine Parser Generator

Master’s Thesis

Youyuan Lu

youylu@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Peter Belcák

Prof. Dr. Roger Wattenhofer

August 4, 2022

Acknowledgements

I thank my supervisor Peter Belcák for inspiring me to dive into the wonderful
realm of parsing and guiding me through this journey with his expertise and
insights. I also thank Prof. Dr. Roger Wattenhofer for giving me the opportunity
to work on this thesis within the wonderful DISCO group. Finally, I owe my
great debt to all masterminds behind the theory of formal languages.

i

Abstract

When compared with the manual labor of crafting parsers, most parser gener-
ators currently available are not flexible and powerful enough. They prohibit
the free combination of various parsing algorithms/machines, restrict the form of
grammar rules, and provide limited support for semantic actions and nontermi-
nals’ fields. In this thesis, we present a parser generator Multi-Machine Parsing
(MMP) that solves these three problems. MMP features modular design, regular
expression (regex) rules, and object-oriented nonterminals, thus providing users
with much more freedom to compose their grammars and to tune the performance
of the generated parsers.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Mainstream Parser Generators 1

1.2 Goals for MMP . 3

2 MMP Frontend 4

2.1 Grammar File Structure . 4

2.1.1 Input Machine . 4

2.1.2 Dependency Machine . 6

2.1.3 Name Scope . 6

2.2 Statement Structure . 6

2.2.1 Statement Type . 7

2.2.2 Rule Format . 10

2.2.3 Statement Field . 11

2.2.4 Semantic Action . 13

2.3 Machine Structure . 14

2.3.1 Machine Type . 14

2.3.2 Machine Attribute . 15

3 MMP Internals 16

3.1 Repetition Elimination . 16

3.2 Generalized Terminality . 18

3.3 Subtype Relation . 20

iii

Contents iv

4 MMP Backend 23

4.1 DFA Parser . 23

4.1.1 Additional Restriction . 23

4.1.2 NFA Construction . 25

4.1.3 NFA-to-DFA Conversion 27

4.2 Lookahead Computation . 28

4.2.1 Grammar Preprocessing 29

4.2.2 Sequential Lookahead . 30

4.3 LL(k/finite) Parser . 31

4.4 LR(k/finite) Parser . 34

5 Future Work 37

Bibliography 38

A MMP Specification Language A-1

B A Working Example B-1

Chapter 1

Introduction

Parsing is the process of extracting a structure out of a linear input sequence
according to a given grammar [1]. Such structure is used extensively in further
processing of the input as it instructs the computer on how we expect the input
to be interpreted. Due to the crucial role of this structural view in many text-
related fields (e.g., compiling, decoding, etc.), parsing remains a central topic in
almost all tasks in these fields.

A parser generator is a computer program that takes a grammar as input
and produces the corresponding parser automatically. Given the aforementioned
importance of parsing and the tremendous amount of labor one invests on writing
a parser oneself, it is desirable to have a flexible and powerful parser generator,
thus freeing people from manually crafting parsers and allowing them to focus
on composing grammars.

1.1 Mainstream Parser Generators

A variety of parser generators have emerged since the last century, but many
of them have drawbacks that hinder people from readily adopting them (for
example, the dispute around Yacc as shown in [2] and [3]). We first overview
three typically lacked but wanted features, then detail how some mainstream
parser generators perform under these three metrics.

• Prohibited free combination of parsing algorithms/machines. When writing
a parser for a programming language, it is preferable to apply different
parsing techniques to different syntactic entities for optimized performance
in terms of parser generation efficiency, parser size, and parsing speed. For
example, the shunting yard algorithm is an appropriate choice for arithmetic
and logical expressions, but a more general-purpose parsing algorithm (e.g.,
LL, LR, etc.) might be an overkill in this scenario. However, no current
parser generators endorses such differentiated parsing, as they support at
most a family of closely-related parsing methods (e.g., LR variants).

1

1. Introduction 2

• Restricted form of grammar rules. Most current parser generators strictly
follow the mathematical definition of grammar, and confine a rule to be
a finite sequence of terminals and nonterminals. Such adherence quickly
becomes a barrier against writing succinct grammars. To express a list, it is
inevitable to resort to an unintuitive recursive form ⟨list⟩ → ⟨item⟩⟨list⟩ | ε,
which transforms a linear sequence to a right-leaning binary tree. However,
with the help of regexes, ⟨list⟩ → ⟨item⟩∗ suffices, and it explicitly displays
a list as a sequence of items.

• Limited semantic actions and nonterminals’ fields. Collecting structural
information during parse time is frequently useful for further processing of
the input. For example, recording all operators and operands when parsing
an expression is a necessity for later analysis and evaluation. Such gathering
is achieved by executing semantic actions embedded into the grammar, and
a natural implementation is to put all operators into an operator list and to
put all operands into an operand list, both of which are fields associated to
the expression. However, many current parser generators are not expressive
enough to support such sophisticated actions since they impose various
restrictions on the number and types of a nonterminal’s fields.

Table 1.1 summarizes the performance of five mainstream parser generators:
Lex [4], Flex [5], Yacc [6], Bison [7], and ANTLR [8].

features
generators Lex/Flex Yacc/Bison ANTLR

Machine combination ✗ ✗ ✗

Regex rules ★ ✗ ✓

User-defined fields ✗ ★ ★

Table 1.1: Performance of some mainstream parser generators

✓ means full support; ★ means limited support; ✗ means no support.

Lex/Flex, as its name suggests, is designed to be a tokenizer generator, and
most of its limitations are the consequence of such philosophy. Its output is lim-
ited to a deterministic finite automaton (DFA), which is an adequate formalism
to describe and recognize the contents of tokens. It supports specifying rules
using regexes on the character level, but no recursion is allowed as that is beyond
the capability of a DFA. Although each rule can be attached with a semantic
action, nonterminals cannot be configured by users to have fields.

Yacc/Bison is a general-purpose parser generator. It produces parsers that are
among several LR variants, and no free combination of machines is possible. It
requires each grammar rule to be a finite sequence of terminals and nonterminals.
Limited facilities are provided for semantic actions and nonterminals’ fields. Each
nonterminal is allowed to possess only one field, and the semantic actions in the

1. Introduction 3

middle of a rule have less capability (i.e., they cannot manipulate the field of the
nonterminal being expanded) than their counterparts at the end of the rule.

ANTLR is a modern parser generator. It produces an integrated tokenizer-
parser workflow, where the parser adopts LL(*) algorithm [9, 10], a self-adaptive
variant of traditional LL(k). ANTLR permits regexes in specifying grammar
rules, and tries to eliminate left-recursive rules using Kleene stars. Each nonter-
minal in an ANTLR grammar file has a predefined, read-only set of fields (e.g.,
its content, its position in the file, etc.), but users are not allowed to declare any
other field for nonterminals of interest.

1.2 Goals for MMP

Our vision for MMP is to tackle the three problems mentioned at the beginning
of section 1.1. Three mechanisms are employed to achieve this goal.

• Modular design. MMP allows users to freely partition a huge grammar into
small pieces and to assign a parsing technique to each of them. The pro-
duced parser consists of several files, each of which is responsible for parsing
a grammar fragment using the designated algorithm as mentioned above.
This modular organization facilitates the logical decomposition of complex
grammars, thus boosting the performance in the entire parser lifecycle, from
parser generation to actual parsing.

• Regex rules. MMP supports specifying grammar rules in the form of
regexes, which, although do not increase the expressiveness of grammars,
provide great ease for writing concise and intuitive grammars. Such al-
lowance comes with the trade-off of burdening the parser generator. Instead
of linearly scanning the rule, the generator needs to traverse the tree-like
structure of the rule regex.

• Object-oriented nonterminals. Similar to the objects in object-oriented pro-
gramming languages, nonterminals in MMP have their own types and can
be configured by users to possess fields derived from these types. All fields
of a nonterminal can be manipulated by compatible semantic actions ap-
pearing anywhere in this nonterminal’s corresponding rule. Such flexibility
augments the recording of structural information during parse time, thus
simplifying the further processing of the input.

Chapter 2

MMP Frontend

This chapter is a thorough introduction to the frontend of MMP, namely, how to
write a grammar file in MMP format. We first give a high level overview of the
structure of MMP grammar files, then explain each component in more detail.

2.1 Grammar File Structure

As stated in section 1.2, MMP adopts modular design that facilitates the logical
partition and stratification of a sophisticated grammar. Figure 2.1 provides a
hypothetical MMP grammar file and illustrates its structure. Each machine (m00,
m01, etc.) is responsible for parsing a fragment of the entire grammar, and its
body ({/*statements*/}) contains the corresponding grammar rules and some
other MMP-specific utilities.

2.1.1 Input Machine

Parsing is a text processing task innately requiring stratification. To acquire
the final representation that carries all needed structural information about the
input, a collection of low-level units is formed first to record necessary local
information. These low-level units are then served as building blocks for the
construction of mid-level entities, which provide a more global view of the input.
Finally, these mid-level entities contribute themselves to the establishment of
the high-level representation we want. A concrete application of such layered
workflow is found in the filed of compiling. An input program (a character
stream) is first transformed into a sequence of tokens, from which a syntax tree
is constructed to capture the structure of the whole program.

To incorporate stratification into MMP, the keyword on is employed to indi-
cate a machine’s input machine. If machine u is on machine v (v is u’s input
machine), then the nonterminals outputted by v will become the input fed to u.
Due to the single-source nature of the input (since parsing is about analyzing
a single input sequence), each machine is allowed to indicate at most one input

4

2. MMP Frontend 5

machine, and if no such input channel is specified, the machine being defined will
accept text input.

The MMP grammar file in figure 2.1 has three layers: machines m0i, machines
m1i, and machines m2i. m00 directly process the text input, and may reference
in its body the nonterminals defined in m01 and m02. The keyword uses will be
explained in more detail in section 2.1.2; for now, it is sufficient to understand
that m01 and m02 are helpers for m00, and that all three machines are in the same
layer and directly consume the text input. Layer m1i is built upon layer m0i in
that machines m1i take the nonterminals produced by m00 as their input, and m10
may reference in its body the nonterminals defined in its helpers m11 and m12.

text input

m01 m02

m00

m12

m11

m10

m23

m21 m22

m20

on

uses

1 LL(finite) parser m00 uses m01, m02
2 {/*statements*/}
3

4 finite automaton m01
5 {/*statements*/}
6

7 finite automaton m02
8 {/*statements*/}
9

10 LR(finite) parser m10 on m00 uses m11
11 {/*statements*/}
12

13 LL(finite) parser m11 on m00 uses m12
14 {/*statements*/}
15

16 finite automaton m12 on m00
17 {/*statements*/}
18

19 LL(finite) parser m20 on m10 uses m21, m22
20 {/*statements*/}
21

22 LR(finite) parser m21 on m10 uses m23
23 {/*statements*/}
24

25 LR(finite) parser m22 on m10 uses m23
26 {/*statements*/}
27

28 LL(finite) parser m23 on m10
29 {/*statements*/}

Figure 2.1: A hypothetical MMP grammar file and its illustrated structure

2. MMP Frontend 6

2.1.2 Dependency Machine

Section 1.1 explained in its beginning, through the example of programming
languages, the motivation of partitioning huge grammars and applying different
parsing techniques to each fragment. To recap, different parts of a grammar re-
quire different parsing power, so adaptively applying suitable parsing algorithms
to these parts can achieve the optimized performance.

MMP’s mechanism for partitioning grammars is the adoption of the keyword
uses. If machine u uses machine v (v is u’s dependency machine), then u can
reference in its body the nonterminals defined in v. The only restriction is that
u and v should accept the same input source. Imagine a huge grammar for some
programming language, and let u be the LR parser that is in charge of producing
the entire syntax tree, and v be the DFA parser that analyzes single statements.
Then u and v are on the same logical level in the sense that the input to both
of them is a token stream. Also, u needs to reference some nonterminals in v to
grasp the structures of single statements.

The keyword uses supports both direct and transitive references. For exam-
ple, machine m20 in figure 2.1 can reference in its body the nonterminals defined
in machines m21 and m22, as written in line 19 of the code. m20 can also reference
the nonterminals defined in machine m23, which is used declaratively by its direct
helpers m21 and m22. The boundary of such transitivity is machine m10, which
provides input to layer m2i.

2.1.3 Name Scope

Name scope is about what nonterminals (or in other words, their names) can
be referenced from a certain machine. As stated in sections 2.1.1 and 2.1.2,
a machine has access to all nonterminals defined within its own body, its in-
put machine, and its direct and transitive dependency machines, thus forming a
transitive uses-closure inclusively bounded by the previous layer. For example,
machine m10 in figure 2.1 can use the nonterminals defined within machines m11,
m12, and m00.

Note that whether a nonterminal can be referenced depends solely on the
logical structure of the grammar file. Therefore, a nonterminal can be used when
its definition has not been seen yet, as long as it resides in the appropriate uses-
closure talked above.

2.2 Statement Structure

Before studying the overall structure of machines in section 2.3, we explore in this
section the body of a machine, namely, how a statement is formed. A statement

2. MMP Frontend 7

is more than a grammar rule in that it features user-configurable object-oriented
characteristics, which, as stated in section 1.2, augments the recording of struc-
tural information during parse time.

Since each statement defines uniquely how a nonterminal should be expanded
during parse time, we will use the two words “statement” and “nonterminal” inter-
changeably in the rest of this thesis. The materials in this section are necessary
for understanding the machine structure that will be introduced in section 2.3.

2.2.1 Statement Type

There are four types of statements in MMP, as shown in table 2.1. Figure 2.2
provides an MMP grammar file about statement types. Figure 2.3 illustrates the
corresponding statement relations. This section overviews statement properties,
where the introduction to the four statement types is incorporated.

properties
statements

category production pattern regex

Type-forming Yes Yes No No
Contextual Yes Yes Yes No

Rule No Yes Yes Yes
Terminality Synthesized Declared N/A N/A

Table 2.1: Four types of MMP statements

• Type-forming. The idea of type-forming statements comes from the types
in object-oriented languages. category and production are the only two
type-forming statements, and they are similar to the interface and the class
in object-oriented languages, respectively. Type-forming statements make
their own types, and a generated parser only returns type-forming state-
ments. On the syntactic level, type-forming statements can explicitly spec-
ify their rootness as root (like float, decimal, and hex in figure 2.2) or
ignored root (like whitespace in figure 2.2), and can specify their own
field lists (like number and hex in figure 2.2).

When a machine serves as a dependency machine, the rootnesses of its
statements are irrelevant, and it produces whatever type-forming statement
requested by the machine that uses it.

Rootness matters when a machine works as an input machine. The key-
word root means that the statement being defined should be viewed as a
starting point of parsing (i.e., the start symbol in the mathematical defini-
tion of grammar), and that once successfully parsed, this statement should

2. MMP Frontend 8

1 finite automaton number_scanner
2 with productions_nonterminal_by_default,
3 productions_nonroot_by_default,
4 ambiguity_resolved_by_precedence
5 {
6 category number {raw digits; flag is_decimal;};
7 category integer : number;
8

9 ignored root production whitespace = [' ' '\t' '\n']+;
10

11 root production float : number = digit+ '.' digit+;
12 root production decimal : integer = digit+ @flag:is_decimal;
13 root terminal production hex : integer {raw letters;} =
14 (digit | letter @append:letters)+;
15

16 pattern digit : float, decimal, hex = ['0'-'9'] @append:digits;
17 regex letter = ['a'-'f' 'A'-'F'];
18

19 pattern stranger : number = ('#'+ | '$'+) @empty:digits;
20 }

Figure 2.2: An MMP grammar file about statement types

number
non-terminal

integer
non-terminal

float
non-terminal

stranger
N/A

decimal
non-terminal

hex
terminal

inherits materializes

Figure 2.3: Relations among statements in figure 2.2

be placed into the output sequence, a sequence of root statements1. The
keyword ignored root also designates the statement being defined as a
starting point, except that this statement will be discarded once the gener-
ated parser finishes parsing it. The difference between these two keywords

1Actually, the return value is a tangible subtype of the successfully parsed root, and each
element in the output sequence is a tangible subtype of some root. The concept of subtypes
will be explored further in section 3.3.

2. MMP Frontend 9

is demonstrated in figure 2.2. The output of number_scanner is a sequence
of float, decimal, and hex, and all whitespace are discarded.

• Contextual. Each type-forming statement creates its own context in that
all semantic actions executed in its rule manipulate its own fields. On the
syntactic level, contextual statements can claim their base contexts via base
context lists. The purpose of adopting contextual statements is threefold.

First, category and production are contextual statements, and their base
context lists can only contain category. In this case, each base context (a
category, to be exact) is similar to an inherited interface in object-oriented
languages. For example, in figure 2.2, production decimal inherits a field
is_decimal transitively via category integer from category number, and
therefore can operate this field in its own rule.

Second, although category is intended to be intangible and play the role
of interface, materializing it is a handy feature to have, and pattern is
designed as a contextual statement for this purpose. pattern itself is not
type-forming; it only manipulates the fields on behalf of its base contexts,
a sequence of category. For example, pattern stranger in figure 2.2 acts
on field digits of its base context number. When a pattern is successfully
parsed, what will be returned is its base context.

Third, sometimes it is convenient to factor out common parts shared by
several statement rules. For example, statements float, decimal, and hex
in figure 2.2 use digits in their rules, so we factor out this shared piece and
make it another statement digit. digit itself is not type-forming since this
grammar is about recognizing numbers instead of single digits. However,
digit requires some contextual information as it is used by float, decimal,
and hex to record each digit appearing in a number for the inherited field
digits. To serve this purpose, pattern’s base context list is allowed to be
a sequence of production, as shown in line 16 of the code.

• Rule. Except for the interface imitant category, all three other types of
statements have a grammar rule for expansion. The format of grammar
rules in MMP is discussed in section 2.2.2.

• Terminality. The keyword terminal indicates that the production being
defined has an internal field that automatically records the sequence of in-
put symbols that constitutes this production. For example, when facing
text input 1234BEEF, production hex in figure 2.2 stores 1234 in its inher-
ited field digits, and stores the entire stream 1234BEEF in its automatically
created internal field.

category has an automatically synthesized terminality that accumulates its
nominal subtypes’ behavior. The concept of subtypes will be explored fur-
ther in section 3.3; for now, it is sufficient to understand nominal subtypes
as the solid arrows in figure 2.3. Unlike production, a terminal category

2. MMP Frontend 10

does not imply the existence of an internal field; instead, this terminality
is only used by MMP internally to facilitate some sanity checks.

A category is a synthesized terminal when all its strict nominal subtypes
(i.e., not including itself) are terminal (either declared by users or synthe-
sized automatically). Figure 2.3 illustrate this bottom-up synthesis. Note
that stranger is a pattern and is ignored during this process, since only
type-forming statements are considered and accumulated.

We have not mentioned regex in our discussion above. regex is designed
to be an actionless counterpart of pattern in terms of factoring out common
parts shared by several statement rules. Because of its actionless nature, regex
requires no contextual information and therefore is not a contextual statement.

2.2.2 Rule Format

As stated in section 1.2, MMP supports writing grammar rules using regexes for
conciseness and intuitiveness. The complete structure of a grammar rule is listed
in appendix A, and here we provide a brief overview of it.

• A grammar rule in MMP is a disjunctive regex, which is a collection of
conjunctive regexes, each of which serves as an alternative during parsing.

• A conjunctive regex is a sequence of root regexes. The entire conjunctive
regex is matched only when all its component root regexes are matched.

• A root regex is a unit to carry semantic actions. There are two types of
root regexes: atomic regex and repetitive regex.

• A repetitive regex wraps an atomic regex with a repetition specification that
indicates how many times the wrapped atomic regex should be repeated.

• An atomic regex can be either primitive or disjunctive (thus achieving
nested structure). Primitive ones can be a single input symbol, a range
of input symbols, a reference to some other nonterminal, etc.

Some extra care needs to be taken when referencing a statement from a gram-
mar rule. Suppose statement s is referenced by a grammar rule in machine m.

• If s is defined within m, then no restriction is imposed on s.

• If s is defined in the input machine of m, then s must be a nominal subtype
of a root. This restriction is reasonable since as stated before, a machine
outputs a sequence of its root2, and therefore m should only be allowed to

2Actually, each element in the output sequence is a tangible subtype of some root. The
concept of subtypes will be explored further in section 3.3.

2. MMP Frontend 11

access its input machine’s root (as well as their nominal subtypes), namely,
the symbols in m’s input stream.

• If s is defined in a dependency machine of m, then s can be any type-
forming statement. Compared with the previous case, the rootness of s is
ignored here, thus easing the combination of different parsing algorithms.
The reason why non-type-forming statements are disallowed is that in some
parsers (e.g., DFA), non-type-forming statements are integrated into the
type-forming statements that use them, and therefore cannot be readily
referenced from other machines.

2.2.3 Statement Field

An important feature of object-oriented design is to allow each object to possess
its own fields. MMP adopts this philosophy and allows type-forming statements
to declare their fields, as mentioned in section 2.2.1. Table 2.2 summarizes for
each type of field its analogy in normal programming languages and its compatible
semantic actions. Figure 2.4 gives an MMP grammar file demonstrating how to
use fields and semantic actions to record structural information.

description
fields

flag raw item list

Analogy Boolean Deque Object Stack

Actions @flag
@unflag

@capture
@append
@prepend
@empty

@set
@unset

@push
@pop
@clear

Table 2.2: Fields and Semantic Actions

As shown in table 2.2, there are four types of fields. We introduce each of
them, and briefly mention their corresponding semantic actions, which will be
discussed in more detail in section 2.2.4.

• flag field is similar to a boolean variable in the sense that it has two possible
states, flagged and unflagged. Action @flag sets it to flagged, and
action @unflag resets it to unflagged, which is its initial state. For
example, field has_add in figure 2.4 is initially unflagged, but when an
ADD_OP in statement expression’s rule is matched in line 30 of the code,
this field is set to flagged by action @flag.

• raw field is used to store a sequence of input symbols of the current layer,
and it is the type of the internal field automatically created by MMP for
terminal statements mentioned in section 2.2.1. raw field resembles a

2. MMP Frontend 12

1 finite automaton tokenizer
2 with ambiguity_resolved_by_precedence
3 {
4 // productions have root rootness and terminal terminality
5 // by default in DFA
6 root category operator;
7 production ADD_OP : operator = '+';
8 production SUB_OP : operator = '-';
9

10 root category operand;
11 production ID : operand = ['a'-'z']+;
12 production CONST : operand = ['0'-'9']+;
13

14 ignored root production whitespace = [' ' '\t' '\n']+;
15 }
16

17 LL(finite) parser expression_parser on tokenizer
18 {
19 root production expression
20 {
21 flag has_add;
22 raw content;
23 operand item head;
24 operator list operators;
25 }
26 =
27 (
28 operand @set:head
29 (
30 (ADD_OP @flag:has_add | SUB_OP) @push:operators
31 operand
32)*
33) @capture:content;
34 }

Figure 2.4: An MMP grammar file about fields and semantic actions

deque instead of a stack, because input symbols can be inserted either at
its head (by action @prepend) or at its tail (by action @append).

For example, field content in figure 2.4 is initially empty, but when an
expression is successfully parsed in line 33 of the code, it is commanded
by action @capture to hold all input symbols that constitute the parsed
expression. For example, after feeding expression_parser with the token
stream ID ADD_OP CONST SUB_OP ID, an expression will be returned and
its field content will be [ID, ADD_OP, CONST, SUB_OP, ID].

• item field requires the name of a type-forming statement to complete its

2. MMP Frontend 13

declaration, and is used to store a subtype3 of this statement. For example,
field head in figure 2.4 initially stores nothing, but when the first operand
in the rule of expression is matched in line 28 of the code, this field is
commanded by action @set to store this operand (either an ID or a CONST).
An item field can also be cleared by action @unset, the opposite of @set.

• list field differs from item field in that it stores a sequence of subtypes3

of the designated type-forming statement. It resembles a stack instead of a
deque (as raw does), because element insertion (by action @push) and dele-
tion (by action @pop) only happens at its tail. For example, field operators
in figure 2.4 is initially empty, but each time a binary operator (either an
ADD_OP or a SUB_OP) is matched in line 30 of the code, this operator is
appended by action @push to operators.

2.2.4 Semantic Action

We have discussed in section 2.2.3 about how semantic actions interacts with
their target fields. This section will focus on the input of semantic actions. The
input to a semantic action is the root regex this action associated to.

• @flag and @unflag toggle the state of their two-valued target fields, and
therefore require no input. They can be placed anywhere in a grammar
rule, as shown by line 12 in figure 2.2 and line 30 in figure 2.4.

• @empty, @unset, @pop, and @clear delete predefined portions of their target
fields, and therefore require no input. They can be placed anywhere in a
grammar rule, as shown by line 19 in figure 2.2.

• @capture, @append, and @prepend require their inputs to encompass the
input symbols of the current layer, the only elements accepted by raw fields,
as stated in section 2.2.3. We will discuss further in section 3.2 about
generalizing the concept of terminality to all regexes in grammar rules to
determine whether theses three actions are compatible with their inputs.
For now, check lines 14 and 16 of figure 2.2 and line 33 of figure 2.4 for
some examples.

• @set and @push resemble the generic operations in object-oriented lan-
guages, and require their inputs to be nominal subtypes of their designated
type-forming statements, as shown by line 28 in figure 2.4.

To explain intuitively how fields and semantic actions shape the parsed out-
put, figures 2.5 and 2.6 give two output results visualized automatically by MMP.

3Actually, the stored object is a tangible subtype of the type-forming statement in the field
declaration. The concept of subtypes will be explored further in section 3.3.

2. MMP Frontend 14

float

digits=12345

is_decimal=UNFLAGGED

hex

digits=67

is_decimal=UNFLAGGED

raw=BEE67

letters=BEE

decimal

digits=890

is_decimal=FLAGGED

Figure 2.5: Output of figure 2.2 visualized by MMP

Acquired by feeding text input stream 12.345 BEE67 890 to the grammar in figure 2.2.

expression

has_add=FLAGGED

content=(1)

head=(2)

operators=(3)

ID

raw=num

ADD_OP

raw=+

CONST

raw=123

SUB_OP

raw=-

ID

raw=str

(1)

ID

raw=num

(2)

ADD_OP

raw=+

SUB_OP

raw=-

(3)

Figure 2.6: Output of figure 2.4 visualized by MMP

Acquired by feeding text input stream num + 123 - str to the grammar in figure 2.4.

2.3 Machine Structure

Each machine in an MMP grammar file is a collection of statements to be pro-
cessed by the designated parsing algorithm with customizable settings. We first
introduce the machine types (in other words, parsing algorithms) supported by
MMP, then talk about how machine settings can be tuned by supplying different
values for a machine’s attributes.

2.3.1 Machine Type

MMP currently allows three machines:

(i) DFA with specifier finite automaton;

(ii) LL(k/finite) with specifier LL(⟨k⟩), where the lookahead length ⟨k⟩ is either
a nonnegative integer or keyword finite; and

2. MMP Frontend 15

(iii) LR(k/finite) with specifier LR(⟨k⟩), where the lookahead length ⟨k⟩ is either
a nonnegative integer or keyword finite.

To achieve the three goals mentioned in section 1.2 (i.e., modular design, regex
rules, and object-oriented nonterminals), some extra efforts need to be invested
into realizing these machines, and the resulting parsers are more complicated
than their textbook counterparts. Chapters 3 and 4 dive into these technicalities
in more depth.

2.3.2 Machine Attribute

The behavior of an MMP machine depends not only on its type (i.e., its desig-
nated parsing algorithm elaborated in section 2.3.1), but also on the properties
of its statements as discussed in section 2.2.1. These statement-wise settings can
be initialized conveniently by a machine’s four boolean-valued attributes:

(i) ProductionsTerminalByDefault, which says whether every production
should be initialized as a terminal;

(ii) ProductionsRootByDefault, which says whether every production should
be initialized as a root;

(iii) CategoriesRootByDefault, which says whether every category should be
initialized as a root; and

(iv) AmbiguityResolvedByPrecedence, which says whether ambiguities should
be resolved by precedence. For example, in figure 2.2, both decimal and
hex can parse the text input stream 1234, but a decimal is deterministically
returned because of line 4.

Note that these initializations will be overwritten by the explicit property
elaboration of a statement. For example, line 2 in figure 2.2 (non-terminal by
default) conflicts with the definition of hex (declared termianl), and the latter
prevails as shown by the internal raw field of hex in figure 2.5.

Chapter 3

MMP Internals

MMP analyzes an input grammar file lexically, syntactically, and semantically
to detect various problems that may arise from the grammar composer’s careless
planning and typing. Before performing the semantic check, MMP transforms the
appearance of an input grammar file without modifying the language it describes
to facilitate the parser generation. This chapter first discusses the grammar
appearance transformation performed by MMP, then addresses two key points in
the MMP semantic analysis.

3.1 Repetition Elimination

The purpose of transforming the appearance of a grammar file is to eliminate all
repetitive regexes, thus making this normalized grammar file suitable to be fed
into some parser generation algorithms. For example, the rules in LL and LR
grammars are assumed to be finite sequences of terminals and nonterminals, and
the existence of repetition notations complicates the processing of rules and the
generation of corresponding parsers.

The basic idea of elimination is to recursively replace each repetitive regex r
with two new statements rlist and ritem. rlist captures r’s overall structure, and
ritem records the pattern being repeated in r. Figure 3.1 demonstrates in detail
how this idea works with different kinds of statements. Note that each pair
(ri, ci) in figure 3.1 represents the location (row and column) of the repetitive
regex being replaced in the original grammar file.

• When a repetitive regex appears in a production’s rule, as shown by state-
ment float in figure 3.1, the two newly-created statements will have type
pattern and declare the involved production as their base contexts. The
reason why pattern is employed here instead of regex is that the repetitive
regex being replaced might contain some semantic actions that manipulate
the fields of the involved production, and pattern allows the two new-
created statements to receive this contextual information and at the same
time be kept as components of a type.

16

3. MMP Internals 17

1 finite automaton tokenizer
2 {
3 // productions have root rootness and terminal terminality
4 // by default in DFA
5 category number;
6

7 // float, original
8 production float : number {raw integer; raw fraction;} =
9 digit+ @capture:integer '.' tail;

10 // float, transformed
11 production float : number {raw integer; raw fraction;} =
12 float__list_r1_c1 @capture:integer '.' tail;
13 pattern float__list_r1_c1 : float =
14 float__item_r1_c1 | float__item_r1_c1 float__list_r1_c1;
15 pattern float__item_r1_c1 : float =
16 digit;
17

18 // tail, original
19 pattern tail : float =
20 digit @append:fraction {1,2};
21 // tail, transformed
22 pattern tail : float =
23 tail__list_r2_c2;
24 pattern tail__list_r2_c2 : float =
25 tail__item_r2_c2 | tail__item_r2_c2 tail__item_r2_c2;
26 pattern tail__item_r2_c2 : float =
27 digit @append:fraction;
28

29 // digit, original
30 regex digit =
31 ['0'-'9'] '_'*;
32 // digit, transformed
33 regex digit =
34 ['0'-'9'] digit__list_r3_c3;
35 regex digit__list_r3_c3 =
36 () | digit__item_r3_c3 digit__list_r3_c3;
37 regex digit__item_r3_c3 =
38 '_';
39 }

Figure 3.1: An MMP grammar file about repetition elimination

• When a repetitive regex appears in a pattern’s rule, as shown by statement
tail in figure 3.1, the two newly-created statements will, for the same
reason as mentioned in the case of production, have type pattern. This
time, however, their base contexts will be the same as those of the involved
pattern, which itself manipulates fields on behalf of its base contexts.

3. MMP Internals 18

• When a repetitive regex appears in a regex’s rule, as shown by statement
digit in figure 3.1, no contextual information are required by the two
newly-created statements, as the involved regex is itself actionless. Thus,
regex serves sufficiently as the type of the two newly-created statement.

Note that although figure 3.1 does not show, the elimination process recurses
in the case where the rule r′ of ritem also contains some repetitive regex ans thus
two new statements r′list and r′item are required.

3.2 Generalized Terminality

This section explores, as hinted in section 2.2.4, how to generalize the concept of
terminality to all regexes in grammar rules to determine whether the three raw-
related semantic actions (i.e., @capture, @append, and @prepend) are compatible
with their inputs.

The basic idea of computing a regex’s terminality is to accumulate the ter-
minality of each of its components, thus assuring that this regex always encom-
passes the input symbols of the current layer. The following recursive definition
delineates the bottom-up process of computing terminality for each regex in a
grammar rule, and is illustrated by figure 3.3, which focuses on statement VAR’s
rule in figure 3.2.

• A disjunctive regex is a terminal when each of its alternatives (a conjunc-
tive regex) is a terminal.

• A conjunctive regex is a terminal when each of its component (a root
regex) is a terminal.

• A primitive regex is a terminal when it is

(i) a non-reference, which encompasses text input symbols; or
(ii) a reference to a non-type-forming statement, which is assured by sec-

tion 2.2.2 to be defined within the current machine and thus encom-
passes the input symbols of the current layer; or

(iii) a reference to a terminal statement defined within the current ma-
chine or its dependency machine, which is embedded with a raw field
that stores a sequence of input symbols of the current layer; or

(iv) a reference to a nominal subtype of a root statement defined within
the current machine’s input machine, which is itself an input symbol
of the current layer.

To explain intuitively how raw-related semantic actions set their target fields
using the input symbols encompassed in their input regexes (terminal regexes,

3. MMP Internals 19

1 finite automaton tokenizer
2 with productions_nonterminal_by_default
3 {
4 // productions have root rootness by default in DFA
5 category entity {raw name;};
6

7 terminal production VAR : entity {raw type; raw index;} =
8 (
9 // MMP decomposes a string into a sequence of characters

10 // at the very beginning, so adding parenthesis is necessary
11 ("str_") @capture:type digits
12 | "num_" num_type @capture:type digits
13) @capture:name;
14

15 production ARRAY : entity = VAR @capture:name "[#]";
16

17 pattern digits : VAR = ['0'-'9'] @append:index +;
18 regex num_type = "int_" | "float_";
19

20 ignored root production whitespace = [' ' '\t' '\n']+;
21 }
22

23 LR(finite) parser entity_parser on tokenizer
24 {
25 root production entities {raw vars; raw arrays_reversed;} =
26 (VAR @append:vars | ARRAY @prepend:arrays_reversed)+;
27 }

Figure 3.2: An MMP grammar file about generalizing terminality

"str_" digits | "num_" num_type digits
terminal

"str_" digits
terminal

"num_" num_type digits
terminal

"str_"
terminal

digits
terminal

"num_"
terminal

num_type
terminal

digits
terminal

accumulates

Figure 3.3: Computing terminality for a regex in figure 3.2

3. MMP Internals 20

to be exact), figure 3.4 gives an output result visualized automatically by MMP.
This visualization shows that the purpose of raw-related semantic actions is to
extract the input symbols of the current layer encompassed in their input regexes
and to put them into their target fields. For example, the raw fields of entities
store VAR and ARRAY, whereas the raw fields of VAR and ARRAY store characters.

entities

vars=(1)

arrays_reversed=(2)

VAR

name=num_int_12

raw=num_int_12

type=int_

index=12

VAR

name=str_56

raw=str_56

type=str_

index=56

(1)

ARRAY

name=num_float_78

ARRAY

name=str_34

(2)

Figure 3.4: Output of figure 3.2 visualized by MMP

Acquired by feeding text input stream num_int_12 str_34[#] str_56 num_float_78[#] to
the grammar in figure 3.2.

3.3 Subtype Relation

This section introduces formally the concepts of subtypes in MMP, which is
only mentioned cursively in previous sections. There are two sorts of subtypes in
MMP, nominal subtypes and tangible subtypes. Figure 3.6 illustrates the subtype
relations among statements defined in figure 3.5.

Nominal subtypes are the same as those in object-oriented languages, since
they are defined in a declarative way through base context lists. The only restric-
tion is that no diamond is allowed to exist in the inheritance hierarchy. Consider
statement unreal in figure 3.5. It is problematic because when trying to manip-
ulate the field not_real in line 15 of the code, unreal does not know whether
this field is inherited from category cat or from category dog.

Tangible subtypes are subtly different, and are delineated by the following
recursive definition.

• The only tangible subtype of a production is itself.

• The tangible subtypes of a category consists of the tangible subtypes of all
those type-forming statements that declare this category directly as a base

3. MMP Internals 21

context. In addition, this category itself should be counted as a tangible
subtypes if it has any pattern materializing it.

For example, in figure 3.6 (ignore the problematic unreal), lion, leopard, wolf,
and fox are production, so their tangible subtypes are {lion}, {leopard},
{wolf}, and {fox}, respectively. cat is a category and there is no pattern
materializing it, so its tangible subtypes are {lion, leopard}. animal, on the
other hand, has a pattern unknown materializing it, so its tangible subtypes are
{lion, leopard, wolf, fox, animal}.

1 finite automaton subtypes
2 {
3 category animal {flag not_real;};
4 pattern unknown : animal = "trill";
5

6 category cat : animal;
7 production lion : cat = "roar";
8 production leopard : cat = "growl";
9

10 category dog : animal;
11 production wolf : dog = "howl";
12 production fox : dog = "bark";
13

14 // problematic
15 production unreal : cat, dog = "talk" @flag:not_real;
16 }

Figure 3.5: An MMP grammar file about subtypes

animal

cat dog unknown

lion leopard wolf foxunreal

inherits materializes

✗ ✗

Figure 3.6: Subtypes in figure 3.5

A tangible subtype in MMP is perceived as a type-forming statement that
directly has some grammar rule for expansion, and such grammar rule can either

3. MMP Internals 22

be its own (like production) or comes from a helper (like a pattern materializing
a category). This idea of directly accessible grammar rules achieves a disjoint
partition where no two tangible subtypes share any grammar rule, and such result
is crucial for some deterministic steps in parser generation (e.g., NFA-to-DFA
conversion, lookahead computation, etc.).

We hinted in previous sections that (i) when a storage place (either a field or
the output stream) is designated to store instances of a type-forming statement
s, what actually stores there are tangible subtypes of s; and (ii) when a semantic
action requires its input regex to reference a type-forming statement s, every
nominal subtype of s is a qualified candidate. These two regulations comply
with our vision for MMP subtypes, namely, nominal subtypes are used to check
the validity of declarations, and tangible subtypes are actually produced objects.

Chapter 4

MMP Backend

This chapter focuses on the backend of MMP, namely, how the internal represen-
tations of various machines are constructed and how their corresponding parser
are generated.

4.1 DFA Parser

DFA parsers are simple in terms of their state-based structure and memoryless
nature. In the case of MMP, however, building DFA parsers is more involved due
to the allowance of regex rules and embedded semantic actions. This section first
talks about the additional restrictions imposed on MMP grammar files intended
for DFA parsers, then details the two key steps in DFA construction in MMP.

4.1.1 Additional Restriction

An MMP grammar file with unrestricted grammar rules is equivalent to a context-
free grammar (CFG), which is beyond the capability of DFA. For example, this
grammar s → (s) | ε generates all nested parentheses, but does not have an
equivalent DFA according to the pumping lemma [11].

There are several ways to constrain the expressiveness of a CFG to the level
where an equivalent DFA can be constructed. One method [11] is to restrict the
form of each grammar rule to be a terminal followed optionally by a nonterminal,
which directly mirrors the transition function in the definition of DFA. Another
method [12] is to stipulate that only those completely defined nonterminals can
be referenced. Consider the three representations of regex (int | str)(arr | vec)
shown in figure 4.1. Figure 4.1b is acquired by the first method and can be
viewed as a straightforward translation of the DFA drawn in figure 4.1a. Figure
4.1c comes from the second method, and compared with figure 4.1b, it preserves
more essence of the described language (i.e., a prefix denoting the element type
and a postfix denoting the storage type) from a reader’s perspective.

23

4. MMP Backend 24

q0

q1 q2

q3 q4

q5

q6 q7 q8

q9 q10 q11

i
n

t

s
t

r

a
r r

v
e c

(a) DFA

q0 → iq1 | sq3
q1 → nq2
q2 → tq5
q3 → tq4
q4 → rq5
q5 → aq6 | vq9
q6 → rq7
q7 → r

q9 → eq10
q10 → c

(b) CFG using method one

⟨prefix⟩ → int | str
⟨postfix⟩ → arr | vec
⟨name⟩ → ⟨prefix⟩⟨postfix⟩

(c) CFG using method two

Figure 4.1: Three representations of regex (int | str)(arr | vec)

In MMP, we adopt the second method and make it more flexible in that a
reference regex can point to a statement defined anywhere in the current machine
as stated in section 2.1.3, as long as no circular reference chain exist. Note
that we ignore the self-loops caused by the statements generated for eliminating
repetition notations mentioned in section 3.1 (i.e., rlist → ritemrlist). Figure 4.2
demonstrates this idea, showing that prefix and postfix are used in name’s rule
before their own definitions.

1 finite automaton name_scanner
2 {
3 // productions have root rootness and terminal terminality
4 // by default in DFA
5 production name = prefix postfix;
6 pattern prefix = "int" | "str";
7 pattern postfix = "arr" | "vec";
8 }

Figure 4.2: An MMP grammar file equivalent to figure 4.1

4. MMP Backend 25

4.1.2 NFA Construction

Compared with DFA, a nondeterministic finite automaton (NFA) is easier to
build from a grammar, and thus serves as the first step towards constructing
a DFA parser. The NFA construction in MMP roughly follows the bottom-up
approach introduced in [13], but some extra care needs to be taken since the
semantic actions specified in the MMP grammar file need to be embedded into
NFA states systematically to preserve their original intensions in the grammar.
Figure 4.3 is an MMP grammar file for NFA construction. Figure 4.4 is the NFA
equivalent to figure 4.3 visualized automatically by MMP.

1 finite automaton number_scanner
2 with productions_nonterminal_by_default
3 {
4 // productions have root rootness by default in DFA
5 category number {raw digits;};
6 production float : number = digit+ '.' digit{0,2};
7 production hex : number = ("0x" | "0X") (digit | letter)+;
8 pattern digit : float, hex = ['0'-'9'] @append:digits;
9 regex letter = ['a'-'z' 'A'-'Z'];

10 }

Figure 4.3: An MMP grammar file for NFA construction

We use figures 4.3 and 4.4 as an example to elaborate some key ideas in NFA
construction in MMP.

• State 0 has two outgoing branches, one starting from state 1 and one start-
ing from state 13, and they correspond to the two root statements float
and hex, respectively.

• The branch corresponding to hex is a concatenation of three components:
state set {1, 2, 3, 4, 5} responsible for digit+, state set {5, 6} responsible
for '.', and state set {6, 7, 8, 9, 10, 11, 12} responsible for digit{0,2}.

• State set {1, 2, 3, 4, 5} uses a loop (3 0 . . . 9−−−→ 4 ε−−−→ 3) to continuously
match the repeated pattern digit since the repetition notation + specifies
no maximum occurrence. On the other hand, state set {6, 7, 8, 9, 10, 11, 12}
lists all possibilities (7, 8 0 . . . 9−−−→ 9, and 10 0 . . . 9−−−→ 11 0 . . . 9−−−→ 12) since the
repetition notation {0,2} only allows a finite number of repetition.

• Some structural information about the grammar file is lost during the NFA
construction, which is compensated by automatically inserting some auxil-
iary semantic actions into suitable states.

– The three raw-related semantic actions (i.e., @capture, @append, and
@prepend) do not know when to start recording input symbols in NFA,

4. MMP Backend 26

0

1

CreateContext:float
InitiateCapture:digits

ε

13

CreateContext:hex

ε

2

Append:digits

0-9

14

0

16

0

5

ε

3

InitiateCapture:digits

ε

6

.

4

Append:digits

0-9

ε

ε

7

ElevateContext:float

ε

8

InitiateCapture:digits

ε

10

InitiateCapture:digits

ε

9

Append:digits
ElevateContext:float

0-9

11

Append:digits
InitiateCapture:digits

0-9

12

Append:digits
ElevateContext:float

0-9

15

x

17

X

18

ε

21

A-Z a-z

19

InitiateCapture:digits

ε

ε

26

ElevateContext:hex

ε

22

ε
20

Append:digits

0-9

ε

ε

25

A-Z a-z

23

InitiateCapture:digits

ε

ε

ε

24

Append:digits

0-9

ε

ε

Figure 4.4: NFA equivalent to figure 4.3 visualized by MMP

Accept states are colored yellow; all other states are colored gray.

a purely state-based model. Therefore, a new action InitiateCapture
is employed to signal the start of recording. For example, in transition
1 0 . . . 9−−−→ 2, the InitiateCapture in state 1 echos the Append in state
2, thus indicating the range of recording.

– The justification for adopting InitiateCapture also applies to creat-
ing and concluding an instance of a type-forming statement. Thus,
two new indicator actions CreateContext and ElevateContext are
invented. Observe how the CreateContext in state 1 pairs with the

4. MMP Backend 27

ElevateContext in states 7, 9, and 12 to instantiate float.

• When combining two components as mentioned in the first two bullet
points, some states that can be merged in an actionless setting should
remain separated to avoid action conflicts. For example, the start state 1
for statement float and the start state 13 for statement hex cannot be
merged since the action InitiateCapture in state 1 is incompatible with
hex, which has a non-digit prefix (0x or 0X). Therefore, a new start state
0 is created and connected to states 1 and 13 via ε-transitions.

4.1.3 NFA-to-DFA Conversion

The final step of building a DFA parser is to convert the NFA discussed in section
4.1.2 to an equivalent DFA. Such conversion roughly follows the subset construc-
tion method introduced in [14], but some extra information is recorded in this
process to facilitate tracing NFA states and their embedded semantic actions
when paring input streams. Figure 4.5 is the DFA equivalent to figure 4.4 visu-
alized automatically by MMP.

13,0,1

2,14,3,5,16

0

2,5,3

1-9

8,6,7,10

. 5,3,4

0-9

19,18,15

x

17,18,19

X

.

0-9

11,9

0-9

.

0-9

12

0-9

23,21,22,26

A-Za-z

22,23,20,26

0-9 A-Za-z 0-9

23,22,26,25

A-Z a-z

23,22,26,24

0-9

A-Z a-z

0-9A-Za-z

0-9 A-Za-z

0-9

Figure 4.5: DFA equivalent to figure 4.4 visualized by MMP

Accept states are colored yellow; all other states are colored gray.

We use the transition {17, 18, 19} 0−−−→ {22, 23, 20, 26} in figure 4.5 as an
example to elaborate some key ideas in NFA-to-DFA conversion in MMP.

• 0-closure {20} is computed by examining which NFA states are reachable
from NFA states in {17, 18, 19} via 0-transition. In our example, the 0-
closure is a singleton set {20} since the only applicable NFA transition is

4. MMP Backend 28

19 0−−−→ 20, which is recorded to track how this 0-closure is derived.

• ε-closure {22, 23, 20, 26} is computed by examining which NFA states are
reachable from NFA states in the 0-closure {20}. In our example, the ε-
closure is {22, 23, 20, 26} since the applicable NFA transitions are 20 ε−−−→
22 ε−−−→ 23 and 20 ε−−−→ 26, which are recorded to track how this ε-
closure is derived.

• The spanning diagram shown in figure 4.6 tracks how {17, 18, 19} goes
to {22, 23, 20, 26} via input symbol 0. It is derived from the recordings
in the first two bullet points and will be consulted during parse time for
performing semantic actions.

19 20

22 23

26

0
ε

ε

ε

Figure 4.6: Spanning diagram for {17, 18, 19} 0−−−→ {22, 23, 20, 26}

We use the text input stream 0xF as an example to show how to find the
underlying NFA state path and perform the corresponding semantic actions. The
DFA state path is

{13, 0, 1} 0−−−→ {2, 14, 3, 5, 16} x−−−→ {19, 18, 15} F−−−→ {23, 21, 22, 26}

Since the accept NFA state 26 announces {23, 21, 22, 26} as an accept DFA state,
the spanning diagrams of the three DFA transitions are used in a reversed manner
to find the underlying NFA state path[

0 ε−−−→ 13
]

0−−−→
[
14

]
x−−−→

[
15 ε−−−→ 18

]
F−−−→

[
21 ε−−−→ 26

]
By following this NFA state path and executing the embedded semantic actions
of each NFA state, 0xF is successfully parsed and returned as a hex.

4.2 Lookahead Computation

Lookahead is a decision-making mechanism that resolves nondeterministic and
conflicting situations during parse time by peeking some extra symbols in the
input stream, and it is an essential component in many parsers. For example,
in LL parsing, lookahead is utilized to help choosing the most appropriate alter-
native among several ones belonging to a nonterminal [15]. Another example is

4. MMP Backend 29

LR parsing, where lookahead is employed to identify from an item set the most
suitable one, whose associated action (shift or reduce) will be performed [16].

This section introduces the notion of sequential lookahead, namely, given a
finite sequence of input symbols that leads to a specific position in the grammar,
what the next expected input symbol would be. It will be applied in sections
4.3 and 4.4. This idea of incorporating contextual information into lookahead
computation mainly comes from [17]. Figure 4.7 is an MMP grammar file for
computing sequential lookahead.

1 LL(finite) parser strings
2 with productions_root_by_default
3 {
4 production string =
5 'a' letter ('b' | 'c') | 'a' letter ('d' | 'e');
6 production letter = 'x' | 'y';
7 }

Figure 4.7: An MMP grammar file for lookahead computation

The two a appearing in the first and the second alternatives of string will be referred to as a1
and a2 respectively to signal that they are different instances. Similarly, the two references to
letter used in string will be addressed as letter1 and letter2.

4.2.1 Grammar Preprocessing

Some structural information about the grammar file is required for computing
lookahead. Figure 4.8 illustrates the three dictionaries S (start), N (next), and F
(follow) that are build based on figure 4.7 to facilitate the lookahead computation.

S(string) = {a1, a2}
S(letter) = {x, y}

N(a1) = {letter1}
N(letter1) = {b, c}

N(a2) = {letter2}
N(letter2) = {d, e}

F (x) = {b, c, d, e}
F (y) = {b, c, d, e}

Figure 4.8: Three dictionaries S, N , and F built upon figure 4.7

All empty entries (i.e., have value ∅) are omitted in this figure.

• Dictionary S maps a rule statement to the set of its start primitive regexes.

4. MMP Backend 30

For example, statement letter in figure 4.7 starts with either x or y, so we
have S(letter) = {x, y}.

• Dictionary N maps a primitive regex to the set of primitive regexes that
are next to it in the grammar rule. For example, letter1 in figure 4.7 has
either b or c as its descendent in the alternative 'a' letter ('b' | 'c'),
so we have N(letter1) = {b, c}.

• Dictionary F maps a primitive regex that is at the end of a grammar
rule to the set of primitive regexes that are followers in callers’ contexts.
For example, x in figure 4.7 can be followed by b, c, d, and e, which
are what follow the use of letter in the rule of string. Thus, we have
F (x) = {b, c, d, e}.

These three dictionaries can be constructed by traversing (e.g., in a depth-
first way) the tree-like structure of each grammar rule discussed in section 2.2.2
and bookkeeping necessary information.

4.2.2 Sequential Lookahead

The idea of sequential lookahead is to compute the next expected input symbol
based on a finite sequence of input symbols that leads to a specific position in
the grammar. Formally, the sequential lookahead is a function L that returns a
set of input symbols when fed with three inputs: (i) a finite sequence of input
symbols, and (ii) a primitive regex that tracks the consumption of the sequence
in the grammar, and (iii) a stack where each element is a set of primitive regexes
that serve as callbacks.

Figure 4.9 illustrates how the value {b, c} of L(ax, a1, []) is recursively com-
puted and accumulated. We use it as an example to elaborate some key ideas in
computing sequential lookahead.

• When computing L(ax, a1, []), the position indicator a1 matches the first
symbol in sequence ax, so a1 is advanced to letter1 according to dic-
tionary N , and ax pops its head a. Thus, L(ax, a1, []) is reduced to
L(x, letter1, []).

• When computing L(x, letter1, []), the position indicator letter1 calls
statement letter, so letter1 is advanced to its start primitive regexes
listed in S(letter), and the callback stack is populated with N(letter1)
to record the return address after exploring statement letter. Thus,
L(x, letter1, []) is reduced to L(x, x, [{b, c}]) and L(x, y, [{b, c}]).

• When computing L(x, x, [{b, c}]), the position indicator x matches the
first symbol in sequence x. Moreover, since it is an end of its residing

4. MMP Backend 31

rule, the callback stack is consulted for the next position indicator. Thus,
L(x, x, [{b, c}]) is reduced to L(ε, b, []) and L(ε, c, []).

• When computing L(x, y, [{b, c}]), the position indicator y does not match
(and thus incompatible with) the first symbol in sequence x, so the result
is trivially ∅.

• When computing L(ε, b, []) and L(ε, c, []), the sequence is empty, so the
position indicator is returned as result ({b} and {c}).

L(ax, a1, [])

L(x, letter1, [])

L(x, x, [{b, c}]) L(x, y, [{b, c}]) = ∅

L(ε, b, []) = {b} L(ε, c, []) = {c}

N(a1) = {letter}

x ∈ S(letter1)
N(letter1) = {b, c}

y ∈ S(letter)
N(letter1) = {b, c}

pop [{b, c}] pop [{b, c}]

Figure 4.9: Computing L(ax, a1, []) based on figure 4.7

4.3 LL(k/finite) Parser

An LL parser is a collection of branching point processors, each of which is respon-
sible for picking the most suitable path for its corresponding branching point. In
our LL parser implementation, each branching point processor is equipped with a
tree-shape DFA called lookaheader that employs the sequential lookahead mech-
anism discussed in section 4.2.2 to continuously partition a set of alternatives
until a unique alternative is determined for each situation.

4. MMP Backend 32

1 LL(finite) parser strings
2 with productions_root_by_default
3 {
4 production string = 'a' | ('a' letter 'c' | 'a' letter 'd');
5 regex letter = 'b';
6 }

Figure 4.10: An MMP grammar file for LL lookaheaders

The three a and two references to letter in string’s rule will be addressed as a1, a2, a3,
letter1, and letter2 respectively to signal that they are different instances.

0

'a'
{'a' & ref:letter & 'c' | 'a' & ref:letter & 'd'}

1

'a'

{'a' & ref:letter & 'c' | 'a' & ref:letter & 'd'}

a

2

{'a' & ref:letter & 'c' | 'a' & ref:letter & 'd'}

b

(a) LL lookaheader visualized by MMP

state 0, prefix ε
L(ε, a1, []) = {a} go to state 1

L(ε, a2, []) ∪ L(ε, a3, []) = {a} ∪ {a} = {a} go to state 1

state 1, prefix a

L(a, a1, []) = L(ε,⊣, []) = ∅ stay at state 1

L(a, a2, []) ∪ L(a, a3, [])

=L(ε, letter1, []) ∪ L(ε, letter2, [])

=L(ε, b, [{c}]) ∪ L(ε, b, [{d}])
={b} ∪ {b} = {b} go to state 2

(b) Construction of LL lookaheader

Figure 4.11: 'a' | ('a' letter 'c' | 'a' letter 'd') in figure 4.10

4. MMP Backend 33

0

'a' & ref:letter & 'c'
'a' & ref:letter & 'd'

1

'a' & ref:letter & 'd'
'a' & ref:letter & 'c'

a

2

'a' & ref:letter & 'c'
'a' & ref:letter & 'd'

b

3

'a' & ref:letter & 'd'

d

4

'a' & ref:letter & 'c'

c

(a) LL lookaheader visualized by MMP

state 0, prefix ε
L(ε, a2, []) = {a} go to state 1

L(ε, a3, []) = {a} go to state 1

state 1, prefix a

L(a, a2, []) = L(ε, letter1, [])

=L(ε, b, [c]) = {b} go to state 2

L(a, a3, []) = L(ε, letter2, [])

=L(ε, b, [d]) = {b} go to state 2

state 2, prefix ab

L(ab, a2, []) = L(b, letter1, [])

=L(b, b, [c]) = L(ε, c, []) = {c} go to state 4

L(ab, a3, []) = L(b, letter2, [])

=L(b, b, [d]) = L(ε, d, []) = {d} go to state 3

(b) Construction of LL lookaheader

Figure 4.12: ('a' letter 'c' | 'a' letter 'd') in figure 4.10

4. MMP Backend 34

Figures 4.11 and 4.12 illustrate the construction of two lookaheaders built for
the two branching points in figure 4.10. Each state is associated with a prefix
recording how this state is reached from the starting point by a finite sequence
of input symbols. This prefix serves as the first argument passed to function
L that computes for each alternative enclosed in this state the next expected
input symbol, which is the criterion for continuous partitioning until each state
possesses exactly one alternative. For example, state 2 in figure 4.12 has prefix ab
and encompasses two alternatives, 'a' letter 'c' and 'a' letter 'd'. The
function L is invoked to compute the next expected input symbol based on the
prefix, thus distinguishing the two alternatives by creating transitions 2 c−−−→ 4
and 2 d−−−→ 3.

The lookahead length in our LL parser implementation specifies the maximum
depth of a lookaheader, and it can be either a nonnegative integer k or a keyword
finite. For example, the grammar in figure 4.10 is allowed to be LL(3), LL(4),
. . . , LL(finite), since the depth of the lookaheader in figure 4.12 is 3.

4.4 LR(k/finite) Parser

Compared with LL parsers, LR parsers make decisions in a delayed manner. An
LL parser determines the path before actually walking on it; an LR parser, how-
ever, tries all paths simultaneously and then announces the one it just finished.
The backbone of an LR parser is a pushdown automaton (PDA), a state-based
formalism augmenting DFA with an additional stack for memory. To track all
possible paths simultaneously, each PDA state encompasses a set of items, each
of which is a marked grammar rule recording how much this rule is consumed.

Since each grammar rule in MMP is a tree-like structure as discussed in sec-
tion 2.2.2, two logically consecutive primitive regexes (or figuratively, leaves) are
required to trace the consumption of the rule. For example, there are 8 con-
figurations for rule ('a' | 'b')('c' | 'd'): (⊢, a), (⊢, b), (a, c), (a, d), (b, c),
(b, d), (c,⊣), (d,⊣). Figure 4.15 illustrates the PDA constructed for figure 4.13.
Observe how the consumption of expr’s rule is tracked by the three locator pairs
within item 2 in state 0, item 8 in state 2, and item 16 in state 5.

To determine whether to continue reading input or to announce a finished
path, an LR parser equips each of its PDA states with a lookaheader similar to the
one introduced in section 4.3. For example, in state 2 in figure 4.15, items 6 and
10 are incompatible with item 9 since the first two expect to read the next input
symbol (action Shift), whereas the last one tries to conclude its corresponding
rule (action Reduce). The lookaheader shown in figure 4.14 resolves this conflict
by peeking the next input symbol. If the end of input stream is encountered,
Reduce is the only viable option; otherwise, the next input symbol is expected
to be an op (either + or -), and Shift is executed to consume the input.

4. MMP Backend 35

1 LR(finite) parser expression
2 {
3 root production expr = bit (op bit)*;
4 regex bit = '0' | '1';
5 regex op = '+' | '-';
6 }

Figure 4.13: An example MMP grammar file for PDA

1 def proceed2(currIter: list[Iterator[str]], stack: list[StackElement])
-> StackElement:

2 initIter = copy(currIter[0])
3 currState = 0
4 currInputSymbol = next(currIter[0], None)
5 inputEnd = currInputSymbol == None
6

7 # Lookaheader for PDA state 2
8 while currInputSymbol:
9 match currState:

10 case 0:
11 match currInputSymbol:
12 case '+':
13 currState = 1
14 case '-':
15 currState = 2
16 case _:
17 break
18 case 2:
19 match currInputSymbol:
20 case _:
21 break
22 case 1:
23 match currInputSymbol:
24 case _:
25 break
26 currInputSymbol = next(currIter[0], None)
27

28 currIter[0] = initIter
29

30 # Execute action (shift/reduce/use) for PDA state 2
31 match currState:
32 case 0:
33 return reduce(stack, 'expr__list_3_29', 9)
34 case 2:
35 return shift(currIter)
36 case 1:
37 return shift(currIter)

Figure 4.14: Python code for PDA state 2 in figure 4.15 generated by MMP

4. MMP Backend 36

0

(
0

S
h
i
f
t
)

b
i
t

=

{
'
0
'

|

'
1
'
}

[
N
o
n
e

→

'
1
'
]

(
1

S
h
i
f
t
)

b
i
t

=

{
'
0
'

|

'
1
'
}

[
N
o
n
e

→

'
0
'
]

(
2

N
u
l
l
)

e
x
p
r

=

{
r
e
f
:
b
i
t

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
N
o
n
e

→

r
e
f
:
b
i
t
]

(
3

N
u
l
l
)

S
t
A
r
T

=

{
r
e
f
:
e
x
p
r
}

[
N
o
n
e

→

r
e
f
:
e
x
p
r
]

1
1

(
2
8

R
e
d
u
c
e
)

b
i
t

=

{
'
0
'

|

'
1
'
}

[
'
0
'

→

N
o
n
e
]

0

1
0

(
2
7

R
e
d
u
c
e
)

b
i
t

=

{
'
0
'

|

'
1
'
}

[
'
1
'

→

N
o
n
e
]

1

2

(
5

N
u
l
l
)

e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

=

{
e
m
p
t
y

|

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
N
o
n
e

→

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9
]

(
6

S
h
i
f
t
)

o
p

=

{
'
+
'

|

'
-
'
}

[
N
o
n
e

→

'
+
'
]

(
7

N
u
l
l
)

e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

=

{
e
m
p
t
y

|

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
N
o
n
e

→

e
m
p
t
y
]

(
8

N
u
l
l
)

e
x
p
r

=

{
r
e
f
:
b
i
t

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
r
e
f
:
b
i
t

→

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
]

(
9

R
e
d
u
c
e
)

e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

=

{
e
m
p
t
y

|

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
e
m
p
t
y

→

N
o
n
e
]

(
1
0

S
h
i
f
t
)

o
p

=

{
'
+
'

|

'
-
'
}

[
N
o
n
e

→

'
-
'
]

(
1
1

N
u
l
l
)

e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

=

{
r
e
f
:
o
p

&

r
e
f
:
b
i
t
}

[
N
o
n
e

→

r
e
f
:
o
p
]

e
x
p
r
e
s
s
i
o
n
.
b
i
t

1

(
4

R
e
d
u
c
e
)

S
t
A
r
T

=

{
r
e
f
:
e
x
p
r
}

[
r
e
f
:
e
x
p
r

→

N
o
n
e
]

e
x
p
r
e
s
s
i
o
n
.
e
x
p
r

9

(
2
6

R
e
d
u
c
e
)

o
p

=

{
'
+
'

|

'
-
'
}

[
'
+
'

→

N
o
n
e
]

+

8

(
2
5

R
e
d
u
c
e
)

o
p

=

{
'
+
'

|

'
-
'
}

[
'
-
'

→

N
o
n
e
]

-

6

(
1
7

N
u
l
l
)

e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

=

{
e
m
p
t
y

|

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
N
o
n
e

→

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9
]

(
1
8

S
h
i
f
t
)

o
p

=

{
'
+
'

|

'
-
'
}

[
N
o
n
e

→

'
+
'
]

(
1
9

N
u
l
l
)

e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

=

{
e
m
p
t
y

|

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
N
o
n
e

→

e
m
p
t
y
]

(
2
0

N
u
l
l
)

e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

=

{
e
m
p
t
y

|

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

→

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
]

(
2
1

R
e
d
u
c
e
)

e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

=

{
e
m
p
t
y

|

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
e
m
p
t
y

→

N
o
n
e
]

(
2
2

S
h
i
f
t
)

o
p

=

{
'
+
'

|

'
-
'
}

[
N
o
n
e

→

'
-
'
]

(
2
3

N
u
l
l
)

e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

=

{
r
e
f
:
o
p

&

r
e
f
:
b
i
t
}

[
N
o
n
e

→

r
e
f
:
o
p
]

e
x
p
r
e
s
s
i
o
n
.
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

5

(
1
6

R
e
d
u
c
e
)

e
x
p
r

=

{
r
e
f
:
b
i
t

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

→

N
o
n
e
]

e
x
p
r
e
s
s
i
o
n
.
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

3

(
1
2

N
u
l
l
)

e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

=

{
r
e
f
:
o
p

&

r
e
f
:
b
i
t
}

[
r
e
f
:
o
p

→

r
e
f
:
b
i
t
]

(
1
3

S
h
i
f
t
)

b
i
t

=

{
'
0
'

|

'
1
'
}

[
N
o
n
e

→

'
1
'
]

(
1
4

S
h
i
f
t
)

b
i
t

=

{
'
0
'

|

'
1
'
}

[
N
o
n
e

→

'
0
'
]

e
x
p
r
e
s
s
i
o
n
.
o
p

+
-

e
x
p
r
e
s
s
i
o
n
.
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

e
x
p
r
e
s
s
i
o
n
.
o
p

7

(
2
4

R
e
d
u
c
e
)

e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

=

{
e
m
p
t
y

|

r
e
f
:
e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

&

r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9
}

[
r
e
f
:
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

→

N
o
n
e
]

e
x
p
r
e
s
s
i
o
n
.
e
x
p
r
_
_
l
i
s
t
_
3
_
2
9

0
1

4

(
1
5

R
e
d
u
c
e
)

e
x
p
r
_
_
i
t
e
m
_
3
_
2
9

=

{
r
e
f
:
o
p

&

r
e
f
:
b
i
t
}

[
r
e
f
:
b
i
t

→

N
o
n
e
]

e
x
p
r
e
s
s
i
o
n
.
b
i
t

F
ig

ur
e

4.
15

:
P

D
A

ba
se

d
on

fig
ur

e
4.

13
vi

su
al

iz
ed

by
M

M
P

Chapter 5

Future Work

This chapter outlines some future directions to extend our current work.

• More machines. As stated in section 2.3, MMP currently supports three
types of machines: DFA, LL(k/finite), and LR(k/finite). More parsing
algorithms can be integrated into MMP to provide users with a broader
selection of machines.

• More fields and semantic actions. As discussed in section 2.2.3, the fields
in MMP are either primitive (only a boolean-like flag, to be exact) or
linear generic containers, and their corresponding semantic actions are not
fine-grained enough. It might be beneficial to incorporate fields of other
primitive types (e.g., integer, float, etc.) and of nonlinear generic containers
(e.g., priority queue, graph, etc.), as well as semantic actions of higher
granularity (e.g., bit/arithmetic/logical operations on primitive types, set
the i-th element of a container type, etc.).

• More flexible grammar rules. As shown in appendix A, MMP currently has
limited support for range selection in that users can only specify what they
want in text input layer. It might be helpful to add range selection on the
level of nonterminals, as well as reverse selection (i.e., users specify what
they do not want).

• Callable statements. ANTLR [8] allows a nonterminal to have parameters
that receive arguments from its callers (i.e., those places where this nonter-
minal is referenced). It might be favorable to have this feature of callable
nonterminals in MMP as well.

37

Bibliography

[1] P. M. Lewis and R. E. Stearns, “Syntax-directed transduction,” Journal of
the ACM (JACM), vol. 15, no. 3, pp. 465–488, 1968.

[2] M. Might and D. Darais, “Yacc is dead,” 2010. [Online]. Available:
https://arxiv.org/abs/1010.5023

[3] R. Cox. Yacc is not dead. [Online]. Available: https://research.swtch.com/
yaccalive

[4] M. E. Lesk and E. Schmidt, Lex: A lexical analyzer generator. Bell Labo-
ratories Murray Hill, NJ, 1975.

[5] V. Paxson, W. Estes, and J. Millaway, “Lexical analysis with flex,” University
of California, p. 28, 2007.

[6] S. C. Johnson et al., Yacc: Yet another compiler-compiler. Bell Laboratories
Murray Hill, NJ, 1975, vol. 32.

[7] C. Donnelly, “Bison the yacc-compatible parser generator,” Technical report,
Free Software Foundation, 1988.

[8] T. Parr. Antlr official webside. [Online]. Available: https://www.antlr.org/

[9] T. Parr and K. Fisher, “Ll (*) the foundation of the antlr parser generator,”
ACM Sigplan Notices, vol. 46, no. 6, pp. 425–436, 2011.

[10] T. Parr, S. Harwell, and K. Fisher, “Adaptive ll (*) parsing: the power of
dynamic analysis,” ACM SIGPLAN Notices, vol. 49, no. 10, pp. 579–598,
2014.

[11] D. Grune and C. J. H. Jacobsk, Parsing Techniques: A Practical Guide,
2nd ed. Springer New York, NY, 2008.

[12] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques and Tools, 2nd ed. Addison-Wesley, 2007.

[13] K. Thompson, “Programming techniques: Regular expression search algo-
rithm,” Communications of the ACM, vol. 11, no. 6, pp. 419–422, 1968.

[14] M. O. Rabin and D. Scott, “Finite automata and their decision problems,”
IBM journal of research and development, vol. 3, no. 2, pp. 114–125, 1959.

38

https://arxiv.org/abs/1010.5023
https://research.swtch.com/yaccalive
https://research.swtch.com/yaccalive
https://www.antlr.org/

Bibliography 39

[15] D. J. Rosenkrantz and R. E. Stearns, “Properties of deterministic top-down
grammars,” Information and Control, vol. 17, no. 3, pp. 226–256, 1970.

[16] D. E. Knuth, “On the translation of languages from left to right,” Information
and control, vol. 8, no. 6, pp. 607–639, 1965.

[17] P. Belcak, “The ll(finite) strategy for optimal ll(k) parsing,” 2020. [Online].
Available: https://arxiv.org/abs/2010.07874

https://arxiv.org/abs/2010.07874

Appendix A

MMP Specification Language

Below is the complete grammar (on token level) for MMP specification language
written in MMP.

1 /*
2 KW_USES,
3 KW_ON,
4 KW_WITH,
5

6 KW_FINITE,
7 KW_AUTOMATON,
8 KW_LL,
9 KW_LR,

10 KW_PARSER,
11

12 KW_PRODUCTIONS_TERMINAL_BY_DEFAULT,
13 KW_PRODUCTIONS_NONTERMINAL_BY_DEFAULT,
14 KW_PRODUCTIONS_ROOT_BY_DEFAULT,
15 KW_PRODUCTIONS_NONROOT_BY_DEFAULT,
16 KW_CATEGORIES_ROOT_BY_DEFAULT,
17 KW_CATEGORIES_NONROOT_BY_DEFAULT,
18 KW_AMBIGUITY_DISALLOWED,
19 KW_AMBIGUITY_RESOLVED_BY_PRECEDENCE,
20

21 KW_IGNORED,
22 KW_ROOT,
23 KW_TERMINAL,
24 KW_NONTERMINAL,
25 KW_CATEGORY,
26 KW_PRODUCTION,
27 KW_PATTERN,
28 KW_REGEX,
29

30 KW_ITEM,
31 KW_LIST,
32 KW_RAW,
33

A-1

MMP Specification Language A-2

34 KW_FLAG,
35 KW_UNFLAG,
36 KW_CAPTURE,
37 KW_EMPTY,
38 KW_APPEND,
39 KW_PREPEND,
40 KW_SET,
41 KW_UNSET,
42 KW_PUSH,
43 KW_POP,
44 KW_CLEAR,
45

46 IDENTIFIER,
47 STRING,
48 NUMBER,
49

50 PAR_LEFT,
51 PAR_RIGHT,
52 SQUARE_LEFT,
53 SQUARE_RIGHT,
54 CURLY_LEFT,
55 CURLY_RIGHT,
56

57 OP_COLON,
58 OP_EQUALS,
59 OP_LEFTARR,
60 OP_SEMICOLON,
61 OP_COMMA,
62 OP_DOT,
63 OP_CARET,
64 OP_DOLLAR,
65

66 OP_STAR,
67 OP_PLUS,
68 OP_QM,
69 OP_OR,
70 OP_FWDSLASH,
71

72 OP_AMPERSAND,
73 OP_DASH,
74 OP_AT,
75

76 EOS
77 */
78

79 /* ~~~~~~~~~~~~~~~~~~~~ top-level entities ~~~~~~~~~~~~~~~~~~~~ */
80

81 production SpecificationFile =
82 (MachineDefinition | UsesStatement)*

MMP Specification Language A-3

83 ;
84

85 production UsesStatement =
86 KW_USES STRING OP_SEMICOLON
87 ;
88

89 /* ~~~~~~~~~~~~~~~~~~~~ machine entities ~~~~~~~~~~~~~~~~~~~~ */
90

91 production MachineDefinition =
92 machineType IDENTIFIER
93 (KW_WITH machineOption (OP_COMMA machineOption)*)?
94 (KW_ON IDENTIFIER)?
95 (KW_USES IDENTIFIER (OP_COMMA IDENTIFIER)*)?
96 (CURLY_LEFT MachineStatement* CURLY_RIGHT | OP_SEMICOLON)
97 ;
98

99 regex machineType =
100 KW_FINITE KW_AUTOMATON
101 | KW_LL PAR_LEFT (NUMBER | KW_FINITE) PAR_RIGHT KW_PARSER
102 ;
103

104 regex machineOption =
105 KW_PRODUCTIONS_TERMINAL_BY_DEFAULT
106 | KW_PRODUCTIONS_NONTERMINAL_BY_DEFAULT
107 | KW_PRODUCTIONS_ROOT_BY_DEFAULT
108 | KW_PRODUCTIONS_NONROOT_BY_DEFAULT
109 | KW_CATEGORIES_ROOT_BY_DEFAULT
110 | KW_CATEGORIES_NONROOT_BY_DEFAULT
111 | KW_AMBIGUITY_DISALLOWED
112 | KW_AMBIGUITY_RESOLVED_BY_PRECEDENCE
113 ;
114

115 /* ~~~~~~~~~~~~~~~~~~~~ statement entities ~~~~~~~~~~~~~~~~~~~~ */
116

117 production MachineStatement =
118 CategoryStatement
119 | ProductionStatement
120 | PatternStatement
121 | RegexStatement
122 ;
123

124 production CategoryStatement =
125 rootnessElaboration? KW_CATEGORY IDENTIFIER
126 baseContextList? fieldDeclarationList? OP_SEMICOLON
127 ;
128

129 production ProductionStatement =
130 rootnessElaboration? terminalityElaboration? KW_PRODUCTION? IDENTIFIER
131 baseContextList? fieldDeclarationList? rule

MMP Specification Language A-4

132 ;
133

134 production PatternStatement =
135 KW_PATTERN IDENTIFIER baseContextList? rule
136 ;
137

138 production RegexStatement =
139 KW_REGEX IDENTIFIER rule
140 ;
141

142 regex terminalityElaboration =
143 KW_TERMINAL | KW_NONTERMINAL
144 ;
145

146 regex rootnessElaboration =
147 KW_ROOT | KW_IGNORED KW_ROOT
148 ;
149

150 regex baseContextList =
151 OP_COLON IDENTIFIER (OP_COMMA IDENTIFIER)*
152 ;
153

154 regex fieldDeclarationList =
155 CURLY_LEFT Field* CURLY_RIGHT
156 ;
157

158 regex rule =
159 OP_EQUALS DisjunctiveRegex OP_SEMICOLON
160 ;
161

162 /* ~~~~~~~~~~~~~~~~~~~~ field entities ~~~~~~~~~~~~~~~~~~~~ */
163

164 production Field =
165 (KW_FLAG | KW_RAW | IDENTIFIER (KW_LIST | KW_ITEM)?)
166 IDENTIFIER OP_SEMICOLON
167 ;
168

169 /* ~~~~~~~~~~~~~~~~~~~~ regex entities ~~~~~~~~~~~~~~~~~~~~ */
170

171 production DisjunctiveRegex =
172 ConjunctiveRegex (OP_OR ConjunctiveRegex)*
173 ;
174

175 production ConjunctiveRegex =
176 RootRegex+
177 ;
178

179 production RootRegex =
180 AtomicRegex | RepetitiveRegex

MMP Specification Language A-5

181 ;
182

183 production AtomicRegex =
184 (PAR_LEFT DisjunctiveRegex PAR_RIGHT
185 | SQUARE_LEFT (STRING | regexRange)* SQUARE_RIGHT
186 | SQUARE_LEFT OP_CARET (STRING | regexRange)* SQUARE_RIGHT
187 | STRING
188 | KW_EMPTY | PAR_LEFT PAR_RIGHT
189 | OP_DOT
190 | IDENTIFIER
191) Action*
192 ;
193

194 production RepetitiveRegex =
195 AtomicRegex repetition Action*
196 ;
197

198 regex repetition =
199 OP_QM
200 | OP_STAR
201 | OP_PLUS
202 | CURLY_LEFT NUMBER OP_COMMA NUMBER CURLY_RIGHT
203 ;
204

205 regex regexRange =
206 STRING OP_DASH STRING
207 ;
208

209 /* ~~~~~~~~~~~~~~~~~~~~ action entities ~~~~~~~~~~~~~~~~~~~~ */
210

211 production Action =
212 OP_AT actionType OP_COLON IDENTIFIER
213 ;
214

215 regex actionType =
216 KW_FLAG
217 | KW_UNFLAG
218 | KW_CAPTURE
219 | KW_EMPTY
220 | KW_APPEND
221 | KW_PREPEND
222 | KW_SET
223 | KW_UNSET
224 | KW_PUSH
225 | KW_POP
226 | KW_CLEAR
227 ;

Appendix B

A Working Example

Below is an MMP grammar file for parsing C expressions.

1 finite automaton Tokenizer with ambiguity_resolved_by_precedence {
2 root category seperator;
3

4 root category unary_op;
5 root category unary_post : unary_op;
6 root category unary_pre : unary_op;
7

8 root category binary_op;
9 root category access_op : binary_op;

10 root category multiplicative_op : binary_op;
11 root category additive_op : binary_op;
12 root category shift_op : binary_op;
13 root category relational_op : binary_op;
14 root category equality_op : binary_op;
15 root category binary_bit_op : binary_op;
16 root category binary_logical_op: binary_op;
17 root category assign_op : binary_op;
18

19 root category ternary_op;
20

21 root category storage_class;
22

23 root category type_specifier;
24 root category primitive_type : type_specifier;
25 root category composite_type : type_specifier;
26 root category homogeneous_type : composite_type;
27 root category heterogeneous_type : composite_type;
28

29 root category type_qualifier;
30

31 ignored root WHITESPACE = [' ''\t''\n']+;
32

33 PAR_LEFT : seperator = '(';
34 PAR_RIGHT : seperator = ')';

B-1

A Working Example B-2

35 SQUARE_LEFT : seperator = '[';
36 SQUARE_RIGHT : seperator = ']';
37 CURLY_LEFT : seperator = '{';
38 CURLY_RIGHT : seperator = '}';
39 SEMICOLON : seperator = ';';
40 COMMA : seperator, binary_op = ',';
41

42 SIZEOF : unary_pre = "sizeof";
43 BIT_NOT_OP : unary_pre = '~';
44 NOT_OP : unary_pre = '!';
45 INC_OP : unary_pre, unary_post = "++";
46 DEC_OP : unary_pre, unary_post = "--";
47 STAR_OP : unary_pre, multiplicative_op = '*';
48 CROSS_OP : unary_pre, additive_op = '+';
49 DASH_OP : unary_pre, additive_op = '-';
50 AMP_OP : unary_pre, binary_bit_op = '&';
51

52 DOT_OP : access_op = '.';
53 PTR_OP : access_op = "->";
54 DIV_OP : multiplicative_op = '/';
55 MOD_OP : multiplicative_op = '%';
56 LEFT_OP : shift_op = "<<";
57 RIGHT_OP : shift_op = ">>";
58 LT_OP : relational_op = '<';
59 GT_OP: relational_op = '>';
60 LE_OP : relational_op = "<=";
61 GE_OP : relational_op = ">=";
62 EQ_OP : equality_op = "==";
63 NE_OP : equality_op = "!=";
64 BIT_XOR_OP : binary_bit_op = '^';
65 BIT_OR_OP : binary_bit_op = '|';
66 AND_OP : binary_logical_op = "&&";
67 OR_OP : binary_logical_op = "||";
68 QUESTION_OP : ternary_op = '?';
69 COLON_OP : ternary_op = ':';
70

71 ASSIGN : assign_op = "=";
72 MUL_ASSIGN : assign_op = "*=";
73 DIV_ASSIGN : assign_op = "/=";
74 MOD_ASSIGN : assign_op = "%=";
75 ADD_ASSIGN : assign_op = "+=";
76 SUB_ASSIGN : assign_op = "-=";
77 LEFT_ASSIGN : assign_op = "<<=";
78 RIGHT_ASSIGN : assign_op = ">>=";
79 AND_ASSIGN : assign_op = "&=";
80 XOR_ASSIGN : assign_op = "^=";
81 OR_ASSIGN : assign_op = "|=";
82

83 TYPEDEF : storage_class = "typedef";

A Working Example B-3

84 EXTERN : storage_class = "extern";
85 STATIC : storage_class = "static";
86 AUTO : storage_class = "auto";
87 REGISTER : storage_class = "register";
88

89 CHAR : primitive_type = "char";
90 SHORT : primitive_type = "short";
91 INT : primitive_type = "int";
92 LONG : primitive_type = "long";
93 SIGNED : primitive_type = "signed";
94 UNSIGNED : primitive_type = "unsigned";
95 FLOAT : primitive_type = "float";
96 DOUBLE : primitive_type = "double";
97 VOID : primitive_type = "void";
98 ENUM : homogeneous_type = "enum";
99 STRUCT : heterogeneous_type = "struct";

100 UNION : heterogeneous_type = "union";
101

102 CONST : type_qualifier = "const";
103 VOLATILE : type_qualifier = "volatile";
104

105 ELLIPSIS = "...";
106

107 CASE = "case";
108 DEFAULT = "default";
109 IF = "if";
110 ELSE = "else";
111 SWITCH = "switch";
112 WHILE = "while";
113 DO = "do";
114 FOR = "for";
115 GOTO = "goto";
116 CONTINUE = "continue";
117 BREAK = "break";
118 RETURN = "return";
119

120 regex num = ['0'-'9'];
121 regex char =['a'-'z''A'-'Z'];
122

123 CONSTANT = num+;
124 STRING_LITERAL = '\"' (char | num)* '\"';
125 IDENTIFIER = char (char | num)*;
126 }
127

128 LR(finite) parser Type on Tokenizer {
129 root terminal type_name =
130 full_base declarator
131 ;
132

A Working Example B-4

133 pattern full_base : type_name =
134 (storage_class
135 | type_qualifier
136 | primitive_type
137 | composite_type_definition
138)+
139 ;
140

141 pattern half_base : type_name =
142 (type_qualifier
143 | primitive_type
144 | composite_type_definition
145)+
146 ;
147

148 pattern composite_type_definition : type_name =
149 homogeneous_type IDENTIFIER?
150 (CURLY_LEFT homogeneous_list CURLY_RIGHT)?
151 | heterogeneous_type IDENTIFIER?
152 (CURLY_LEFT heterogeneous_list CURLY_RIGHT)?
153 ;
154

155 pattern homogeneous_list : type_name =
156 IDENTIFIER (COMMA IDENTIFIER)*
157 ;
158

159 pattern heterogeneous_list : type_name =
160 half_base declarator (COMMA half_base declarator)*
161 ;
162

163 pattern declarator_prefix : type_name =
164 STAR_OP (STAR_OP | type_qualifier)*
165 ;
166

167 pattern declarator_postfix : type_name =
168 (SQUARE_LEFT CONSTANT SQUARE_RIGHT
169 | PAR_LEFT parameter_list? PAR_RIGHT
170)+
171 ;
172

173 pattern declarator : type_name =
174 declarator_prefix?
175 (IDENTIFIER? | PAR_LEFT declarator PAR_RIGHT)
176 declarator_postfix?
177 ;
178

179 pattern parameter_list : type_name =
180 parameter (COMMA parameter)* (COMMA ELLIPSIS)?
181 ;

A Working Example B-5

182

183 pattern parameter : type_name =
184 full_base declarator?
185 ;
186 }
187

188 LR(finite) parser Expr on Tokenizer uses Type {
189 category expr {expr list operands;};
190 category binary_expr : expr {binary_op list operators;};
191

192 primary_expr : expr =
193 IDENTIFIER
194 | CONSTANT
195 | STRING_LITERAL
196 | PAR_LEFT comma_expr PAR_RIGHT
197 | SIZEOF PAR_LEFT type_name PAR_RIGHT
198 ;
199

200 regex arg_list =
201 assign_expr (COMMA assign_expr)*
202 ;
203

204 regex unary_postfix =
205 SQUARE_LEFT comma_expr SQUARE_RIGHT
206 | PAR_LEFT arg_list* PAR_RIGHT
207 | access_op IDENTIFIER
208 | unary_post
209 ;
210

211 unary_expr : expr =
212 unary_pre* primary_expr unary_postfix*
213 ;
214

215 multiplicative_expr : binary_expr =
216 unary_expr@push:operands
217 (multiplicative_op@push:operators unary_expr@push:operands)*
218 ;
219

220 additive_expr : binary_expr =
221 multiplicative_expr@push:operands
222 (additive_op@push:operators multiplicative_expr@push:operands)*
223 ;
224

225 shift_expr : binary_expr =
226 additive_expr@push:operands
227 (shift_op@push:operators additive_expr@push:operands)*
228 ;
229

230 relational_expr : binary_expr =

A Working Example B-6

231 shift_expr@push:operands
232 (relational_op@push:operators shift_expr@push:operands)*
233 ;
234

235 equality_expr : binary_expr =
236 relational_expr@push:operands
237 (equality_op@push:operators relational_expr@push:operands)*
238 ;
239

240 bit_and_expr : binary_expr =
241 equality_expr@push:operands
242 (AMP_OP@push:operators equality_expr@push:operands)*
243 ;
244

245 bit_xor_expr : binary_expr =
246 bit_and_expr@push:operands
247 (BIT_XOR_OP@push:operators bit_and_expr@push:operands)*
248 ;
249

250 bit_or_expr : binary_expr =
251 bit_xor_expr@push:operands
252 (BIT_OR_OP@push:operators bit_xor_expr@push:operands)*
253 ;
254

255 and_expr : binary_expr =
256 bit_or_expr@push:operands
257 (AND_OP@push:operators bit_or_expr@push:operands)*
258 ;
259

260 or_expr : binary_expr =
261 and_expr@push:operands
262 (OR_OP@push:operators and_expr@push:operands)*
263 ;
264

265 conditional_expr : expr =
266 or_expr@push:operands
267 (QUESTION_OP comma_expr@push:operands COLON_OP conditional_expr@push:operands)?
268 ;
269

270 assign_expr : binary_expr =
271 conditional_expr@push:operands
272 (assign_op@push:operators conditional_expr@push:operands)*
273 ;
274

275 root comma_expr : binary_expr =
276 assign_expr@push:operands
277 (COMMA@push:operators assign_expr@push:operands)*
278 ;
279 }

A Working Example B-7

When given the text input stream sizeof(int) == sizeof(char) * 4 ?
(a & 15) + (78 - 12) : ++b % 3 & 1 && (c == d), the generated parser pro-
duces the following output.

comma_expr

operands=(1)

operators=(2)

assign_expr

operands=(1)

operators=(2)

(1)

(2)

conditional_expr

operands=(1)

(1)

(2)

or_expr

operands=(1)

operators=(2)

comma_expr

operands=(1)

operators=(2)

conditional_expr

operands=(1)

(1)

and_expr

operands=(1)

operators=(2)

(1)

(2)

assign_expr

operands=(1)

operators=(2)

(1)

(2)

or_expr

operands=(1)

operators=(2)

(1)

bit_or_expr

operands=(1)

operators=(2)

(1)

(2)

conditional_expr

operands=(1)

(1)

(2)

and_expr

operands=(1)

operators=(2)

(1)

(2)

bit_xor_expr

operands=(1)

operators=(2)

(1)

(2)

or_expr

operands=(1)

operators=(2)

(1)

bit_or_expr

operands=(1)

operators=(2)

bit_or_expr

operands=(1)

operators=(2)

(1)

AND_OP

raw=&&

(2)

bit_and_expr

operands=(1)

operators=(2)

(1)

(2)

and_expr

operands=(1)

operators=(2)

(1)

(2)

bit_xor_expr

operands=(1)

operators=(2)

(1)

(2)

bit_xor_expr

operands=(1)

operators=(2)

(1)

(2)

equality_expr

operands=(1)

operators=(2)

(1)

(2)

bit_or_expr

operands=(1)

operators=(2)

(1)

(2)

bit_and_expr

operands=(1)

operators=(2)

(1)

(2)

bit_and_expr

operands=(1)

operators=(2)

(1)

(2)

relational_expr

operands=(1)

operators=(2)

relational_expr

operands=(1)

operators=(2)

(1)

EQ_OP

raw===

(2)

bit_xor_expr

operands=(1)

operators=(2)

(1)

(2)

equality_expr

operands=(1)

operators=(2)

equality_expr

operands=(1)

operators=(2)

(1)

AMP_OP

raw=&

(2)

equality_expr

operands=(1)

operators=(2)

(1)

(2)

shift_expr

operands=(1)

operators=(2)

(1)

(2)

shift_expr

operands=(1)

operators=(2)

(1)

(2)

bit_and_expr

operands=(1)

operators=(2)

(1)

(2)

relational_expr

operands=(1)

operators=(2)

(1)

(2)

relational_expr

operands=(1)

operators=(2)

(1)

(2)

relational_expr

operands=(1)

operators=(2)

(1)

(2)

additive_expr

operands=(1)

operators=(2)

(1)

(2)

additive_expr

operands=(1)

operators=(2)

(1)

(2)

equality_expr

operands=(1)

operators=(2)

(1)

(2)

shift_expr

operands=(1)

operators=(2)

(1)

(2)

shift_expr

operands=(1)

operators=(2)

(1)

(2)

shift_expr

operands=(1)

operators=(2)

(1)

(2)

multiplicative_expr

operands=(1)

operators=(2)

(1)

(2)

multiplicative_expr

operands=(1)

operators=(2)

(1)

(2)

relational_expr

operands=(1)

operators=(2)

(1)

(2)

additive_expr

operands=(1)

operators=(2)

(1)

(2)

additive_expr

operands=(1)

operators=(2)

(1)

(2)

additive_expr

operands=(1)

operators=(2)

(1)

(2)

unary_expr

operands=(1)

(1)

(2)

unary_expr

operands=(1)

unary_expr

operands=(1)

(1)

STAR_OP

raw=*

(2)

shift_expr

operands=(1)

operators=(2)

(1)

(2)

multiplicative_expr

operands=(1)

operators=(2)

(1)

(2)

multiplicative_expr

operands=(1)

operators=(2)

(1)

(2)

multiplicative_expr

operands=(1)

operators=(2)

(1)

(2)

(1)

(1)

(1)

additive_expr

operands=(1)

operators=(2)

(1)

(2)

unary_expr

operands=(1)

unary_expr

operands=(1)

(1)

MOD_OP

raw=%

(2)

unary_expr

operands=(1)

(1)

(2)

unary_expr

operands=(1)

(1)

(2)

multiplicative_expr

operands=(1)

operators=(2)

multiplicative_expr

operands=(1)

operators=(2)

(1)

CROSS_OP

raw=+

(2)

(1)

(1)

(1)

(1)

unary_expr

operands=(1)

(1)

(2)

unary_expr

operands=(1)

(1)

(2)

(1)

(1)

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Mainstream Parser Generators
	1.2 Goals for MMP

	2 MMP Frontend
	2.1 Grammar File Structure
	2.1.1 Input Machine
	2.1.2 Dependency Machine
	2.1.3 Name Scope

	2.2 Statement Structure
	2.2.1 Statement Type
	2.2.2 Rule Format
	2.2.3 Statement Field
	2.2.4 Semantic Action

	2.3 Machine Structure
	2.3.1 Machine Type
	2.3.2 Machine Attribute

	3 MMP Internals
	3.1 Repetition Elimination
	3.2 Generalized Terminality
	3.3 Subtype Relation

	4 MMP Backend
	4.1 DFA Parser
	4.1.1 Additional Restriction
	4.1.2 NFA Construction
	4.1.3 NFA-to-DFA Conversion

	4.2 Lookahead Computation
	4.2.1 Grammar Preprocessing
	4.2.2 Sequential Lookahead

	4.3 LL(k/finite) Parser
	4.4 LR(k/finite) Parser

	5 Future Work
	Bibliography
	A MMP Specification Language
	B A Working Example

