GitDAO

Blockchain Primitives
for Trustless Open Source

A Master Thesis by Yves ZUMBACH.

Supervised by
Yann VONLANTHEN, Robert OTT,

and Prof. Dr. Roger WATTENHOFER. E’HZUfICh




1 Photo by Elias Maurer on Un-

Realized between March and September 2022. et
splash.

ABSTRACT

Open source software has become a crucial infrastructure in contempo-
rary societies which is why it is important to protect it. This work aims
to design blockchain primitives that make open source trustless. We
explore a key element of trustlessness: decentralization; why we care
about it, and how to achieve it. The main proposal of this work is a vot-
ing system based on tokens with time-decreasing power, which opens
anew design space for voting systems, including creating incentives for
recurrent contributions and lowering power entrenchment. Addition-
ally, we propose a rewarding scheme to define the power of the tokens
that should be awarded for contributions to an open source project,
as well as a strategy to distribute the money received by the project
to its contributors using the same tokens, aligning value creation and
value extraction. We propose a voting workflow specifically targeted
at merge requests that improves security, by providing a challenge
mechanism that deters adversarial proposals. Finally, we propose a
scheme to back issues with money for improved community feedback.
All these features build a coherent specification, called GitDAO, that
improves the guarantees provided by any open source projectthat uses it.

\
In collaboration with SWITCH. S \

#og"
s s . o0 0 /4P% ¢
Done at the Distributed Computing Group, Distributed ‘4‘:5 “‘u_-
Computer Engineering and Networks Laboratory, Computing '3‘\‘ e ?__ L

ETH Ziirich


https://unsplash.com/@elmaurer?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/

CONTENTS

1 INTRODUCTION, p. 3 1 Photo by Paul Pastourmatzis on
Unsplash.

THEORETICAL DISCUSSION
2 GOVERNANCE SYSTEMS, p. 9
3 OPEN SOURCE, p. 23

4 BLOCKCHAINS, p. 31

GITDAO

5 DECREASING POWER TOKEN, p. 40
6 VOTING WORKFLOW, p. 61

7 REWARDING SCHEME, p. 66

8 DEVELOPER REWARDS, p. 75

9 ISSUE BACKING, p. 78

10 GITDAO, p. 82

APPLICATIONS
11 Demo, p. 90
12 RADICLE, p. 98

13 CONCLUSION, p. 105

APPENDICES
A FIGMA CHARTS, p. 109

B SNAFU FABLE, p. 110


https://unsplash.com/@pueblovista?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

CHAPTER 1

INTRODUCTION

August 30", 2018, Geneva, Switzerland, the public ministry announces
that it wants to investigate an elected official of the executive branch
for illegally accepting benefits from a sheik in Abu Dhabi. This is
only the opening of the so-called “Affaire Maudet”, which will see many
developments, and still be instructed at the federal level four years later.
In the face of public criticism and pressure, the magistrate refuses to
resign, even after multiple bodies such as the executive chamber of
the government and his party ask for his resignation letter. There is
no legal basis to revoke an elected official during its mandate, and so
the magistrate will keep his position for two more years. During this
time, the other members of the executive create a new department with
almost no influence over the conduct of the state, specifically for the
suspected official. The department he was previously assigned to, the
police and justice department, is reassigned to the other magistrates
thus impeding the smooth working of the body. A law making it possible
to revoke a magistrate is proposed and accepted by the people of Geneva
during the November 21%, 2021 votation.

Winter 2018, the French yellow vests, a movement composed mostly of
the lower classes, manifests every Saturday against their government
by blocking roads. They want the new proposed tax on fuel dropped,
ask for more transparency from the state, more accountability, and
the instauration of the citizens’ initiative referendum among other
revendications. The protest makes the divide and lack of trust between
the people and the French government explicit. The movement sparks
violent demonstrations; the Champs-Elysées and the Arc de Triomphe
are ransacked on December 15, 2018.

The “Affaire Maudet”

1 Photo by Nathan Anderson on
Unsplash.

The Yellow Vests


https://unsplash.com/@nathananderson?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

January 6™, 2021, supporters of Donald Trump attack the capitol in
Washington, D. C. after repeated allegations by the former president
that the election has been “stolen” by the Democrats. Trust in an estab-
lished institution like the American voting process eroded at a speed
that surprised many.

June 24

suppresses the federal right to abortion in the United States of America.

, 2022, the supreme court overturns Roe v. Wade, and so

The decision has since been dubbed “one of the most undemocratic
decisions” of the court, as 61% of the American people think that it
should have remained part of the law [19].

Many well-established democracies seem to be facing democratic
crises. Most governments that exist today were created centuries ago,
at times during which the technological limitations were more drastic
than today. The ensuing systems had to be designed around those
limitations, and therefore provide fewer guarantees than what might be
possible and expected today.

When exploring new frontiers of governance systems, the open source
ecosystem is inspirational material, as it has been at the forefront
of technology, and thus explored new ways to coordinate enabled by
modern means. One of the key properties of open source is the ability
to fork a project. Forking is the process of branching off from a project
to start your own using the same starting code. Many projects try to
avoid forks as they split the community and the developer time each
project receives. Coordination is generally a better survival strategy
in the open source. This creates incentives for communities to have a
governance process satisfying enough. Note that it is much easier to
fork an open source project than to ignite a revolution and bootstrap a
new state. As such, governance systems need to be more optimal in
the open source, and when they are not, experiences are conducted at
a much faster rate; projects fork, try, rise, and fall over a few months,
not a few centuries. Additionally, there are many more open source
projects than there are states, and so the combination of plurality, and
fast evolution in this ecosystem implies that it was subjected to a much
more strenuous Darwinian selection.

Blockchain is another domain worthy of attention when it comes to
governance systems. Because blockchains are well suited to trans-
ferring value, they enabled a new generation of governance systems
that used this primitive to align individual incentives with the greater
good more efficiently, than what could be achieved in the open source.
Coordination systems on the blockchain have experimented with vari-
ous forms and colors, using fungible and non-fungible tokens, having
explicit voting procedures or not, and featuring various token distri-
bution mechanisms. They have been applied to various goals ranging

Attack on the Capitol

Roev. Wade

Democratic Issues

The Open Source

The Blockchain



from coordinating a newsletter (BanklessDAO), to managing communi-
ties planting trees in Brazil (Toucan Protocol), to deciding the value of
obscure protocol parameters of decentralized exchanges (MakerDAO).

Because funds have been injected so quickly into the blockchain ecosys-
tem, hitting an all-time high total value locked of more than 240 billion
dollars in December 2021 [7], the ecosystem evolved at an unrivaled
speed. Take for example the loot project, an NFT collection of text strings
describing adventure game gears, e.g. Bone Wand or Pain Glow Scimitar
of Brilliance. Brainstormed over a weekend, launched with a single
tweet, after a week, the loot NFTs were traded at a staggering minimum
value of 15 ETH ($59’600)... On the blockchain, the unit to measure the
evolution of projects is the week, sometimes it’s days.

The narratives related to blockchain are another reason it is a wor-
thy experimentation ground. In November 2018, the blockchain was
invented by the cypherpunk movement, which notoriously distrusts
everybody, especially nation states and banks. To make a monetary sys-
tem work without a trusted third party, they came up with various game
theoretical mechanisms that make it possible to trust the correctness
of a ledger without having to trust any single entity: the blockchain.
This defined the core values of the movement: decentralization, trustless-
ness, and permissionlessness which all have wide-reaching consequences
when applied in the context of governance. Trustlessness: the system
will work as intended without having to trust anyone. Remember the
attack on the American Capitol and the “stolen” election? Decentraliza-
tion and permissionlessness: distribute power in a more egalitarian
fashion, and avoid having a minority holding all the power. Remember
Roe v. Wade, remember the yellow vests? Transparency; when every-
thing is open, cheating becomes much harder. Remember the “Affaire
Maudet”?

We propose in this work to take a new look at governance systems,
and what they can bring to open source projects. How can we use
blockchain functionalities to create provably net positive primitives to
coordinate open source? Is it possible to get feedback from users or the
community? Can we ensure that the governance system is inclusive for
new contributors? Can we guarantee that the outcome of the system
maximizes the benefit of the entire community, not just a few members?
This work will investigate the use of decreasing value tokens, and the

limits imposed by the required sybil resistance.

Blockchain can unlock new possibilities in other domains as well. Take
security; a single piece of software generally relies on dozens of li-
braries. This creates the software supply chain, and it has been hacked:
instead of attacking a well-watched program, corrupt its undefended
dependencies. Some of the most notorious hacks targeted a very simple

Blockchain Speed

Blockchain Narratives

Improve Governance of Open
Source using Blockchain

Improve Open Source Security



Javascript library that was left abandoned, but which was used by many
blockchain wallets [11]. Can we provide mechanisms to improve secu-
rity, like better code reviews or stronger guarantees that useful projects
are not abandoned? This work proposes a voting workflow, that penal-
izes adversarial actors.

Today, some open source software is embedded in every digital compo-
nent that exists. Open source creates priceless value for humanity. Yet
there are almost no developers in the open source ecosystem that are
paid for the work they do or the value they create. This lack of align-
ment between value creation and value extraction dissuades people
from contributing, this is a coordination issue. Can a blockchain-based
system provide means to compensate developers? This work proposes
a rewarding scheme and a monetary distribution mechanism that incen-
tivizes people to contribute to open source and realigns value creation
and value extraction.

In this work, we will first analyze governance systems, the open source,
and blockchain movements to understand them better. Then, we will
propose some blockchain primitives, what we call a GitDAO, to improve
various aspects of open source and make it more trustless. Finally, we
discuss our attempts at implementing GitDAO.

Improve Monetary Incentives for
Open Source

Structure of this Work.



PART |

THEORETICAL DISCUSSION




SUMMARY

We begin this work with some discussions about governance systems,
open source, and blockchain-related topics, as inspiration and guiding
lines to create new governance systems for open source projects. Why
these three topics?

Governance systems are the building block required to make decisions
and coordinate members of an open source project. Yet coordination is
hard. Can we create truly decentralized systems? Does a system exists,
that ensures decisions are always satisfying for the participants? Are
there systems that impose little additional friction on users?

Because we are targeting open source projects, exploring their specifics
enables us to build systems that are well suited to them. Some speci-
ficities of open source can be exploited; for example, the fact that code
is processed through merge requests enables us to limit governance
systems to binary decisions.

Finally, we will turn our attention to the blockchain, how it works,
what its associated narratives are, how those integrate within the open
source philosophy, and what functionalities blockchains can bring to
the open source.

CHAPTERS

2 Governance Systems, p. 9
3 Open Source, p. 23
4 Blockchains, p. 31

1 Photo by Christian Grab on Un-
splash.


https://unsplash.com/@christianmategrab?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/

CHAPTER 2

GOVERNANCE SYSTEMS

2.1 DEFINITIONS
We start with a few useful definitions and notations.

DEFINITION 1 DECISION
A decision is an event that must have an outcome fixed by a voting
system. Decisions are indexed by a counter .

DEFINITION2 POSsIBLE OUTCOMES
The set of possible outcomes for a given decision ¢ is denoted O;.

DEFINITION 3 USERS
The set of users is denoted U.

DEFINITION 4 VOTES

Let ©,(i) be the vote of user v on decision i. This is expressed as the
preferences of user u over the possible outcomes O; of decision i. How
preferences are expressed is defined per type of governance system.

DEFINITION5 POWER
Let p,(t) be the absolute power that user « has over the governance
system at time ¢, expressed as a floating point number.

We now define a voting system.

2.1.1 VOTING SYSTEMS

DEFINITION 6 VOTING SYSTEM

CONTENTS

2.1 Definitions, p. 9
2.2 Properties, p. 12
2.3 Examples, p.19

1 Photo by JOHN TOWNER on
Unsplash.


https://unsplash.com/es/@heytowner?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

A voting system is a function F'(©, p, ). It is applied to the preferences
of the users of the system, the power that each user has on the sys-
tem, and the decision for which to produce an outcome. The function
returns one outcome from the set of possible outcomes O;.

Little is specified about how participants should specify their prefer-
ences © over the outcomes, and this can be done in different ways:
through an ordering (ranked voting systems"), by assigning some score
to each outcome(cardinal voting system?), by distributing a set amount
of points among the outcomes, etc.

The power of each user is an important metric. The power distribution
p is defined in absolute terms, yet what interests us is the power that
each user has normalized to one, i.e. its relative power over the system.

DEFINITION 7 RELATIVE POWER

The relative power of a user u of a voting system on this system at time
t, denoted ¢, (¢), is the amount of influence that a particular member
can have on an outcome of the system at time ¢ compared to the power
of the others, normalized to 1. Mathematically speaking, the relative
power is defined as:

_ Du (t) (2.1)

Gu(t) =
D SRy
And it holds that V¢, Y, qu(t) = 1.

In essence, someone with relative power 1 has full power over the
system, having relative power 0 means you have no power, and hav-
ing power 1/» means that the power is distributed equally among all
members.

The definition above can be applied to many real-life examples. Bi-
nary voting systems impose Vi, |0;| = 2. In most democracies today
Yuvt, p,(t) = 1. In essence, all users have the same, time-independent
power over the outcomes of the decision function. A dictatorship is a
voting system in which one user, the dictator, has a power equal to 1
and all others have a power equal to 0. When considering DAOs and
token-based voting, evaluating p,, () amounts to counting the amount
of ERC20 tokens owned by each participant (or sum the power of the
ERC721 token owned). Let us denote the set of token owned by user u
attime ¢t as T, (¢). In ERC20 token-based voting systems, the power of
each participant is equal to the number of ERC20 token owned by the
user: p,(t) := |Ty(t)|. In ERC721 token-based voting, the ERC721 token
will generally provide a way to evaluate the power that a given token
provides. For example, each token might have a property called power

in which case:

10

1. In a ranked voting system with
three options, a participant might
provide the preference A > C' > B.

2. In a cardinal system with three
options and where scores are in
the range [—1, 1], given that you
hate both options A and B, but are
very much in favor of option C, you
could submit a preference similar to
{A:-0.98,B:—097,C:0.85}.



pu(t) := Z T.power (2.2)

TET,(t)

These examples highlight the versatility of the definition of a voting
system.

Yet, does this definition encompasses governance systems that we know
like states? How can we formalize indirect democracy, also called repre-
sentative democracy, which can be seen as a two-stage voting process?
What about specifying how the executive and legislative branches work?
Can we describe referendums with the above definition of a voting sys-
tem? No. A voting system only applies once there is a clear decision
to make, a fixed set of outcomes, a fixed set of users, a defined way to
express preferences, and a fixed power distribution. Coming up with a
good voting system, e.g. one that takes into account the preferences
of the users, is already a hard problem (see section 2.2.1). But a good
voting system is not enough. Take for example the presidential elections
in the United States, even if we assume that the voting process of the
Electoral College is perfect, gerrymandering makes it possible to end
up with Electoral Colleges that do not represent the opinion of the
population, and thus to elect a president that lost the popular vote3.
We need to consider more aspects, so we define a broader concept:
governarnce processes.

2.1.2 GOVERNANCE SYSTEMS

DEFINITION 8 GOVERNANCE SYSTEM
We define a governance system to be any system that uses at least one
voting system as a subroutine.

Note that the outcomes of a governance system might be plural and take
many forms, from laws to executive decisions, to judiciary decisions.
Also, the voting system used for each of these domains can vary a lot.

Many systems of interest are governance systems, not voting systems; a
human government is a governance system for example. Defining the
power that a user has over a governance system can be a complex,
or even intractable, task. Take a direct democracy for example. In
such a system, a user, i.e. a citizen, will have a power equal to that of
every other citizen to decide the laws of the country, but how do we
account for the executive and judiciary decisions made using some
other systems? In an indirect democracy, what is the power that a user
has over laws? More complex even, consider the Swiss governance
system and the ability to start referendums on laws voted by Parlament:
once a law is voted by our representatives, a subset of the population
can come together to challenge the law. Not being able to evaluate the

11

3. This happened five times in
history [14].



power of a user over a governance system is an issue, especially when
we try to formalize what democracies are. Do you remember the “most
undemocratic decision” taken by the American supreme court when it
overturned Roe v. Wade? What does it mean to be undemocratic in this
case? Most blockchain-based systems are much simpler, because their
scope is a lot more limited, and so they are easier to analyze. Happily
enough, this work focuses on creating a blockchain system.

Let’s consider for a brief moment what we mean by democracies. What
does it mean to give power to the people? Most people define a demo-
cratic system as a majority system, where the majority opinion is com-
puted using the same weight for each citizen. This explains well the
“undemocratic” aspect of Roe v. Wade. But how does this definition
integrate with the rule of law? Laws evolve rather slowly; can a law
become undemocratic if citizen change their mind about a topic? And
what about giving a lot more power to some individuals that can use
it to influence the system without having strong accountability (think
“Affaire Maudet”, the executive branch and the legal immunity that it
grants, or any judge in the legal system)? Are those undemocratic ways
of conducting a state? Is democracy the ultimate goal? We leave it Open
to find a more satisfying definition of democratic, and to define then
whether it is a goal worth pursuing.

2.2 PROPERTIES

In the next sections, we look at desirable properties, or on the contrary,
that we would like to avoid for voting systems and governance systems.

2.2.1 ARROW’S IMPOSSIBILITY THEOREM

Let’s first come back to voting systems. Many functions fulfill the
requirements of definition 6. For example, the function that always
returns the first outcome in O is a valid voting system that does not take
user preferences into account. Of course, this is not so interesting, so
we define a few additional properties that we want our voting system
to fulfill.

PROPERTY1 PARETO EFFICIENCY
If every participant prefers option A over option B, then the system
should prefer option A to option B.

PROPERTY2 NONDICTATORSHIP

The system must take the preferences of multiple participants into
account. It cannot mimic the preferences of a single user, called the
dictator.

PROPERTY3 INDEPENDENCE OF IRRELEVANT ALTERNATIVES

12



Adding irrelevant outcomes to a decision, i.e. outcomes that no one
like, should not change the outcome of the system.

All the properties above seem rather reasonable to expect. Unfortu-
nately, Arrow’s Impossibility Theorem [3] proves that there exists no
ranked voting system that can fulfill all three when there are more than
two options to vote on. So coming up with good voting systems, we
are not even talking about governance systems, might be harder than
expected.

2.2.2 TYRANNY OF THE MAJORITY

This is a problem that any majority voting system has. By performing
majority votes, up to 50% of the participants may be left unsatisfied. If
there are 50% of people that always agree, then the remainder of the
population can end up being tyrannized, and live under a set of rules it
disagrees with.

In the specific case of binary votes, i.e. votes in which there are only
two possible outcomes, which do not suffer from Arrow’s impossibility
theorem, you can require different thresholds to accept a proposal
while preserving nondictatorship, Pareto efficiency, and independence
of irrelevant alternative. For example, you can request that at least 60%
of votes are in favor to accept a proposal. Any percentage preserves
the three properties above. Which should we use? We now show that
any percentage different than 50% can potentially lead to a situation
with even more unsatisfied people. If you use a 60% threshold—or, by
symmetry, a 40% threshold—, then you can have up to 60% of people
that are dissatisfied with the vote outcome. Plus, the formulation of
the question, i.e. “Are you in favor of adopting law 2?” or “Are you in
favor of not adopting law 2?”, now has an impact on the outcome. Who
decides how questions are formulated? Those will have more power
than the others. So the 50% threshold is the one that maximizes the
guaranteed number of satisfied people and avoids introducing more
unfairness in the system.

But having potentially 50% of totally unsatisfied people is a bad situ-
ation to be in. Can we do better? Maybe voting systems are not well
suited to coordinate humans? Can we find an alternative system that
has better properties? To find an answer to this question we propose to
explore a few existing systems in sections section 2.3.3 and 2.3.1.

2.2.3 MAKING INFORMED DECISIONS

How can we make sure that people vote based on informed, rational
judgments and not just some biased preconceptions? This is of value if
we want the outcomes of the governance system to lead its users to an

13



optimal situation. To distinguish between a good and a bad decision,
people need atleast to be knowledgeable about the topic they are voting
on. One will generally need to invest time and effort into a topic to
become knowledgeable about it.

If votes are held frequently, then it is probably not realistic to expect
everyone to invest the time and energy necessary to become knowl-
edgeable about the topics voted on. This is a problem well known in
Switzerland, where votations are held approximately four times a year
and where topics can be varied. So people often resort to not voting at
all, or voting along the lines of a party they feel close to.

Are there alternatives to ensuring that the voting users are well in-
formed about the topic? Here are a few proposals:

ExPERT GRoUPs Each participant is assigned to one or multiple top-
ical groups based on their competencies. When a decision is
required, a first vote about which expert group should decide for
the matter at hand is held, then the selected expert group vote
on the question.

Getting this approach right is hard as the process can be attacked
in various ways. For example, you can vote to assign questions to
expert groups that you expect to be of your opinion, or you can
join expert groups that get assigned to questions you have opin-
ions about, even if you are not an expert. Further, this approach
mostly makes sense when there is an unambiguous answer to a
technical question for which experts are best suited to answer.
But there are questions to which there are no optimal answers,
either because a lack of data makes it impossible to know a pri-
ori what the best outcome is, or because it is fundamentally a
question of values.

LiQuip DEMOCRACIES See section 2.3.2.

The problem with this strategy is that entities with popular opin-
ions will probably centralize a lot of power, even though those
opinions might be ill-informed. So it does not increase the
chances of the outcome of a vote to be informed.

EpucATED DIRECT DEMOCRACIES Inthis system, people vote directly, but
before the voting period, a debate period is created, with various
experts that come and share their point of view so that every
participant can build their opinion. This is somewhat similar
to what the Swiss system does with its red booklets distributed
before each votation and with the debates held on television. But
unless people are incentivized to inform themselves, for example
by paying them to do so, this approach does not solve voter fatigue,
and so might have limited results.

14



SorTiTiON Elect a group of people that will handle a specific question
at random in the population. By electing voters at random in
the population, less bias is introduced, than when using expert
groups for example. If the chosen voters are incentivized to inform
themselves well, for example by enforcing that the time used for
this purpose be considered as paid vacations (not deducted from
the amount of vacation you are entitled to per year), then this is a
reasonable approach.

Additionally, the number of people to include in the vote might
be decided proportionally to the importance of the vote. The
underlying idea is that your incentive to vote on a topic is pro-
portional to the importance of the vote and the influence you
have over the outcome. For important votes, more people can
be included, and vice-versa, unimportant topics will be voted
upon by a few people. That way, if you are selected to vote on
something somewhat unimportant, you still have an interest to

vote, because you have a lot of power over the outcome.

This approach provides a lot of benefits, unfortunately, many
people are against the idea of leaving it to chance to select who
can vote on a topic. Also, while it is not a big issue to have ab-
sentees in a vote that includes every user of a system (for example,
participation rates in Switzerland are often close to 50%), it is
a bigger problem to have absentees when using sortition. An
efficient means to contact the selected voters is desirable, but not
always reasonable to assume. Indeed, while states might have
little issue contacting randomly selected citizens, this might be
more of a challenge on pseudonymous blockchains.

2.2.4 COORDINATING AT VARIOUS SCALES

The systems required to coordinate groups might vary a lot based on
the size of the group. When there are only a few people, no system at
all might work perfectly, and coordination emerges organically. If a
system is introduced it should add as little friction as possible, because
the friction it generates is probably not worth the benefits it brings,
and people might stop using it.

But when groups start to grow, a more formal coordination scheme is
generally required to ensure a fair distribution of the power, account-
ability, etc. Finding a good balance, using a system that provides more
valuable guarantees, than adds friction, is a difficult search.

2.2.5 VOTER FATIGUE

Voters are fatigued when they stop voting in a system they are a member
of. Voter fatigue is generally caused by voting systems requiring more

15

“If you want to go fast, go alone. If
you want to go far, go together. ”

— African proverb.



work from its participant than the value that voters draw from partici-
pating in the system. This includes voting too often, voting on topics
too complex or technical, and not having an impact big enough on the
outcomes of the system. Voter fatigue is of course bad for systems that
aim to be decentralized, as a system can only be decentralized if there

are many participants.

2.2.6 PLUTOCRACY

A plutocracy is a governance system in which the wealthiest have the

most power.

The reasons why you might end up with a plutocracy are diverse, but a
common one is that wealth grants its owner more means to do, more
economical power. Economical power can sometimes be translated
into political power in a way that was not specifically intended by the
governance system, e.g. lobbying, and sometimes systems are designed
to give political power to the wealthy. This works like a reinforcement
circle: the richer you are, the more power you will get, which in turn
allows you to get richer.

Many plutocracies have existed throughout history, for example, the Ro-
man Empire, the Japan empire before the Second World War, or modern
days Russia [16]. Most democracies today try to prevent plutocratic
forms of governance.

Is it desirable to use plutocracies as governance systems? Some might
argue that if people are rich, it is because they provide a lot of value to
society, which might be a good proxy to find good leaders.

We see some problems with the statement that people are rich because
they provide a lot of value. There is a difference between producing
value, and extracting value. Multiple examples highlight that both are
not always identical, like open source software. They provide billions of
dollars in value (e.g. Python, Linux, and the C programming language
combined). Yet, the developers behind those pieces of code have not
received billions of dollars. We further do not think that extracting a
lot of economical value, i.e. being rich, is a good proxy for being a good
leader, but are interested in any argument in favor of this theory.

Some studies showed that power corrupts [2], whatever the character
of a person that is bestowed with power (men, women, smart, corrupt,
honest, etc.). In this case, corruption means taking decisions that
benefit oneself and preterit the common good. So centralizing power
likely produces bad results when it comes to creating common goods.
For these reasons, we will consider that creating a plutocracy is an
anti-goal in this work.

16



2.2.7 DECENTRALIZATION

We can generalize from the previous section, and define decentraliza-
tion.

DEFINITION 9 DECENTRALIZATION

Decentralization is a metric that measures how distributed the voting
power is in a given system. Informally, decentralization is the Gini
coefficient of voting power (as opposed to wealth). Formally, the de-
centralization at time ¢ of a governance system marked D(¢) is:

ZuEU Z’UEU ‘pu(t) _pv(t)‘

by =1~ 2 ZueU ZueUPv(t)
=1— ZuEU Z’UEU ‘pu(t) 7pv(t)‘
- 2n2p(t)

A visualization of decentralization is given in Figure 2.1.

FIGURE 2.1 Graphical repre-
sentation of the decentraliza-
tion metric.

100%

The decentralization metric is equal
to the ratio between area B and area
A + B. The 45° line is the cumu-
lative distribution of governance
power representing perfect equality
between all members. The P, (t)
line is the cumulative distribution of
power in the system whose decen-
tralization is being evaluated. This
graph is a modification on [8]

Cumulative share of governance power

100%
Cumulative share of people from lowest to highest governance power

As the power of any individual can only be nonnegative, the decentral-
ization metric can take values between 0 and 1 included, 0 indicates a
fully centralized state, i.e. one individual owns all the power, everyone
else has none; 1 means that every member of the system has the same
governance power.

2.2.8 PROGRESSIVE DECENTRALIZATION

PROPERTY 4 PROGRESSIVE DECENTRALIZATION
A governance system that features progressive decentralization is a sys-
tem that creates incentives or mechanisms to distribute power evenly

17



to its member.

The difference between being decentralized and being progressive de-
centralization is that the former concerns itself with how decentralized
the governance power of a system is at a given point in time, while
the latter regards the dynamic of the governance power, its evolution.
This is similar to talking about a value and its derivative. A system
that is decentralized, but not progressive decentralization might end
up centralized if the power distribution changes for some reason. A
centralized system that features progressive decentralization will end
up decentralized if you wait for long enough. Generally speaking, a
system thatis progressive decentralization provides stronger guarantees
about

the decentralization of a system over time, than creating a decentral-
ized system and hoping that it remains so.

Progressively decentralizing the voting power can happen in multiple
ways. It can be that the governance system tries to correct inequalities
intrinsically, e.g. through a tax on voting power to limit disparities.
We will call a governance system featuring such a decentralization
mechanism intrinsically progressive decentralization. It can also be that
the governance system creates external incentives for participants to
distribute the power of their own volition. Such a system depends
on user actions to become more decentralized. We will call them
extrinsically progressive decentralization.

2.2.9 ACHIEVING DECENTRALIZATION

Open source projects almost always start in a centralized configuration:
there is generally one or a few people that initiate a project. So the
project begins with a dictator or a few oligarchs, then the project might
attract other contributors. The goal is to progressively decentralize the
control as new contributors take part. This highlights the importance
of creating progressive decentralization governance systems for open
source, as there is no hope anyways for a system that is decentralized
from the start.

There are two aspects of progressive decentralization. One is to attract
new members. The second is to decentralize the power over these users.
When discussing decentralization, we often forget the first aspect, and
indeed, for many systems, attracting new members is not required. A
state, for example, does not need to attract new members: its users are
clear from the start and include the population living on its territory.
But this is not the case in the open source world, and so the first step is
to make it as easy as possible, or even better, advantageous, for people
to onboard a project.

18



The second step is to decentralize power over the set of users. Previous
users might not desire to lose their relative power over the project or
see the rewards they get grow smaller if developer rewards are enabled.
And so they will have an incentive to prevent the decentralization of
power, so power decentralization might be hard to achieve. Setting
up a system that decentralizes power from the start, so that any new
member joining the project knows that power decentralization is an
explicit goal, which might make it more acceptable.

Note that Governance does not scale well, i.e. it is hard for a large
number of humans to govern a single project, because it is hard to
make many humans agree, and similarly, it is hard for a single human
to take part in multiple governance processes because it takes a lot of
time and energy.

2.3 EXAMPLES

2.3.1 BICAMERAL SYSTEMS

Is there any other solution that prevents minorities from being left
behind too much? Bicameralism is a type of system composed of two
independent organs that must find a consensus. Bicameral systems
are rather widespread in the legislative organs of governments: they
represent approximately 40% of them (the rest being mostly comprised
of unicameral systems) [12]. But how are those two chambers generally
constituted? And what are the tasks, responsibilities, and powers of
each organ?

If both chambers are constituted in identical ways, then there is no
point in having two chambers; one is enough. So, generally, each
chamber represents the interest of different entities of the state. Most
countries have at least one of their chambers that represents the people
of the country. But how should the other chamber be constituted? Who
should it represent?

In Switzerland for example, the National Council represents the people
(if canton A contains 50% of the population of Switzerland, then 50%
of the member of the National Council will come from canton A), while
the Council of States represents the various cantons (two representa-
tives per canton). This provides for an overrepresentation of the people
living in cantons with smaller populations: from the National Council,
they get the same power as the rest of the population; but from the
Council of State, they get more power per head than people living in
highly populated cantons. The Swiss decided to represent cantons in
the second chamber, an idea taken from the American constitution
from which the Swiss one is inspired. Some other countries, with older
constitutions, have decided to elect aristocrats. For example, the House

19



of Lords in the United Kingdom is constituted of individuals that are ap-
pointed by the Queen upon a recommendation from the Prime Minister
or that have a hereditary right to sit there.

But many kinds of minorities could be represented. We could choose
the various skin colors, religions, diets (vegan, keto, carnal, etc), or
social classes. Why choose one over another?

2.3.2 LIQUID DEMOCRACIES

Democracies often are systems that give equal power to all citizens
when it comes to certain decision raking systems. They are often di-
vided into two categories:

DIRECT DEMOCRACIES The people decide its laws.

INDIRECT DEMOCRACIES The people elect representatives that decide
the laws. In essence, people delegate their power to a subset
of the people. Note that the rules describing how the subset is
selected vary from country to country.

Liquid democracy is a variant of democracy featured by some projects
on the blockchain in which participants are allowed to delegate their
vote to any other participant. In turn, this participant can further
delegate their vote and all the votes that were delegated to them to
some other participant. Delegation is not restricted to a single level
anymore. Participants can revoke their delegation at any time, they
can also vote on specific instances which will override any delegated
vote.

This strategy lowers voter fatigue because people can delegate by de-
fault their vote to someone that votes in a similar way to them. There
is full transparency on what the vote is used for as this is a blockchain
system. Also, there is full accountability: as soon as the person you
delegated your vote to behaves in a way you do not agree with, you can
override their vote in the specific instance by voting yourself, and you
can revoke the delegation altogether.

However, liquid democracies are still voting systems, so they suffer
from the tyranny of the majority (see section 2.2.2).

Also, it might be hard to find entities to delegate to, because you might
need to form an opinion about many topics in the first place to know
which entities have similar opinions to yours, which defeats the purpose
of delegating (if you have an opinion on everything, then you are better
off voting). Are there efficient ways to discover entities that have similar
opinions? In Switzerland, the Easyvote app proposes, during votation,
to measure your opinion about eight values and to show the politicians

20



that have given answers similar to yours. Even in the likely case that this
approach is a good way to find people with similar opinions, it remains
that answering the many questions takes a lot of time, so people might
go back to simpler approaches like picking a party.

Because of voter fatigue, we do not expect people to change their dele-
gated vote often, even when their opinion might have been different
than that of the entity they delegated to. So there are fewer guarantees
that the outcome of a vote represents the opinion of the people.

Multilevel delegation can lead to a lot of centralization. In the case
of the blockchain called the Internet Computer which invented this
system, the vast majority of all votes ended up being delegated to the
foundation that created the Internet Computer. And centralization is a
problem: you have fewer nodes to hack to change the outcome of the
vote. Or a few nodes pretending to vote in a certain way to attract voters
can vote the opposite as a way to steal votes from natural opponents.
Or even a well-intentioned, non-hacked entity can end up voting a
suboptimal outcome because it is not well informed on the specific
topic, i.e. centralization leads to more bias (see also section 2.2.3).

2.3.3 CONSENSUS

We now turn our attention to consensus-based systems. By definition
of consensus?, 100% of the participants must be satisfied with the
decisions taken. If we use such a system, can we guarantee that the
system makes progress, i.e. that decisions can still be made? Being only
able to make a decision when everyone agrees implies that every single
participant has a veto right. Any individual can prevent all progress.
Those are rather adversarial conditions to provide progress guarantees
of any form. Let’s now consider a few historical examples.

At the international politics level, there are a few systems that feature
consensus like various bodies of the European Union [4] and NATO
[15]. Those systems have recently been rather criticized because even
only one country could block all decisions. Such cases happened when
Poland and Hungary vetoed the “€1.8tn budget and coronavirus recov-
ery plan over attempts to link funding to respect for democratic norms.”
[4] This also happened when Turkey vetoed the applications of Finland
and Sweden to NATO. So we might cast some doubt about whether
consensus is the best-suited system when there are no clear incentives
to find a common ground.

Some examples of successful consensus-based governance exist, for ex-
ample, the Northwest Territories in Canada use a consensus govern-
ment. Civil disobedience movements often organize themselves using
consensus and manage to reach consensus regularly. In such groups,

21

4. CONSENSUS

Reaching a consensus means mak-
ing decisions once every participant
agrees with the decision.

This is different from a middle
ground, which means adopting

an intermediate solution. Middle
grounds tend to prevent taking
extreme decisions. Also, when the
outcome of a decision is a middle
ground, the more extreme your
position is the more impact you
potentially have on the outcome, i.e.
the system might not be resistant to
outliers.



the interests of the participants are likely more aligned than those of
different countries. We remark that in all the examples above, whether
working or not, the set of users was always small: either a few hundred
countries or a few hundred humans. What if we want to coordinate
thousands or millions of individuals? We postulate that consensus sys-
tems provide fewer progress guarantees when the number of participants
scales.

This leaves us with at least two important aspects to consider when
deciding if consensus is appropriate for a decision system:

1. Having participants with aligned incentives.

2. Having a limited number of participants.

In the context of coordinating open source projects on the blockchain,
the nature of the participants is important to determine if incentives
are aligned. If we restrict the participants to the developers of the
project, then maybe using the consensus rule can yield satisfactory
results. But including other stakeholders, like users of the program and
investors/donors, might be of interest: a program is not created for its
own sake; itis created to provide value to users. Atthis point, it becomes
less clear that all these individuals might ever reach a consensus.

What is the number of users of governance systems of open source
projects? Developers can range from a few to several hundred (for
example for the Linux kernel). When it comes to users, the number
can range from a few to billions (think Wikipedia or users of the C
standard library). So, the scale of open source might rapidly make it
impractical to use consensus-based systems.

22



CHAPTER 3

OPEN SOURCE

The open source ecosystem® features diverse participants: nerds cod-
ing in their basements, and megacorporations with revenues larger
than the GDP of entire countries like Google and Facebook. Reasons
for participating to open source projects vary also; from benefiting hu-
manity by developing public goods, to having some fun coding during
Sunday evenings, to benefiting from contributions from the commu-
nity to lower maintenance costs, to making profits with paid services
sold on top of open source projects.

Many of the thoughts, models, and ideas proposed here are drawn from
a famous essay on management styles in the open source: The Cathedral
& the Bazaar [18].

3.1 BUSINESS MODEL

The vast majority of open source projects do not make money. This
general lack of a business model is an intriguing aspect of this ecosys-
tem. Many prophesized that it would be the downfall of open source:
if you don’t make money by contributing, why contribute at all?> In
this sense, open source is a public good. Everyone benefits from the
existence of the good, but no one has a personal incentive to make the
good exist. Those that produce the value, i.e. the developers, are not
the ones that extract it. This is a case of the tragedy of the commons.
Yet, surprisingly, open source has never been stronger.

Some argue that the lack of monetary incentives is what gives strong
quality assurance about the code. People that contribute to the open

23

CONTENTS

3.1 Business Model, p. 23

3.2 KeyAspects of Open
Source, p. 25

3.3 GitHub’s Influence on Open
Source, p. 28

3.4 Trustlessness Open Source, p. 29

1 Photo by Eric Muhr on Unsplash.

5. OPEN SOURCE

Open source is a philosophical
movement that originated as a re-
action to the restrictions imposed
by proprietary software. It encour-
ages collaboration when building
software. Generally speaking, an
open source software will provide
the four following freedoms:

1. Freedom to run the program.

2. Freedom to see the source code.

3. Freedom to change the source
code.

4. Freedom to distribute the code,
modified or not.

Generally speaking, open source
favors a decentralized software
development system.


https://unsplash.com/@ericmuhr?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

source, doing it for free, must care about the software. And because
the quality is better, open source is more successful. But does caring
ensure quality? And today, billions of dollars depend on open source
software, so the reasons to contribute to the open source can be a lot
more diverse than only caring about the software. Some companies
pay developers to contribute to open source software they depend
on. And since so much value depends on open source software, some
contributors are also adversarial agents, trying to perform supply chain
attacks to steal some of that value.

We do not know of a good explanation for the open source miracle.
Why does it strive when there is no business incentive? Maybe, the
fundamental semantics of computer sciences have something to do
with it. In the digital realm, creating copies is almost free. Therefore, it
is enough that a single individual decides to create open source software
for everyone to benefit, and through the great diversity in humankind,
there are enough people ready to contribute for reasons personal to
themselves.

Yet open source faces new challenges today, like supply chain attacks.
Open source software comes with no guarantees: you do not have to
pay to use them, but there will be no one either to help you when your
business is out, because of a technical issue in the open source library
you use. The quality of the documentation and the tests are up to the
developers. There are no contracts to provide financial counterparties
in the event of failure, no one that you can sue. One uses open source
at its own risk.

A recent, yet highly damaging, example of this issue is the security issue
in the logging library called log4j. Logging, especially in corporate
software running 24/7, is an important feature, as it gives insight into
whatis happeninginside the program. This, in turn, enables debugging,
tracing and gives visibility in real time over the potential problems a
program might be experiencing. It is the voice of a program. And when
log4]j was released, it introduce a plethora of concepts and features
that did not exist at the time, yet were highly valuable (like logging to a
distant server, rotating logging files, logs formatting, outputting to var-
ious sinks, etc.). So the library was soon used by many Java programs,
especially corporate programs. Time passed by, and new libraries were
created on top of Log4j so that developers were often using log4j

without even knowing it. Yet, at the core of the library was a security
issue that enabled running arbitrary code on the machine running
the program, i.e. a security breach of the worst, most dramatic kind.
On December 9™, 2021, the breach was discovered. To give an idea of
the problem, the director of the c1sA® described the flaw as the “most
serious” she had seen in her career [5], and Google analyzed soon after
that it impacted around 8% of all the packages on the most popular Java

24

6. CISA

The Cybersecurity and Infrastruc-
ture Security Agency is the Ameri-
can body responsible for analyzing
cybersecurity threats in the United
States of America.



package repository, Maven [22]. Those packages are used by millions
of servers throughout the Internet. Among some of the most widely
known services that could be exploited: Cloudflare, iCloud, Minecraft,
Steam, Tencent, and Twitter. The exploit received the highest CVSS
severity rating of 10. The breach is particularly easy to exploit, but
patching the vulnerability is complex, also because changing existing
features might break some software using them. And the log4j li-
brary was maintained by a single individual, rgoers, that had three
sponsors on GitHub.

ALL MODERN DIGITAL ALL MODERN DIGITAL
INFRASTRUCTURE INFRASTRUCTURE

(‘W T )

A PROJECT S0ME i
RANDOM PERSON
IN NEBRASKA HAS

L BEEN THANKLESSLY

MAINTAINING
SINCE 2003

= — =
[ ] C
[ _ ] (

FIGURE 3.1 A well-known xkcd meme about modern days software, and a variation of it created specifi-
cally for the log4j security breach.

In such circumstances, it is not so surprising that quality assurances
are not a top priority for the maintainer of the code. Filippo Valsorda,
a member of the golang team at Google, wrote on this topic that “the
role of open source maintainer has failed to mature from a hobby into
a proper profession. The catastrophic consequences are almost a daily
occurrence. [...] [T]he status quo is unsustainable.” [9]

Maybe open source does not need a business model to survive, live on
and thrive, but the world needs open source to have one.

3.2 KEY ASPECTS OF OPEN SOURCE

25



3.2.1 STAKEHOLDERS

In any open source project, there are multiple stakeholders. The two
stakeholders which are always present are:

DeveLoPERS They create, improve and maintain the project.

Users They draw some value from the project. Users can be other
developers that use the current project as part of their project,
e.g. in the case of a software library; or users can be nontechnical
people like users of an open source app on a phone.

There is a fundamental imbalance in the open source ecosystem, which
is that it is often much easier to get some feedback from developers
that know the platforms used to collaborate on code (like GitHub) than
it is to get feedback from users. When users are developers, this is not
such a big issue. But when users are nontechnical, getting some feed-
back to prioritize the most valuable features can be harder. Corporate
products will often measure in some capacity user behaviors. This is
done much more seldomly in the open source world, first, because it
requires a server to receive and store those data for which someone
needs to pay (but the projects generally do not make any money), and
second because tracking users goes against the open source narrative.
Finding ways to get feedback from the users might make the open
source provide more value to humanity.

3.2.2 SCALES OF OPEN SOURCE PROJECTS

Open source can operate at various scales. Many projects have one
developer and few users. Some others attract hundreds of developers
and have millions of users like the Python library pandas.

Hereafter we outline three developer community scales that are useful
to keep in mind when developing management systems for open source.
Whatever the system, it should adapt well to all three, or it should be
specified to which category it applies.

SMALL One to three developers, strong vision, tight coordination, and
intentional core design. No need for explicit management; it will
most probably happen in an organic way, or through the original
leader of the project.

Mepium Four to fifteen people, traditional management might bring
more benefits than drawbacks at this scale, e.g. avoiding duplica-
tion of effort, making sure no detail is forgotten, etc.

LARGE Management becomes unmanageable. Better to embrace anar-
chy at this point.

26



3.2.3 CORE AND HALO DEVELOPERS

Open source relies strongly on its developer community to make
progress. Yet, not all developers contributing to the project are equal.
Some are more involved, others are less. As proposed in The Cathedral
& the Bazaar, developers can generally be divided into two categories:

CorEe Those are the developers which are highly involved in the project.
They generally know the codebase well and contribute regularly.
Being at the center of the project, they often coordinate the
project in some way.

HAaLo Halo developers are those that contribute a couple of times,
maybe only once. They have a specific feature that they want
to be implemented or a bug that they want to be fixed. However,
they generally don't know the codebase well and it might be hard
for them to know where the feature that they want to build needs
to go. Having some guidelines for contributors to help them find
their way is often useful.

3.2.4 MANAGEMENT STYLES

There are probably as many management styles for open source as
there are open source projects. However, the book called The Cathedral
& the Bazaar [18], a famous essay on this topic, describes the models
used by two different projects and uses them as general categories:

CATHEDRAL Centralized, one or few leaders that coordinate the work of
many subordinates, also called top-down. Coordination happens
a priori. Access to the project’s development might be restricted
to only trusted developers. The leaders provide/impose their
vision for the project. Code is released once a coherent set of
tested features have been added, which generally happens at fixed
deadlines. A famous program developed using this framework is
GCC, the GNU C Compiler.

BAzaar No management of who should do what. Everyone can con-
tribute, the development process is completely public and some-
what anarchistic, also called bottom-up. Coordination happens a
posteriori. Code is released continuously, at no set deadlines. This
model was spearheaded by Linus Torvald, and is still used to de-
velop the Linux kernel. This model is probably the most cited
reason for the kernel’s success.

For the bazaar development style to work efficiently, a large enough
base of developers needs to be involved. Raymond proposes, to boot-
strap a bazaar-managed project, that developers be attracted by pro-
viding a vision and some working prototype. Providing a clear vision

27



ensures that only align people take part in the project, in the beginning
at least. Having less aligned people later is much less of an issue that
having unaligned people in the beginning, as it causes a lot of disrup-
tion. Further, building a working prototype, even if very poor, gives
something tangible that people can play with. It gives some insight into
what the finished product might look like, which helps bring people
on board. The book further postulates that a flat organization with only a
few project maintainers for the project’s coherence is the better way
forward. The power of a large decentralized community beats a single

mind, however brilliant it is.

Note that The Cathedral & the Bazaar was written in 1997. Git was re-
leased in 2005, so the book describes a time when mailing lists were
used commonly for coordination of software developers and git did not

exist.

3.2.5 SNAFU PRINCIPLE

Some further argument in favor of having as little hierarchy as possible
is named the SNAFU principle: “True communication is possible only
between equals because inferiors are more consistently rewarded for
telling their superiors pleasant lies than for telling the truth.” [20]

SNAFU predicts a progressive disconnection of decision-makers from
reality, which is an argument regularly used by hackers and proponents
of flat hierarchies why strongly hierarchical systems often fail. A fable
illustrating the SNAFU principle is included in appendix B.

3.3 GITHUB’S INFLUENCE ON OPEN SOURCE

A major actor in the open source ecosystem today is GitHub [10]. The
platform was created in 2008 and provides free, centralized hosting
of git remotes, plus many social coding features. The company was
acquired in 2018 by Microsoft for $7.5 billion.

The original vision behind gt was not to use walled, single, central-
ized remotes as we do today. The initial vision was actually extremely
flexible; git should be able to fit any workflow. This makes using git
difficult for newcomers because g1t can be used in so many different
ways. Of course, humans like simplicity, and so we deeply associated
using git with using some socially-enabled remote because it was
simpler; so much, so that many people now confuse git and GitHub.
But the design of g1t makes it possible to collaborate on code using
decentralized workflows. Only, as those workflows are generally more
complex both technically and for the mind, they are not widespread.
There are also no mature technical solutions to working in a decentral-
ized fashion on code as of August 2022. But some projects are trying to

28



implement a decentralized way to collaborate on code using git, like
Radicle (see chapter 12 for more details).

GitHub’s offering was a game changer, it changed the face of open
source. The interface enabled people to build faster, provided new
features like CI/CD’, merge requests®, issues?, comments, stars'®, spon-
sors', and so it has become the largest database of open source code
in the world with more than 40 million public repositories listed. Be-
cause GitHub is used so much, the functionalities provided by GitHub
shaped the history of open source development. People now regularly
conflate git and GitHub, are not so sure which of the two provides
what functionalities; this is the extent to which GitHub has become the
de facto standard.

Among the features offered by GitHub is a permission system. When
a repository is created, its initiator originally has every right on it,
and others have none. Afterward, the repository owner can grant
various additional rights to GitHub accounts. Some of the permissions
include: pushing to the repository (can be set per branch) and merging
branches (can be set per branch too). This is a centralized approach
to permissions, similar to what is used in the corporate world, but it
goes somewhat against the narratives associated with open source, like
anarchy and decentralization. More democratic management systems,
like voting systems, were never offered by GitHub, and so the recent
history of open source never featured decentralized, permissionless,
or trustless governance systems.

3.4 TRUSTLESSNESS OPEN SOURCE

Why do we care about governance of open source projects being or
becoming decentralized? Because it enables users of the project to
trust the project as a whole, even if some members mean harm to the
project or its users. It makes open source trustless, by improving the
following properties:

SECURITY More people involved also implies that it will be more diffi-
cult to include some adversarial code in the project. One would
need to circumvent code reviews so that no one discovers the
adversarial code in the codebase in the future.

LonGEVITY Having more active contributors gives stronger guarantees
that the project will live on because it increases the probability
that someone will maintain the project in the future. If we con-
sider the Linux project, which is highly centralized around Linus
Torvald, one might ask what will happen if Linus dies suddenly
in a car accident. It is possible that the community behind the
project finds a new governance process rapidly and the project

29

7.c1/cp

Continuous Integration/Continuous
Deployment is an umbrella term
that designates many things, but

it generally boils down to having
some scripts automatically executed
every time a commit is made on a
git branch, or every time a merge
request is initiated. This idea is
powerful because it enables develop-
ers to automate many boring tasks,
like executing tests before merging
which increases the assurances on
code quality a lot. This idea can

be pushed further, for example, it is
possible to package and deploy your
code whenever you commit to the
release branch. In the world of mi-
croservices and web-based products,
this means that developers can stop
worrying about putting their code
online: the code hosting platform
will automatically execute a script
that will do it for them.

8. MERGE REQUEST

A merge request is a process to sub-
mit code for merging on a protected
branch. The process can include or
mandate code proofreading, suc-
cessful execution of CI/CD pipelines,
including tests, and acceptance by a
quorum of permissioned members.
It often also features a discussion
thread which enables people to
comment on and discuss about the
code.

9. ISSUES

Issues are threads that people can
use to ask for new features or to
report bugs. It enables getting some
feedback from the community and
the users, although nontechnical
users probably do not use this chan-
nel as it often requires a technical
background to be used (an account
on GitHub, adding some trace of the
bug, tagging correctly, abiding by
the contributing guidelines, etc.).



only suffers a minimal impact. But it can also be that the commu-
nity explodes and we end up with multiple subcommunities, each
maintaining their fork of the Linux kernel. Are you willing to take
such a risk? A decentralized approach features better properties

in our opinion.

FASTER PROGRESS People are generally more involved in a project if
they have a say in it. More people involved means more features

built, more bugs discovered, more bug fixes, etc.

30

10. STARS

Developers can give a star to the
repositories that they like. This
feature created a reputation system
for open source repository: many
stars indicate a software used and
liked by many. Having few stars
means that the community behind
a project is smaller, hence the
code might not receive enough
attention to provide strong quality
assurances.

11. GITHUB SPONSOR

GitHub Sponsor is a program cre-
ated by GitHub whose goal is to
provide funding to the open source
ecosystem. Projects can register

on the program, then a “Sponsors”
button will appear on the project’s
page, enabling people to make one-
time or recurring donations to the
project. While the intention is good,
the effects of the functionality have
so far been negligible.



CHAPTER 4

BLOCKCHAINS

4.1 BLOCKCHAIN BAsIcs

The blockchain was invented by to this day anonymous people from
the movement called cypherpunk', with ideas that tie into anarchy.
Today, blockchain is mostly known as a speculation market, for high
price volatility that can make you rich (or poor) overnight, as a new
playing field for Wall Street and the riches. The original goal of the
blockchain was to create a new kind of money, i.e. cryptocurrencies,
that would not be controlled by the state. Yet today states are regulating
cryptocurrencies' and most of them are now looking into Central Bank
Digital Currencies (CBDC), i.e. digital currencies similar to cryptocur-
rencies, but fully controlled by central banks. Blockchain is a strange
and varied ecosystem.

Let’s first define what a blockchain is; it is an immutable, distributed
ledger, an append-only list of transactions shared by many computers.
Modern blockchains also offer computing capabilities through smart
contracts and as such are sometimes called world computers, i.e. they
are not limited to only storing data, they can perform computations
also. The revolution that blockchains brought is that they are digital and
mathematical constructs that guarantee that each computer will eventu-
ally have the same database as the other computers, without the need
for centralized coordination. To achieve this property, blockchains were
created in a game-theoretical conscious way that ensures that comput-
ers that try to cheat the database lose in the end. The mathematical
tool that was key in enabling this is public key cryptography.

31

CONTENTS

4.1 Blockchain Basics, p. 31

4.2 The Blockchain Movement, p. 32

4.3 Sybil Resistance, p. 33

4.4 Quadratic Voting, p. 35

4.5 Regenerative Finance, p. 35

4.6 Blockchain Principles and Open
Source, p. 36

1 Photo by silvana amicone on
Unsplash.

12. CYPHERPUNKS

Cypherpunks advocate for the
preservation of privacy through the
use of strong cryptography. They
value privacy as a fundamental
requirement of open societies. They
propose that privacy is achieved by
using strong cryptography, which
guarantees privacy by mathematical
properties. This movement started
in the 1980s when cryptography
was only the thing of states and was
heavily guarded as a national secret.
Cypherpunks are a “punk” because
they are anti-establishment, against
governments, and do not trust the
systems already in place. They can
be related to anarchists.


https://unsplash.com/@silvana54?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

Building a digital, append-only, trustworthy ledger is the perfect sub-
strate to build currencies. And so blockchains are most famously known
for enabling “cryptocurrencies”. One key addition to blockchains of the
first generation, i.e. Bitcoin, was the ability of blockchain to perform
some computations on top of storing data. This new generation of
blockchains, initiated by Vitalik Buterin and the Ethereum blockchain,
also called the blockchains of the second generation, enabled a whole
new range of applications, like financial services (exchanges, loaning
platforms, derivative markets, etc.), gaming-related features, NFTs, etc.

As a technological tool, blockchains are most probably overhyped; they
are databases, and databases have existed for a long time, but the world
never got so excited about them. Nevertheless, blockchains feature
interesting properties, like being trustless and public by default. But
“blockchain” is not just a technological creation, it is also a movement.

4.2 THE BLOCKCHAIN MOVEMENT

The word “blockchain” is sometimes abused, and can describe more
than only the technological creation. Sometimes, it is used to describe
the ideological movement associated with the technology, so we list
some of the core narratives of the movement hereafter.

Some of the core ideas that underpin blockchains are that one must be
able to trust none of the entities running the blockchain, yet be able to
trust that the outcome of the blockchain will be correct, i.e. that only
valid will be included, and they will be executed correctly. This is a
property called trustless, which was inherited from the cypherpunks
and their distrust for everyone, but especially for governments and
banks. We want strong guarantees that the blockchain will be correct,
e.g. that included transactions were indeed intended by the account
from which they emanate, that no account can send money it does
not have, etc. Ideally, we would like to be able to trust the outcome of
the blockchain without having to trust any specific entity running the
blockchain. That way, even if some entity running the blockchain tries
to take advantage, hack, or otherwise exploit the blockchain, we know
the entity will fail, even if we falsely trusted the entity. This is a strong
requirement, and it departs deeply from the current model, which
imposes on people to trust states to manage their currency properly,
and banks to manage accounts properly. But if a bank was to slash a
few zeroes from your balance, could you do much about it?

Now that trustlessness is established as a desirable property, how do
we achieve it? Without diving into the numerous mathematical and
game theoretical details required, let us affirm that decentralization
is a requirement to obtain trustlessness. Assume the power over the
blockchain is centralized in a single entity'#, then, for the blockchain to

32

13. An example of a state trying to regu-

late the world of cryptocurrencies
is given by the United States black-
listing in August 2022 the Tornado
cash smart contract. The smart con-
tract allowed to make anonymous
transactions on Ethereum. This
was used both to launder money
and by privacy-conscious users

of Ethereum (all transactions per-
formed on Ethereum are public).
But what does it mean to blacklist

a smart contract? The blockchain
is immutable, so it is not possible
to delete or stop the Tornado smart
contract. Instead, the United States
is requiring exchanges to prevent
any transactions with accounts
that interacted with Tornado cash.
So people that interacted with the
smart contract are now locked in
the blockchain world, i.e. they can-
not convert their cryptocurrencies
into fiat currencies, nor can they
add new cryptocurrencies bought
using fiat on some exchange to
their account. As long as cryptocur-
rencies cannot be used to pay in
day-to-day life, this action from the
US government has a strong impact
on the crypto community.

14. To be a little more rigorous,
assume that a single entity owns at
least 51% of the mining power.



have correct outcomes, you need to trust the entity owning 51% of the
power to do the right thing. This is the so-called 51% attack. Because
we want to be able to trust no one, it is required that no such entity
exists, that the power is decentralized. Actually, the more the power is
decentralized, the better because more decentralization means that it
is harder for anyone to obtain the required 51%.

By extrapolating, if we want the power to be distributed among many
people, then we might ideally want that each entity has the same power
and that no one receives a treatment of favor. Having some permissions
that others do not have is a form of treatment of favor, it is also a way to
encode that someone is more trusted than the others. Creating systems
that are permissionless, i.e. in which there exists no account that has
special privileges, is an explicit goal of the blockchain movement. Yet,
especially when it comes to applications being run on the blockchain
like a stablecoin, an exchange, or some NFT smart-contract, it is more
difficult to build systems that feature no privileged account like an
admin account. The lack of an admin account, also means that if there
is a bug in the smart-contract, no one has the power to fix the issue. The
same goes for transactions on a blockchain: if you send your money to
the wrong account, no one can help you recover it. The funds are lost
for good.

4.3 SYBIL RESISTANCE

Most blockchains are pseudonymous, i.e. you are anonymous and iden-
tified by a pseudonym. In such contexts, a single actor can own an
unbounded number of accounts.

DEFINITION 10 SYBIL RESISTANCE
The property of a system that cannot be exploited by creating a large
number of blockchain accounts.

Attacking a system by creating many accounts is called a sybil attack.
Some systems are vulnerable to such attacks. For example, quadratic
voting systems will assign more weight to multiple votes tallying some
voting power, than to a single vote with equal voting power. In such a
system, it is advantageous to split your voting power across multiple
accounts and make each account vote to maximize your influence when
voting.

Generally speaking, voting systems require sybil resistance and cannot
assign influence on a per account basis as this can easily be exploiteds.
Another example is to build a voting system that gives one vote per
account. In such a context, creating multiple accounts yields more
voting power, and so the outcome of the vote is probably decided based
on who can create the most accounts in a given amount of time.

33

15. Gitcoin, the project that spear-
headed quadratic funding (a variant
of quadratic voting), and first used
it to finance public good projects,
fell victim to sybil attacks during its
spring 2022 funding round.



What are potential mechanisms to provide sybil resistance? A natural
answer for blockchains is to create voting systems in which your voting
power is proportional to the amount of a given ERC20 token'® that you
own. If you split your token across multiple accounts, you still own
the same amount of token, hence the same voting power. It is also
possible to use ERC721 tokens'’. When using ERC721 tokens, you can
create special rules governing the tokens.

How tokens are obtained becomes an important question. If you can
buy the tokens, which is a natural answer for a blockchain—create
a liquidity pool for your token on some decentralized exchange and
your token can be bought by anyone—then you have effectively built a
plutocracy (see section 2.2.6), i.e. the richer have more power.

To create a one person-one vote system, you can use non-transferable
ERC721 tokens that you assign manually, which shifts the burden of
distinguishing sybils to the entity distributing the tokens' which does
not scale well.

On the blockchain, a system that can give at most one token to any
human is called proof of personhood. Note that any proof of personhood
system needs to provide two guarantees: first, that a given account is
indeed owned by a human, and second that this is the only account
that the human has registered in the system. If a single human can
register multiple accounts in a proof of personhood system, then the
system does not offer sybil resistance anymore.

These systems are attracting a lot of attention, because proof of person-
hood is a requirement of many systems, like a universal basic income,
or many forms of voting systems. At large in the computer science
world, many advocate for changes regarding how we authenticate,
for example using passwordless solutions, based on biometric keys for
example. The World Wide Web Consortium', also known as W3C,
published in July 2022 a new standard for decentralized identifiers, or
DID?°.

There are some systems on the blockchain trying to implement proof of
personhood as a primitive on which to build other systems. This includes,
for example, Proof of Humanity, Gitcoin Passport, BrightID, and the more
recent verifiable credential based systems like Civic and Ontology. Most of
these solutions are either very recent or unsatisfactory to some degree.
For example, Proof of Humanity requires the upload of a video of oneself
performing some randomly decided action to prove humanity. This
is privacy damaging as the video must be public, it is not resilient
to Al generated videos?, and does not guarantee the uniqueness of
the account. Bright ID is a combination of a web of trust and some
graph analysis. The graph analysis that is proposed today returns a
number that represents the confidence level of the system in the fact

34

16. ERC20

ERC20, the acronym for “Ethereum
Request for Comment #20”, desig-
nates an Ethereum smart-contract
standard. The standard specifies
the interfaces that smart-contract
should exhibit to implement a fun-
gible token. By extension, fungible
token are often called “ERC20”".

17. ERC721

ERcC721, the acronym for “Ethereum
Request for Comment #721”, desig-
nates an Ethereum smart-contract
standard. The standard specifies
the interfaces that smart contracts
must exhibit to validly implement
a non-fungible token, i.e. a token
with some properties that makes

it unique compared to any other
tokens. By extension, non-fungible
tokens are often called “ERC721”.

18. This strategy was used by Op-
timism during its first round of
retroactive funding.

19. W3C

The W3C is a widely acknowledged
entity that creates open standards
for the advancement of the web.

It is the W3C which publishes the
standards for HTML, Javascript, CSS,
and SVG, among others.

20. https://www.w3.0rg/2022/07/
pressrelease-did-rec.html.en

21. Today, using deep fake technol-
ogy, it is possible to make fake
videos of people saying or do-

ing things. This is possible with
only a few pictures of the people
that should be faked. For example:
https://www.youtube.com/watch?v=
¢cQ54GDm1leL0.


https://www.w3.org/2022/07/pressrelease-did-rec.html.en
https://www.w3.org/2022/07/pressrelease-did-rec.html.en
https://www.youtube.com/watch?v=cQ54GDm1eL0
https://www.youtube.com/watch?v=cQ54GDm1eL0

that you are a human, which needs to be converted to a binary decision
using a threshold with the regular false positive and false negative
issues. Also, while the system might tell whether an accountis managed
by a real human, it is a harder problem with such an approach to
detect multiple accounts managed by the same human. Finally, Gitcoin
passport aggregates multiple other proof of humanity services like
Proof of humanity, BrightID, and some other sources which are less
secure like Twitter, Google, Facebook, LinkedIn accounts, POAP (which
are tradable location-based NFTs), ENS (which anyone can buy) and
discord accounts. So, while it is harder to fool a meta-system like
Gitcoin passport, a sufficiently motivated attacker will most surely
succeed in doing so. Proof of personhood is still an unsolved problem
on blockchain as of September 2022.

4.4 QUADRATIC VOTING

Quadratic voting is a voting system in which your influence over a vote

is equal to the square root of the number of tokens that you voted with.

If you vote with one token, your influence is one. If you vote with four
tokens, your influence is equal to two. With nine tokens, you get an
influence of three. For such a system to work, there needs to be a cost
to the user that is proportional to the number of tokens voted, i.e. not
to the influence you obtain.

This system allows people to express a degree of preference, while still
giving more weight to the mass, than to the opinions of the rich. To go
further, one can use functions that are more sublinear than the square
root like the cubic root or even the logarithm. In the limit, if you take
the infinite root, you have built a one account--one vote system. There
is a continuum between preference voting and one account-one vote.

Unfortunately, quadratic voting is not sybil resistant. You are better off
by voting one hundred times one token from one hundred different
accounts, for a total influence of one hundred, than by voting one time
one hundred tokens which will only give you an influence of ten. This
is the major limitation of this voting system today.

4.5 REGENERATIVE FINANCE

Regenerative Finance, also known as ReFi, is a blockchain-related
movement initiated in December 2021 by Kevin Owocki, one of the
founders of Gitcoin?? . The core idea behind regenerative finance is to
find new ways to incentivize people to behave in ways that benefit the
common good. Public goods are a core interest of ReFi; these include
open source projects, and the environment, for example.

Another important narrative of ReFi is the idea of regenerating instead

35

22. Kevin Owocki wrote a book
outlining the principles of ReFi,
which we found an enlightening
reading: Green Pill [13].



of extracting. An extractive strategy is defined as any strategy that

cannot be sustained over the long run. For example, humanity uses more
fossil fuels per time unit than the Earth generates which is an unsus-

tainable strategy; at some point, the reserves will be emptied. This

concept can be generalized, for example to biodiversity, the absence of

war, the absence of carbon in the atmosphere, etc.

We find it interesting to generalize the concept of extractive strategies
to a moral, i.e. to designate as “bad” extractive actions. Burnouts are
the consequence of an extractive strategy regarding rest. Behaving
in a way that leads to burnout becomes “bad”. States that use more
money than they have, by printing a lot of it, or by loaning it, is an
extractive strategy, thus it becomes “bad”. How does this integrate
with our moral intuitions? Take for example the French state whose
public debt was worth 114% of its BIP in 2020. With the Covid crisis,
the French state had to spend more money on social insurances like
partial unemployment indemnities and various other governmental
helps to the population. With the inflation and the increase in the price
of gas in 2022, the French government decided to create a price shield,
thus France suffered the least from inflation in Europe. This is good
for French citizens in 2022. But is this a sustainable strategy? What
happens when the strategy can no longer be maintained? What about
the future French citizens?

Regenerative finance departs from ideas accepted as common knowl-
edge in contemporary philosophy. For example, doing things that can
be sustained over the long run is favored over becoming wealthy as
rapidly as possible. If we were to price in carbon compensations, i.e. if
we added to the regular price of products the price required to offset
all the carbon emissions of the product (production, transport, recy-
cling), it would increase the costs of living a lot. This means a lower
purchasing power, less material wealth, and a diminished ability to do.
The marginal happiness brought by material wealth is a decreasing
function. In other words, minimum material wealth is necessary for
happiness, but mountains of wealth do not make one more happy. So
why try to have ever more of it?

4.6 BLOCKCHAIN PRINCIPLES AND OPEN SOURCE

It is difficult to overstate the importance of open source infrastruc-
ture for humanity. The open source runs the web, runs most of the
supercomputers, runs all the smartphones, runs the vast majority of
all servers, etc. Yet, the open source comes without guarantees: licenses
always start with a variation of “this software comes without any guaran-
tees”. Is it reasonable to depend so much on so little guarantees? Let’s
consider the Linux kernel. By now, many trust Linus to do the right
thing, and probably rightly so. But what if Linus were to die in a car

36



accident? The reliance of the project on a single person makes the
project fragile. We postulate that it would be better for humanity that
open source projects, like blockchains, are trustless, i.e. that you can
trust that the project will keep evolving and that it will not actively
try to harm its users, without having to trust any developer individually.
Bringing trustlessness to open source is an explicit goal of this work.

And while trustlessness improves nothing to unintentional security is-
sues or bugs, it does solve problems like the hack of the event-stream
library: a single developer maintained this important library for free
until someone proposed themselves to take over the maintenance of
the library. The original, trustworthy author of the library gave the
required permission to the new contributor, which was a nefarious
individual that took advantage of the situation to include a worm in the
library that leaked seed phrases of cryptowallets. Fundamentally, all
open source projects start in a centralized situation, i.e. the person
that had the idea and created the repository in the first place will have
all the power in the beginning. But if there was a system that fostered
decentralizing this power to other people, the project could become
more and more decentralized over time, thus improving its trustless-
ness (and therefore the trust that we can have in the project without

knowing each of the contributors personally).

Now that we have explored governance systems, the open source movement, and what blockchains are,
we turn our attention to building primitives for the open source using blockchain technology. We hope
to improve some aspects of open source code building which we describe in the next part.

37



PART ||

GiTDAO




SUMMARY

GitDAO? is the specification of blockchain primitives aimed at open source
software. Note that some of the primitives do not fundamentally require
blockchains, and can be created using other technologies.

The primitives described hereafter aim to fulfill specific goals among
which:

TRUSTLESS OPEN SOURCE We want to make it possible to trust an open
source project without having to trust any individual developer
in the project so that even if some of them have adversarial inten-
tions, they cannot act upon them. Trustlessness is the umbrella
goal under which many of the following goal fall.

DECENTRALIZATION OF POWER A requirement for trustlessness.

DEVELOPER INCENTIVIZATION Incentivizing developers to contribute im-
proves the chances of a project living longer. Longevity is a re-
quirement for trustlessness: a project that receives no developer
attention is a dead project, with no more bug fixes, and no fea-
tures added.

TRANSPARENCY It improves trustlessness, but also makes it easier for
newcomers to join, as they can find information about the project
more easily.

CooRrbINATION This includes coordination among developers, to make
the work more efficient, but also the coordination between de-
velopers and users, so that open source projects can bring even
more value to humanity.

SECURITY Obviously.

CHAPTERS

5 Decreasing Power
Token, p. 40

Voting Workflow, p. 61
Rewarding Scheme, p. 66
Developer Rewards, p. 75

O 00 ~N O

Issue Backing, p. 78
10 GitDAO, p. 82

1 Photo by Bing Hui Yau on Un-
splash.

23. DAO

A DAO, short for Decentralized Au-
tonomous Organization, is a smart
contract hosted on the blockchain
that is used to coordinate a com-
munity. Most often DAOs feature a
voting system. A typical use case is
to use DAOs to govern blockchain-
oriented investment funds.


https://unsplash.com/@yaubinghui?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/

CHAPTER 5

DECREASING POWER TOKEN

In this chapter, we propose a new kind of governance token based on
the ERC721 standard: Decreasing Power Token (DPT). Those tokens
are aimed specifically at governance, and we summarize why we think
they fulfill this purpose better than existing solutions at the end of the
chapter.

5.1 DPT PROPERTIES

Drrts feature the following properties:

INITIAL VALUE REWARDS VALUE PROVIDED The initial value of a DPT must
be proportional to the value provided to the project during a
given time or through a given task. A natural moment to award
such tokens in the context of open source is at the end of a merge
request. A scheme to determine the value of the token is proposed
in chapter 7.

NON-TRANSFERABLE Once atoken is awarded to an account, it can never
be transferred to any other®4.

DECREASING POWER The voting power of a token decreases over time.

This encodes the fact that you are probably more involved in a
project if you contributed recently than if you contributed a long
time ago, as projects evolve.

The power of any user « at time ¢ is given by:

40

CONTENTS

5.1 DPT Properties, p. 40

5.2 Decreasing Power
Functions, p. 41

5.3 Asymptotic Power b, p. 41

5.4 Analysis of Possible Power
Functions, p. 44

5.5 Are DPT Good for Governance
Purposes?, p. 52

1 Photo by Justin Luebke on Un-
splash.

24. Non-transferability of tokens
that implement the ERC721 standard,
is achieved by throwing some excep-
tions in all the transfer functions
required by the standard. This effec-
tively renders any transfer function
from the standard unusable.


https://unsplash.com/@jluebke?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/

pu(t) = Z T.power (t) (5.1)

TET, ()

The formula above is very similar to equation (2.2) but the power of a
token now additionally depends on the time ¢.

We use the ERC721 standard, because it is the most minimal standard
that is both widely accepted and that provides enough flexibility to
store the information required for DPTs.

5.2 DECREASING POWER FUNCTIONS

In this work, we will restrict ourselves, for simplicity, to decreasing
functions composed of two additive terms. One of the terms is decreas-
ing in time, we call it the variable power. For a given token 7, we denote
the initial value of the variable power v,. We reserve the variable a, to
describe the speed at which the token decreases in any form meaning-
ful for the specific decreasing function used. We defined the second
term of the power of a token to be a constant. We call it the asymptotic
power, as it is the power that remains when the variable power reaches
zero, which might happen at ¢t = oo, and denote it b,.

The power at mint time is given by 7.power (¢,,int) = v, + b;, and the
power remaining in a token at ¢t = oo is lim;_,, 7.power(t) = b,.

For any decreasing power function, it is important to analyze how
relative powers of users ¢, (t) evolve, as it is the metric that matters
when voting: it determines the impact you have on the DAO.

Asymptotic power is explored in section 5.3, while some possible de-
creasing functions are analyzed in section 5.4.

5.3 ASYMPTOTIC POWER )

The asymptotic power denoted b is the long-term memory of a token
about the value of the contribution provided by its owner. We examine
a few strategies to set the value of b..

5.3.1 ABSOLUTE VALUE ASYMPTOTIC POWER

PROPOSITION 1 ABSOLUTE VALUES FOR b, DO NOT MAKE SENSE

Assume that all tokens have the same absolute value b. If no new
contributions are made for a long time, then all variable power might
reach zero value. At this point, each person’s remaining power will
be proportional to the number of tokens obtained, not to the value
provided. We deem this an undesirable outcome.

41



We conclude that it is better to define the asymptotic power as a per-
centage of the total initial power. But what percentage should we use?

5.3.2 ZERO ASYMPTOTIC POWER

Can we set the asymptotic power to zero? Must we set the asymptotic
power to zero?

We need to know whether the variable power can reach zero. In the
case of exponential decay, the answer is no, and so token holders will
always keep some power from the contributions they made. In turn,
this means that there will always be some power that remains in the
DAO. In this case, we see no restrictions on the asymptotic power. It
can be set to zero, or some non-zero value.

In the case of tokens whose variable power does reach the zero value
at some fixed point in time, like linearly decreasing token, if we set the
asymptotic power to zero too, then the DAO might end up in a state in
which no one has any power over the DAO left.

This voting system is envisioned to be implemented on the blockchain,
so DPTs will likely take the form of a smart-contract. Smart contracts
can receive money, which can be useful to incentivize open source
projects, which we explore in the subsequent chapters. What happens
when all tokens reach zero value? Can no one make any decisions for
the project anymore? In such a case the funds would be lost forever,
which is undesirable. Can anyone take control? But then people might
take control of the smart contract only to empty it of its fund, not for
the benefit of the project, which is also undesirable. In any case, we see
it more likely that the developers will mint new tokens to themselves
(even if they do not produce any new feature), to keep control. But
creating a system that incentivizes its members to hack it is considered
undesirable. So reaching the situation in which no account has any
power left is nonsensical, and should be avoided altogether.

5.3.3 OPTIMUM ASYMPTOTIC POWER VALUE
What is a reasonable percentage for b, ?

This is a complex question, which requires analyzing relative power
dynamics. We first take a look at two extreme cases to illustrate what
the design space is.

Let’s first consider tokens whose power decreases extremely rapidly
(though they never actually reach zero). Assume that the system is so
extreme, that if you are the last to obtain a token, you gain dictatorial
power. This implies that power shifts rapidly from one person to the
other. It is a way to give a lot of importance to recency, and no impor-

42

Can variable power reach 0?

%

br #0

Anything is fine



tance to history. How does a system which gives dictatorial power to a
different person every day integrate with our moral philosophy? Isita
fair system? Does it provide good guarantees? To govern an open source
system, we deem that such a situation is not desirable. One reason is
that we aim to achieve decentralized power distribution. No decentral-

ization lowers security guarantees: among the many one-day dictators of

the project, one of them will most certainly be an adversarial agent.
Another reason is that power tends to protect and centralize itself. So,
the rewarding scheme used to award new tokens might be abused by
the dictator so that they maintain control.

We now consider the opposite case: tokens whose power diminishes
infinitely slowly, i.e. constant power tokens. Such tokens are much
more common in modern societies, this is how shares of publicly traded
companies behave for example?>. Aslong as no new tokens are created,
the relative power of any token remains constant. Creating new shares
dilutes the relative power of previous shareholders. We do not think
that this approach is desirable either for the reasons below.

One reason is that it shrinks the design space for the initiator of a
project. With DPTs it is possible to create tokens whose relative power
augments, e.g. when the other tokens lose absolute power faster than
the current token.

Another reason is power enshrinement. This system is the opposite of
the system described above, which might be proof enough, that stable

26 One can also remark that tokens

power tokens enshrine power
whose power does not decrease over time do not discount based on
the elapsed time since contribution, hence they enshrine power. We
now show more formally, why constant power tokens enshrine power.
When token have constant power, then the total amount of power in
a system must be inflationary?. Assume that tokens’ initial power is
drawn from a stationary distribution?®. When you get a new token, its
relative power is obtained by dividing the power of the token by the
sum of the power of all the tokens in the system. If these tokens have
decreasing value, then this sum will be smaller, and hence you would
obtain more relative power, than in the system with constant power

tokens.

This is fundamentally a moral question: for what duration should
society concede an advantage as compensation for good deeds. For
example in Switzerland, federal counselors, at retirement and provided
that they held office for four years at least, benefit from a pension of
approximately 225000CHF per year. Some are questioning whether it
should be abolished. The state of Geneva abolished in November 2021
the life pension that counselors from the “Grand Conseil” were entitled
to (another effect of the “Affaire Maudet”).

43

25. Why are constant power tokens
more common in modern societies?
One answer is that such tokens are
much easier to implement. Are
they better than DPTs? Maybe, but
maybe we suffer from familiarity
bias when we emit this opinion. We
recommend that the reader keep an
open mind.

26. To go even further, consider
tokens whose value would increase
in time. In such a situation, being
the first to contribute is advantageous
because your token will augment
during more time than the others,
and so there are strong chances that
you have the most power. Obtaining
more power than the first contribu-
tors is hard in such a context: power
is enshrined.

27. With DPTs, the system might be
inflationary (when more power is
minted than power decreases), or
deflationary (when power decreases
faster than it is minted).

28. We deem it desirable that the
initial power of tokens comes from
a stationary distribution. This way,
providing the same value in the past,
now, or in the future, brings you
the same power over the system.

It prevents strategic behaviors
based on timing, and it simplifies
the rewarding scheme because it
becomes possible to compare with
previous rewards to determine the
value of a current reward.



How important should new contributions be compared to old ones?
We propose that finding a middle ground is the appropriate answer.
Current systems enshrine power too much, making it difficult to bring
change, even when many current contributors agree, but a few past
contributors disagree. This makes power transitions too difficult. For
the current system, this means setting b, to percentages that are neither
too close to 100% nor to use percentages too close to 0%. Each project
is different, so the expectations regarding power entrenchment might
vary: some might desire very stable power dynamics, and others might
favor a more agile approach.

5.4 ANALYSIS OF POSSIBLE POWER FUNCTIONS

We now analyze a few decreasing functions to get a feeling of the possi-
ble effects of using decreasing power tokens.

5.4.1 SCENARIOS

For each decreasing function analyzed, we will explore some scenarios,
where a scenario is a sequence of mint events.

SCENARIO 1 IDENTICAL POWER AT DIFFERENT TIME STEPS
Different accounts receive the same power but at different time steps.

Time Receiving Account Amount of Power

0] A 100
20 B 100
40 C 100
60 D 100
80 E 100
100 F 100

SCENARIO 2 DIFFERENT POWERS AT IDENTICAL TIME STEP
Tokens of different powers are minted at the same time.

Time Receiving Account Received Amount

0] A 100
o] B 80
0 C 60
0 D 40
0 E 20

SCENARIO 3 LESS POWER LATER
An account receives a token of lesser value than another account, but
later.

44



Time Receiving Account Amount of Power

o} A 100
50 B 50

SCENARIO 4 MAIN CONTRIBUTOR
The main contributor builds half of the features of a project, and various
other developers contribute single features.

Time Receiving Account Amount of Power

0 A 100
10 B 100
20 A 100
30 C 100
40 A 100
50 D 100
60 A 100
70 E 100

5.4.2 LINEAR DECAY

Probably the most simple decreasing function to use is the linearly
decreasing function. A visual representation of linear decay is given in
figure 5.1. The power function of a token 7 is given by:

0 t<t im
T.power(t) = mnt (5.2)
max (07 Ur — Gr (t - tmznt)) + bT vt 2 tmint

The slope parameter a, of linear decay functions (see equation (5.2))
can be selected in various ways, two of which are intuitive. One idea is
to select the same constant slope for all tokens. The other is to define
an identical duration for all tokens during which they move from their
maximal value to their minimal one.

As shown in section 5.3, it is not possible to use a zero asymptotic power
with linearly decreasing tokens. In all the following examples, we set
b, to 50% of the initial value of the token.

5.4.2.1 CONSTANT SLOPE

Let’s first look at the simplest option, which is to set the same slope for
all tokens. Such a situation is shown in figure 5.2.

This setup is deemed undesirable because people that obtain tokens
with larger values are rewarded doubly: once because their token has

45

y(t) = max(0, « — B(t — tmint)) + 7

0 20 40 60

FIGURE 5.1 Linear Decay

Parameters: a = 4/30, tmint =
10,b=4andc=1



Absolute Power per Account

100 —— Account A | |
R —— Account B
= 50l Account C | |
& Account D
—— AccountE | |
O | | | | | | | | |
0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 I
0.8 |- |
= 06
S 04| —
0.2 i
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180

t

FIGURE 5.2 Scenario 2 with linear decay with constant slope

large power, and a second time because this power takes a long time to
decrease. If developer rewards are enabled, then the double paying is
quite literally happening.

5.4.2.2 CONSTANT TIME TO ASYMPTOTIC POWER

We now consider another approach in which the slope is defined so
that the tokens will reach their asymptotic power after a preset time
At. We set this time to 50 time-step in this simulation. We redefine
a = v= /At and remark that this definition satisfies what we are looking
for: att = tyint, T.power(t) = v, + b, and at t > ¢, + At, we have
7.power(t) = b,. This setup is illustrated with figures 5.3 to 5.6.

In the specific case of tokens with different powers, but minted at the
same time, i.e. the situation described in Scenario 2, note that relative
powers between these tokens remain identical (figure 5.4). This does
not hold when the token are minted at different time steps however
(see figure 5.3).

We do not see obvious problems with the results of linearly decreasing
power tokens with constant time to asymptotic power. Some real-life

experimentations are required.

46



Absolute Power per Account

100 —— Account A
\ —— Account B
50 Account C | |

£ i Account D
—— Account E
| | | | | | | | |
0 0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 T
0.8}
= 0.6
S 04
0.2
O | | | | | | | | |
0 20 40 60 80 100 120 140 160 180
t
FIGURE 5.3 Scenario 1 with linear decay with constant A¢
Absolute Power per Account
T
100 —— Account A
— —— Account B
= 50l Account C | |
& Account D
—— Account E
| | | | | | | | |
0 0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 T
0.8 |-
= 06
S 04]
0.2
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180

t

FIGURE 5.4 Scenario 2 with linear decay with constant At

47



100

Pu(t)

50

0.8
0.6
S 0.4

0.2

300

200

Pu(t)

100

0.8
0.6
S 04

0.2

Absolute Power per Account

I I I . .
—— Account A | |
—— Account B
| | | | | | | | |
20 40 60 80 100 120 140 160 180
t
Relative Power per Account
T T T
| | | | | | | | |
20 40 60 80 100 120 140 160 180
t
FIGURE 5.5 Scenario 3 with linear decay with constant A¢
Absolute Power per Account
T
B —— Account A | |
L —— Account B ||
Account C
AccountD | |
x —— Account E ||
| | | | | | | | |
20 40 60 80 100 120 140 160 180
t
Relative Power per Account
T T T T T
| /—— _
| | | | | | | | |
20 40 60 80 100 120 140 160 180
t

FIGURE 5.6 Scenario 4 with linear decay with constant At

48



5.4.3 EXPONENTIALLY DECREASING FUNCTION

Exponential functions come up rather frequently in nature, so it might
be a worthwhile function to explore. A visual representation of expo-
nential decay is given in figure 5.7. Below is the mathematical formula
of the power of an exponential decay ERC721 token 7:

r.power(t) = v, - e (t=tmint) 4 g (5.3)

A disadvantage of exponential decay functions is that they are harder
to understand for humans, which makes the system more complex.

We define a, as the half-life of the function, i.e. the time after which
the value of the function is halved. For a half-life of 5 time units, the
coefficient a/. in the exponential must satisfy a,. = In(2)/a, = n(2) /5.

5.4.3.1 EXPONENTIAL DECAY WITH ZERO ASYMPTOTIC POWER

The situation with exponential decay and no asymptotic power is de-
scribed in figures 5.8 to 5.11.

Exponential functions with zero asymptotic power and identical half-
lives have identical relative decreases over the same period. So given
that no mint event occur, i.e. T'(tg) = T'(to + At), the relative power
qu(t) of every user u will remain identical between ¢, and ¢y + At. This
effect can be witnessed in figure 5.9. Here is a quick proof:

21 pulto + At)
Gu(to + At) =

( ’ ) ZveUpv(tO + At)
5.1 ZTETu(to+At) T.power (to + At)

D oreT(to+ ) T-POWEr (to + At)
al (to+At)

5.3 2irel, (to+At) P " €7
- . e—al (to+At)

ZTET(tOJrAt) pr

L p—alto . ,—al At
_ ZTeTu(toJrAt) pbr-c €

- D reT(tgran) Pr €t

ETETu(tO) pr e

D oreT(to) Pr €T
Pulto)

ZveU Pv (tO)
= qu (tO)

. efa;At

This means that it is possible to replicate the semantics of constant
value token, i.e. relative power that remains identical as long as there
are no mints, yet to provide some advantage based on the recency of
the contribution. The size of the advantage is fixed by .. Figure 5.12

49

yt) =7 e "+ 8

0 | | | | |
0 20 40 60

FIGURE 5.7 Exponential de-
cay

Parameters: v = 4, a = 1/10 and

B=1



Absolute Power per Account

I I I . .
—— Account A

100 =
Py —— Account B
= 50 Account C | |
S, Account D
—— Account E
| | | | | F : —
0 0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 T
0.8 |
+~ 06 | |
S 04f |
0.2 |
O | | | [ [ [ [ [ [
0 20 40 60 80 100 120 140 160 180
t
FIGURE 5.8 Scenario 1 with exponential decay with a, = 30 and b, = 0%
Absolute Power per Account
T
100 —— Account A | |
— —— Account B
= 50l Account C | |
& Account D
m —— Account E
| | I L I T
0 0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1
0.8 |- i
= 06
S 04| °
0.2 |
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180

t

FIGURE 5.9 Scenario 2 with exponential decay with a, = 30 and b, = 0%

50




Pu(t)

Pu(t)

Absolute Power per Account

100 —— Account A | |
—— Account B
50 =
0 | | | | | i L
0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 T
0.8} |
0.6 | |
04| |
0.2 |
O | | | | | | | | |
0 20 40 60 80 100 120 140 160 180
t
FIGURE 5.10 Scenario 3 with exponential decay with a, = 30 and b, = 0%
Absolute Power per Account
T
—— Account A
200 |- |
00 —— Account B
Account C
100 Account D | |
‘ ‘
0 0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 T T T
0.8 \—/_\—/_\
06| | \ — — -
0.4 : :
0.2 i
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180

t

FIGURE 5.11 Scenario 4 with exponential decay with a, = 30 and b, = 0%

51



which depicts the relative power of each users at ¢t = 100 and ¢ = 200
highlights this. On the one hand, the users that made contributions
more recently have more power than those that contributed longer ago.
On the other hand, the relative power relationships remain constant
over time as long as there are no new mints, and indeed the two pies
are identical.

t =100 t = 200
D D
25.8% 25.8%
C C
16.3% E 16.3% E
» 41.1% 5 41.1%
10.3% 10.3%
A A
6.5% 6.5%

FIGURE 5.12 Relative power at ¢ = 100 and ¢ = 200 in Scenario 2 with exponential decay and no asymp-
totic power.

All the users in the above pies contributed the same value but at different time steps. The recency advantage is rather clear: user
F has more relative power than user E, which itself has more than user D, etc. Using exponential decay and setting asymptotic
power to 0% further implies that relative power relationships remain identical over time, as long as there are no mint events. This
is showcase above in that the relative power relationships are identical at ¢ = 100 and ¢ = 200.

5.4.3.2 EXPONENTIAL DECAY WITH NON-ZERO ASYMPTOTIC POWER

The situation with exponential decay and asymptotic power set to 50%
of the initial value of the token is described in figures 5.13 to 5.16.

By setting the asymptotic power to a higher percentage of the total
power granted, for example, b = 50%, the system gives more weight to
historical events, than the case in which the asymptotic power is set to
Zero.

Figure 5.17 shows that the system first goes through some transitory
phase during which more recent contributions are advantaged. Then,
as the variable power of all tokens decreases, the system returns to a
situation in which the total power owned by each user is proportional
to the value contributed in the entire history of the project. In a sense,
the project gives an advantage to recent contributions if there are some,
and otherwise returns to distributing power according to the history of
value provided.

5.5 ARE DPT GOOD FOR GOVERNANCE PURPOSES?

What are the benefits of using DPTs over constant value tokens? Are
there limitations? We explore these questions in this section.

52



Absolute Power per Account

T T T T 3 3
100 —— Account A | |
- \ —— Account B
w0l Account C |_|
< AccountD
—— Account E
| | | | | | | | |
0 0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 T
0.8}
= 06| 5
S 04 —
0.2
O | | | | | | | | |
0 20 40 60 80 100 120 140 160 180
t
FIGURE 5.13 Scenario 1 with exponential decay with a, = 30 and b, = 50%
Absolute Power per Account
100 | | | | | | | —— Account A |
— ¥ —— Account B
= 5 L Account C
& Account D [—|
—— AccountE | |
| | | | | | | | |
0 0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 T
0.8 |- |
= 06
S 04] B
0.2} |
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180

t

FIGURE 5.14 Scenario 2 with exponential decay with a, = 30 and b, = 50%

53



Absolute Power per Account

100 —— Account A | |
Py —— Account B
i:/ 50 |
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 T T T
0.8} |
= 06| s
S 04f s
0.2 |
O | | | | | | | | |
0 20 40 60 80 100 120 140 160 180
t
FIGURE 5.15 Scenario 3 with exponential decay with a, = 30 and b, = 50%
Absolute Power per Account
T
300 —— Account A | |
— —— Account B
% 200 |- Account C | |
& Account D
100
—— Account E |_|
| | | | | | | | |
0 0 20 40 60 80 100 120 140 160 180
t
Relative Power per Account
1 T T
0.8 |
= 06| 5
S 04| .
0.2 i
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180
t

FIGURE 5.16 Scenario 4 with exponential decay with a, = 30 and b, = 50%

54



t =100
C
D
0,
19.0% 0 B
17704 19.7%
E
A
A 259
16.8% o 19.6%

t =200

19.9% D
20.2%

20.6%

FIGURE 5.17 Relative power at ¢t = 100 and ¢ = 200 in Scenario 2 with exponential decay and asymptotic

power set to 50% of the initial power of the token.

In the first pie, the variable power of the first minted token has largely decreased, but the most recent tokens do not yet have lost
this value. Thus the most recent contributions are rewarded with more relative power. But if no new contributions are made, then
the variable power of all tokens diminishes, and the power distribution converges to giving the same relative power to everyone as
everyone contributed the same value to the project though at different time steps in this scenario.

5.5.1 TIMING STRATEGIES

We first consider whether there might exist strategic behaviors that
exploit time. Might actors have incentives to wait before contributing,
or is it always better to contribute as soon as possible? We consider
that any project should aim for agents to contribute as soon as possible
because it increases the speed of development.

In the following discussion, we define v, (¢, ¢, (t)) as the private valu-
ation that user u has for owning ¢, (t) relative power at time ¢, and v,,
as the total value that user u gets over time. The variable v, could be
called user u’s interest, as it is the total private value that user u obtains
from the power they own over time:

v =Y vult, qu(t))
t=0

i ZTGTu(t) T.power(t)
= E Uy | 1,
— > rer() T-Power ()

We keep ¢, (t) a parameter of v, instead of defining, for example, the
value per unit of relative power at time ¢ as a constant, because the
marginal utility of the relative power might not be constant?.

Let’s first consider the case in which asymptotic power is zero, b = 0%,
and assume you know that no one other than you will contribute to
the project: T, (t1) = T—,(t)Vt > t1, where T_,, designates the set of
the set of tokens owned by each user, except that of user u. This case,

55

29. In the case of money, for example,
it is generally accepted that for

most humans money had a dimin-
ishing utility, i.e. the more money
you have, the less you care about
earning an additional dollar.



although specific, is interesting, because there might be reason enough
to delay a contribution. In this context, if you contribute later, you get
more relative power because the power of the others diminishes when
you wait. This is illustrated in figure 5.8; account E, by contributing
later, gets a large share of relative power. If they had waited for more,
they would have gotten even more relative power. And as we assume
that we have oracle knowledge that no other contributions will be made,
depending on the decreasing function used by the token, we might
keep this large relative power share. But the period during which you
do not contribute must also be considered: having no power during this
period has a cost, as illustrated by the equation above which sums over
all time steps. So the situation is not clear and depends on your private
valuation for having some power early versus having more power later,
and on the decreasing function used.

In projects with no asymptotic power, but in which contributions of
similar value are made at regular intervals, contributing early or late
does not make a difference. Through our assumptions, and given that
the function used for the tokens decays fast enough, we can also as-
sume that the total amount of absolute power in the system will be
approximately constant over time. Hence, there is no clear incentive
to make your contribution early or late, as it will grant you the same
amount of relative power over time, irrelevant of the specific moment
you contribute.

In projects with non-zero asymptotic power, contributing early in the
history of the project is better because of inflation. In figure 5.8 for
example, account A, by contributing early, obtains a lot more relative
power over the history of the project, than account E. This means that
during the early days of the project, so days 0 to 60 approximately,
account A can influence the project a lot.

Even with decreasing power tokens, there is no clear case for the ex-
istence of strategic behaviors exploiting timing. Even if there might
exist specific circumstances under which users might have an incentive
to wait before contributing, the effect of inflation, the loss of relative
power during the period in which you withhold your contribution,
and the effect that contributions made after yours will have on your
power are all incentives to contribute early and as soon as possible.
Having some amount of asymptotic power, in other words, a little bit
of inflation seems to improve guarantees.

Another kind of timing strategy is to vote later than one would have
normally done, to have more relative power at the moment of voting.
With DPTs this is possible, as there are situations in which waiting and
doing nothing will grant you more relative power. However, provided
that the voting periods are short, and that the time intervals across

56



which tokens decrease in power are long, the effects of such strategies
are negligible.

5.5.2 SPECULATION ON THE VALUE OF GOVERNANCE TOKEN

The value of governance power is often hard to estimate, yet, because
DPT tokens are non-transferable, there can be no market for them,
and they can have no value. Indeed, if you cannot obtain something,
then it makes no sense to talk about the value it would bring you. This
disincentivizes people that would contribute to speculate on the fu-
ture value of the governance token. It has indeed been an issue for
blockchain-based projects, that people have “participated” (often in
very limited ways), only to obtain some token they hoped the value
of would increase over time. This was the airdrop frenzy. But these
people are seldomly interested in the project or aligned with its ideas.
This is also one of the potential core reasons for the success of the open
source: as there is so little monetary incentive to participate, people
that do participate often do it because they truly align with the project.

There is a way to hack the non-transferability of the token, namely to
use a smart contract as a token holder instead of an Externally Owned
Account (EOA). The smart contract might then sell its voting power
to the highest bidder. The smart contract awarding the tokens could
assert that the tokens are only minted to EOA. This can be counter-
acted by selling your voting power using regular off-chain mechanisms.
Setting up such a system implies a lot of friction, so we assume that it
is not too likely.

5.5.3 SYBIL RESISTANCE

Token-based voting, with fixed-value tokens, is sybil resistant. We
claim that DPTs are also sybil resistant. An intuitive way to convince
yourself of this is that the decreasing functions only use the value of
the tokens and time as parameters, and are never related to the account
that owns the token. In a sense, the proposed tokens are self-contained,
like ERC20s. We prove this mathematically hereafter. We define two
scenarios, in the first scenario user « has only one account that contains
all the tokens. In the second scenario, user  splits their tokens across
multiple account that we name ag, a1, ... ai.

57



ZTeTai(t) T.power (t)

Z%i (t) = ; > er() T-POWer (t)

a;

_ D a, ZTETai(t) T.power (t)
 Yepu T-Power(t)
(1) ZTGT“@ T.power(t)

Y rerq) T-Power (t)

= qu(t)

Where equality (1) holds because the absolute power of any token
only depends on values relative to the token itself, but is completely
independent of the account that holds it.

Defining the decrease of token proportionally to the total amount of
power that a person holds enables per person intrinsic progressive
decentralization (defined in section 5.5.7) which we deem a desirable
goal. But without some proof of personhood system (see section 4.3),
i.e. if we were to use accounts as proxies for persons, this opens the
door to sybil attacks.

5.5.4 MAKING INFORMED DECISIONS

One advantage of decreasing power tokens is that they incentivize
renewed contributions. As there is less power entrenchment, either
you keep contributing, or you will lose relative power. In other words,
if you have power over the project, then it must be the case that you are
actively involved with the project. This is positive from the perspective
of making informed decisions.

5.5.5 INCENTIVE TO KEEP CONTRIBUTING

For people that want to keep some control over the project, or for
those that want to keep obtaining rewards when developer rewards
are enabled, they have an incentive to contribute value actively to the
project, otherwise, they will be outshined by newer contributors who
will get the larger part of power and rewards.

5.5.6 EXTRINSIC POWER DECENTRALIZATION

DPTs, because they entrench power less, are newcomers friendly. As a
newcomer, you have more guarantees that you can rapidly have some

impact on the project, than when there is alot of power entrenchment3°.

Having low entry barriers drives extrinsic power decentralization. In
this regard, DPTs have better properties than explicit role systems like

58

30. This applies to many systems.
Compare, for example, your chances, as
a newcomer, of impacting a royalty-
based system, and a democratic
system.



GitHub (full power entrenchment), and constant value token systems
(more power entrenchment than DPTS).

5.5.7 INTRINSIC POWER DECENTRALIZATION

While GitDao might feature extrinsic decentralization, we would prefer
that it features intrinsic decentralization as it is a more robust way to
decentralize power. The proposed DPT are akin to a meritocracy, this
means that they do not intrinsically distribute power across humans.
Can we build a system that decentralizes power in a per-person fashion
instead of per merit?

We postulate that it is impossible to achieve per-person intrinsic pro-
gressive decentralization if we lack proof of personhood. Intuitively, a
system cannot use a discriminating property, if it does not know about
it.

5.5.8 LARGE AND SMALL CONTRIBUTIONS

The specific decreasing function used might create different incentives
when it comes to the size of the contributions. In the open source, it
is generally speaking a good policy to keep contributions small and to
create different merge requests for different contributions. The reason
is that it makes reviewing the merge request much more manageable:
many small tasks are easier to do than one big task.

Adding many small linearly decreasing tokens with constant time to
asymptotic power is identical to creating one large linearly decreasing
token with the same time to asymptotic power. So in the case of linearly
decreasing tokens with constant time to asymptotic power, many small
contributions or one big contribution grant the same power.

This is not true of linearly decreasing tokens with a constant slope. In
such a case, it is better to create one large token, than to have multiple
smaller ones totaling the same initial power, because the larger token
will keep some power for a longer time.

When it comes to exponentially decreasing tokens, creating many small
tokens or one large token yields identical results.

It might be desirable to look for decreasing functions that incentivize
smaller contributions, i.e. functions such that the addition of many
smaller tokens yields more relative power than one big token, so super-
additive tokens.

5.5.9 TRuUST
We assume that the tokens have a value that is proportional to the value

59



contributed to the project. Further, those tokens are not transferable.
This means that if you own some tokens, then you must have provided
some value to the project. Assuming that providing said value required
some work (which seems a reasonable assumption: no free lunch),
then owning a token is proof that you worked for the project. As such
it can be considered that owning a token acts like a trust gate: if you
own a token, then you are probably aligned with the project and can be
trusted to do what you feel is right for the project. The trust comes from
the fact that if you want to harm the project, then you would probably
not benefit the project in the first place by contributing to it.

Large actors like states might have enough resources to finance devel-
opers to contribute to a project to gain enough power over the project
to be able to harm it in the future. But performing such an attack is
expensive if the power is decentralized enough, the power over the
project needs to be maintained, and if an adversarial agent takes over,
it is still possible for the community to fork (though forking is not as

easy to do when the project has a bank account).

60



CHAPTER 6

VOTING WORKFLOW

Defining some tokenomics is only the first step toward building a token-
based voting system. We now need to define, in a more detailed way,
the voting procedure. This procedure is important because we can
embed more security (or, on the contrary, flaws) in the system.

The trust model underlying the DPTs is that if you have some, then you
are trustworthy and have the project at heart. This probably holds for
most contributors as getting a contribution accepted requires investing
time and effort. This might not hold for powerful/rich/motivated actors,
however.

On-chain governance systems have an interesting property: as long
as the proposal’s outcome only has on-chain impacts, then it can be
enforced in a trustless way. The on-chain consequences of the vote can
be applied directly by the smart-contract. This is trustless because
the blockchain on which the smart contract is executed is trustless
too. For example, assume that an on-chain voting system is used to
decide whether some payment should be done. If the vote passes, then
the smart contract can execute the payment automatically. Such a
strategy is rather common on the blockchain, e.g. MakerDAO uses such
a system to vote and apply in a trustless way modification of some
protocol parameters of the DAI stablecoin. On the contrary, when a
trustful governance system is used to decide something, e.g. the voting
system in Switzerland, the participants of the system must trust that
the system will respect the decision and apply it (which has not always
been the case, e.g. in Switzerland, the Parlament ignored the opinion
of the people when it voted on the highly controversial initiative on

61

CONTENTS

6.1 Proposal Creation, p. 62
6.2 Complete Workflow, p. 62
6.3 Challenges, p. 64

6.4 Trust Guarantees, p. 65

1 Photo by Roksolana Zasiadko on
Unsplash.


https://unsplash.com/@cieloadentro?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

mass immigration). Such functionality can also be used for GitDAO, for
example, to set some parameter of the decreasing power functions, or
to accept a merge request.

Consider proposals to make payments. Being trustless is positive over-
all, but proposals can also thus become attack vectors. Adversarial
agents can create proposals that would send them all the funds owned
by a project, or change some parameters in a way that would damage
the community. Of course, such a blatant attack would surely get voted
down, right? This is where voter fatigue becomes important: how
many people are there watching over the project and making sure that
accepted proposals are beneficial?

We propose hereafter a voting workflow, based on the “don’t trust,
verify” moto. This workflow applies to binary proposals only.

6.1 PROPOSAL CREATION

Only token-holders can start proposals. We propose that, depending on
what the proposal applies to, the creation of such proposals be limited
to token holders.

Merge request proposals should be open to anyone, including accounts
that do not hold tokens. Otherwise, If merge requests are limited to
people owning tokens, there can never be new contributors.

Proposals that apply to payments or changing parameters of the de-
creasing function used for the tokens should be restricted to token
holders. This limits Denial of Service attacks, where attackers would
create huge amounts of proposals to prevent the project from mak-
ing any progress. It also increases security guarantees: some sensible
properties of the project can only be modified by members.

6.2 COMPLETE WORKFLOW

Each proposal has two properties: a trust level and a state. The trust
level indicates how much people trust the content of the proposal to
be non-adversarial for the project. The state property denotes how far
in the voting process the proposal is. The workflow that each proposal
follows is described in figure 6.1.

6.2.1 REGULAR VOTING PROCESS

Upon creation, a proposal starts with its trust level set to
Optimistically Trusted. Aslong as it remains optimistically
trusted, the proposal will undergo the following pipeline.

62



Start

create

1
Optimistically Trusted proposa Whitelisted
Pending | > === =) Pending
cancel E E cancel
proposal ' ' proposal
~ ~
Voting R R Voting
Canceled Opened > - - - =] ! Opened Canceled
: finish :
' Challenge '
H challerfge Challenged Elapsed chpllenge H
: ng > yes :
hd hd
Voting R N R Voting
Elapsed 7 ‘| Elapsed
' '
Finishable > === =) ¥ Finishable
Finish Finish nish Finish Finish
es > no yes < no chatlenge yes > no yes < no
yes = yes > no =
Succeeded Defeated Blacklisted Succeeded Defeated

FIGURE 6.1 State machine of proposals on GitDAO.

Dashed transition lines mean that the transition occurs automatically after some predefined amount of time. Plain lines represent
possible transitions, with their name and required conditions if any. Italicized state names represent values that the trust property

can take. Normal text state names represent values that the state property can take. Grayed states are final states.

It starts in state Pending. This period exists to let users read about
the proposal, maybe discuss it offline, etc. As long as it is pending, the
proposer can cancell it at no other cost than the transaction costs. It
might make sense for proposers to cancel their proposal, for example,
if some better alternative is found or if a bug/security issue is detected
in case the proposal is a merge request.

Once the Pending period ends, the proposal will automatically®' enter
theVoting Opened state. Atthis point, a proposal cannot be canceled
anymore and token holders are allowed to vote on the proposal. A token
can be used zero or one time to vote on each proposal. Token holders
have three possible actions:

VOoTE IN FAVOR of the proposal if they think the proposal is beneficial
for the project.

VoTE AGAINST the proposal if they think it does not benefit the project,
but was well intended.

CHALLENGE the proposal if they think that the proposal is adversarial,

63

31. On the blockchain, nothing
can happen automatically. In this
case, we mean that whatever write
transaction is performed on the
proposal, e.g. calling the voting
function of the contract, the state
will first be updated according

to the predefined state timeouts.
Thus, whatever transaction the
user performs, the proposition will
always be in the correct state. This
comes at the cost of additional gas
consumption for each transaction.



i.e. that the proposal was created by someone actively trying to
harm the project or its users.

After a predefined duration, the proposal will enter the Voting
Elapsed state. During this period, no state-modifying action on the
proposal is allowed anymore. This gives time to DAO members to re-
view passed proposals and potentially challenge them if they deem
that they are adversarial.

This Voting Elapsed state prevents attacks in which someone cre-
ates an adversarial proposal, hopes that it flies under the radar of the
other members of the DAO, waits until the last second to vote in favor
of the proposal, and finishes the proposal immediately.

When the Voting Elapsed duration is elapsed, the proposal will en-
ter the Finishabe state in which anyone can call the finish func-
tion which results in the proposal being Succeeded if there is more
power assigned to “yes”, or the proposal being considered Defeated
if there is more power assigned to “no”. If the proposal is Defeated,
then nothing happens. If a proposal is Succeeded, then the proposal
is executed.

The semantic of the votes on proposals is that anyone can hold any
opinion without any negative consequences, i.e. you can vote with or
against the majority.

6.3 CHALLENGES

In any of the non-final proposal states, any token holder can trigger a
“challenge”. Challenges are a defense mechanism of the DAO against
adversarial proposals. The semantics of such votes are however very
different: anyone voting against the majority will suffer negative con-
sequences. Let’s first describe how they work.

Once a challenge is triggered, then the proposal enters the trust level
Challenged which pauses any regular voting process and opens an-
other voting procedure: the challenge vote. Token holders can partic-
ipate in the challenge vote using their governance tokens to indicate
whether they consider the challenged proposition to be adversarial
(in which case they would vote “yes”) or not (“no” votes). Once the
Challenged period times out, the proposal will automatically enter
the Challenge Elapsed trustlevel. In this state, no action other
than calling the finish challenge function is allowed.

If the power assigned in the challenge vote to “yes” is greater than
that assigned to “no”, then the proposal ends up with the trust level
Blacklisted. This has the following consequences:

64



« All tokens used to vote “no”, i.e. that the proposal was not ad-
versarial, are slashed. The idea is that people that say that the
proposal is not adversarial, while the greater community thinks
it is, are probably rogue. Only the token used to vote on the
proposal are slashed, not all the tokens of the people that voted
against the challenge, to provide a little bit of leeway. Maybe the
people that voted against the challenge did not read the challenge
carefully enough, or the interface was confusing and they voted
the opposite of what they wanted to vote.

« The account that initiated the proposal—not the challenge—is
blacklisted3?. All its tokens are destroyed and the account is
banned from ever interacting again with the DAO. This is a de-
fense mechanism from the DAO: it found a rogue agent, and so it
prevents the agent from ever interacting which the DAO again in
the future.

On the other hand, if the power assigned to “no” is greater than that
assigned to “yes”, i.e. the challenge fails, then the proposal reaches the
Whitelisted trustlevel, and the regular voting procedure resumes
exactly where it left off. No further challenge can be requested on the
given proposal, to prevent Denial of Service kind of attacks in which
a proposal is repeatedly challenged, to prevent it from reaching the
Voting Elapsed state. Additionally, the tokens assigned to “yes” are
slashed. This creates the incentives necessary to avoid having members
use challenges as a second chance to prevent a proposal from being
accepted. Challenges should only be used to flag adversarial behaviors.

Whatever the outcome of the challenge, some tokens might get slashed,
and some accounts banned: this is a high-stakes subroutine of the
regular voting procedure.

6.4 TRUST GUARANTEES

Some DAOs feature systems to increase trust in the outcomes, like
quorum. Why not use one in this voting workflow? Voter fatigue is a
problem for DAOs, especially given that voting is generally not rewarded.
Quorums require a lot of effort from DAO managers to be achieved. We
want to keep the work overhead induced by GitDAO as low as possible
so that it remains valuable even for small projects.

65

32. Banning an account is not much
of a punishment: you can simply
create a new one. The real deterrent
is having your token slashed.



CHAPTER 7

REWARDING SCHEME

There have been multiple strategies used in the history of Computer
Science to evaluate how much value employees were contributing to
a company. A notoriously bad strategy is to use the number of lines
of code contributed, which incentivizes a coding style that uses as
many lines as possible, but which is not correlated to the value of the
contribution.

PROPOSITION 2 ONLY HUMAN CAN EVALUATE THE VALUE CONTRIBUTED
We postulate that the real value of a contribution to a project can only
be evaluated by humans, never by some automated metric.

This is a somewhat generally accepted idea in software engineering
that there is no computationally tractable way to evaluate the value
of a contribution. Consider for example a person that manages code
contributors, comes up with ideas, keeps an overview of what everyone
is doing to avoid effort duplication, etc. but never contributes code.
That person’s contributions are also valuable to the project, but no
automated metric based on the code will be able to evaluate it.

In this chapter, we look at schemes that exist and are used to evaluate
how much contributors should be rewarded for their work. Then, we
propose a new scheme, targeted at open source projects specifically.

7.1 PROPERTIES TO FULFILL

We wish to find a rewarding scheme that fulfills the following proper-
ties:

66

CONTENTS

7.1 Properties to Fulfill, p. 66
7.2 Case Study: CoordinAPE, p. 68
7.3 Case Study: Valve, p. 69
7.4 GitDAO’s Rewarding
Scheme, p. 71

1 Photo by Z S on Unsplash.


https://unsplash.com/@kovacsz1?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

PROPORTIONAL COMPENSATION The reward granted should be propor-
tional to the value of the contribution made. If you contribute
more, you should be rewarded more. If all contributions are
rewarded equally, then there is no incentive to contribute more.

MiniMuM FricTION The system should not require too much action
from the users, to prevent friction.

LocALLy ESTIMATED VALUE The best people to evaluate the value that
some contribution brings are either people close to the effort
(those that participated or reviewed the effort) or those that are
familiar with similar efforts. We mean that it is harder for a com-
puter scientist to evaluate how much work designing a new logo
or creating a communication strategy requires than it is for a
designer or communication expert. Note that this also implies
some bias: you are more likely to assign a large reward to pieces
of work that are close to your domain of competence because
you know how much work it requires. But locality might be mea-
sured using multiple metrics, not just your affinity to the work
produced.

TrusTLESS The rewarding scheme should not require to trust anyone,

even if there are adversarial (but non-colluding) agents33. A sys-  33.This is a strictly weaker guarantee
tem that features roles, like an admin role, or using any form of than beu,lg able toresist colluding
adversarial agents. However, collud-

permissions, is a system that requires trusting some people to do ing adversarial agents is a situation
the right thing and not to abuse their power. in which it might be impossible to
provide any guarantees. Also, assum-

ExpLicIT VALUES Rewarding is generally dependent on values: are you ing that adversarial agents do not
rewarding people based on the effort they put in or the effect they ~ collude might be a reasonable as-

achieved? How much do you reward people that contributed new sumption: there are many ways to

i X . behave adversarially, but only one
ideas versus those that implemented the idea? How much do you

way to behave ethically.
value people that amplify other contributors? Having a process
with explicit values is deemed good. Value can be intrinsically
embedded in the system (which makes it hard to change them), or
it can rely on some extrinsic communication among participants

to agree on the rewarding values.

67



7.2 CASE STUDY: COORDINAPE

In this section, we analyze the rewarding scheme proposed by Coordi-
nAPE [6].

7.2.1 COORDINAPE REWARDING SCHEME

CoordinAPE is a tool to evaluate the value provided by members of
a DAO. CoordinAPE introduces two concepts: Circles and Epochs. A
circle is a subset of users of the DAO that collaborate. It is assumed that
people inside a circle know well what the other members of the circle
are doing. An epoch is a period of time during which members can
evaluate the contributions made by each other member in the circle
since the last epoch34.

At the beginning of each epoch, members of a circle will receive some
amount of a token called GIVE. The amount of tokens that each partici-
pant receives is up to the admin of the circle. Members of the circle can
freely distribute the GIVE token to any other member of the circle. At
the end of the epoch, CoordinAPE makes it possible for the DAO admin
to download a csvV file containing how many GIVE each DAO participant
received. The value of the payments sent to the contributor is up to the
DAO admin. We can assume that the payments are made proportionally,
at least to some extent, to the GIVE received. Note that the amount
of GIVE that one can receive depends on the size of the circle one is
part of. So the amount of GIVE received allows discriminating between
members of a single circle, but not across circles.

7.2.2 ANALYSIS

Through circles, CoordinAPE sets up the required tools to estimate
value locally.

Further, the system enables proportional compensations.

Yet there are a few limitations to the model proposed by CoordinAPE.
The approach is highly permissioned. You need an admin to become
a member of a circle, you also need an admin to get some GIVE in
each epoch, and it is an admin that will perform the payments. This
enshrines power relationships: there are admins, and there are non-
admins. Also, circles are a form of roles. This makes it harder for
people to join and adds friction to any change in status. There are no
guarantees regarding payments. After each participant assigns GIVE
to other members of their circle, the admin might forget to execute
the payments or decide that the outcomes of the voting process are
not satisfactory, and decide to pay some participants according to their
desires.

68

34. We give here a possible setup.
Assume that a DAO does one-week-
long epochs every month. This
means that members of each circle
will have one week to evaluate the
work done by other members of the
circle in the last month.

1& Locally estimated value.

1& Proportional compensation.

I@ Not trustless.



As noted on CoordinAPE’s website, there is some balance to achieve
between doing epochs frequently—more user fatigue—and less
frequently—but voters suffer from recency bias, i.e. they tend to assign
more weight to work done recently. There is also a balance to achieve
when it comes to circle size: too many people in a circle and work as-
sessment will be less precise, too few people and the bias of individual
voters might become an important factor.

Because CoordinAPE is not specifically targeted at code-based projects,
it cannot use the specific semantics of such projects to its advantage,
like merge requests. For people to know what others have been up to
during the last work cycle, CoordinAPE requires that every participant
describes in text form the contributions they made. This represents
some additional work for the contributors and introduces some biases
in favor of those best able to sell the work they accomplished.

CoordinAPE has propositions specifically targeted at open source
projects, namely to create two circles: one for the core developers, and
a second one for the halo developers. Halo developers, being generally
little involved with a project—they are mainly one-time contributors—,
might not constitute a good circle, as they might not be aware of the
work that other halo developers are doing (because they are not really
involved in the project), and because the circle might be big (there
might be a lot of one-time contributor in a project).

Regarding values that should be used in the rewarding scheme, the DAO
using CoordinAPE is free to specify them, but no specific mechanism
is provided in this regard.

Summary

1& Proportional compensation (with some poten- '  Not trustless.
tial bias).

I¢ Not minimum friction.

I®@ Not minimum friction.

16 Locally Estimated Value.

7.3 CASE STUDY: VALVE

In this section, we turn our attention to the rewarding scheme used
by a famous video game company: Valve. Valve is the company that
created Half-Life (a famous video game), Team Fortress (a famous
video game), Counter-Strike (a famous video game), Steam (the most
widely used video game platform on PC), Source (a video game engine),
Portal (a famous video game), Left for Dead (a famous video game),
Dota (a famous video game), and many more. The company features a

69

VALVE]



fully flat hierarchy described in a handbook [23] that they give to their
employees upon onboarding (unfortunately, the only version we were
able to find dates back from 2012).

Valve’s explicit policy is to reward employees proportionally to the value
they contribute to the company. In their handbook, they acknowledge
that the removal of bias is important and that peers are best suited
to evaluate the value contributed by individuals. As such they have
requirements similar to those of a DAO, except maybe for the fact that
Valve has offices, whereas DAOs might happen in a fully remote fashion.
The exact formula used to compute the salary is unfortunately not given
but some details are still provided.

This process happens once a year. Each employee is asked to rank
their collaborators, i.e. those people in the company that the individual
worked with, on four different criteria:

TecHNIcAL ABILITY How difficult and valuable are the problems that
the collaborator solved?

PropucTiviTy How much shippable, valuable, finished work was
achieved by the collaborator?

GROUP CONTRIBUTION How much does a collaborator contribute to the
group, e.g. by hiring people, integrating people into the team,
improving workflows, writing tools, or amplifying colleagues?

Propuct ConTRIBUTION How much influence has a collaborator had
outside of their core skill domain, for example by prioritizing
correctly or predicting precisely how customers will respond to
change made?

Through this rewarding strategy, Valve makes it clear to its employee
what it is that the company values. Each of the four criteria gets equal
weight.

Salaries most certainly are proportional, to some extent at least, to the
ranking that each employee gets. This enables proportional compen-
sation, i.e. employees are compensated based on the contribution they
made during the year to the company. Conducting the review process
once a year implies that the process is a victim of recency bias: assume
an employee works a lot in the first six months, then has a kid and
starts spending some time at home. The ranking they will obtain is
probably worse than what is fair, because people evaluating them will
remember mostly the recent evening during which the colleague went
back home, and not the long night that they spent before the birth.

On the other hand, performing this process once a year only avoids
a lot of voter fatigue. It probably works well for Valve also because
they are an on-site company, hence people know each other visually

70

1& Locality-based work evaluation.

1 Explicit value criteria.

1@ Recency bias.

1& No voter fatigue.



and interact in much deeper ways than what is possible with online
communications. It would be interesting to learn how this process
evolved since the 2020 pandemic, or how it would perform in a purely

online environment.

Valve is not a blockchain-based company, so the voting process is prob-
ably conducted on a server from Valve, which requires trusting that
the individuals that run the server did not tamper with the data or the
computation of each employee’s score. Also, the payments are made
by Valve, so the service that performs them needs to be trusted. Note
that the rankings of employees are confidential, so there is no way to
check any parts of this system for the employee.

We also remark that Valve produces a lot of code for its video game,
but many other types of resources need to be created: sound, visual
effects, 2D and 3D assets, animations, etc. So they cannot exploit the

specific semantics of exclusively code-based projects like GitDAO can.

The Valve example highlights that peer-based evaluation schemes can
work (Valve is a successful company), and we must not restrict ourselves
to simpler systems.

Summary

1& Proportional compensation (with potential re- & Not trustless.
cency bias).

1€ Locally Estimated Value.
1@ Explicit value criteria.

i¢ Minimal friction.

7.4 GITDAO’S REWARDING SCHEME

GitDAO focuses on open source code, so we target this proposed re-
warding scheme to merge requests. The rewarding scheme distributes
governance tokens, which can be decreasing power tokens, and which
can be used by the money distribution process described in chapter 8.

In the context of open source projects, merge requests are a natural
workflow to integrate into. They are required in any case for various rea-
sons, like human proofreading of the code, automated test execution,

automated artifacts building, automated deployments, etc.

We propose that once a merge request ends its reviewing process (like
comments, fixing typos, refactorings, etc., as defined by the underly-

71

I@ Not trustless.



ing code collaboration stack), people must go through the rewarding
scheme to evaluate the rewards to distribute, then the proposal and
the rewards are voted on, and if they are accepted, then artifacts are
built and deployed. This pipeline is described in figure 7.1.

Good code,
bad rewards,
try estimating
rewards again

Submlt Submzt
< > ‘ ; Submit k
rewew rewards f or vote |

Write Code Estirnate Vote
some review rewards
code

No new
submis-
sion

_

Defeated Bad idea

or unsalvage-
able code

Succeeded

FIGURE 7.1 How rewards are integrated into the merge request pipeline of GitDAO

This figure describes where the rewarding scheme is used during a merge request. First people code some functionality, then
open a merge request which is proofread by others. Any fix is applied before the merge request moves to the reward stage in

which people vote on how much each contributor should be rewarded. Once the rewards are defined, the merge request moves to
a vote. If the vote fails, then either the proposers can ask to estimate the rewards again and submit the proposal to a new vote, or
they can abandon their merge request. If the vote passes, then the code is merged, and the people are rewarded as defined by the

rewarding scheme.

We propose to split the reward estimation process into two steps:

1. Evaluate how valuable the merge request is to the project. This
gives an absolute value to the contribution. In the user interface,
it would make sense to add other recent features and the value
that was granted to those as a baseline.

2. Evaluate the relative contributions of each member that partici-
pated in the merge request.

We postulate that it is easier for people to estimate the total value of
a merge request3*and the relative individual contributions separately,
than it is to evaluate the individual contributions’ value directly.

We denote 0, (p) the estimated value of a merge request p, according
to user u. We define the aggregated value of the merge request v(p) to
be equal to the weighted median of the values ©,,(p), which we denote
mediang (0, (p)), and where the weights are given by the relative power
of each voter.

72

35. Estimating the value of some-
thing a priori, i.e. before using it, is
often hard. Some famous projects,
like Gitcoin, propose to evaluate
contributions a posteriori (through
what they call “retroactive public
good funding”). In the context of
open source software, the problem
is not as acute, because the func-
tionalities brought about by a merge
request are clear from the code.



Each voter will also need to evaluate the relative contribution of each
contributor to the merge request. We denote ¢, (p, v) the contribution
that voter u believes contributor v made to the merge request p. Note
that the estimated contributions must satisfy >, ¢é.(p,v) = 1. The
aggregated contribution of contributor v on proposal p is:

mediang(é,(p,v))
>, mediang é,(p,v)

c(p,v) =

Each contributor v will receive a governance token with an initial power

setto v(p) - ¢(p,v).

When deciding whether we should use median or mean, we considered
the case of an adversarial agent that would vote to assign 100% of the
value of a merge request to themselves, for every merge request, even
though they contributed nothing. Of course, we desire that such a
strategy yields a reward of zero. Using the mean would mean that this
strategy does yield some rewards every time. With the median (and
given that the adversarial agent does not have 51% of the power) this
strategy is useless.

The proposed pipeline requires that people not only vote on the code,
but also on the rewards. This implies that a vote might fail because
rewards did not convince the community and so there needs to be
a way to trigger the rewarding scheme again on some given piece of
proposed code. The voting workflow proposed in chapter 6 only allows
binary voting. So if a vote comes out negative, the proposers of the
merge request have no way to know what the reason for the failure
was: it might be that the feature is altogether bad, or that the rewards
are not appropriate. This is a problem, but we do not think it is too
dire: projects always have some off-chain communication channel
(like mailing lists, Slack, Discord, Mattermost, etc.) where proposers
can get feedback. Most probably, the proposer will get feedback way
before reaching acceptance or rejection at the DAO vote. Ideally, the
platform implementing the GitDAO specification would require people
that vote negatively on a proposal to add a comment describing the
reason for their vote to allow the proposer to improve and resubmit.

The scheme allows compensations to be proportional to the value
contributed.

When looking at merge requests in open source today, most of them

are not proofread by the entire community, but only by a few members.

We postulate that to a large extent only the people that wrote the code
and those that proofread it will take part in the rewarding scheme. If
this assumption holds, then the value brought by each contributor is
evaluated locally.

73

1& Proportional compensation.

16 Locally Estimated Value



Is there a temptation to overevaluate the total value of the merge
request, given that it is the same people that worked on it that will most
likely evaluate its value? Most probably. But the merge request has to
go through a vote by the DAO before being accepted, so if its value is
overestimated, it risks being rejected, and the proposers will have to go
through the rewarding process again. So people do not have incentives
to cheat too blatantly.

Proofreading merge requests takes a lot of time, and people do not
feel that they create value when doing them. In turn, this means that
proofreading merge requests is rarely an appreciated activity. Making
the process even more burdensome by adding a rewarding scheme to
the merge request workflow is a clear limitation of this approach. If
the GitDAO interface uses some heuristic to propose some rewards that
people only need to tweak a little bit, so that they match their desire,
then the work overload caused by the rewarding scheme might remain
bearable. Further, proofreading a merge request provides some value
to the project, e.g. security as it ensures that the current merge request
is not adversarial, it seems reasonable to reward proofreading merge
requests too. As the proofreading is done before the reward estimation,

people should also reward people that conducted useful proofreading.

Note that, as the entire process happens on-chain, including minting
the tokens, it is trustless. There are no roles, there is no one that can
prevent you from getting compensated for the work you did for the
project. But what if all of the governance power is held by a single
dictator or a few colluding oligarchs3¢? Even in such situations, we
believe that the system will work well; if GitDAO is used, then the people
owning the project want to distribute power over it, so they have little
incentive to cheat the rewarding scheme. Also, if the powerful cheat
the system, e.g. by appropriating the work of others to themselves, the
project would suffer reputation losses, and people might stop funding
the project, or the community might fork the project.

74

1@ Overestimated value.

1¢ Minimal friction.

i& Trustless.

36. An open source project must
always start in a fully centralized
situation. Right after it is initiated,
the project can have only one con-
tributor: its initiator. Hence all the
power is centralized in the hands of
one person.



o
CHAPTER 8

DEVELOPER REWARDS

In this chapter, we propose a method to reward developers of an open
source project. The proposed scheme also distributes money to depen-
dencies a project depends on.

8.1 SPLITTING FUNDS THREE WAYS

A smart contract can receive tokens easily, and define callback func-
tions to execute upon receiving them. We propose that any money
received by a project be split three ways upon reception:

DEVELOPER REWARDS A fraction of the funds received is distributed to
developers of the project, proportionally to their governance
power in the project at the moment the funds are received.

FURTHER OPEN SOURCE FUNDING A fraction of the funds received is re-
distributed to other open source projects.

TREASURY The remaining part is hoarded up in the treasury of the
project, as a reserve that can be used for various other purposes
like bug bounties, paying for one-off tasks like branding, or im-
plementing a feature.

This situation is summarized in figure 8.1.

8.2 DEVELOPER REWARDS

Developer rewards are a way to incentivize developers to contribute
to open source by paying them. Note that the developers do not get a

75

CONTENTS

8.1 Splitting Funds Three Ways, p. 75

8.2 Developer Rewards, p. 75

8.3 Open Source Funding
Graph, p.76

8.4 Treasury, p.77

8.5 Streaming Payments and Radicle
Drips, p. 77

8.6 Voting on Parameters, p. 77

1 Photo by Laura Lefurgey-Smith on
Unsplash.


https://unsplash.com/@lauralefurgeysmith?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

Treasury

Other Donations
GitDAOs \ Further

funding 0
. . ther
/ EHIDL) ’ GitDAOs
Blockchain Direct
Accounts d ’distribution
Token
Holders

FIGURE 8.1 Money flows in and outside of a GitDAO project.

Donations can be received as recurrent donations or one-off donations. Donations can come from further funding of other
GitDAOs or direct donations from EOA. Received money is in part donated to the dependencies of the current project, in part
distributed to the token holders of the DAO as remuneration for their work and the value they provided to users, and in part
hoarded up, to build the DAO treasury which can be used by the project.

fixed salary out of such contributions. Rather they obtain a fraction of
the funds donated to a project they contributed to when donations are
made. Given enough donations, one can imagine people contributing
to open source software as their main occupation, although the uncer-
tainty related to an income being dependent on donation might be a
deterrent.

8.3 OPEN SOURCE FUNDING GRAPH

Today, in the open source ecosystem, only the most user-facing projects
can live off of donations (like the Mozilla Foundation for example).
Projects less visible receive no attention or donations, most of the time,
they do not even have a donation system in place. Creating smart
contracts for each open source project would make it much easier to
donate to a project.

Supply chain attacks are becoming more standard on the blockchain.
This highlights the fact that an open source project has some incentive
to ensure that its dependencies are properly maintained over time.
From the perspective of the incentives, it makes sense for a project
to donate to its dependencies, because the project has an interest in
having its dependencies strive: for improved features, rapid bug fixes,
documentation, code quality, etc. If the dependencies are abandoned,
a project will have to replace them or take over their development. By
donating a percentage of the funds that an open source project receives
to its dependencies, it improves its security guarantees. Each project
can freely choose what percentage of received funds to give to further
open source projects.

76



Allowing money to flow from one project to another creates a funding
graph. We remark that this prevents only the most visible projects, e.g.
Firefox, get all the donations. It brings donations down in the open
source infrastructure stack, to core software pieces that are hidden
from sight, yet highly important, like the 1ibc.

8.4 TREASURY

Smart contracts make it easy to store money, and so the money received
by a project that is not directly distributed to the developers nor sent
to further open source projects can be hoarded in a treasury. Owning
a treasury makes an open source project into a full-featured DAO. This
money can be used for various purposes, like bug bounty programs.

8.5 STREAMING PAYMENTS AND RADICLE DRIPS

Radicle provides a blockchain protocol for streaming payments.
Streaming payments are the opposite of discrete payments. So in-
stead of paying a sum in one transaction, the protocol transfers the
value small amounts by small amounts at frequent intervals, like every
second or so.

This protocol would be perfectly suited for donations in the open source,
as it would allow funds to accrue progressively which prevents many
kinds of strategic behaviors. An example of strategic behavior exploiting
discrete payments is for a contributor to submit a merge request at
the moment in time that guarantees they will receive their token from
the rewarding scheme just before a large recurrent monthly donation
is made, to have the largest relative power possible over the DAO, to
maximize the percentage obtained from the donation.

8.6 VOTING ON PARAMETERS

We propose that each DAO can vote on the specific percentages accord-
ing to which received donations should be split. Highly visible projects,
e.g. user-facing projects, will most probably both receive more dona-
tions and use a lot of dependencies. From the ecosystem perspective, it
would be beneficial that they distribute a larger part of their donations
to other GitDAOs. From the project perspective, it might also be a sen-
sible action: the project needs its dependencies to be maintained. For
projects at the absolute bottom of the tech stack, e.g. the standard C li-
brary, further distribution makes no sense (unless people maintaining
the project want to help some other project they care about).

77

radicle DRINS

At drips.network


https://www.drips.network

CHAPTER 9

ISSUE BACKING

In this chapter, we propose an additional mechanism for GitDAO. The
goal of this mechanism is to provide funding for issues.

9.1 ISSUES

Issues are inherited from GitHub. The word describes a forum-like text-
based thread that users can use to report bugs, or ask for new features.
Discussions often happen in those issues, to request additional details,
about the best way to solve the bug or the best implementation of the
requested feature.

However, issues today do not incentivize developers in any way. So
whether the issue is solved depends on developers taking up some of
their free time to do it. We propose a system to incentivize the solving
of issues.

9.2 MECHANISM

Assume that some user opens an issue. In the issue, the user describes
the bug that they want to be fixed or the feature they want to be added.
Then, the user backs the issue with some amount « of money. If and
when the issue is solved, the project will get the stacked money dis-
counted by time. So the longer an issue awaits unsolved, the less money a
project will obtain from solving the issue. The specific function used to
describe the discount can be any decreasing function. We propose that
only functions with non-negative second derivatives be used. Linear

78

CONTENTS

9.1 lIssues, p.78

9.2 Mechanism, p. 78

9.3 Analysis, p. 80

9.4 Ensuringthe Issueis
Solved, p. 80

1 Photo by Joel Cross on Unsplash.


https://unsplash.com/@joeldcross?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

functions are simple and easy to understand. Functions with strictly
positive second derivatives might be better suited though. Indeed, once
an issue is opened, the project developer will need some time to solve
the issue, so it makes no sense that the issue loses too much value in
the beginning. On the opposite side, issues should either be treated
rapidly or discarded. Issues that linger for months are probably not so
important. Using functions with positive second derivatives ensures
that the decrease of value is not too fast at first, but increases speed
after. In a way, this creates a form of “continuous deadline” (as opposed
to a discrete deadline).

We propose that issue backers can choose the parameters of the de-
creasing function. This way, they can choose more specifically the
incentives that they want to create. For example, some users might only
be interested in the solving of an issue if it happens before a given
date. For them, it would make sense to use functions that almost do
not decrease before the deadline, but decrease very rapidly around the
deadline to reach zero.

Developers can tag pull requests as solving some specific issues. If
the merge request is accepted, then the money backing the issue, dis-
counted by time, is awarded to the project.

If developer rewards are enabled, there are multiple ways that the
money can be awarded:

EVERYTHING GOES TO THOSE THAT SOLVED THE ISSUE The strategy incen-
tivizes people directly to solve issues. However, it might also lead
to competition inside a project to solve the issue. This leads to
duplication of efforts, and we prefer incentivizing cooperation.

Another issue with this approach is that it might lead to a situation
in which people only solve backed issues, and never solve issues
that are not backed (this might be fine if we trust capitalism to
be a good coordination scheme), nor build new features. Indeed,
why build new features that are not backed, if you can wait for
someone to ask for the issue and back it?

EVERYTHING GOES TO THE PROJECT With this strategy, the money goes
to the project and is distributed like any other donation. Assum-
ing that the project uses the money distribution from chapter 8,
then all the members of the project benefit. This leads to smaller
incentives for developers to solve issues, as they get less money,
than if they obtained the whole of it.

Yet, assume that the project uses decreasing power tokens, and as-
sume that, upon acceptance of a merge request tagged as solving
some backed issues, first the decreasing power tokens reward-
ing the contributors are minted, then the project receives the
money. Those thatimplemented the issue are advantaged over the

79



other members of the project, because their tokens are the most
recent, and have not started decreasing. This means that they
obtain a large percentage of the rewards.

Hybrid approaches, i.e. a strategy somewhere between the two ex-
tremes described above, are also possible.

9.3 ANALYSIS

Issue backing allows the users to provide some feedback to the project’s
developers. It enables the project to evaluate better what the users
value.

By using rewards that decrease in time, developers are incentivized to
solve issues rapidly which is good from the user perspective. Indeed,
we propose that this mechanism reflects well the fact that users are
generally ready to pay more if the problem they face is solved faster.
This is also good for the project, as it incentivizes a faster development
speed.

By using the rewarding strategy in which the money is distributed to
all the project contributors, the incentives to solve the issues for each
developer are not too big, which might preserve the equilibrium that
open source maintains today, i.e. zero incentive to solve issues, yet

many are.

9.4 ENSURING THE ISSUE IS SOLVED

We now look at this mechanism from the perspective of users that back
issues. What guarantees do they have that the project will not mark
their issue as solved as soon as possible, to get the most money, without
in fact solving the issue?

There is a clear conflict of interest in asking the project members to
evaluate whether an issue is solved. Similarly, asking users when their
issue is solved also exhibits a conflict of interest: the user will always
have an incentive to say that the issue is not solved, to lower the amount
of money they pay.

Users might interact only once with the project, so they are not stak-
ing their reputation, especially given that new blockchain accounts
are so easy to create. On the other hand, the project members will
interact several times with various users on various issues. So they
have a reputation that they stake, and they are probably interested in
getting as many issues backed as possible (to make the project, and
themselves, win more money in the long run). In this regard, asking
project members when an issue is solved is more reasonable.

80



Some further recourse mechanisms could be implemented for users
to recourse against the decision that an issue is solved. Building such
functionalities requires the presence of a third party that decides about
such questions. An potential choice is to use Kleros, the on-chain court.

81



L J

4

CHAPTER 10

GITDAO

A GitDAO is a DAO that implements all the primitives proposed in this CONTENTS

work: 10.1 Limits of GitDAOs, p. 82
10.2 Additional Primitives to

1. Decreasing power tokens. Explore, p. 84
10.3 Systems Atop GitDAOs, p. 86

2. Voting workflow.

1 Photo by Erika on Unsplash.
3. Rewarding scheme.

4. Developer rewards and splits.

5. Issue backing.

In the coming sections, we discuss some limits of GitDAO, the con-
sequences of using multiple primitives simultaneously, list ideas for
further primitives, and functionalities that could be built on top of
GitDAOs.

10.1 LIMITS OF GITDAOS

10.1.1 CONFLATING PROVIDING VALUE, MONETARY REWARDS,
AND POLITICAL POWER

Using the rewarding scheme, any token-based voting system, and de-
veloper rewards amounts to conflating providing value to the project,
as evaluated by the rewarding scheme, getting some political power
through the governance token, and getting monetary rewards when
donations are made to the project. Is this a good thing?

82


https://unsplash.com/@erikahg?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/

Aligning monetary rewards with the value provided to a project is ben-
eficial: it incentivizes people to contribute as much value as possible.
It is the very goal of the rewarding scheme to align value creation and
value extraction. Note that value creation and value extraction only
become proportional to one another, not equal: the value created by
the open source project might still very much be extracted by people
that do not donate back (Apple uses the Linux kernel for its operating
systems, but never contributed back). Yet, if substantial donations are
made to the open source in the future, contributors will get rewarded
in a way that is proportional to the value they contributed.

But is aligning value creation with political power over the project a
good idea? Does providing value to the project make you a good leader?
In this case, it is helpful to explore what we mean by political power
over a project. In open source projects today, most decisions that need
to be taken regard code, namely accepting or not merge requests. If
you know a code base well, i.e. if you contributed a lot in the past,
then you are probably well suited to determine if a new piece of code
should be integrated. As long as the decisions are technical, conflating
providing value to the project and making decisions for the project
seems reasonable.

However, in a GitDAOQ, the governance system can be used to make
political decisions, like making payments, changing the parameters
of the decreasing power tokens, changing splits, etc. Even decisions
which might seem related to code at first might be political in fact, like
whether a new feature should be integrated into the project. Sometimes

less is more and adding more features only bloats the project3”. 37. The Unix philosophy is to create
programs that do one thing, and one

Maybe it would be better to give the power to an inspired leader in- thing only (and to do it well). Like
Legos, these programs can then be

stead (like in startups). A clear vision might lead to less variance in combined to yield greater results.
the decisions taken, but more bias. It is hard to provide a clear answer.
Nevertheless, to take a real-life example, in the open source ecosystem to-
day, the project leaders are generally very involved in technical aspects.
And while being an involved technician does not make you a good
leader, it proves that you have the project’s success at heart. Another
fact about open source is that projects often feature more decentralized
coordination mechanisms, than traditional companies. Deciding what
the future of a project looks like is often decided by discussion between
the members of the project, and reaching some consensus; while in
a company, the future of the company is decided by the executives.
Deciding what features should be built next in a company is done by
the managers; in an open source project, the next feature to build is
decided organically by people working on the features they are the
most interested in. If organic leadership indeed leads to good results,
it might be reasonable to conflate providing value to the project, and
political power over the project.

83



10.1.2 FORKING IN THE AGE OF DAOS

The potential for forks in the open source brings about many guarantees.
If it is possible to fork a project, then it makes no sense to take control
over a project to harm it: people can copy the code, start a new project
with the same code, and exclude you. This reasoning would work, if it
was not for some permissioned accesses that the project requires. For
example, if you are developing a Javascript library, then someone in the
project probably has an account on NPM to upload new version of the
library to the package manager repositories; for Python, it would be
a PyPi account; for Scala, a Maven account, etc. If an attacker takes
control over the project, it can potentially upload a corrupted version
of the library. This breaks the desirable trustlessness property in web2
today already.

With GitDAO, the problem becomes more acute, because, on top of
accounts required to upload packages, the initial GitDAO has a treasury,
and people outside the project might have donations setup (whether
splits from other GitDAOs, drips, or just simple donations). So, while it
is still possible to fork the code easily, forking the treasury or inheriting
the donations is not possible. Code can be duplicated, money cannot.

10.2 ADDITIONAL PRIMITIVES TO EXPLORE

10.2.1 CODE REVIEWS

Code reviews are boring, and computer scientists dread them: they take
alot of time, and are less fun than coding. Yet, they increase security (if
your code modifications are reviewed, then it is much harder to insert
a worm in the code), enable teaching (if your code is reviewed by a
programmer that knows the language/framework/project better than
you, then they might show you new features), and avoid knowledge silos.
Building an incentivization scheme for code reviews would improve
the guarantees related to open source software.

How should code reviews be compensated? For the effort invested, or
for the value provided? If a novice programmer reviews some code, it
will probably take them more time and effort for the same result, than
a senior developer. Should novice developers be rewarded the same as
senior developers, even though it took them twice the time? Another
example, assume a developer reviews some code, but there is nothing
to improve, nothing to change. It might have taken the developer a lot
of time to do the review, yet they will not be able to provide any value
to the project. Should they be rewarded? A finer analysis should take
into account the security guarantee improvements and the knowledge
distribution that happened by performing the code review.

84



Any compensation scheme will also need to be as trustless as possible.
How to differentiate a code review that yields no improvement to the
code, because there is none to do; and a code review that yields no
code improvement, because the humans that performed it did a bad
job?

10.2.2 BUG BOUNTIES

Bug bounties programs are becoming more widespread. Google an-
nounced a new program in September 2022 that concerns all the open
source projects managed by the company.

Bug bounties have a fundamental problem of incentive alignment. The
value of the reward for finding a bug or security issue is generally
proportional to the importance of the problem. This seems reasonable:
humans should invest their resources into finding bugs where they
are the more damageable. Finding bugs with little to no impact is
less desirable, than finding bugs with large impacts. If the value of the
reward is proportional to how critical the found bug is, who determines
how critical the bug is? The person who found the bug has an incentive
to overestimate. The project that must pay rewards has an incentive to
underestimate it.

Projects that reward bugs have a reputation at stake, so we find them
more trustworthy. This is the approach used today: in its bug bounty
program, Google determines how much it pays the person that found
the bug. But what if there is a disagreement over the bug’s value? Is
there a recourse mechanism? In today’s system, no. On the blockchain,
it is possible to provide such mechanisms, for example through Kleros,
the on-chain court.

10.2.3 BICAMERAL GOVERNANCE SYSTEM

An idea worth exploring is to use a bicameral governance system for
GitDAOs. The first chamber, called chamber721, uses decreasing power
tokens, and the voting procedure described in this work. The second
chamber, called chamber2o, would be governed by ERC20 tokens.

There are two questions to answer for a full specification. How can
the ERC20 tokens be obtained? What are the responsibilities of each
chamber?

The ERC20 tokens could be obtained by buying them from the DAO.
This provides the DAO with a system to raise funds. On the blockchain,
it is easy to create an exchange for a new currency: one needs only to
register a new pair of currencies on some decentralized exchange like
Uniswap. The DAO would create this pair and become its first liquidity

85



provider. People could then buy the governance token, and potentially
become liquidity providers themselves. Raising funds would amount
to buying the currency in the DEX by selling some newly minted gov-
ernance tokens. This makes the chamber20 into a plutocracy. This
might not fulfill some other goals that we have in this work, but these
functionalities would integrate well with the current economy, and
allow projects to raise money, like startups would.

Why might people want to buy those governance tokens? What value
do they bring? What powers should be given to the chamber20, which
should we leave to the chamber721? A possible idea is that the cham-
ber20 acts like a verification body. It would vote at regular intervals to
express agreement (or disagreement) regarding how affairs were con-
ducted in the last period, including to whom and the value of ERC721
minted. This makes the chamber721 ultimately accountable to the
chamber20, which is how many non-perfect bicameral parliaments
work today. This is also similar to how publicly traded companies work,
with the shareholder meeting at the end of the year to validate the fiscal
year. Modification of protocol parameters like those of the decreasing
power ERC721 tokens might be left to the chamber2o.

Some in-depth analysis is required to check that the chamber2o cannot
just take over the chamber721. Indeed, the chamber20 is a plutocracy,
so being rich is enough to get potentially a majority of the tokens.
What if some state wants to attack the project? On the other hand, the
chamber721 members have proven their interest by contributing some
code.

Providing these two chambers makes for a more complex system,
which is not required by smaller projects. The governance system
could be made evolutionary, i.e. starting with only the chamber721,
and members of this chamber can vote to open a chamber20 when
funds are required.

10.3 SYSTEMS ATOP GITDAOS

10.3.1 EXPLICIT REPUTATION SYSTEM

Many functionalities discussed in this work rely on the open source
project doing the right thing, to not lose reputation. This requires
a way to measure reputation and a medium through which project
reputations can be discovered rapidly. Defining mechanisms through
which reputations can be injured, or, on the contrary, benefited, is a
complex topic. Yet such a system would be highly useful to ensure that
open source projects have an incentive to behave well.

Reputation systems for developers are another topic that can improve

86



the status quo, and make development faster. Developers which good
reputations might need less numerous code reviews before their code
is integrated. But can we build a trustless, decentralized reputation sys-
tem? What if the adversarial agents we are up against are governments
paying hundreds of false developers?

10.3.2 TRUSTLESS OPEN SOURCE REGISTRY

There is no unified way to discover existing open source projects today:
GitHub, GitLab, BitBucket, GitTea, etc. GitHub is the largest, but, as
for many things, we are one scandal away from people leaving the
platform. Additionally, people might desire hosting solutions with
stronger guarantees like uncensorability3®, and the guarantee that the
system will always be up, that no executive can decide on a whim to
offline the platform3?.

Even if current blockchains are not suited for hosting code (the price
of hosting large amounts of data is prohibitively high), creating an
on-chain registry for open source projects yields valuable additional
properties like transparency and trustlessness.

38. The American government
recently required GitHub to censor
some projects like youtube-d1,

a project that made it possible to
download data from YouTube easily,
and, more recently, Tornado Cash.
Being an American company and
for fear of legal repercussions,

the company complied. A system
running on a blockchain cannot be
censored.

39. As of September 2022, GitHub
is free of charge for open source
projects. The platform hosts open
source code at cost. This is not

a sustainable solution. So either
Microsoft decides to shut GitHub
down, or they find some way to
monetize. GitHub Co-Pilot might be
this monetization approach: build
Al for code using the huge GitHub
database. Can this opportunity
yield enough money to cover the
costs? GitHub can be scrapped by
anyone, so is GitHub Co-Pilot’s value
protected enough? And do open
source projects agree to be used in
such a way?

In this part, we proposed a few primitives based on blockchain technologies that could provide additional

guarantees to the open source world. After this theoretical analysis, we consider the practical implementations

attempted during this work.

87



Bl ik

PART lII

APPLICATIONS




SUMMARY

The goal of this master thesis was not only to produce a specification
and theoretical analysis of a DAO that can govern open source public
goods efficiently but also to provide some implementation. It is said
that one only really knows a problem after trying to solve it (and that
only the second attempt at solving the problem will be successful).

Different implementation paths were pursued during this master the-
sis. One of them, described in chapter 11, was to build a somewhat
standalone demo. The other was to integrate with Radicle, which you
can learn more about in chapter 12.

For a DAO to integrate well and provides efficient governance, the
system needs to integrate well with the development stack. Today,
most of the code-building tools work entirely off-chain. Making both
worlds communicate well and in a seamless fashion for the user is a
real challenge.

Further, it is probably desirable that multiple governance systems
can be used across the DAOs oriented at open source, so the code
collaboration stack around the DAO needs to be versatile enough to
allow integration of various governance systems.

CHAPTERS

11 Demo, p. 90
12 Radicle, p. 98
13 Conclusion, p. 105

1 Photo by Micha Sager on Un-
splash.


https://unsplash.com/@michasager?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/

CHAPTER 11

DEMO

A demonstration interface was built for the decreasing power tokens.
This chapter talks about the choices made to implement this demo.

11.1 FRONTEND

11.1.1 WEB FRAMEWORK

The front-end was implemented using the open source Sveltekit, the
standard opinionated overlay of Svelte (also open source). Svelte is a
front-end framework written in Javascript (which limits the number
of programming languages that one has to use to build websites). It is
component-based, i.e. one file describes a graphical component that
includes its content (templated HTML), styling (CSS) and animations
(Javascript). It allows grouping everything that has to do with a single
component in a single file. The framework enables the construction of
a progressive web app.

A progressive web app (PWA) is a web application that features a single
HTML page and uses Javascript to update its content. Some code is
required to emulate the behavior of an HTML based website, e.g. to
update the user’s history so that the forward and backward buttons
of the web browser still work as expected. The reason for using such
a complex system is that it enables new functionalities (no blinking
when opening a new page, loading bars a la youtube, page transition
animations, etc) and that it is much faster. Indeed, loading only the
content of a page instead of its styles, dependencies, etc. makes for
smaller amounts of data to transmit over the network. Further, the

90

CONTENTS

11.1 Frontend, p. 90

11.2 Hosting, p. 92

11.3 Domain Name, p. 93

11.4 Backend, p. 93

11.5 SWITCH and Mantis, p. 94
11.6 Screenshots, p. 95

11.7 Development Details, p. 96

1 Photo by Ronald Smeets on Un-
splash.

SVELTE


https://unsplash.com/@ronaldsmeets?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/

website can cache the content of a page when the user hovers over a
link that leads to it. When the user clicks the link, the content is already
in the browser so the page is visible much faster.

Apart from the added complexity of this approach (which is hidden
to the web programmer by the Svelte framework), another issue with
PWAs is that they make content indexing of the website impossible for
search engines. The reason for this is that the page generally returned
by PWA framework is an empty shell that contains some Javascript code
that will query the information to show on the page. Search engines do
not execute Javascript code when indexing the web, so all they see is an
empty page. Svelte solves this issue by rendering all pages fully on the
server side. In other words, when you query any page of the website,
the server returns a fully populated page, and all subsequent pages
that you query will only require the page to download some minimal
amount of data, and the rendering is done in the user’s browser; no
need for a full page switch. This strategy is called server-side rendering
(abbreviated SSR).

As we were only building a demo version, limiting costs was desirable.
For this reason, and because we wanted our demo to be trustless, we
decided to build a static website*®. A website can be static in a web2
sense, i.e. be only composed of static files, and yet use some blockchain
as a backend to show dynamic information (see section 11.4). This
makes the website trustless: the user can assert that they received the
correct website files, for example by using technologies like IPFS (see
section section 11.2), then execution is done on the user’s computer
using the Javascript engine of their choice, finally, dynamic data can
come from some blockchain which is also trustless.

Svelte offers server-side rendering for static websites also. While a
dynamic website would need to do this at runtime using, for example,
the node runtime, a static website can be rendered at compilation time.
In other words, Svelte generates fully rendered pages for all the pages
on the website. Those are served when any page is requested by a new
user. After the user loads the first page, all subsequent page changes
are performed in a PWA way, so only minimal amounts of data need to
be downloaded and the browsing experience is much faster. This even
works with pages whose content is written in markdown, provided that
the compilation pipeline is tweaked to compile markdown to HTML
content. Thanks to those abilities, we could use platforms that offer
free static website serving.

11.1.2 Css FRAMEWORK

The visual style generally associated with blockchain projects is spe-
cific and most standard and opinionated css frameworks do not easily

91

40. A static website is a website

that is made of static content, i.e.
pure HTML, CSS and Javascript. It
is the opposite of a dynamic web-
site, whose content is updated in
real-time, which requires some pro-
gramming language to be executed
on the server instead of simply send-
ing files over the network. A page
whose content changes every time
you load it is, by essence, dynamic.

tailwindcss



enable building such themes. For this reason, we used the open source
TailwindCSS as ¢SS framework.

TailwindCSS is a responsive utility-first ¢SS framework. Being utility-
first, it does not provide CSS classes that create a component like a
button. Instead, it provides lower level CSs classes to achieve one spe-
cific effect. For example, the class shadow-1g produces alarge shadow
on the HTML element it is applied to. For a button, one would need
to apply various css classes, like one for the background color, an-
other for the text color, some more for the shadow, maybe some other
for the borders, etc. Such frameworks are particularly well-suited to
component-based web frameworks because they provide deep flexibil-
ity, yet the code remains DRY as components need only to be defined
once and can then be reused. TailwindCSS further has a clever compi-
lation/minification process that allows shipping minimal css files for
faster page loading times.

11.2 HOSTING

Hosting a static website on a regular hosting platform like GitHub Pages
implies that you have to trust the platform to serve you the correct
content®. But web3 is about trustlessness. The hosting of a web3
website is more of a challenge because it requires using more recent
technologies that are often not as developed and not as user-friendly
as their web2 counterparts.

When it comes to storage, the standard web3 solution is to use the
InterPlanetary File System (IPFS) a peer-to-peer storage network. IPFS
is content addressed, this means that one queries a piece of data using
the hash of a data*?. Intuitively, this is a bit weird, it is almost like
you need the data to be able to retrieve the data. Generally, the user
receives the data hash from some external source. The nice property
of such a storage system is that the user can verify that the received
blob of data has a hash that matches the requested one. This provides
strong guarantees to the user: they can check that the data they receive
matches the data they requested. This is the reason why this system
is considered trustless. This has some implications for changing data:
it becomes impossible. When a user requests a certain hash, then
the only valid data to return is the one that matches the hash. For a
website, this is somewhat of a problem: what if you want to change
some content or perform some updates? We now need a solution to
provide the user with the hash of the latest version of the website. This
problem and its solution is described in section 11.3.

The traditional web infrastructure is not yet fully IPFS enabled*3. So
most of the time, a browser extension is required to be able to resolve
IPFS addresses.

92

41. Nothing prevents GitHub or
similar platforms to change the
content that you want to serve as

it is hosted on their servers and

the user has no way to check that

it received the data you intended

to host. As the example of Tornado
Cash showed, GitHub, owned by
Microsoft, is an American company
that has to comply with American
justice and the opinions of the
American government. So even if
you fully trust GitHub as a company,
you additionally have to trust the
American government which is a
rather large step to make.

42. On the other hand, the web is
location addressed: one uses the
location of a piece of data to retrieve
it. First, you specify which server
you want to access, then you give
the specific page you are looking for
on that server.

brave

43. Some web3 first web browsers
like Brave enable in-browser resolu-
tion of IPFS hashes. Most other web
browsers like Firefox require some
plugin to enable IPFS resolution as
of the writing of this thesis.



A piece of data exists on IPFS for as long as at least one node hosts the

data. There are multiple ways to ensure that one’s data remain hosted.

One of them is to have your node, but this is technically complex and

expensive, as you have to run a server. Another way to ensure data

persistence is to use the Filecoin blockchain, which enables people e F| leco | N
to pay for the data to stay online using trustless proofs of spacetime.

The issue with using Filecoin is that users have to pay a fee to retrieve

data and that data retrieval is slow. The above makes Filecoin rather

ill-suited to serve websites. A project called Pinata** makes it easy to &

upload data to IPFS and “pin”4® the data. Their free plan allows for -. °

storing more data than the demo would ever require, so we decided to avww PI n ata
use this service. Further, they offer some API that makes it possible to ' '

pin content from a script or a CI/CD pipeline.
44. pinata.cloud

11.3 DoMAIN NAME 45. Pinning data on an IPFS node

means that the data will not get

. garbage collected when a node
How does a user get the IPFS hash of the website data? A standard

reaches maximum capacity.

solution is to obtain the IPFS hash through domain name resolution.
The regular DNS system does not easily enable associate IPFS hashes to
aname. You can register the URL of an IPFS gateway, but this breaks
all trustless guarantees as you now have to trust the gateway. ENS,
the Ethereum Name Service, allows associating an IPFS hash with a
given domain name. The issue with ENS is that it runs on the Ethereum
blockchain which has high gas fees. In other words, every time that the
website is updated, reuploaded to IPFS and we need to change the IPFS
hash associated with the domain name, we would need to pay around
10CHF (using prices from April 2022).

Instead of using ENS, we decided to use Unstoppable Domain (UD) e ST
which is a nascent project that got a lot of traction. They use the Polygon

chain and offer to pay the fees for the users as a way to initiate their
user base. A domain on UD can be associated with various things like a
Twitter account, and an IPFS hash. Updating the associated 1PFS hash
is free of cost. We bought the the-git-dao.crypto domain. We remark
that one drawback of using such recent technologies is that they are
often not feature-complete. For example, there were no ways to update
the 1PFS hash associated with our domain from a GitLab pipeline and
we had to do it by hand every time. Also, a browser plugin is often
required to resolve UD extensions like . crypto.

11.4 BACKEND

When building applications connected to the blockchain, the
blockchain acts as a backend. Smart contracts store content, either in
the form of Ethereum events or as read-only functions. The users can
change the stored state by interacting with the write-enabled functions

93


https://www.pinata.cloud/
https://the-git-dao.crypto/

featured by the smart contract.

Additionally, it is possible to store some data in an off-chain backend,
i.e. a regular database. Storing data in a regular database enables a
hybrid approach to building a blockchain application, mixing both
web2 and web3 technologies. The guarantees provided by each storage
solution are very different. Data stored on a blockchain are public and
immutable: in essence, they are trustless. The data stored in a web2
database are the propriety of the owner of the database who can change
its content at will, further the data is only available as long as the owner
makes them available.

Why use web2 solutions to store data? The economical frameworks are
different. In web3, the user needs to pay fees (gas fees) to interact with
the blockchain. In web2, it is the owner of the database that pays to
keep the database running. So using web2 technologies is much easier
for users which makes web2-powered platforms more attractive. Also,
they are generally much faster: committing a transaction to a database
is much faster than including a transaction on a blockchain which
requires reaching some form of consensus among the participating
nodes*®.

Our demo is fully trustless. Thus we only used blockchains as backends,
no web2 database solutions. Upon loading the website, the page will
query the blockchain state and parse events corresponding to the back-
end smart contract. Once events are parsed, the data is shown to the
user. Because this app is a PWA, the parsing only needs to happen one
time, when the first page of the website is loaded. If the user connects
a wallet, it will also be able to interact with the backend by sending
transactions to the contract.

11.5 SWITCH AND MANTIS

This project was conducted in collaboration with SWITCH AG. The
company, along with a dozen other Swiss companies, is building an
Ethereum-compatible, proof-of-authority blockchain for Switzerland.
Proof-of-authority is an alternative consensus mechanism#’, which,
while being more centralized than proof-of-stake, is much faster and
allows much larger transaction rates. The official blockchain is called
Dragonfly. Its corresponding testnet is called Mantis. Using the Mantis
testnet is free: a faucet account is provided that allows developers to get
some MANTIS for free to cover the gas fees. We deployed our backend
smart contract on Mantis.

The dashboard of the Mantis blockchain is available at mantis.switch.ch.

The appearance of the dashboard is shown in figure 11.1.

94

46. The remarks made here

only apply to the Ethereum-
compatible blockchain. Some newer
blockchains have emerged that
work with different semantics. For
example, the Internet Computer is a
blockchain where fees are paid by
the owner of the smart contract,
not the users, and because the
blockchain shards itself aggressively,
transaction finality is much faster to
achieve.

47. Other consensus mechanisms
include, for example, proof-of-work
and proof-of-stake.


https://mantis.switch.ch/dashboard/

s @ (e FIGURE 11.1 Screenshot of
the dashboard of the Mantis
s (T testnet.

@ cnanip @ symeol @© snsi0z @ curent Block

96970 MaNTIS o309 PM 956425

@ DRAGONFLY Mainnet

Blockchain Information

5 seconds ne2a

Latest Blocks Latest Transactions

Valldator (Block Spirt) Hash

0x327001927665673570900401b10cBCe 14195

Timestamp Block E e
52012022, maTO7PM 7074878 Transact

11.6 SCREENSHOTS
Below are a few screenshots of the GitDAO demo application.

The homepage is shown in figure figure 11.2. It displays the token that
a user owns, the power left in each token as well as the proposal that
the user can vote on.

Baanple GitDao FIGURE 11.2 The homepage
Your Govemance Tokens it Of the GitDAO demo.

The user can create a proposal, as shown in figure 11.3. Once a proposal

is created, the user can view it. At first it will be in the Pend-ing state
(see figure 11.4). Once the proposal enters the Voting Opened state
(shown in figure 11.5), the user will be able to vote on the proposal
(see figure 11.6) and the votes are shown on the proposal page as well
(figure 11.7).

95



xample GitDao FIGURE 11.3 The proposal
Create a Proposal creation screen of the Git-
DAO demo.

FIGURE 11.4 A proposal in
Proposal 5 pending state.

€ Ailproposals

Bample Gitoao FIGURE 11.5 A proposal with
Proposal 5 Voting Opened.

11.7 DEVELOPMENT DETAILS

All the git repositories in this project are managed with nix*®, a func-

96



Bample Gidao FIGURE 11.6 Voting screen.

Vote on Proposal 5

FIGURE 11.7 A proposal that
received some votes.

tional package manager. Nix, besides providing packages, provides

a fully reproducible work environment called a nix “flake” as well as L
other goodies like command aliases. This is a powerful tool that pro-

vides the guarantee that anyone is able to generate the same outputs in

the future. Through nix flakes it is possible to performs development

operations like uploading a website to IPFS and pining this content on

Pinata.

48. See nixos.org.

The backend code, i.e. the GitDAO smart contract is stored in a git repos-
itory stored at https://gitlab.com/gitdao/gitdao. We used hardhat as

our Ethereum development environment; it provided us an Ethereum a Ha rd h at

compiler, test frameworks, and tools to deploy to a blockchain of our

choosing (like Mantis).

The frontend is a subroute of a blog deployed for this master thesis. For
UD-compatible browsers, use the-git-dao.crypto/app.html, otherwise
the demo is deployed as a Heroku app: https://the-git-dao.herokuapp.
com/app. The code can be found at https://gitlab.com/gitdao/website.

97


https://nixos.org/
https://gitlab.com/gitdao/gitdao
the-git-dao.crypto/app.html
https://the-git-dao.herokuapp.com/app
https://the-git-dao.herokuapp.com/app
https://gitlab.com/gitdao/website

CHAPTER 12

RADICLE

This chapter is a chronology of our interactions with Radicle during
this project.

12.1 DISCOVERING RADICLE

The original idea of this master thesis was to try to create some form of
blockchain-based alternative to git. This would allow easy integration
between git and transfers of value. One could imagine a system in
which the creators of a piece of code get remunerated automatically
when the code they wrote is executed. This would create a business
model for open source. Of course, such a fundamental change in how
code works is hard to bring about.

During some initial exploration of existing solutions, we were reminded
of the existence of Radicle*®. Radicle aims to provide “the decentralized
code collaboration stack”, i.e. a peer-to-peer alternative to GitHub.

It seems helpful to remind the reader here of what features are part of
git and what features are brought by overlays like GitHub, GitLab, Gitea,
and consorts. Git brings commits, commit trees and merge strategies
(merge or rebase). Overlays bring merge requests, tags, CI/CD, issues,
and more. Most of the social functionalities that we enjoy when coding
comes from overlays.

Radicle’s goal is to provide the same functionalities in a decentralized
way. Note that Radicle does not use any blockchain for that. They de-
signed their protocols based on gossiping, and while it does use some

98

CONTENTS

12.1 Discovering Radicle, p. 98

12.2 Build a Radicle Org, p. 99

12.3 Rug Pulled, p. 99

12.4 Collaboration on Blockchain
Integration, p. 100

12.5 EthCC, p. 100

12.6 Stalemate, p. 107

12.7 A Personal Take on Radicle, p. 101

1 Photo by Dave Hoefler on Un-
splash.

49. See radicle.xyz.


https://unsplash.com/@davehoefler?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/
radicle.xyz

advanced cryptography, there is no economical or game theoretical
framework like that of a blockchain. Alleviating the need for a central
entity is a difficult task, and so far Radicle has built “patches”, i.e. an
alternative to merge requests, but it does not feature any social func-
tionalities like comments or CI/CD (those are features planned for the
future).

When we stumbled across the Radicle website, it became clear that
it would be easier to integrate with Radicle than to build something
similar ourselves. Also, blockchains are not fundamentally adapted to
hosting lots of data®?, so building git on a blockchain is probably not
the way to go (at least not as of 2022).

12.2 BUILD A RADICLE ORG

In March 2022, Radicle was featuring a new concept; “Orgs”. Orgs were
part of the blockchain integration featured at the time by the GUI of
Radicle called Upstream. Orgs were a smart contract on Ethereum
whose goal was to act as a registry of the “official” version of a project.
When the code becomes decentralized, potentially each developer of
a single project has a different view of the code, in which different
branches were merged and in a different order than the others. So
which version should be used by users of the project? What is the
official version? To solve this issue, Radicle had Orgs. But who controls
an Org? Who can decide what the official version of a project is?

Orgs could be any smart contract as long as the contract created “an-
chors”, where an anchor was the specification of how official commits
had to be encoded. This enabled great flexibility, as anyone could code
its own Org and its decision system. Radicle provided two Orgs tem-
plates. One was an Org entirely controlled by a single individual, the
other was based on a Gnosis safe, i.e. m out of n permissioned users of
the Org had to agree to a proposed change.

Our initial idea was therefore to build an alternative Org for Radicle.
One that would be more akin to a DAO with a voting system based on a
token (with decreasing value tokens and a way to handle donations).
So we settled for this task and built the demo and its underlying smart
contract using the anchor interface from Radicle.

12.3 RUG PULLED

Once the demo was more or less completed, around the beginning of
May, we tried to integrate our solution with Radicle. We updated our
Upstream version (to be sure to integrate with the latest and most up-to-
date version) and soon discovered that all the blockchain integrations
were removed from Upstream.

99

50. Storing 1KB of data on Ethereum
costs approximately 31$ as of Au-
gust 2022, which is prohibitively
expensive.



Some exploration of the Radicle forums led us to understand that Radi-
cle was not dropping the idea of integrating with the blockchain, they
only wanted to think it through and maybe propose additional features.

At this point, it is probably useful to give some additional details on how
Radicle work. The contributors of Radicle are split across “core teams”.
Each core team is responsible for one product of the Radicle ecosystem.
For example, there is a core team that builds the underlying peer-to-peer
protocol of Radicle, another responsible for the Upstream client, an-
other for the web and terminal interfaces, another that concerns itself
with governance inside Radicle and interfacing with the Radicle foun-
dation®', yet another that builds Drips, a streamed payment protocol
on the blockchain. And, while some teams, like the Upstream team and
the web and terminal interfaces team, favor some integration with the
blockchain, this feeling does not appear to be shared by all: the proto-
col team remains rather skeptical of integrating with some blockchain.
Nevertheless, the situation this created was not particularly practical
for the Master thesis you are reading.

We decided to reach out to Radicle and see whether it was possible to
take part in the blockchain integration effort directly as a substitute for
building an Org.

12.4 COLLABORATION ON BLOCKCHAIN INTEGRATION

The first problem was to find some individual that knew what was going
on with the blockchain integration. The only response we got from
the Upstream team was that blockchain was paused for the time being.
By asking a bunch of people, we ended up talking with #cloudhead,
the person in charge of the “Alt. Clients” team (Alt. Clients means
“alternative clients”, i.e. the web and terminal interfaces). He seemed
interested and we had a phone call. He offered to compensate us for
working on blockchain integration32. We did some brainstorming on
the various possibilities that integrating Radicle with the blockchain
offered. The results of this brainstorming took the form of a Figma
chart that is included in appendix A.

12.5 ETHCC

Soon after that, so around the middle of July 2022, a major blockchain
conference was happening in Paris. Radicle was holding what they
called an off-site, so many core members of the project met and we
managed to meet a few>3. While it was an interesting experience, it did
not feel too inclusive.

100

51. The Radicle foundation gives

a legal entity to the project. Itisa
Swiss foundation and it owns much
of the large Radicle treasury.

52. We had to decline this offer
because of ETHZ regulations.

53. It is often surprising to confront
the vision of someone you only
know from chatting online and
maybe having a phone call once
with the actual physical person.



12.6 STALEMATE

After the EthCC break, work resumed on the blockchain integration.

We wrote a proposal for Radicle containing the principles described in
this document. The answer we got from #cloudhead was strange to our
ears... He was proposing that the people that Radicle calls “delegate”*
would have the voting power, and they could elect people that would get
some payouts. This sounded like a permissioned approach: it enshrines
in the marble who has control over a project in a way that does not
foster the inclusion of new contributors.

Another criticism addressed to our proposition was that it was never

tried, there was no example of such a strategy working in practice.

This was also somewhat strange. Radicle is creating new concepts
regarding code collaborations (like that of a patch that does not work

the same way as a merge request on GitHub), and new ways to interact.

That is the very concept of innovation, this is also the reason why so
many people in the blockchain ecosystem are motivated by Radicle:
it changes the status quo, it brings new ideas, and a new way to do
things which is hopefully better than the previous one. Why was it not
welcome to innovate on governance models for open source projects?
Additionally, there are DAOs out there that do work in a fashion similar
to GitDAO, for example, the Optimism DAO.

It was also raised that the proposed solution was too complex and did
not solve an existing problem. Preventing communities from forking
because of a maintainer making decisions that are not consensual,
through a token-based voting system, is valuable. Providing a model to
pay open source contributors also solves a real-life problem, namely, it
improves incentives to contribute to open source and thus increases
project longevity. But at this point in the conversation, it wasn'’t clear
anymore to us whether we were arguing rationally about the proposed
solution, or if #cloudhead had already made his made and was now
trying to justify his opinion one way or another. He might also have a
biased opinion, as he is himself a delegate of many repositories hosted
on Radicle.

After our last reply, we got no more responses. As of the end of August,
we sent a message to propose that we resume the conversation once
the present work is completed. Stalemate.

12.7 APERSONAL TAKE ON RADICLE

The history of Radicle helps to explain the current state of the project.
The project was co-founded in 2018 by Alexis Sellier (#cloudhead) and
Eleftherios Diakomichalis (#lftherios). The project has awakened a lot
of interest from the blockchain ecosystem and raised around $12M in

101

54. Delegates of a Radicle repository,
are originally constituted of only the
account that creates a repository.
This account can then add other
delegates by granting them the
delegate role.



2021 [17]%5. The Radicle Foundation which currently owns much of the
treasury is governed by the two founders and Abbey Titcomb (#abbey)

[1].

12.7.1 Too MUCH MONEY

Oneissue that we see with the Radicle project is that a lot of time is spent
on deciding how the money will be distributed and how governance
will be conducted, and sometimes it feels like not much code is written.
It is our opinion that Radicle did not achieve much progress since
March 2022. In March, the Radicle website had more content, there
was documentation, some Ethereum integration, and Radicle had a
desktop client. In August 2022, the website features less content, the
desktop client has been sunsetted, the documentation is outdated (it
explains how to interact with Radicle through the Upstream desktop
client), and there is no more blockchain integration, but there are
two new clients: one command line based, the other is a website. In
terms of features, Radicle is still too incomplete to become realistically
usable.

Through the massive funding round that Radicle conducted in 2021, it
received a lot of attention. But by trying to become too big too early,
a lot of time now has to be invested in coming up with governance
systems, aligning the community, etc. This is time that is not spent on
actually building Radicle. The initial vision was somewhat lost to the
millions of dollars that the project received in investment.

12.7.2 LACK OF CONSENSUAL VISION

As of August 2022, the community of Radicle is split into core teams,
each team being intentionally very independent. We think that this
leads to some confusion, because the teams do not always want the
same thing, and might decide to implement what they want without hav-
ing a consensus from the others. We guess that this is what happened
with the Upstream client and the alternative clients (web and terminal).
In July 2022, Upstream was sunsetted, i.e. officially abandoned, and
replaced by alternative clients. Given that most of the functionalities
required to make Radicle a viable alternative to GitHub are still miss-
ing (c1/CD, some mechanism to define the official version, blockchain
integration, etc.), it might not be optimal to divide developer time on
multiple clients and to sunset clients this early. There seems to lack a
common goal that everyone agrees on; the initial vision was somewhat
blurry and now many people try to fill the holes in different ways.

Similarly, #abbey wrote a blog post in February 2021 about Radicle
releasing features that integrated with Ethereum. Since then, the inte-
gration was removed and there are no clear plans for its future; neither

102

55. As of August 2022, it was esti-
mated that Radicle burns around
$500K per month [1].



about what it should entail nor about some release date.

12.7.3 HIERARCHY IN RADICLE

Also, while the core teams might give the impression that they decen-
tralize the control over the project, it feels to us that this creates some
kind of hierarchy at the top of which stands the Radicle foundation. Basi-
cally, and because decentralization is a core principle of Radicle, it was
decided to separate the work in “core teams”. Each of those teams is
independent and focuses on a specific aspect of Radicle. This approach
has a few drawbacks; first, it silos information and vision for the project.
Second, it does not guarantee decentralization. Indeed, each time s free
to organize as it wishes, in reality, and as of August 2022, this means that
each time has a benevolent dictator that leads the team; which is not
decentralized. Further, it enshrines a hierarchy in Radicle: team owners
are the most influential individuals, then there are acknowledged team
members, then the rest of the world. And while such a model is stan-
dard in the corporate and startup worlds, this creates more barriers for
new contributors than what is customary in the open source world>®.

Talks are being held to transfer the control of Radicle from the foun-
dation to a DAO governed by the RAD token. This is a step towards
decentralization, except that the token distribution will change little
to the current pretty centralized state of affairs... As of August 2022,
#abbey owns 54% of all RAD, and #cloudhead has 24% [21]...

12.7.4 LACK OF ALIGNMENT

Finally, it seems strange that one of the founders of Radicle, #cloudhead,
would say that providing decentralized governance for code projects
hosted on Radicle is not something that the project is interested in,
even though the slogan of Radicle, until August 2022, was “Building
the decentralized code collaboration stack”. While it is not the same
to build some decentralized infrastructure to host code and to build
decentralized governance mechanisms to govern code (that might be
hosted on a decentralized or centralized censorship-prone proprietary
platform), both tasks have a lot in common, and experimenting on
decentralized governance models ought to be an interest of the Radicle
project. Even more so since the Radicle project is trying to start a col-
laboration with Gitcoin, which aims at building public goods. So while,
we love the ideas underpinning the Radicle project, the interaction and
the current state of affairs make us raise a few eyebrows.

12.7.5 AWAY FORWARD?

As described in [18], successful projects need to provide a clear vision
in the first place. The Radicle project provided a slightly blurry vision,

103

Radicle Foundation
I
Core Team Owner (#abbey,
#cloudhead and #lftherios)
¢

Core Team Member

1
Rest of the World

56. Even though similar structures
exist in open source with the benevo-
lent dictator of a project being the
most powerful individual, followed
by the “core” members, then the
rest of the world which is often
called “the halo”, the core members
have no title that enshrines their
status. Their influence appears
organically as the sum of the interac-
tion that those developers have with
the project.



many details were initially left open. While this impedes efficient work,
this might not be a problem large enough to choke the project.

First, we believe that it is now important for Radicle to come up with
a way to coordinate, to make the entire community agree on the way
forward. If the initial vision was not clear enough, then a way needs to
be found to fill it out.

1)

Second, the focus needs to switch from “how people will make money’
to “how the project will be turned into working software that people
use and love”.

Finally, the project needs to be more inclusive of contributors, no more
changing the domain names of the website every month, clear and

complete documentation to make it easy for people to contribute’”,and  57- The Radicle documentation, at
a more inclusive process to onboard people that want to contribute38. tl'm,es’ was changed fmth(mt Pro'
viding any ways to view previous
versions of it, for example, all Org doc-
umentation was removed when the
blockchain integration was removed
from Upstream. The documentation
was completely removed with the
August 2022 version of the main
website. The Radicle blog, which
contained various articles on the
RAD token and the Radicle vision,
was also deleted with the August
2022 version of the website.

58. Holding an invite-only meeting
with all the members considered
“core” enough during EthCC is not
an inclusive way to make progress.
This goes against the ideals of trans-
parency and inclusion that are
important to the open source move-
ment, the blockchain movement,
and Radicle’s values.

104



CHAPTER 13

CONCLUSION

Itis a rather undisputed fact that the world runs on open source. To give
only one example, it is estimated that WordPress, an open source website
framework, ran approximately 42% of all the websites in October 2021
[24]. Any software today, somewhere in its dependencies, uses a piece
of open source code, if only because the very majority of the most used
programming languages are open source. Nevertheless, as a society,
we do not yet act accordingly; we fail to acknowledge how critical the
infrastructure that powers our societies is, and so we do not protect it
enough. “The status quo is unmaintainable.” [9] We need a mentality
shift, we need to inject more money into the open source, and we need
to build incentive systems that provide us with more guarantees.

This is what we call making open source trustless: being able to trust
open source to create only positive outputs, without having to trust any
individual contributors. If open source becomes trustless, then society
is better off. To improve the trustlessness of open source, we proposed
in this work to focus on designing new coordination systems. We used
blockchain as the technological foundation because it is trustless itself.
Using any trustful technology instead would prevent us from achieving
trustlessness.

Unfortunately, designing good coordination systems is difficult. This
research field needs to combine math, game theory, psychology, phi-
losophy, economics, and computer science. There are a great variety
of properties that we wish these systems to offer: security in the face
of adversarial agents, Pareto efficiency, minimum friction, etc. And
we know that we cannot have it all: nature imposes some fundamen-

105

Open source represents critical
infrastructure for today’s societies,
yet we fail to protect it accordingly.

1 Photo by Patrick Hendry on Un-
splash.

The goal of this work: improve open
source trustlessness by designing
new, blockchain-based coordination
systems.

Coordination systems are hard.


https://unsplash.com/@worldsbetweenlines?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/

tal limitations, like Arrow’s impossibility theorem; some properties
conflict with one another, like privacy and transparency; and we must
design those systems around human limitations, like the recency bias.

Bringing trustlessness to open source, our ultimate goal, requires at least
decentralization; indeed, a system cannot be trustless if it is centralized.
We proposed that there are two key components to being decentral-
ized. First, there need to be many actors involved; second, each actor
needs to have the same power as the others. We also put forward, that
building systems that naturally revert to a decentralized state, i.e. what
we defined as progressive decentralization, is an approach more resilient,
than building a system that is decentralized to begin with, and hoping
that it remains so afterward. Especially knowing that power often acts
as a reinforcement loop, i.e. having power enables getting more power.

Open source projects always begin in a centralized state anyways, be-
cause they are initiated by at most a few individuals. So building ini-
tially decentralized systems is hopeless, and only progressive decen-
tralization can bring decentralization about. Through the core/halo
categorization, it is understood that most open source projects today
never managed to decentralize: the power is in the hands of a few core
developers. There is much that can be improved.

In this work, we proposed that an intrinsic progressive decentralization
system, so a system in which the power distribution reverts to the uni-
form distribution unless power differences are continuously maintained
over time, through repeated, valuable contributions, can only be built,
if a satisfying answer to proof of personhood is found.

While intrinsic progressive decentralization is currently not achiev-
able, this work proposed primitives that improve various aspects of
trustlessness:

DECREASING POWER GOVERNANCE TOKENS provide incentives for new-
comers to participate, and for members to contribute regularly.
This improves the first aspect of decentralization: widening the
community of a project and shrinking the gap between highly
active and less active members, by incentivizing regular contri-
butions. By distributing the power to all those that participate,
the system is an improvement over the Benevolent Dictator for Life
model that most open source projects use today.

THE VOTING WORKFLOW specifically suited to merge requests improves
the security guarantees over the code accepted. The challenge
mechanism further deters adversarial behaviors.

THE REWARDING SCHEME to award tokens in compensation for the value
provided to a project realigns value creation and value extraction.
This creates incentives to provide more value.

106

Decentralization is a key to trustless-
ness.

Decentralization and open source.

Importance of proof of personhood.

Proposed blockchain primitives.



THE MONEY DISTRIBUTION PROCESS rewards developers in a fair way.
Paying developers can transform contributing to open source
into a sustainable activity, thus it improves projects’ longevity.
We also discussed the possibility of using Radicle Drips to split
part of the received money and donate it to the dependencies of
a project. This creates a funding graph through the open source
ecosystem, thus even the most hidden, but fundamental, open
source libraries could receive money.

IssUE BACKING provides a way for users to communicate preferences
to developers, which makes it possible for open source projects
to provide more value to society. It also increases the amount of
money sent to open source projects and their developers.

The 21% century will be one of many challenges. The human popula-
tion is larger than ever, and problems scale accordingly. Technological
developments have made us more powerful than ever and the conse-
quences of our actions scale accordingly. This is why coordination
failures today have more dramatic consequences: wars are more de-
structive, economical crises impact more humans. Climate change
is the embodiment of the impacts that failing to coordinate around a
public good yield. We need to improve our governance systems if we
are to solve these issues. We need governments and companies that are
more representative, more transparent, more efficient, more aligned
with humanity’s shared goals, and more cooperative among themselves.
We hope that the primitives listed above contribute to making open

source more trustless. We hope that they improve human coordination.

107

Solving cooperation issues at large.



PART IV

APPENDICES




APPENDIX A

FIGMA CHARTS

1 Photo by Egor Myznik on Un-
splash.

( Open Source and Decentralized Projects

ENS identity “rad reward” Human-voted
linked to commits rewards
 Rewards are
‘more precise

Dev Rewards Progressive
Coors ncenang Proct l decentralizaion
of project
ownership

enables

Issue backing e Yo

funds Payouts

« Ads
i str funds Project treasury : ::’:m"d"‘g
funds
Vet fosters
Drips / Splits
funds
Recurring project e Soner funds Driping to other
income. OpefiSctice
required by projects the
N str current one
depends on.
Governance Decentralized Project continuity
(some form of) ownership
« Voting fosters fosters.
* Quorum
s Zumbach requredby  Project Anchoring On-Chain CI/CD Yo Zumbsch es Zumpach.
auto-triggered
« Vote/Veto by anchor
project (can also power
changes off-chain CI)

FIGURE A.1 Initial brainstorming with Radicle about features that could be included in a DAO for
coordinating open source git projects.

109


https://unsplash.com/@vonshnauzer?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/

APPENDIX B

SNAFU FABLE

In the beginning was the plan, 1 Photo by Patrick Hendry on Un-
and then the specification; splash.
And the plan was without form,

and the specification was void.

And darkness

was on the faces of the implementors thereof;
And they spake unto their leader,

saying:

"It is a crock of shit,

and smells as of a sewer.”

And the leader took pity on them,

and spoke to the project leader:

"It is a crock of excrement,

and none may abide the odor thereof.”

And the project leader

spake unto his section head, saying:

”It is a container of excrement,

and it is very strong, such that none may abide it.”

The section head then hurried to his department manager,
and informed him thus:

”It is a vessel of fertilizer,

and none may abide its strength.”

The department manager carried these words

110


https://unsplash.com/@worldsbetweenlines?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://unsplash.com/

to his general manager,

and spoke unto him

saying:

"It containeth that which aideth the growth of plants,
and it is very strong.”

And so it was that the general manager rejoiced

and delivered the good news unto the Vice President.
”It promoteth growth,

and it is very powerful.”

The Vice President rushed to the President’s side,
and joyously exclaimed:

“This powerful new software product

will promote the growth of the company!”

And the President looked upon the product,
and saw that it was very good.

[20]

111



BIBLIOGRAPHY

(2]

4]

[Formal Review] [Phase o] Transition to the DAO - RRKNX Governance
/ W Active Proposals. Radicle Community. URL: https://radicle.
community/t/formal-review-phase-0-transition-to-the-dao/3007
(visited on 08/27/2022).

John Antonakis. “Does power lead to corruption?” In: The
Guardian (Dec. 17, 2014). ISSN: 0261-3077. URL: https://www .
theguardian.com/sustainable-business/2014/dec/17/does-power-

lead-to-corruption-research-testosterone (visited on 08/19/2022).

Arrow’s impossibility theorem. In: Wikipedia. Page Version ID:
1092742522. June 12, 2022. URL: https://en.wikipedia.org/w/
index.php?title=Arrow%?27s_impossibility _theorem&oldid=
1092742522 (visited on 06/27/2022).

Daniel Boffey. “EU faces crisis as Hungary and Poland veto seven-
year budget.” In: The Guardian (Nov. 16, 2020). ISSN: 0261-3077.
URL: https://www.theguardian.com/world/2020/nov/16/eu-
hungary-veto-budget-viktor-orban (visited on 06/17/2022).

CISA director says the LOG4J security flaw is the “most serious” she’s
seen in her career. CNBC. URL: https://www.cnbc.com/video/2021/
12/16/cisa-director-says-the-log4j-security-flaw-is-the-most-

serious-shes-seen-in-her-career.html (visited on 09/04/2022).

Coordinape | Reinventing Compensation for Web3. Aug. 17, 2022.
URL: https://coordinape.com/ (visited on 08/17/2022).

DefiLlama. DefiLlama. URL: https://defillama.com/ (visited on
09/01/2022).

112

1 Photo by Marita Kavelashvili on
Unsplash.


https://unsplash.com/@maritafox?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/
https://radicle.community/t/formal-review-phase-0-transition-to-the-dao/3007
https://radicle.community/t/formal-review-phase-0-transition-to-the-dao/3007
https://www.theguardian.com/sustainable-business/2014/dec/17/does-power-lead-to-corruption-research-testosterone
https://www.theguardian.com/sustainable-business/2014/dec/17/does-power-lead-to-corruption-research-testosterone
https://www.theguardian.com/sustainable-business/2014/dec/17/does-power-lead-to-corruption-research-testosterone
https://en.wikipedia.org/w/index.php?title=Arrow%27s_impossibility_theorem&oldid=1092742522
https://en.wikipedia.org/w/index.php?title=Arrow%27s_impossibility_theorem&oldid=1092742522
https://en.wikipedia.org/w/index.php?title=Arrow%27s_impossibility_theorem&oldid=1092742522
https://www.theguardian.com/world/2020/nov/16/eu-hungary-veto-budget-viktor-orban
https://www.theguardian.com/world/2020/nov/16/eu-hungary-veto-budget-viktor-orban
https://www.cnbc.com/video/2021/12/16/cisa-director-says-the-log4j-security-flaw-is-the-most-serious-shes-seen-in-her-career.html
https://www.cnbc.com/video/2021/12/16/cisa-director-says-the-log4j-security-flaw-is-the-most-serious-shes-seen-in-her-career.html
https://www.cnbc.com/video/2021/12/16/cisa-director-says-the-log4j-security-flaw-is-the-most-serious-shes-seen-in-her-career.html
https://coordinape.com/
https://defillama.com/

(8]

[9]

[12]

[13]

[14]

(15]

[16]

[17]

[18]

[19]

(20]

File:Economics Gini coefficient2.svg. In: Wikipedia. Page Version
ID: 518461920. Oct. 18, 2012. URL: https://en.wikipedia.org/w/
index.phprtitle=File:Economics_Gini_coefficient2.svg&oldid=
518461920 (visited on 07/06/2022).

Filippo Valsorda. Professional maintainers: a wake-up call. Fil-
ippo Valsorda. Dec. 11, 2021. URL: https://words. filippo.io/
professional-maintainers/ (visited on 09/04/2022).

GitHub: Where the world builds software. GitHub. July 8, 2022. URL:
https://github.com/ (visited on 07/08/2022).

How the Blockchain could fix the Node.js ecosystem | HackerNoon.
URL: https://hackernoon.com/how-blockchain-technology-
could - fix - the - node - js - ecosystem - bccc60832900 (visited on
09/02/2022).

IPU comparative data on Structure of parliament. Parline: the IPU’s
Open Data Platform. June 17, 2022. URL: https://data.ipu.org/
compare (visited on 06/17/2022).

Kevin Owocki. Green Pill. 2022. URL: https://store.gitcoin.co/
products/green-pill-book-digital-edition (visited on 09/05/2022).

List of United States presidential elections in which the winner lost the
popular vote. In: Wikipedia. Page Version ID: 1107184601. Aug. 28,
2022. URL: https://en.wikipedia.org/w/index.php?title=List_
of _ United _ States _ presidential _elections _in _which _the _
winner _lost _the _ popular _vote & oldid =1107184601 (visited
on 09/03/2022).

NATO. Consensus decision-making at NATO. NATO. June 17, 2022.
URL: https://www.nato.int/cps/en/natohq/topics_49178.htm
(visited on 06/17/2022).

Plutocracy. In: Wikipedia. Page Version ID: 1087289787. May 11,
2022. URL: https://en.wikipedia.org/w/index. php ? title=
Plutocracy&oldid=1087289787 (visited on 06/18/2022).

Radicle Crypto Company Profile - Founders, Investors, Fund Raising.
CoinCarp. URL: https://www.coincarp.com/project/radicle/
(visited on 08/31/2022).

Eric S. Raymond. The Cathedral & the Bazaar: Musings on Linux
and open source by an Accidental Revolutionary. 1st edition. O’'Reilly
Media, Feb. 1, 2001. 258 pp.

David Smith. ““A mockery of democracy’: US supreme court in
question after abortion ruling.” In: The Observer (June 26, 2022).
ISSN: 0029-7712. URL: https://www.theguardian.com/law/2022/
jun/26/us-supreme-court-abortion-ruling-democracy (visited on
08/31/2022).

SNAFU Principle. Everything2.com. URL: https://everything?.
com/title/SNAFU+Principle (visited on 09/04/2022).

113


https://en.wikipedia.org/w/index.php?title=File:Economics_Gini_coefficient2.svg&oldid=518461920
https://en.wikipedia.org/w/index.php?title=File:Economics_Gini_coefficient2.svg&oldid=518461920
https://en.wikipedia.org/w/index.php?title=File:Economics_Gini_coefficient2.svg&oldid=518461920
https://words.filippo.io/professional-maintainers/
https://words.filippo.io/professional-maintainers/
https://github.com/
https://hackernoon.com/how-blockchain-technology-could-fix-the-node-js-ecosystem-bccc60832900
https://hackernoon.com/how-blockchain-technology-could-fix-the-node-js-ecosystem-bccc60832900
https://data.ipu.org/compare
https://data.ipu.org/compare
https://store.gitcoin.co/products/green-pill-book-digital-edition
https://store.gitcoin.co/products/green-pill-book-digital-edition
https://en.wikipedia.org/w/index.php?title=List_of_United_States_presidential_elections_in_which_the_winner_lost_the_popular_vote&oldid=1107184601
https://en.wikipedia.org/w/index.php?title=List_of_United_States_presidential_elections_in_which_the_winner_lost_the_popular_vote&oldid=1107184601
https://en.wikipedia.org/w/index.php?title=List_of_United_States_presidential_elections_in_which_the_winner_lost_the_popular_vote&oldid=1107184601
https://www.nato.int/cps/en/natohq/topics_49178.htm
https://en.wikipedia.org/w/index.php?title=Plutocracy&oldid=1087289787
https://en.wikipedia.org/w/index.php?title=Plutocracy&oldid=1087289787
https://www.coincarp.com/project/radicle/
https://www.theguardian.com/law/2022/jun/26/us-supreme-court-abortion-ruling-democracy
https://www.theguardian.com/law/2022/jun/26/us-supreme-court-abortion-ruling-democracy
https://everything2.com/title/SNAFU+Principle
https://everything2.com/title/SNAFU+Principle

[21]

[22]

Sybil. URL: https://sybil.org/#/delegates/radicle (visited on
08/27/2022).

Understanding the Impact of Apache Log4j Vulnerability. Google
Online Security Blog. URL: https://security.googleblog.com/
2021/12/understanding-impact-of-apache-log4j.html (visited on
09/04/2022).

Valve. Valve Employee Handbook. 2012. URL: http://archive.org/
details/ValveEmployeeHandbook (visited on 08/18/2022).

WordPress. In: Wikipedia. Page Version ID: 1109468779. Sept. 10,
2022. URL: https://en.wikipedia.org/w/index . php ? title=
WordPress&oldid=1109468779 (visited on 09/11/2022).

114


https://sybil.org/#/delegates/radicle
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
http://archive.org/details/ValveEmployeeHandbook
http://archive.org/details/ValveEmployeeHandbook
https://en.wikipedia.org/w/index.php?title=WordPress&oldid=1109468779
https://en.wikipedia.org/w/index.php?title=WordPress&oldid=1109468779

	Introduction
	Theoretical Discussion
	Governance Systems
	Open Source
	Blockchains

	GitDao
	Decreasing Power Token
	Voting Workflow
	Rewarding Scheme
	Developer Rewards
	Issue Backing
	GitDAO

	Applications
	Demo
	Radicle
	Conclusion

	Appendices
	Figma Charts
	Snafu Fable


