
Distributed

 Computing

Data-driven Preprocessing of EEG
Data

Master’s Thesis

Adrian Hoffmann

adriahof@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Ard Kastrati, Martyna Beata Płomecka, Benjamin Estermann

Prof. Dr. Roger Wattenhofer

January 24, 2023

Acknowledgements

I would like to extend my gratitude to all people who helped me during my
thesis. Of course, a special thanks to my supervisors. To Ard Kastrati whose
advice helped me keep on track and produce a far better and more well-rounded
work than would have been possible otherwise. To Martyna Beata Płomecka who
was always ready to help me whenever I had trouble with or questions about
EEG data or her preprocessing in EEGEyeNet. And to Benjamin Estermann
whose knowledge about Variational Autoencoders I drew on countless times.
Furthermore, I would like to thank Prof. Dr. Nicolas Langer for his help during
my Thesis and Prof. Dr. Roger Wattenhofer for the opportunity to do my Thesis
in his group.

i

Abstract

In this work we investigated ways to preprocess data from Electroencephalogra-
phy (EEG) in a fully data-driven manner. We surveyed different ways of pre-
processing the data and evaluated how well they aid β-TCVAEs and annealed
β-TCVAEs to split said data. We succeeded in applying one of the preprocess-
ing schemes to the data from the EEGEyeNet dataset [1]. The resulting models
split the data into uncorrelated latent dimensions while keeping the reconstruc-
tions at a decent level. We tested the information content of the resulting latent
representation by using the trained encoders as the preprocessing step for the
raw EEG data in the Amplitude, Angle, and Position task from EEGEyeNet.
This led to decent performance on both the Amplitude and Angle task using the
raw data (compared to the results from Kastrati et al. on preprocessed data).
Furthermore, we investigated what latent dimensions are important for the afore-
mentioned tasks and which less so giving us insights into what characteristics of
the EEG data matter to the regression models.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation and Goal . 1

2 Background 3

2.1 Independent Component Analysis (ICA) 3

2.2 Variational Autoencoders . 4

2.2.1 Basics . 4

2.2.2 Variants . 5

2.3 Fourier Transform . 6

2.4 Skip Connections . 7

2.5 Permutation Feature Importance 7

3 Terminology 8

4 Dataset and Preprocessing 10

4.1 The EEGEyeNet Dataset . 10

4.1.1 Data Acquisition . 10

4.1.2 Minimal Preprocessing . 11

4.1.3 Cutting the Data . 11

4.1.4 Tasks in EEGEyeNet . 13

4.1.5 Maximal Preprocessing . 13

4.2 Machine Learning Preprocessing Schemes 14

4.2.1 Preprocessing Schemes . 14

4.2.2 Advantages and Disadvantages of Common Preprocessing
Schemes . 15

iii

Contents iv

5 Methods and Modeling 18

5.1 Discovered Potential . 18

5.1.1 Variational Autoencoders 18

5.1.2 VAEs Show Potential . 19

5.2 Preparing the Data for the VAEs 19

5.2.1 The Giant Span . 19

5.2.2 High Frequencies . 20

5.2.3 Line Noise . 21

5.2.4 Line Noise and Normalization 21

5.3 Training the VAE . 22

5.3.1 Signal vs Sample . 22

5.3.2 The Full Pipeline . 23

5.3.3 Standard Deviations of the Frequencies 23

5.4 Uncovered Latent Representation 24

5.4.1 Learnt Latent Representation 24

5.4.2 Information Content . 24

6 Experiments 26

6.1 Sanity Checks . 26

6.2 Full Dataset . 27

6.3 Feature Statistics . 28

6.4 Downstream Tasks . 28

6.5 Perturbation Importance . 29

6.6 Angle and Amplitude from Line Noise 30

7 Results 31

7.1 Sanity Checks . 31

7.2 Full Dataset . 31

7.3 Feature Statistics . 32

7.4 Downstream Tasks . 33

7.5 Perturbation Importance . 34

7.6 Angle and Amplitude from Line Noise 35

Contents v

8 Conclusion 36

Bibliography 37

A Latent Dataset A-1

B Splitting the Data for the Downstream Tasks B-1

C Permuting Electrodes or Latent Dimensions in Latent Datasets C-1

D Visualisations of Latent Dimensions D-1

E Root Mean Squared Error Versions E-1

F Plots Sanity Check Reconstructions F-1

F.1 Standardize per Electrode in Time Domain F-2

F.2 Normalize per Electrode in Time Domain F-3

F.3 Standardize per Electrode in Frequency Domain F-4

F.4 Normalize per Electrode in Frequency Domain F-5

F.5 Standardize per Split Frequency in Frequency Domain F-6

F.6 Normalize per Split Frequency in Frequency Domain F-7

F.7 Standardize per Electrode in Frequency Domain (with Logarithm) F-8

G Full Dataset Reconstructions G-1

G.1 TCVAE with µ = 400 . G-2

G.2 TCVAE with µ = 800 . G-3

G.3 Annealed β-TCVAE . G-4

H Full Dataset Correlation Matrices H-1

H.1 TCVAE with µ = 400 . H-2

H.2 TCVAE with µ = 800 . H-3

H.3 Annealed β-TCVAE . H-4

I Feature Importance Results I-1

I.1 Amplitude Task . I-2

I.1.1 Latent Dimensions . I-2

Contents vi

I.1.2 Electrodes . I-3

I.2 Angle Task . I-7

I.2.1 Latent Dimensions . I-7

I.2.2 Electrodes . I-8

I.3 Annealed β-TCVAE . I-12

I.3.1 Time Domain . I-12

I.3.2 Frequency Domain . I-13

I.4 Rank Differences . I-13

I.4.1 Amplitude Task . I-14

I.4.2 Angle Task . I-15

J Feature Statistics J-1

J.1 Sanity Checks . J-1

J.1.1 Standardize per Electrode in Time Domain J-1

J.1.2 Normalize per Electrode in Time Domain J-2

J.1.3 Standardize per Electrode in Frequency Domain J-3

J.1.4 Normalize per Electrode in Frequency Domain J-4

J.1.5 Standardize per Split Frequency in Frequency Domain . . J-4

J.1.6 Normalize per Split Frequency in Frequency Domain . . . J-5

J.1.7 Standardize per Electrode in Frequency Domain (with Log-
arithm) . J-6

J.2 Full Dataset - Raw . J-7

J.2.1 Standardize per Electrode in Time Domain J-7

J.2.2 Normalize per Electrode in Time Dimension J-8

J.2.3 Standardize per Electrode in Frequency Domain J-9

J.2.4 Normalize per Electrode in Frequency Domain J-10

J.2.5 Standardize per Split Frequency in Frequency Domain . . J-10

J.2.6 Normalize per Split Frequency in Frequency Domain . . . J-11

J.2.7 Normalize (-0.5 to 0.5) per Signal in Time Domain J-12

J.3 Full Dataset - Minimally Preprocessed J-13

J.3.1 Standardize per Electrode in Frequency Domain J-13

J.3.2 Standardize per Split Frequency in Frequency Domain . . J-13

Chapter 1

Introduction

Electroencephalography (EEG) is a non-invasive, minimally restrictive, and rel-
atively low-cost measure of mesoscale brain dynamics [1]. Furthermore, EEG is
capable of delivering a high temporal resolution. However, EEG also offers some
challenges. The main one being the level of noise and amount of artefacts that
it usually contains. Among the most prominent are line noise (in Europe this is
a 50Hz noise signal) and the artefacts from the eyes moving (a main artefact for
the electrodes around the eyes). It is hence not surprising that this is an area
of research where the neuroscience community has developed impressive tools to
preprocess EEG data, like for example in [2].

1.1 Motivation and Goal

In our work we aimed at investigating if we can use deep learning based ap-
proaches to preprocess raw EEG signals. The results could pave the way for a
more (or one day maybe even completely) data-driven option for preprocessing
EEG data. Such an undertaking consists of two main parts. First, a way has to
be devised to train a model with which one can split an EEG signal or at the
very least remove unwanted parts from a signal. Second, it has to be ensured
that the approach retains important information in the signals.
We mainly see three opportunities in a pipeline that is fully data-driven. First,
every system crafted by humans has the potential to introduce human biases. A
fully data-driven approach might be able to remove those or shed light on po-
tential biases in today’s pipelines. Second, preprocessing as, for example, used
in Kastrati et al. [1] is time-intensive - a factor of four was not uncommon in
their work. Meaning that five minutes of EEG data could take upwards of 20
minutes of postprocessing (or preprocessing if we take the point of view from a
downstream task). However, this can be a problem for a few applications where
speed is key, for example live eye-tracking from EEG data which EEGEyeNet [1]
is a step towards. Systems based on deep learning have the potential for better
performance. Third, solutions based on learning have the added advantage that
they can easily make use of additional (training) data which likely yields perfor-

1

1. Introduction 2

mance improvements. If the approach is self-supervised then this effect is even
greater since (unlike with supervised learning) there is no need for labels.
This work is a first step into this direction. We investigated several common pre-
processing methods and what their advantages and disadvantages are on EEG
data. Furthermore, we successfully trained a VAE on raw EEG data and used its
encoder successfully as a preprocessing step for the Amplitude and Angle task
from EEGEyeNet.

Chapter 2

Background

2.1 Independent Component Analysis (ICA)

The ICA is an algorithm for the blind source separation problem wherein one tries
to recover the independent source signals from only sensor observations [3]. To
add to the difficulty, not only the source signals but also the way they were mixed
are unknown. In the ICA the problem is modelled as a matrix multiplication of
the source signals S with shape M×T , the full rank mixing matrix A with shape
N ×M , and the sensor observations X with shape N × T . M is the number of
source signals, N is the number of sensors, and T is the number of time steps.
These are combined into the following model:

X = AS

Further assumptions taken by the ICA are:

1. There are more sensors than sources, i.e. N ≥ M

2. The sources are mutually independent at each time instant

3. At most one source is normally distributed

4. The sensor noise must be additive and low (or non-existent) - however,
noise can also be interpreted as another source signal itself to which the
above assumptions need to apply

If one had the mixing matrix A, then it would be easy to compute S from X
since one only needs to compute the inverse of A (called the unmixing matrix W)
and then compute WX = S yielding the source signals. However, computing A
or W is not easy (it is even ill-defined) and since it does not add to the material
in the rest of this work, we do not dive into the theory of optimizing this problem.

3

2. Background 4

Figure 2.1: Visualisation of an autoencoder. The blue parts are the encoder and
the pink ones are the decoder. The yellow neurons form the bottleneck which
means they are simultaneously the output neurons for the encoder and the input
neurons for the decoder.

2.2 Variational Autoencoders

We assume that the reader has a basic understanding of deep learning. Terms
like dense layer, non-linearity, neurons, or loss function in this context should be
familiar.

2.2.1 Basics

Autoencoder: The idea behind an autoencoder is that the model implements
the identity function, i.e. that its output is the same as its input. This oper-
ation, however, becomes more interesting once one introduces constraints like a
bottleneck layer (see Fig. 2.1 for a visualisation). The autoencoder hence has to
compress the input (for example, an image) such that the neurons in the bottle-
neck can capture its information - we denote this vector as z. This representation
z is called the latent representation of the input. The training is very straight-
forward in the basic case since one only needs to define a differentiable distance
between the input and the output of the model (e.g. the mean squared error)
and can then apply the optimizer of their choice.
Variational Autoencoder (VAE): There is nothing that prevents (or discour-
ages) the activations of neurons in the bottleneck layer of an autoencoder to
be correlated. This is fine if one is mainly focused on the quality of the recon-
structions. However, interpreting the latent representations can be difficult since
multiple neurons might have intricate correlations. The goal of VAEs is to move
a bit away from this by introducing a prior for the latent dimensions and encour-
aging them to stay close to the prior [4, 5]. This is achieved by changing the
bottleneck slightly and adding a term to the loss. In a VAE the encoder outputs
the parameters of a distribution which is typically a multivariate Gaussian with
a diagonal covariance matrix (see Fig. 2.2 for a visualisation). Let us denote
the vector of predicted means with µ = [µ1, µ2, ..., µk]

T and the matrix with the

2. Background 5

Figure 2.2: Visualisation of a VAE. The encoder (blue) computes statistics of a
distribution (here multivariate Gaussian with diagonal covariance matrix) which
are used to draw from said distribution yielding the input to the decoder (pink).

predicted standard deviations on the diagonal as σ = diag(σ1, σ2, ..., σk) where
k is the dimension of the modeled multivariate Gaussian. To get from µ and σ
to the input for the decoder one draws a sample s from a multivariate normal
distribution and computes z = σ ∗ s + µ, where ∗ is matrix multiplication. z is
then fed into the decoder. Note that sampling is only necessary during training.
One can simply take z = µ once the VAE is trained.
This allows us to add an additional term to the loss, which is the Kullback-
Leibler-Divergence (KLD) between the variational distribution (defined through
µ and σ) and the multivariate normal distribution (our prior). Thus, the loss has
a reconstruction term and a KLD term. The latter of which can be understood
as a regularizer that encourages the model (specifically the encoder) to predict
(for a given) input a variational distribution that is close to a multivariate normal
distribution. And with that comes that the individual dimensions are uncorre-
lated.
Visualising latent codes: Since the different dimensions of the latent repre-
sentations are uncorrelated in a well-trained VAE, we can gain insight into what
concepts different latent dimensions might encode. For that, we focus on the
decoder of a trained VAE. One would usually start to take the zero vector and
feed it into the decoder. Afterwards, one would input a series of vectors whose
entries are all 0 but for one dimension. For that specific dimension, one would
vary the values slightly and observe the changes in the output of the decoder.
Whatever changes that are observed in the output seem to be encoded in the
dimension whose values were changed. This can be done for every dimension.
However, one has to be careful: while the latent dimensions are uncorrelated
that does not mean that the decoder does not combine the information from
different dimensions for its output.

2.2.2 Variants

β-VAE: Higgins et al. [6] showed the benefits of introducing a tunable hyperpa-
rameter β to lower or heighten the relative weight the KLD term has over the

2. Background 6

reconstruction term in the VAE loss. We use this additional hyperparameter
throughout our work.
β-TCVAE: Chen et al. [7] decoupled the KLD term in the loss of the VAE and
split it into three parts which allowed them to introduce further hyperparameters
to more precisely weight different parts of the loss, like the correlation between
different latent dimensions. We used this split but rearranged the terms slightly
such that we ended up with a loss of the shape µ ∗ reconstruction + (β − 1) ∗
total correlation + KLD term, where µ and β are tunable hyperparameters.
Annealed VAE: Burgess et al. [8] introduced the annealed VAE which replaces
the KLD term in the VAE loss with an absolute difference between the KLD
term and C. During training C is slowly increased until some maximum value
is reached. The aim of this is to steer the KLD term in the loss and only let it
slowly go up, which was shown to lead to a learning behaviour where different
concepts were learned one at a time instead of all at once. The absolute difference
is weighted by an additional hyperparameter γ. The maximum value of C, the
slope of the increase of C during training, and γ are all tunable hyperparameters.
We deploy this in some of our experiments where we replace the KLD term in
our rearranged β-TCVAE loss with the just described absolute difference.

2.3 Fourier Transform

A common tool when working with signals is the Fourier transform with which
one can decompose a signal (possibly complex) into its different frequencies. We
made use of this transformation in our work but since the EEG data is a discrete
signal, we did not use the Fourier transform itself, but its discrete version the
Discrete Fourier transform (DFT), of which the formula is given below:

Sk =
N−1∑
n=0

sn ·
[
cos

(
2π

N
kn

)
− i · sin

(
2π

N
kn

)]
where s = [s0, s1, ..., sN−1] is the signal in time domain and S = [S0, S1, ..., SN−1]
the signal in frequency domain. N will be 500 in all our cases. Hence, the
Nyquist frequency (the highest frequency after which aliasing happens) with
our sampling rate of 500 Hz is 250 Hz. Furthermore, since we have a real-
valued input (EEG data) S499, S498, ..., S251 are simply the complex conjugate of
S1, S2, ..., S249 respectively. Hence, we only need to compute S0, S1, ..., S250 to
capture all information. Lastly, in our work we split the vector [S0, S1, ..., S250]
into [Sr

0 , S
r
1 , ..., S

r
250, S

i
0, S

i
1, ..., S

i
250] where Sr

k denotes the real part of Sk and Si
k

denotes the imaginary part of Sk. We did this to get a real-valued vector again.

2. Background 7

2.4 Skip Connections

For our models, we utilised skip connections from the ResNet paper by He et
al. [9]. However, we do not use convolutions but rather dense networks. For
our purposes, one ResNet block consisted of first a fully connected layer with
ReLU and batch normalization. This fully connected layer was used to steer
the number of neurons in hidden layers (in He et al. [9] this was achieved with
larger strides or pooling). The first layer was followed by two more sets of a
linear layer followed by ReLU and batch normalization, each keeping their input
dimension. Afterwards, we utilised the skip connection by adding the resulting
vector and the vector from after the first set of operations together. The block
ends with passing the result from the addition through another ReLU and batch
normalization layer. We term the dimension of the block to be the dimension of
the output vector - which is also the dimension of the vectors being added.

2.5 Permutation Feature Importance

To gain more insights into our models we made use of the permutation feature
importance. The concept was first introduced by Breiman [10] for random forests.
The basic idea is that if a feature is insignificant for a model then we can permute
the values for that feature over all the samples in a dataset and have the outputs
for the dataset change little or not at all. It is obvious that the idea can be
adapted to many situations. We used it to get an idea about the importance of
different latent dimensions and different electrodes for our models.
This method is unfortunately not perfect. As Molnar [11] writes, the results
derived from this method can vary greatly because of the randomness involved in
the permutation. This can be mitigated to a degree by running multiple rounds
and taking the mean. However, the problem might not completely vanish and the
computation time increases. Another problem is that unrealistic data is likely
generated by permuting the values of a feature, which is an especially pressing
issue if features are correlated.

Chapter 3

Terminology

We introduce some terminology that allows us to elucidate our work precisely in
a much more readable and concise way:

• VAE: We use this as an umbrella term for all variations of VAEs that we
introduced in Section 2.2.

• Sample: This is one unit from the EEGEyeNet dataset, i.e. a matrix with
129 rows (= the different electrodes) and 500 columns (= a one-second
window) containing the EEG data from a measurement. Samples come
in different flavours based on the level of preprocessing Kastrati et al. [1]
applied. There are raw samples, minimally preprocessed samples, and max-
imally preprocessed samples.

• Signal: General term for one of the rows of a sample, i.e. a vector with
500 entries. Hence, a signal always has an electrode associated with it.

• Latent Signal: A signal in a latent representation. We usually created a
latent sample when we passed a signal through the encoder of a VAE. The
computed means (or a subset thereof) are then the latent signal.

• Latent Sample: A sample for which all 129 signals were replaced with
their respective latent representations.

• Electrode: Can either be the physical electrode that is used to measure
the EEG data or refer to the rows of samples. Note that in the latter case
that includes the reference signal from the EEG (the 129th electrode).

• Channel: This is used as a synonym for electrode.

• Split representation: The representation we introduced in Section 2.3
where we used [vr0, ..., v

r
n−1, v

i
0, ..., v

i
n−1] to represent an array of complex

numbers [v0, ..., vn−1].

• Frequency: This either refers to a frequency in Hertz or the response value
from the DFT for a specific frequency.

8

3. Terminology 9

• Split frequency: Refers to the real or imaginary part of a response value
from the DFT for some frequency. This term is used in conjunction with
the term ‘split representation’ since we represent the complex output array
of the DFT of some signal in the split representation.

Chapter 4

Dataset and Preprocessing

At the center of this thesis is the EEGEyeNet dataset from Kastrati et al. [1].
Therefore, it makes sense to further elaborate on this dataset and the prepro-
cessing that they performed.

4.1 The EEGEyeNet Dataset

Kastrati et al. [1] published a paper accompanying the EEGEyeNet dataset at
NeurIPS 2021. We will not repeat all the information in said paper but rather
only some select parts that are relevant for this work. Thus, there will be de-
tails and parts that we intentionally keep high level or non-specific to keep the
description concise. If the reader wants more information we refer them to [1].

4.1.1 Data Acquisition

EEGEyeNet is a dataset that was introduced by Kastrati et al. [1] in their
NeurIPS 2021 paper. Each participant who contributed to the dataset was placed
in front of a monitor using a chin rest to ensure a stable position. They were
then presented with one of several tasks. The one we are interested in is based
on the “Large Grid” paradigm where the participants (the version of the dataset
we used contained data from 72 participants) were asked to fixate on 25 different
dots which were displayed sequentially. Two modalities were recorded while the
participants were performing these tasks. One is 128 channel, high-density EEG
data at a sampling rate of 500 Hz and the other is the participant’s eye position
(i.e. where the participant looks at on the monitor).
For the full setup we refer you to the paragraph “Large Grid” in subsection 3.4
in [1].

10

4. Dataset and Preprocessing 11

4.1.2 Minimal Preprocessing

This work is mainly concerned with the raw data meaning the steps in this sub-
section were not applied to the data used in this work. However, the works of
other people used a preprocessed version of the data and also draw on the pre-
processed data from time to time.
The preprocessing consists of a hand full of steps which are visualised in Fig. 4.1.
First, bad channels were detected and removed from the data (resulting in the
second subplot of Fig. 4.1). A channel was deemed bad if it contained a lot of
line noise, it contained too little signal variation (for example, if an electrode
detached), or it contained a lot of other noise. Next, the Zapline toolkit [12] was
applied to the remaining channels to remove line noise artifacts in them (which in
Europe is an easy to spot 50 Hz artefact). Also, high-pass filtering with a cut-off
at 0.5 Hz was applied to the remaining data which primarily affected the spans
of the signals. The result after filtering (Zapline and high-pass) is visualised in
the third subplot of Fig. 4.1. As the last step, each of the removed channels
was replaced with a signal that was interpolated from the electrode’s neighbours
(resulting in the fourth subplot of Fig. 4.1). All these operations were performed
per recording using Automagic [2]. A recording lasted for longer than the two
seconds visualised in Fig. 4.1.
We call data which was preprocessed as described in this subsection to be min-
imally preprocessed.

4.1.3 Cutting the Data

At this point the data was still a stream of long recordings, not particularly suited
for machine learning. Hence, there was one final step: cutting the data. After
this, two (sub)datasets emerged each with samples of the shape (129, 500) as the
input features. We will consider the output labels in the next subsection.
129 electrodes: Although there were 128 physical electrodes on a participants
head measuring the EEG data, a sample in EEGEyeNet has 129 electrodes. Along
with the 128 physical electrodes there is also a reference electrode. The values for
a physical electrode stored in a sample are the difference between the measured
voltage on the participants head for that electrode and the reference electrode.
500 timesteps: As mentioned above, the EEG data was measured at 500 Hz.
Hence, each sample in the dataset spans one second of a signal.
(Sub)datasets: For one dataset the EEG data is cut such that a saccade (=
a movement of the eye) happens in the middle of the sample and in the other
dataset each sample is a one second window of a fixation (= no movement of the
eye). We call the former set the direction dataset and the latter the position
dataset.

4. Dataset and Preprocessing 12

Figure 4.1: Three channels from real EEG data at different steps of the prepro-
cessing pipeline from Kastrati et al. [1]. We only show two seconds here but the
preprocessing is applied to the whole recording. The smallest and largest millivolt
values of each displayed signal are noted below the y-axis tick labels (rounded to
1 decimal). The second to last subplot is the minimally preprocessed data. The
last one is the maximally preprocessed data.

4. Dataset and Preprocessing 13

4.1.4 Tasks in EEGEyeNet

Kastrati et al. [1] proposed three different tasks that accompany the EEGEyeNet
dataset. These tasks were termed Left-Right, Angle/Amplitude, and Absolute
Position. For each of them there is a separate dataset in EEGEyeNet (i.e. three
datasets). The Angle/Amplitude task is sometimes also counted as two tasks
which we do as well in this work. The Amplitude, Angle, and Absolute Position
tasks were of interest for us.
A model has to predict the distance the gaze of a subject travels on the monitor
based on the EEG data in the Amplitude task. In the Angle task, models have
to predict the Angle at which this movement happens. The distance is measured
in pixels and the angle in radian. Both tasks are based on the direction dataset
and hence the dataset contains the amplitude and angle of the saccade as the
labels for each sample.
The Absolute Position task on the other hand asks of a model to predict the pixel
that a subject is fixating on based on the EEG data of a sample. The position
dataset hence has the x and y coordinates of the pixel a subject is fixating on
during the sample its label.
Furthermore, each sample has a subject-ID associated with it so that we can
distinguish between the samples of different participants. This holds for both
datasets, direction and position.
Note that the focus of our work was not to improve the the current best scores
on these tasks. However, they were of great convenience to test our approach
(see more in Chapter 6).

4.1.5 Maximal Preprocessing

In Subsection 4.1.2 we already saw what Kastrati et al. [1] applied as their mini-
mal preprocessing to the raw EEG data. While they used the minimally prepro-
cessed data for their benchmarks they also produced a maximally preprocessed
version of the data. This maximal preprocessing is built on top of the minimally
preprocessed data. ICA was applied to the minimally preprocessed data as the
next step. Specifically, on a per recording level (imagine a five minute chunk of
data of a subject) the minimally preprocessed EEG data was used as the sensor
observations X. Once the source signal matrix S and hence the independent com-
ponents (individual rows of S) were computed they used ICLabel [13] to classify
each of the components. ICLabel is a classifier trained to classify independent
components from EEG data into the 7 categories Brain, Muscle, Eye, Heart, Line
Noise, Channel Noise, and Other. Based on these labels, all independent com-
ponents that were classified Eye, Heart, Line Noise, or Channel Noise (with at
least 80% certainty) were removed from S (and the according columns from A)
and these filtered A and S were then used to generate a filtered version of the
EEG data X (resulting in the fifth subplot of Fig. 4.1). We show in Fig. 4.2 some

4. Dataset and Preprocessing 14

Figure 4.2: Two windows (each of two seconds length) of independent compo-
nents from two different recordings. The ICLabel classification is in their titles
along with the probability for the class. The small shadowed areas towards the
beginning of the plots show when the subjects made a saccade (eye movement).
The unit along the y-axis is millivolt. However, the values have limited meaning
since the ICA is ill-defined.

examples of independent components and their classification. Automagic [2] was
also used to perform the ICA step of the preprocessing.

4.2 Machine Learning Preprocessing Schemes

In this section we describe preprocessing schemes that are commonly used in ma-
chine learning, as well as what their strengths and weaknesses are for EEG data.

4.2.1 Preprocessing Schemes

In machine learning it is generally a good idea to apply some level of preprocess-
ing to ones data as models have proven to perform better and learn more quickly
with proper preprocessing. At the same time we needed to be mindful as we do
not want to introduce too much human bias into the system.
Two schemes that fit this description were normalization and standardization. In
standardization one removes the mean from data and divides it by its standard
deviation. This both helps to reduce the spread of data and makes the absolute
values of the numbers smaller. Normalization takes this a step further and sub-
tracts the smallest value in data from data and then divides the result by the
span of data (the largest value in data minus the smallest value). The result is
that data is between zero and one. The only question that is left to the users is
what “data” exactly means in their case. We elaborate in Subsection 4.2.2.

4. Dataset and Preprocessing 15

Another common trick that is used in machine learning is to take the logarithm of
data. This helps to make large numbers a lot smaller while keeping some relative
information (if x > y then also log(x) > log(y)).

4.2.2 Advantages and Disadvantages of Common Preprocessing
Schemes

A general advantage is that these schemes are simple and that they have proven
their worth in many domains. Furthermore, they help with the extreme spread
of values the raw EEG data exhibits.
The question remains for standardization and normalization over what portions
of the data we compute their statistics (mean, standard deviation and minimum,
span). To discuss this, we introduce a very simplified dataset which only contains
two samples which themselves are simplified too (they only have 3 electrodes and
4 timepoints instead of 129 and 500 respectively):

s1 =

 1 3 4 18
2 −3 2 −3
4 0 −2 1

 s2 =

 2 2 0 −1
3 4 −1 2
1 −1 −13 −1

 (4.1)

Floating point numbers are rounded to two digits after the comma in the following
and we only note down the two matrices themselves (i.e. we do not add the
variable names) so that we can fit them side by side. In the following we go
through some options of scopes over which the statistics can be computed.
Per dataset: Computing the statistics for normalization over the whole dataset
(min = −13, span = 31) is very susceptible to outliers which leads to the bulk of
the values being squeezed into a small range as can be seen by the normalized
versions of our example: 0.45 0.52 0.55 1.0

0.48 0.32 0.48 0.32
0.55 0.42 0.35 0.45

 0.48 0.48 0.42 0.39
0.52 0.55 0.39 0.48
0.45 0.39 0.0 0.39

 (4.2)

A similar pattern can also occur if the data has some electrodes whose values are
all much closer to 0 than for most other electrodes. Those values would then also
be squeezed into a small range - no matter the noise level. These two problems
are important in our case because the signals in the raw EEG data can have very
large absolute values.
Standardization also has this problem but to a lesser extent since individual
outliers affect the mean and the standard deviation not quite as much as they
can the minimum value and the span of the data. In our case (calculating the
statistics over the whole dataset) gives µ = 1, σ = 4.93 and standardized data: 0.0 0.41 0.61 3.45

0.2 −0.81 0.2 −0.81
0.61 −0.2 −0.61 0.0

 0.2 0.2 −0.2 −0.41
0.41 0.61 −0.41 0.2
0.0 −0.41 −2.84 −0.41

 (4.3)

4. Dataset and Preprocessing 16

Per electrode: In this version the statistics are computed for each electrode
independently. In our examples this would mean that we compute 3 means and
standard deviations for standardization or 3 minimums and spans for normaliza-
tion. This already lessens some of the problems that we discussed above. The
effect of outliers are now confined to the electrodes they are in. For example, the
three minimums for our dataset are (−1,−3,−13) and the spans are (19, 7, 17)
which leads to values that are not as squeezed: 0.11 0.21 0.26 1.0

0.71 0.0 0.71 0.0
1.0 0.76 0.65 0.82

 0.16 0.16 0.05 0.0
0.86 1.0 0.29 0.71
0.82 0.71 0.0 0.71

 (4.4)

However, there is some relative information removed. For example, the means
of the different electrodes in the original data in 4.1 are 3.62, 0.75,−1.38. In 4.4
this changes to 0.24, 0.54, 0.68 which clearly shows that the relationships between
the means have been broken. For standardization this is even more obvious since
the mean is removed for each electrode individually and hence every electrode’s
mean is zero after standardization. Importantly, removing this relative informa-
tion also happens in a similar manner in the preprocessing pipelines discussed
in Section 4.1 with the high-pass filtering effectively removing the mean and it
is still assumed that the resulting data provides enough information to solve the
different tasks presented in Kastrati et al. [1].
Per timepoint or split frequency: For the schemes so far we did not think
about the machine learning model that will receive the data. The VAEs we
used in our work took individual signals as their input, meaning that every time
point or every split frequency (depending on whether the DFT is applied to the
signal or not) can be considered one feature. Consequently, it is tempting to
normalize/standardize per input feature as models (and hence also VAEs) tend
to do better if their input features all have about the same mean and standard
deviations. However, in our case, normalizing/standardizing per feature removes
information between timepoints which is very important information. For ex-
ample, say we standardize per time point in our example dataset. The means
for the four timepoints are 2.17, 0.83,−1.67, 2.67 and the standard deviations are
1.07, 2.41, 5.44, 7.04. Hence, the standardized data is: −1.09 0.9 1.04 2.18

−0.16 −1.59 0.67 −0.8
1.72 −0.35 −0.06 −0.24

 −0.16 0.48 0.31 −0.52
0.78 1.31 0.12 −0.09
−1.09 −0.76 −2.08 −0.52

(4.5)

The oscillating signal from the middle row in s1 suddenly has a much more
irregular behavior. It is again a good moment to repeat that we are interested in
the latent representations the VAEs produce. If we were only interested in the
reconstructions then preprocessing would not be a problem since we could simply
apply the reverse to the output of the VAE. However, the latent representation
of a VAE can only capture the information that is fed into it. Hence, one has

4. Dataset and Preprocessing 17

to be very careful with changing the shape of the signal during preprocessing as
this is vital information.
The story is similar if we first apply the DFT to all signals and put the results
into the split representation. Then one feature is a split frequency. Normalizing
(or standardizing) per split frequency breaks the relative information between
the different frequencies that are contained in the original signal as well as the
relative information between the real and imaginary part of the DFT value of
each frequency. This hence also changes the shape of the signal.
Per signal: This lessens the problem of outliers even more since an outlier
would only affect the signal it is in. Since we have 6 signals we would compute 6
minimums and 6 spans, here depicted as 4 vectors (the subscript shows whether
it was derived from s1 or s2):

min1 =

 1
−3
−2

 min2 =

 −1
−1
−13

 span1 =

 17
5
6

 span2 =

 3
5
14

Using these values to normalize the data per signal yields: 0.0 0.12 0.18 1.0

1.0 0.0 1.0 0.0
1.0 0.33 0.0 0.5

 1.0 1.0 0.33 0.0
0.8 1.0 0.0 0.6
1.0 0.86 0.0 0.86

 (4.6)

As we can see, the values are very well behaved, the outliers (the 18 and −13)
only influence their respective signals, and the shape of the signals is preserved.
However, information between different signals has been removed and hence even
the relative information between signals within one sample has been tampered
with. For example, the means for the three electrodes in s1 are 6.5,−0.5, and 0.75
but in 4.6 the means are 0.32, 0.5, and 0.46 - the order has flipped. Furthermore,
this preprocessing scheme can leak some information about some frequencies into
the values of other frequency components in the DFT. But more on this later.
Logarithm: Models can struggle if one’s data has some values or features that
are much larger than others. We have already seen some preprocessing options
now. Another one to help make the data better for your model is the logarithm
since it lowers very high values much more than smaller ones. Yet, the logarithm
has also its disadvantages. For one, the logarithm is not defined for negative
numbers in the real space. Meaning that one has to venture into the complex
numbers for such cases - which was not a problem for us since we were working
with the DFT anyways. Second, it creates very negative numbers if the input is
close to zero. And zero itself is an invalid input.

Chapter 5

Methods and Modeling

In this section, we share the conceptual insights we have garnered during this
work. We set out by motivating our choice of model and goal in this work. We
transition to discussing the data and its particularities. This is followed up by a
part about Variational Autoencoders and their latent representations of the EEG
data. We close out by sharing insights about using a VAE as a preprocessing step
for tasks in EEGEyeNet.

5.1 Discovered Potential

Learning projects on EEG data these days usually start by cleaning the data
with tools such as the ones used by Kastrati et al. [1]. Afterwards, a model is
trained on the cleaned data. This approach has many advantages. The tools
used for cleaning are well established and we understand what they do. Machine
learning models generally perform better when the data they receive is freed from
unnecessary information in the data - such as noise or unwanted artefacts. But
there are also disadvantages, one being speed. The minimal preprocessing used
by Kastrati et al. [1] typically takes more time to process a recording than the
recording itself captures. This is a problem for real-time applications. Also, these
pipelines are not particularly simple.
Hence, a question worth asking is whether there are other options to prepare
data for downstream tasks with different advantages and disadvantages. Work
in this direction will at the very least leave us with a better understanding of the
domain itself.

5.1.1 Variational Autoencoders

Models that introduce new advantages are VAEs. As a start, they do not require
labelled data but only the data to be reconstructed, thus cutting the need for
expensive labelling. We also can cut down on other complex preprocessing steps
by using a VAE as the centrepiece for preprocessing raw EEG data. This also

18

5. Methods and Modeling 19

allows for potentially much faster preprocessing overall. Lastly, the latent space
of VAEs is particularly nice since the latent dimensions are (in the optimal case)
independent of each other giving a level of interpretability to its latent space.
This also offers the opportunity to make the decision processes of models that
build on this latent representation more interpretable. One can, for example,
train a classifier on the latent representation and then employ some feature im-
portance method to it. This allows one to better isolate what concept of the
latent space is important to the classifier. Something that is much more difficult
with, for example, the models and preprocessing from Kastrati et al. [1].
However, VAEs also have their downsides. To begin with, they themselves are
models and have difficulty with the (raw) EEG data. Furthermore, it might not
be evident what concept a latent dimension captures. And even if it is, there is
usually also some noise encoded in the latent dimension.

5.1.2 VAEs Show Potential

There has not been work into using VAEs to preprocess EEG data (or reconstruct
it) to the best of our knowledge. However, several simple preprocessing schemes
on a subset of the minimally preprocessed dataset allowed us to train VAEs that
gave good reconstructions of the EEG data. We hence proceed to share our
insights into VAEs and the raw data.

5.2 Preparing the Data for the VAEs

There is very little chance that one could train a model (VAE in our case) directly
on the untreated, raw EEG data because it simply has too many problems (for
example the giant ranges the values span or the prevalence of so many kinds of
noises and artefacts like channel noise, line noise, or muscle artefacts). Thus, a
pipeline is necessary to bring the data into a format that a VAE can handle.
There are a few circumstances where today’s deep models perform better. One
of them is that data should live in a preferably small space which the training
data nicely covers. Another one is that the different features all have about
the same mean (preferably around zero) and a reasonable standard deviation.
Furthermore, they like large amounts of training data.
In the pursuit of these, we now go through the key issues in the EEG data we
targeted.

5.2.1 The Giant Span

One core problem of the EEG data is that it covers a giant range of values. To
give an impression: the smallest standard deviation is a little above 12’000 mil-
livolts if we compute the per electrode standard deviations on the raw direction

5. Methods and Modeling 20

dataset.
Normalizing per signal combines some major advantages when it comes to this
problem. For one, outliers have a very localised impact (a big shortcoming of
normalizing per electrode). Furthermore, it forces each signal into a small range
between -0.5 and 0.5 so the model does not have to prepare for very large or
small values in the input. This preprocessing also makes it easier for the model
to concentrate on just the shapes of the signals. What do we mean by that? A lot
of signals share similar shapes when plotted. However, for some these patterns
happen with very large millivolt values, for others with very low millivolt values,
for some the shape spreads over a large span, and for others over a small one.
Normalizing can remove all this variability. Thus, the model can directly learn
the shapes of the signals and does not need to abstract away the mentioned vari-
ability that has nothing to do with the shapes themselves. Lastly, we normalize
between -0.5 and 0.5 so that the mean is closer to zero than if we normalized
between zero and one.
The minimal preprocessing pipeline used by Kastrati et al. [1] also addresses this
issue. First of all, it is quite likely that bad channels are a source of outliers.
Furthermore, they can easily be removed since they anyways carry limited infor-
mation. This is also exactly what Kastrati et al. [1] did. The second thing they
did that helped solve the problem of giant spans was to do high-pass filtering with
a cutoff at 0.5 Hz per electrode per recording. This helps since removing the 0 Hz
component from a signal is the same as removing its mean. Their approach has
the added advantage that far less relative information gets destroyed (compared
to our normalization per signal).

5.2.2 High Frequencies

Another problem with EEG data is the high-frequency noise. What is even more
problematic for a VAE is that this noise does not follow any patterns. Fortu-
nately, the high-frequencies do not contain any information that is of use to us.
We determined that micro saccades are still clearly visible even when we removed
the frequencies above 85 Hz.
To take advantage of this insight we used the DFT to move the signals from the
time to the frequency domain. This allowed us to single out these higher fre-
quencies during training. We adapted the reconstruction loss which was a simple
mean squared error (MSE) between the input signal in split representation and
the reconstruction. Anew we computed the same MSE for the lower frequencies
(up to the cutoff) but then compute the MSE between the reconstructed higher
frequencies and the zero vector. This way we forced the VAE to learn and remove
the higher unnecessary higher frequencies.
Curiously, the minimal preprocessing pipeline used by Kastrati et al. [1] did not
have a step that is specifically geared towards high frequencies. A channel was
removed if the noise got too much. Hence, excessive high-frequency noise can

5. Methods and Modeling 21

definitely be a cause for that. But other than that there was not any part of the
minimal preprocessing pipeline that would target high-frequency noise. The max-
imal preprocessing however was able to find the noise. And if ICLabel classified
it as such then it would be removed during the maximal preprocessing.

5.2.3 Line Noise

Line noise is very easy to spot in a signal because it is a very nice 50 Hz wave.
However, even though it is a very easy concept, it is very difficult to reproduce
perfectly in the time domain. For that to happen, a VAE would have to learn to
perfectly decide on the output value at 500 different timepoints (= the number
of timepoints in one signal in EEGEyeNet). At the same time, this whole noise
is captured by two numbers in the frequency domain (the real and imaginary
part of the 50 component of the DFT). Consequently, while we moved from the
time domain to the frequency domain to better handle the high-frequency noise,
it also had the very welcome side effect that the extremely prevalent line noise
can be modelled more easily.
Removing line noise is definitely a stronghold of the preprocessing pipelines used
by Kastrati et al. [1], for both minimal and maximal preprocessing. First, a
channel would be removed if the line noise surpassed a certain level in it. Then
they applied the Zapline toolkit - a state-of-the-art tool - to remove the line noise
in the remaining electrodes. And lastly, independent components that resemble
line noise would be removed if ICLabel classified them as such with high enough
confidence.
The example in Fig. 4.1 shows this very nicely. All three depicted channels have
line noise. Channel 4 is removed in the first step and then in the second step, we
can perfectly see how the very rhythmic 50 Hz noise disappears.

5.2.4 Line Noise and Normalization

One shortcoming of our decisions so far (to use normalization in time domain
and to move to the frequency domain then) is that information about other
frequencies can leak into the 50 Hz component of the DFT.
For that let us consider an artificial example. Say we have the two signals in the
top row of Fig. 5.1. In the frequency domain, they have exactly the same 50 Hz
component. If we then normalize them each between -0.5 and 0.5 (bottom row of
Fig. 5.1) the amplitudes of the 50 Hz waves change differently for the two. And
by extension, the 50 Hz components are no longer the same.
This mechanism theoretically has the power to give the 50 Hz component from
the DFT some predictive power that one might not expect at first.

5. Methods and Modeling 22

Figure 5.1: Visualisation of how normalization can leak one frequency’s info into
another one. The 50 Hz component is the same for both signals in the top row.
But not anymore after normalization (bottom row).

5.3 Training the VAE

Now we turn our attention to the actual training of the VAEs and what we
learned there.

5.3.1 Signal vs Sample

The EEGEyeNet datasets consist of one-second samples of the 128 physical and
the one reference electrode, as already mentioned in Subsection 4.1.3. The obvi-
ous question was: should a VAE take a flattened sample or individual signals as
inputs? Our decision fell on the latter because of several reasons:

1. The input layer is smaller and hence the computational burden can be
reduced

2. Reconstructing a signal is a sub-problem of reconstructing a full sample
and consequently should be easier

3. The shapes of signals are generally the same across different electrodes.
Hence it would make sense to at least share weights for the different signals
in a sample. But the even easier option is to use a model that only takes
individual signals as input.

4. There are 129 times as many signals as there are samples. Hence, the
dataset is larger. Obviously, it is not quite this simple. As mentioned in

5. Methods and Modeling 23

the previous point there would be some sort of weight sharing (e.g. via
convolutions) if one were to use full samples as individual training points.
Even in a model that uses some weight sharing, there are always layers
which do not share weights among different parts of the input.

5. Visualising the latent dimensions is easier to do for one signal compared to
an entire sample

5.3.2 The Full Pipeline

With the information from the last subsection, we can now give a summary of
our full pipeline for the VAE. Each signal is:

1. normalized between -0.5 and 0.5

2. the DFT is applied

3. the result is put into its split representation

And that is it. A very simple pipeline indeed.

5.3.3 Standard Deviations of the Frequencies

We use the MSE for the reconstruction term in the loss of our VAEs. This un-
fortunately creates a problem with the EEG data. The components of the lower
frequencies in the DFT have a much larger standard deviation than the medium
and higher ones. This means that the contributions of the lower frequencies to
the MSE can dominate the whole error. And hence the VAEs are constantly
concentrating on getting those few low frequencies right and forget about the
medium ones.
Note that a large mean for a split frequency per se does not yield this problem.
Imagine a split frequency (say the real part for the 70 Hz component) had an
enormous mean over the dataset but also a tiny standard deviation. The VAEs
would simply learn to always approximately predict the mean for that split fre-
quency making its contribution to the MSE small.
Obviously, the choice of dataset and more importantly the preprocessing can
exacerbate or mitigate this problem. The normalisation per signal does a com-
paratively very good job in this. We hypothesise that this is because of the per
signal part of the preprocessing scheme (as opposed to per electrode). For ease of
reading, we here discuss standardization but the argumentation can be adapted
to normalization.
Removing the mean over a whole electrode will still leave many signals markedly
above and below zero. At the same time, the movement within individual signals
is comparatively low (there are no or few signals which go several times from

5. Methods and Modeling 24

very negative to very positive values). But if the means of many signals can be
markedly away from zero while the movement within the signals being compar-
atively low, then the standard deviation for low frequencies will be very large.
And the medium and high frequencies will give components that are often close
to zero since there is comparatively little medium and high-frequency movement
within the samples.
The normalization per signal makes sure that no individual sample gets compar-
atively far away from zero in our case. This already mitigates the problem of
the large standard deviations of the low frequencies between signals a lot. Fur-
thermore, the normalization stretches signals that are quite flat into the range
between -0.5 and 0.5. Likely amplifying the medium and high frequencies in
them and hence resulting in larger standard deviations among medium and high
frequencies.
However, solely concentrating on the differences in standard deviations among the
split frequencies is maybe not the full story. Standardizing per split frequency
gives every split frequency the same standard deviation. Yet we had trouble
with this scheme. But, this trouble could also be because standardizing per split
frequency breaks some of the information between the frequencies. And hence
maybe removes patterns that facilitate learning for the VAEs.

5.4 Uncovered Latent Representation

In this section, we take a look at the latent representation and what it allows us
to do.

5.4.1 Learnt Latent Representation

Judging from the visualisations of the latent dimensions (see Fig. 5.2 for two
examples and see Appendix D for all visualisations) we can conclude that the
VAEs learned some nice concepts. For example, every decent VAE always had
two latent dimensions that learned the line noise (with a phase shift between the
two dimensions).
However, unfortunately, the latent dimensions are not that clean. For example,
most of them seem to also encode a little bit of line noise as a side product. Or
even the dimensions encoding the line noise have some other information in them
(they do not only model the 50 Hz component).

5.4.2 Information Content

We repeat: preprocessing has two goals, (1) to make data easier to work with and
(2) to keep important information in the data. Hence, we should evaluate our
normalization and VAEs against these requirements if we want to use them as a

5. Methods and Modeling 25

Figure 5.2: Visualisations of two latent dimensions from the annealed β-TCVAE.
The dimension on the left is important for eye movement tasks while the right
one seems to encode line noise.

preprocessing scheme for raw EEG data. In short, our approach transforms the
raw EEG data in a format that even small models can work with but it removes
important information for some tasks.
Using our pipeline and the encoder of the trained VAE as preprocessing allowed
us to use the raw data and a tiny ResNet to train on tasks where before only the
minimally preprocessed data and much larger models were used. However, this
only worked when the task did not require relative information between the dif-
ferent signals within a sample. Yet, this was expected because the preprocessing
per signal has exactly said drawback.

Chapter 6

Experiments

6.1 Sanity Checks

The goal of these experiments was to make a sanity check for different prepro-
cessing schemes by letting the VAEs overfit on a small training dataset. The
desired takeaways were which preprocessing schemes make it easier for the VAEs
to learn.
In the experiment, we sampled ten samples (yielding 1290 signals) from the min-
imally preprocessed direction dataset. 10% of the signals were used as a valida-
tions set. We used seven kinds of preprocessing:

1. Standardize per electrode in time domain

2. Normalize per electrode in time domain

3. Standardize per electrode in frequency domain

4. Normalize per electrode in frequency domain

5. Standardize per split frequency in frequency domain

6. Normalize per split frequency in frequency domain

7. Standardize per electrode in frequency domain with complex logarithm ap-
plied to DFT responses (i.e. before standardizing)

If the preprocessing happens in the time domain we applied the DFT to the sig-
nals and put them in the split representation. Otherwise, the DFT was applied
first, followed by putting the signals into the split representation, and then the
preprocessing (the obvious exception is the complex logarithm from preprocess-
ing number seven). All statistics (means, standard deviations, minimums, spans)
were computed using only the training set.
For each of the seven schemes, we trained a β-TCVAE with 70 latent dimensions.
The encoder consisted of 3 ResNet blocks (with dimensions 400, 300, and 200 re-
spectively) with two linear layers to produce the latent statistics from the output

26

6. Experiments 27

of the last block and a decoder which consisted of 3 ResNet blocks (with dimen-
sions 200, 300, 400) with a final linear layer to get back to the input dimension
of the VAE. The VAEs had 502 input neurons which equated to one signal in
split representation. The weight for the reconstruction term was set very high
(µ = 1′000′000) and the one for the total correlation low (β = 3).
We used the ADAM optimizer [14] with a learning rate of 0.002 (the other pa-
rameters were set to the defaults from PyTorch version 1.11.0) and batch size
128. All but the first two schemes were trained for 25 epochs. The two first
schemes were trained for 100 epochs (25 epochs were too few for their loss curves
to flatten out). The reconstruction loss was the mean squared error (averaged
within a batch). For the split frequencies from 100 Hz on we set the target to
zero such that the VAE learned to not reconstruct the higher frequencies.

6.2 Full Dataset

The goal of these experiments was to tune β-TCVAEs to reconstruct raw signals
well while keeping the latent dimensions uncorrelated.
We used the raw direction and raw position datasets and combined them into one
large dataset. Thereof we randomly selected 10% of the signals as a validation
set. The different preprocessing schemes we tried are:

1. Standardize per electrode in time domain

2. Normalize per electrode in time domain

3. Standardize per electrode in frequency domain

4. Normalize per electrode in frequency domain

5. Standardize per split frequency in frequency domain

6. Normalize per split frequency in frequency domain

7. Normalize (between -0.5 and 0.5) per signal in time domain

For the standardize per electrode in frequency domain and standardize per fre-
quency in frequency domain schemes we also tried the same setup but with the
minimally preprocessed version of the data. Hence, in total, we had nine combi-
nations of data and preprocessing schemes to tune.
The remainder of the setup (order of DFT and preprocessing, architecture, op-
timizer, hyperparameters, and so on) are the same as for the Sanity Checks
(Subsection 6.1) with a few exceptions:

1. For the last preprocessing scheme we used µ = 400 and β = 10, as well
as µ = 800 and β = 10. For the others we used µ = 400 and β = 10 as
starting points.

6. Experiments 28

2. We trained the models for six to eight epochs, except for the models for the
last preprocessing (normalize per signal) where we increased the number of
epochs up to 15 in some cases.

3. For all but the last preprocessing we trained four to five generations. We
increased the weight µ in the next generation whenever the reconstructions
of a configuration in one generation did not look satisfactory. To further
put importance on the reconstruction we would also lower the β in many
cases.

Additionally, for the normalization per signal scheme, we also trained annealed
β-TCVAE. The hyperparameters for the loss were β = 3, µ = 177.76, γ =
5′000, C = −0.2 at the start, C = 1.25 at the end with this value being reached
after 60% of the training steps.

6.3 Feature Statistics

The goal of this experiment was to investigate the means and standard devia-
tions of the different features that were fed to the VAEs in Sections 6.1 and 6.2.
Regarding Section 6.1 this meant preprocessing the signals of the ten samples
with the seven schemes presented and then computing the means and standard
deviations of each of the split frequencies. The parallel experiments were also
made for Section 6.2 over the combined raw datasets.

6.4 Downstream Tasks

The goal of these experiments was to see if a successfully trained VAE (on the
raw dataset) could provide a latent representation of the raw signals that would
allow us to achieve decent results on the Angle, Amplitude, and Absolute Posi-
tion tasks from Kastrati et al. [1].
For that, we focused on the encoder of the trained annealed β-TCVAE introduced
in Section 6.2. We used said encoder to put the raw direction and raw position
datasets into their respective latent representations (we term them latent direc-
tion dataset and latent position dataset). A sample in these two sets had
the shape 129 × 26. Refer to Appendix A for more information on how exactly
the latent representation was computed.
For all experiments in this section, we split the data along subjects into 70%
training data, 15% validation data, and 15% test data. We created five different
splits for each of the two datasets. For more details refer to Appendix B.
The models themselves would receive samples in their latent representations flat-
tened to a vector (hence, there are 3354 input neurons). One single ResNet block
with dimension 1’500 would follow before a final linear layer with two output

6. Experiments 29

neurons. For the Amplitude task only the first output neuron would be utilized,
the Angle task only used the second one, and the Absolute Position task used
both (to predict the x and y coordinates of the pixel the subject was fixating on).
The loss was the mean squared error for all three tasks1. We used the ADAM
optimizer [14] with a learning rate of 0.01 (the other parameters were set to the
defaults from PyTorch version 1.11.0), the batch size was 256, and we trained
each model for 50 epochs on the training dataset.
We trained a total of 15 models, five models for the Angle task (1 per latent
direction dataset split), five models for the Amplitude task (1 per latent direc-
tion dataset split), and five models for the Absolute Position task (1 per latent
position dataset split). For each of these 15 runs, we saved the version of the
model which had the lowest validation loss (the validation loss was measured at
the end of each epoch).

6.5 Perturbation Importance

The goal of this set of experiments was to gain insight into what latent dimensions
and electrodes are important for the regression models, what latent dimensions
are important for the VAEs, and how these compare. We explain each in their
own paragraph.
Regression tasks: We take two trained models from the experiments in Sec-
tion 6.4. One each for the Angle and Amplitude task. Since there were five
models for each task to choose from we decided to take the ones with the median
test scores for their respective tasks. We then used their respective test data
(in latent representation) to compute the perturbation importance for the 129
electrodes and the 26 latent dimensions each. The change in metrics proposed
by Kastrati et al. [1] was used to quantify importance (see also Section 7.4). We
furthermore ran each experiment ten times and averaged their results since the
results between different runs of the perturbation feature importance method can
vary greatly. There are more details on the permutation in Appendix C. Note:
we left the Absolute Position task out of this consideration since its performance
was bad.
VAEs: We used the trained annealed β-TCVAE from Section 6.2 and computed
the importance of the different latent dimensions. Specifically, we measured
how the mean squared error of the reconstructions changed (both in frequency
and time domain). To do so, we combined the raw direction and raw position
datasets into one large dataset and applied the same preprocessing to the data we
did before training the VAE. All signals in the dataset were put into their latent
representations using the encoder of the VAE (again removing all the latent di-

1Note that this was a bit of an odd choice for the Angle task since an angle of 0.1 radians
and 6.2 radians are very close on the unit circle but would have a large squared error. We also
tried the benchmark metric introduced by Kastrati et al. [1] as a loss but this yielded slightly
worse results so we stuck with the mean squared error.

6. Experiments 30

mensions that do not carry information, see Appendix A for more information).
The data was now in a state where it could be fed to the decoder and so we
could apply textbook feature permutation importance using the just described
data and the decoder. As a metric, we chose the mean squared error between
the preprocessed signals and the reconstructions. Since the VAE was trained
to not reconstruct frequencies starting from 100 Hz we set those to zero in the
normalized signals before computing the mean squared error. Because of the
computational burden we only ran and averaged the results over three runs.
Comparing importance: The goal here was to compare the importance of dif-
ferent latent dimensions for the VAE and the regression models. For that, we
reused the values computed for the regression models but reran the VAE impor-
tance on the raw direction data (since the Amplitude and Angle tasks trained on
that). Once computed, we sorted the different latent dimensions by importance
for each Amplitude, Angle, and VAE. Afterwards, we computed for each latent
dimension the difference between the ranks for the pairings Amplitude with VAE
and Angle with VAE. So say latent dimension 21 was deemed to be the third most
important for the Amplitude model but only the 13th most important for the
VAE then its rank difference would be 10. Latent dimensions with very positive
values would be much more important for a regression task than the VAE and
vice versa.

6.6 Angle and Amplitude from Line Noise

In this experiment, we wanted to check if the latent dimensions encoding the
line noise (according to the visualisations of the latent dimensions) carried some
information that is usable for the Angle or Amplitude task. To test this we used
the exact same setup as in Section 6.4 but instead of only removing the latent
dimensions that do not carry any information we removed all latent dimensions
but the two which encode the line noise.

Chapter 7

Results

7.1 Sanity Checks

The following preprocessings produced models that picked up some patterns but
the reconstruction quality is a bit under the level expected for a sanity check:

• Standardize per electrode in time domain

• Normalize per electrode in time domain

• Standardize per electrode in frequency domain

• Normalize per split frequency in frequency domain

• Standardize per electrode in frequency domain with complex logarithm ap-
plied to DFT responses (i.e. before standardizing)

Remember that we only looked at training samples here.
The normalization per electrode in frequency domain scheme yielded very poor
results (see example in Fig. 7.1 left). And the standardizing per split frequency
in frequency domain yielded the nicest reconstructions (see example in Fig. 7.1
right). We provide more plots in Appendix F.

7.2 Full Dataset

The following preprocessing schemes always yielded bad reconstructions no mat-
ter the µ we chose (no matter the dataset considered):

• Standardize per electrode in time domain

• Normalize per electrode in time domain

• Standardize per electrode in frequency domain

31

7. Results 32

Figure 7.1: The left is a reconstruction from a VAE that was trained on data
preprocessed with normalizing per electrode in frequency domain and on the
right is a reconstruction from a VAE based on standardizing per split frequency
in frequency domain. The blue curves are the actual input samples and the red
curves are the reconstructions by the respective VAE. The yellow curve shows the
input signal with all frequencies from 100 Hz on removed. We show the signals
and reconstructions in the frequency domain (the left and middle subplots in the
two plots) and in the time domain. The preprocessings were reverted for the time
domain plots.

• Normalize per electrode in frequency domain

• Standardize per split frequency in frequency domain

• Normalize per split frequency in frequency domain

The smallest µ we had in a final generation loss was 200’000, so a lot larger than
for the β-TCVAE and annealed β-TCVAE with normalization per signal which
yielded models with decent reconstructions (see Fig. 7.2 left). The annealed
TCVAE and the TCVAE with µ = 400 also have nicely uncorrelated latent
dimensions (see Fig. 7.2 left) while the TCVAE with µ = 800 starts to show first
higher correlations between latent dimensions.
We show more plots with reconstructions in Appendix G and more correlation
plots in Appendix H.

7.3 Feature Statistics

A special case is the standardization per split frequency in frequency domain.
Obviously, that scheme generated very nice input statistics. Setting this aside,
one eye-catching result is that among the schemes applied to the raw dataset
only the normalization per signal produced a standard deviation plot that is
similar to the ones on the sanity check data (see Fig. 7.3). The other schemes

7. Results 33

Figure 7.2: Left: a reconstruction from the annealed β-TCVAE. The blue curves
are the actual input sample, and the red curve is the reconstruction. The yellow
curve shows the input signal with all frequencies from 100 Hz on removed. We
show the signal and reconstruction in the frequency domain (the left and middle
subplots) and in the time domain (the right subplots). The preprocessings were
not reverted for the plots. Right: correlation matrix of the combined latent
dataset of raw direction and position datasets.

produced (besides the obvious exception) all very aggressive hockey stick plots
for the standard deviation, to the point where many of the plots look like they
have a 90-degree angle right at the beginning.

7.4 Downstream Tasks

As a metric for the models on their respective test sets, we used the same versions
of the root mean squared error as Kastrati et al. [1] did. We add our implemen-
tations in Appendix E. The results for the tasks can be found in Table 7.1.

RMSE (Kastrati et al.) RMSE (ours)
Amplitude 61.4 71.38± 4.54
Angle 0.33 0.49± 0.06
Abs. Position 140.4 236.02± 3.55

Table 7.1: The test set scores averaged over the five models (one per data split)
for each task with standard deviations after the ±. The units for the Amplitude
and Absolute Position tasks are pixels (divide by two for millimetres) and for the
Angle task, it is radians. For comparison, we included the best scores for the
different tasks from the baselines presented in Kastrati et al. [1]. Note that their
results were obtained on the minimally preprocessed data while ours came from
the raw data.

7. Results 34

Figure 7.3: The sorted standard deviations of the split frequencies after applying
our normalization per signal in time domain scheme to the combined raw direction
and raw position datasets.

7.5 Perturbation Importance

Amplitude Task: The sixth latent dimension (among the dimensions that car-
ried information) was clearly the most important latent dimension for the model
predictions according to the experiment (see Fig. 7.4 for visualisations). The
RMSE metric went up by an average of 121.73 pixels compared to the baseline
(which was 70.59 pixels). The most important electrode is the 126th with an
increase in RMSE of 7.5. Other electrodes were close behind.
Angle Task: The sixth latent dimension was again the most important one ac-
cording to the experiment. Permuting its values add 0.46 radian on average to
the baseline RMSE of 0.46 radian. The 127th electrode was deemed the most
important one (permuting it added an average of 0.05 radian to the baseline).
However, all electrodes had more or less the same score in this experiment so it
is a bit difficult to say which are more important than others.
VAE: The sixth latent dimension is also the most important one for VAE re-
constructions. Perturbing it added 0.03 to the MSE baseline of 0.25 for the time
domain and 7.86 to the 1.09 baseline in the frequency domain. The ranking
for the time domain and the ranking for the frequency domain generally agree.
Meaning that a latent dimension that is very important for the reconstruction in
the frequency domain is also very important for the reconstruction in the time
domain, et vice versa.
Rank Difference: For the VAE reconstruction and the Amplitude task there
is more or less a consensus about which latent dimensions are the most impor-
tant ones. However, there is quite a curious outlier for the Angle task where
the 21st latent (among the ones carrying information) was quite important for
the VAE but is the least important for the Angle task. You find the full results
in Appendix I.4. The visualisation of this curious 21st latent can be found in
Appendix D.

7. Results 35

Figure 7.4: Two visualisations of the sixth latent dimension (i.e. index five) that
carries information from the annealed β-TCVAE.

The full tables take up a lot of space and hence we moved them to Appendix I.

7.6 Angle and Amplitude from Line Noise

We used the same test scores as in Section 7.4. Table 7.2 shows the results.

RMSE (Kastrati et al. - naive) RMSE (ours - line noise)
Amplitude 149.4 162.03± 24.07
Angle 1.90 1.67± 0.03
Abs. Position 246.6 244.77± 0.58

Table 7.2: The test set scores averaged over the five data splits for each task
with standard deviations after the ±. The units for the Amplitude and Absolute
Position tasks are pixels (divide by two for millimetres) and for the Angle task,
it is radians. For comparison, we included the naive baselines for the different
tasks from the baselines presented in Kastrati et al. [1].

Chapter 8

Conclusion

In this work we demonstrated potential for a data-driven preprocessing of raw
EEG data. We evaluated different preprocessing schemes for the raw EEG data
and reflected on their advantages and disadvantages. The majority of them could
be used to train VAEs to produce good reconstructions on training data in a san-
ity check. However, only one scheme could perform well on the full raw dataset,
the normalization per signal. We investigated the feature statistics the different
preprocessing schemes produced and showed that normalizing per signal produces
the best standard deviation statistics among the considered schemes.
We used normalization per signal to successfully train a pair of VAEs that not
only produced decent reconstructions but also kept their latent dimensions un-
correlated. Investigating the latent space showed the capability of the VAE to
learn simple concepts from EEG data such as the line noise. At the same time, we
also noticed that these concepts were not clean. The latent dimensions encoding
the line noise, for example, also contained other movement. And other latent
dimensions usually showed also some line noise in their visualisations.
We used the annealed β-TCVAE’s encoder as the preprocessing step for the raw
EEG data from the EEGEyeNet dataset. The resulting data could then be used
to achieve comparatively decent results on the Amplitude and Angle task. These
tasks have never before been successfully attempted with the raw EEG data.
However, the performance on the Absolute Position task was poor. The cause of
this is likely that normalizing per signal removes important information between
the different signal of a sample; information that is important for the Absolute
Position task.

36

Bibliography

[1] A. Kastrati, M. Plomecka, D. Pascual Ortiz, L. Wolf, V. Gillioz, R. Watten-
hofer, and N. Langer, “Eegeyenet: a simultaneous electroencephalography
and eye-tracking dataset and benchmark for eye movement prediction,”
in Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks, J. Vanschoren and S. Yeung, Eds., vol. 1, 2021.
[Online]. Available: https://datasets-benchmarks-proceedings.neurips.cc/
paper/2021/file/a3c65c2974270fd093ee8a9bf8ae7d0b-Paper-round1.pdf

[2] A. Pedroni, A. Bahreini, and N. Langer, “Automagic: Standardized
preprocessing of big eeg data,” NeuroImage, vol. 200, pp. 460–473,
2019. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1053811919305439

[3] T.-W. Lee, Independent Component Analysis, 1998, pp. 27–66.

[4] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation
and approximate inference in deep generative models,” 2014. [Online].
Available: https://arxiv.org/abs/1401.4082

[5] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
[Online]. Available: https://arxiv.org/abs/1312.6114

[6] I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts
with a constrained variational framework,” in 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. [Online].
Available: https://openreview.net/forum?id=Sy2fzU9gl

[7] R. T. Q. Chen, X. Li, R. Grosse, and D. Duvenaud, “Isolating sources
of disentanglement in variational autoencoders,” 2018. [Online]. Available:
https://arxiv.org/abs/1802.04942

[8] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner, “Understanding disentangling in -vae,” 2018. [Online].
Available: https://arxiv.org/abs/1804.03599

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

37

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/a3c65c2974270fd093ee8a9bf8ae7d0b-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/a3c65c2974270fd093ee8a9bf8ae7d0b-Paper-round1.pdf
https://www.sciencedirect.com/science/article/pii/S1053811919305439
https://www.sciencedirect.com/science/article/pii/S1053811919305439
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=Sy2fzU9gl
https://arxiv.org/abs/1802.04942
https://arxiv.org/abs/1804.03599
https://arxiv.org/abs/1512.03385

Bibliography 38

[10] L. Breiman, “Random forests,” Machine Learning, vol. 25, pp. 5–32, 2001.
[Online]. Available: https://doi.org/10.1023/A:1010933404324

[11] C. Molnar, Interpretable Machine Learning, 2nd ed., 2022. [Online].
Available: https://christophm.github.io/interpretable-ml-book

[12] A. de Cheveigné, “Zapline: A simple and effective method to remove power
line artifacts,” NeuroImage, vol. 207, p. 116356, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1053811919309474

[13] L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, “Iclabel: An
automated electroencephalographic independent component classifier,
dataset, and website,” NeuroImage, vol. 198, pp. 181–197, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1053811919304185

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: https://arxiv.org/abs/1412.6980

https://doi.org/10.1023/A:1010933404324
https://christophm.github.io/interpretable-ml-book
https://www.sciencedirect.com/science/article/pii/S1053811919309474
https://www.sciencedirect.com/science/article/pii/S1053811919304185
https://www.sciencedirect.com/science/article/pii/S1053811919304185
https://arxiv.org/abs/1412.6980

Appendix A

Latent Dataset

The latent representation of a dataset in our context is (in short) the latent
representation of the signals in a dataset induced by a VAE where only latent
dimensions are kept which pass a certain threshold (= at least 10% of the standard
deviations for said latent dimension are below 0.5 on a random batch with 512
signals).
What follows is a more thorough explanation. Remember a sample consists of
129 signals, which in turn are vectors with 500 entries (the EEG data).To produce
a latent dataset, we want to use a trained VAE to take each signal and replace
it with the latent representation the VAE’s encoder computes (i.e. the means it
computes). However, there are two further complications.
First, as we can see in Fig. A.1, a VAE’s encoder might compute the same
values for some latent dimensions even for different inputs. Hence, that latent
dimension does not encode any variability in the data. As a criterion to filter
these dimensions we used the standard deviation the encoder computed for each
signal. Specifically, for each latent dimensions, we checked if more than 10% of the
computed standard deviations (over a random batch of 512 signals) were below
0.5. If a latent dimension met this criterion we kept it otherwise we removed said
latent dimension. For example, in Fig. A.1 we would have removed the latent
dimension with index zero but would have kept the latent dimension with index
four.
Second, we had problems with the batch normalization layers in our VAEs. If
a PyTorch module contains such layers then the its behaviour is different in
training and evaluation mode. In the former, the batch normalization mode
actually computes the batch’s means and standard deviations. In the latter, this
process is replaced by statistics computed during training. This led to problems
so we decided to keep the trained VAEs in training mode. But we needed to be
careful since the behaviour of batch normalization layers now depended on the
batches themselves. We paid attention to two main issues:

1. Signals from different sets (training, validation, and test) cannot be in the
same batch as this could leak information between sets.

2. Batches should have a nice variety of signals. We would run the risk that

A-1

Latent Dataset A-2

Figure A.1: The means and standard deviations computed by the encoder of the
annealed β-VAE trained for Section 6.2 for a batch with 512 random signals from
the combined raw direction and raw position datasets.

very similar samples would be in the same batches if we fed the signals into
the VAEs in the same order as we read them from the datasets. Hence,
the statistics in the normalization layers would not be representative of
the dynamics encountered during the training of the VAE, where the data
was randomized. The obvious solution is to also shuffle the signals when
creating the latent datasets.

Appendix B

Splitting the Data for the
Downstream Tasks

In Section 6.4 we split the data along subjects. Unfortunately the number of
samples per subject is not balanced in both the direction and the position dataset.
This made a clean 70-15-15 split between the training, validation, and test sets
impossible. Hence, instead of splitting the samples along this ratio, we randomly
split the subjects - which also induces a splitting of the samples (if a subject is in
the test set then all his/her samples are also in the test set). We then tallied up
how many samples were in the different sets and how much this differs from the
perfect 70-15-15 split. Specifically, for each set we take the absolute difference
and add these three numbers up. For example, say we had 1’000 samples in our
dataset. A perfect split would then be 700-150-150. However, say by randomly
splitting the individuals it so happened that some of the subjects with a more
than average number of samples land in the validation set. The three sets might
then have something like 679, 206, and 115 samples. Giving a difference of 112
(= |700− 679|+ |150− 206|+ |150− 115|).
For a “split” as mentioned in Section 6.4 we made 20 random splittings of subjects
and chose the one with the smallest difference to the perfect split as the actually
used split.

B-1

Appendix C

Permuting Electrodes or Latent
Dimensions in Latent Datasets

There are two important parts to understanding how we permuted the latent
data for the permutation feature importance in the regression models.
First, remember the shape of a sample in the latent dataset we used. It was
129 × 26. Meaning the 129 signals of the original sample were condensed into
26 values using a VAE. Hence, each column of such a sample corresponds to the
outputs of one latent dimension of the encoder of the VAE. Now, the regression
models take the flattened version of such a sample as input which means that
the different values stemming from the same latent dimension are suddenly no
longer a nice column of a matrix but spread over a long vector. Hence, if we
wanted to assess the importance of a latent dimension then we need to make
sure to permute all features in said vector that originate from the same latent
dimension. The same concept holds for the electrodes.
Second, we only permuted values along the combination of electrode and latent
dimension. This is most easily explained with a plot which you find in Fig. C.1.
We only permuted values within each of the different shades of blue. Although
all the squares shaded in blueish colors visualise a value that came from the same
latent dimension of a VAE, we did not permute across the different columns
(= different shades). This decision was taken for ease of implementation. The
analog also holds for permutations per electrode. There the different shades of
blue would also be along the vertical but all the columns between two bold lines
would be blue.

C-1

Permuting Electrodes or Latent Dimensions in Latent DatasetsC-2

Figure C.1: In this toy example we have four samples (= rows), four electrodes
(electrodes are separated by the bold vertical lines), and the encoder used to
create these latent samples had five latent dimensions that carry information
(visualised by the 5 squares per electrode). The blueish colors visualise the values
that come from the same latent dimension from the VAE - in this particular case
from the second latent dimension.

Appendix D

Visualisations of Latent
Dimensions

Throughout this work we commonly used the annealed β-TCVAE described in
Section 6.2. Hence, we show here all the visualisations of the latent dimensions
of said VAE. Section 2.2 introduces how to visualise a latent dimension. We used
the values −0.5,−0.375,−0.25,−0.125, 0., 0.125, 0.25, 0.375, 0.5 for the means of
the latent dimension to visualise in this chapter. Note, we only visualise the
latent dimensions that actually carry information. Each subplot consists of the
reconstruction by the decoder in frequency domain (the amplitudes are plotted)
and in time domain (note that the normalization per signal between -0.5 and 0.5
is not reverted).

D-1

Visualisations of Latent Dimensions D-2

Figure D.1: Visualisation of the latent with index 4 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 0 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-3

Figure D.2: Visualisation of the latent with index 10 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 1 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-4

Figure D.3: Visualisation of the latent with index 11 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 2 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-5

Figure D.4: Visualisation of the latent with index 14 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 3 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-6

Figure D.5: Visualisation of the latent with index 16 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 4 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-7

Figure D.6: Visualisation of the latent with index 19 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 5 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-8

Figure D.7: Visualisation of the latent with index 23 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 6 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-9

Figure D.8: Visualisation of the latent with index 24 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 7 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-10

Figure D.9: Visualisation of the latent with index 28 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 8 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-11

Figure D.10: Visualisation of the latent with index 31 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 9 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-12

Figure D.11: Visualisation of the latent with index 33 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 10 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-13

Figure D.12: Visualisation of the latent with index 35 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 11 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-14

Figure D.13: Visualisation of the latent with index 42 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 12 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-15

Figure D.14: Visualisation of the latent with index 43 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 13 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-16

Figure D.15: Visualisation of the latent with index 44 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 14 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-17

Figure D.16: Visualisation of the latent with index 45 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 15 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-18

Figure D.17: Visualisation of the latent with index 47 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 16 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-19

Figure D.18: Visualisation of the latent with index 50 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 17 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-20

Figure D.19: Visualisation of the latent with index 53 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 18 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-21

Figure D.20: Visualisation of the latent with index 54 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 19 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-22

Figure D.21: Visualisation of the latent with index 55 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 20 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-23

Figure D.22: Visualisation of the latent with index 57 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 21 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-24

Figure D.23: Visualisation of the latent with index 59 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 22 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-25

Figure D.24: Visualisation of the latent with index 61 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 23 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-26

Figure D.25: Visualisation of the latent with index 68 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 24 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Visualisations of Latent Dimensions D-27

Figure D.26: Visualisation of the latent with index 69 (of the 70 latent dimensions
the annealed β-TCVAE had). This latent has the index 25 among the latent that
actually carry information (there were 26 latent that carried information). The
figure should be read from left to right and from top to bottom. Each subplot
visualises the latent for a different latent value (see titles of subplots).

Appendix E

Root Mean Squared Error
Versions

For the Amplitude task we use the following implementation of the RMSE metric
as in Kastrati et al. [1]:

numpy . s q r t (s k l e a rn . met r i c s . mean_squared_error (y , y_pred))

For the Angle task we use

s = numpy . s i n (y − y_pred)
c = numpy . cos (y − y_pred)
a = numpy . arctan2 (s , c)
numpy . s q r t (numpy . mean(numpy . square (a)))

In both cases the y and y_pred are a 1D array with the true values and the
predicted values respectively.
For the Absolute Position task we used:

numpy . l i n a l g . norm(y − y_pred , ax i s =1).mean ()

where y and y_pred both matrices with shape n×2 where n denotes the number
of samples the two stands for the x and y values. y and y_pred are respectively
the true values and the predicted values.
We used numpy version 1.21.2 and sklearn version 1.1.2.

E-1

Appendix F

Plots Sanity Check
Reconstructions

In this chapter we added some of the reconstructions of signals that were in
the training set for the different sanity check experiments. Each plot was made
with the model after the last epoch of training. Important: preprocessing in the
frequency domain is always reversed for the plots. Since the low frequencies were
usually dominant, we split their amplitude plot away from the rest.

F-1

Plots Sanity Check Reconstructions F-2

F.1 Standardize per Electrode in Time Domain

Figure F.1: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 100 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Plots Sanity Check Reconstructions F-3

F.2 Normalize per Electrode in Time Domain

Figure F.2: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 100 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Plots Sanity Check Reconstructions F-4

F.3 Standardize per Electrode in Frequency Domain

Figure F.3: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 100 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Plots Sanity Check Reconstructions F-5

F.4 Normalize per Electrode in Frequency Domain

Figure F.4: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 100 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Plots Sanity Check Reconstructions F-6

F.5 Standardize per Split Frequency in Frequency Do-
main

Figure F.5: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 100 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Plots Sanity Check Reconstructions F-7

F.6 Normalize per Split Frequency in Frequency Do-
main

Figure F.6: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 100 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Plots Sanity Check Reconstructions F-8

F.7 Standardize per Electrode in Frequency Domain
(with Logarithm)

Figure F.7: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 100 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Appendix G

Full Dataset Reconstructions

Here we show some reconstructions from the validation sets of each of the three
VAEs that yielded nice reconstructions. The VAEs in each case were the versions
that gave the best validation loss (the validation loss was calculated at the end of
every epoch). The configurations of the three models were provided in Section 6.2.
Each of the three VAEs were trained on raw data normalized between -0.5 and
0.5 per signal. This preprocessing was applied before the plots were created and
not reverted. Since the low frequencies were usually dominant, we split their
amplitude plot away from the rest.

G-1

Full Dataset Reconstructions G-2

G.1 TCVAE with µ = 400

Figure G.1: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 85 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Full Dataset Reconstructions G-3

G.2 TCVAE with µ = 800

Figure G.2: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 100 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Full Dataset Reconstructions G-4

G.3 Annealed β-TCVAE

Figure G.3: Four plots (each consisting of 6 subplots) of signal reconstructions.
The blue line is always the signal after preprocessing. The red line is always
the reconstruction based on the VAE. Yellow is the preprocessed, true signal but
with all frequencies from 100 Hz and up removed (were set to 0 for the loss). The
subplots from left to right in a plot show the amplitudes of the low frequencies
of the signal, the amplitudes of the higher frequencies, and the signal in time
domain.

Appendix H

Full Dataset Correlation
Matrices

In this chapter we add the correlation matrices of the latent dimensions carrying
information from the three models that yielded decent reconstructions. The
correlation was calculated among the means the respective encoders output on the
combined full data (i.e. the raw direction and raw position datasets combined).

H-1

Full Dataset Correlation Matrices H-2

H.1 TCVAE with µ = 400

Figure H.1: Correlation matrix for the latent dimensions that carry information.
The largest correlation (not along the diagonal) is 0.07 and the smallest is -0.06.

Full Dataset Correlation Matrices H-3

H.2 TCVAE with µ = 800

Figure H.2: Correlation matrix for the latent dimensions that carry information.
The largest correlation(not along the diagonal) is 0.43 and the smallest is -0.27.

Full Dataset Correlation Matrices H-4

H.3 Annealed β-TCVAE

Figure H.3: Correlation matrix for the latent dimensions that carry information.
The largest correlation (not along the diagonal) is 0.08 and the smallest is -0.06.

Appendix I

Feature Importance Results

I-1

Feature Importance Results I-2

I.1 Amplitude Task

I.1.1 Latent Dimensions

RMSE ± std Diff. to Baseline Latent Index
70.59± 0.00 0.00 baseline
192.32± 0.57 121.73 5
98.33± 0.29 27.74 13
77.87± 0.18 7.27 20
75.72± 0.07 5.13 21
73.78± 0.30 3.18 7
72.83± 0.12 2.23 25
72.60± 0.09 2.01 4
72.60± 0.08 2.00 10
72.56± 0.14 1.96 12
71.97± 0.20 1.38 6
71.96± 0.13 1.36 9
71.74± 0.09 1.15 11
71.54± 0.08 0.95 3
71.41± 0.10 0.82 23
71.16± 0.10 0.56 0
71.00± 0.06 0.40 16
70.98± 0.13 0.39 24
70.97± 0.05 0.38 2
70.90± 0.17 0.31 15
70.74± 0.07 0.14 8
70.73± 0.08 0.14 1
70.62± 0.09 0.03 14
70.56± 0.05 −0.03 17
70.55± 0.09 −0.05 19
70.54± 0.08 −0.05 18
70.52± 0.08 −0.08 22

Table I.1: Root mean squared error is in pixels and the standard deviation is
computed over the ten runs of the perturbation importance. For a specific row
the values for “Latent Index” were perturbed. Note that indexing starts at zero
and we only count the 26 latent dimensions that actually carried information
among the 70 latent dimensions the VAE had.

Feature Importance Results I-3

I.1.2 Electrodes

RMSE ± std Diff. to Baseline Electrode Index
70.59± 0.00 0.00 baseline
78.09± 0.21 7.50 125
75.81± 0.16 5.22 31
75.45± 0.27 4.86 126
74.36± 0.20 3.76 0
73.99± 0.20 3.40 16
73.85± 0.28 3.25 42
73.82± 0.18 3.22 124
73.81± 0.24 3.22 127
73.22± 0.18 2.63 1
72.80± 0.11 2.21 37
72.72± 0.13 2.12 120
72.58± 0.13 1.99 24
72.50± 0.08 1.91 25
72.41± 0.19 1.82 20
72.15± 0.12 1.55 119
72.10± 0.09 1.51 43
72.04± 0.06 1.45 13
71.98± 0.10 1.39 7
71.85± 0.13 1.26 112
71.77± 0.07 1.18 2
71.76± 0.05 1.16 22
71.64± 0.07 1.04 21
71.62± 0.11 1.03 108
71.57± 0.06 0.97 73
71.56± 0.09 0.97 14
71.48± 0.08 0.89 86
71.47± 0.07 0.88 79
71.39± 0.06 0.80 68
71.39± 0.08 0.79 26
71.38± 0.14 0.78 32
71.33± 0.08 0.73 17
71.33± 0.05 0.73 111
71.28± 0.10 0.69 8
71.28± 0.10 0.68 39
71.27± 0.12 0.68 122
71.23± 0.11 0.63 56
71.21± 0.08 0.61 64
71.19± 0.07 0.59 15
71.18± 0.11 0.59 113

Feature Importance Results I-4

71.18± 0.08 0.58 44
71.16± 0.05 0.56 3
71.14± 0.10 0.55 62
71.14± 0.04 0.54 97
71.13± 0.06 0.54 89
71.09± 0.06 0.50 92
71.09± 0.06 0.49 93
71.07± 0.06 0.47 63
71.05± 0.05 0.46 121
71.05± 0.06 0.45 74
71.02± 0.03 0.43 105
71.02± 0.04 0.42 71
71.01± 0.13 0.41 47
71.00± 0.06 0.40 115
70.98± 0.05 0.39 87
70.98± 0.07 0.38 83
70.97± 0.04 0.38 28
70.95± 0.04 0.36 88
70.95± 0.06 0.36 30
70.95± 0.07 0.35 95
70.95± 0.06 0.35 103
70.94± 0.04 0.34 29
70.92± 0.06 0.33 57
70.91± 0.05 0.31 70
70.89± 0.05 0.30 6
70.89± 0.08 0.29 35
70.89± 0.05 0.29 38
70.88± 0.07 0.29 94
70.87± 0.04 0.28 104
70.87± 0.08 0.28 58
70.86± 0.11 0.26 36
70.86± 0.09 0.26 65
70.85± 0.05 0.26 72
70.85± 0.05 0.26 45
70.84± 0.05 0.25 41
70.83± 0.06 0.24 123
70.82± 0.06 0.23 23
70.82± 0.05 0.23 49
70.81± 0.09 0.22 33
70.80± 0.06 0.21 59
70.80± 0.07 0.21 75
70.80± 0.05 0.21 4
70.80± 0.04 0.20 9
70.76± 0.07 0.17 27

Feature Importance Results I-5

70.76± 0.04 0.17 10
70.76± 0.05 0.16 81
70.76± 0.04 0.16 109
70.76± 0.04 0.16 90
70.75± 0.08 0.15 55
70.75± 0.05 0.15 61
70.73± 0.05 0.14 99
70.72± 0.06 0.12 100
70.71± 0.04 0.12 12
70.71± 0.05 0.12 107
70.71± 0.06 0.11 96
70.70± 0.03 0.10 51
70.69± 0.04 0.10 106
70.69± 0.07 0.09 69
70.68± 0.08 0.09 5
70.66± 0.09 0.06 114
70.65± 0.06 0.06 67
70.65± 0.04 0.05 102
70.64± 0.03 0.05 50
70.61± 0.01 0.01 128
70.58± 0.05 −0.02 40
70.57± 0.08 −0.02 53
70.57± 0.04 −0.02 60
70.57± 0.05 −0.02 116
70.54± 0.07 −0.05 84
70.51± 0.06 −0.08 34
70.51± 0.05 −0.08 18
70.48± 0.04 −0.11 98
70.47± 0.06 −0.12 80
70.46± 0.05 −0.14 101
70.46± 0.05 −0.14 19
70.45± 0.04 −0.14 117
70.44± 0.06 −0.16 91
70.43± 0.03 −0.16 46
70.43± 0.06 −0.17 52
70.42± 0.11 −0.18 54
70.40± 0.07 −0.19 110
70.40± 0.04 −0.20 82
70.38± 0.09 −0.22 11
70.34± 0.05 −0.26 78
70.27± 0.06 −0.32 118
70.25± 0.05 −0.34 66
70.24± 0.08 −0.35 77
70.19± 0.09 −0.40 76

Feature Importance Results I-6

70.14± 0.10 −0.46 48
69.96± 0.07 −0.63 85

Table I.2: Root mean squared error is in pixels and the standard deviation is
computed over the ten runs of the perturbation importance. For a specific row
the values for “Electrode Index” were perturbed. Note that indexing starts at
zero.

Feature Importance Results I-7

I.2 Angle Task

I.2.1 Latent Dimensions

RMSE ± std Diff. to Baseline Latent Index
0.46± 0.00 0.00 baseline
0.92± 0.01 0.46 5
0.59± 0.01 0.14 13
0.50± 0.01 0.04 25
0.48± 0.01 0.02 6
0.47± 0.00 0.01 2
0.47± 0.01 0.01 12
0.46± 0.01 0.01 15
0.46± 0.01 0.01 4
0.46± 0.00 0.01 1
0.46± 0.01 0.01 7
0.46± 0.00 0.00 22
0.46± 0.00 0.00 18
0.46± 0.00 0.00 0
0.46± 0.00 0.00 9
0.46± 0.00 0.00 3
0.46± 0.01 0.00 21
0.46± 0.01 0.00 16
0.46± 0.00 0.00 10
0.46± 0.01 −0.00 14
0.46± 0.00 −0.00 23
0.46± 0.00 −0.00 19
0.46± 0.00 −0.00 24
0.45± 0.01 −0.00 11
0.45± 0.00 −0.01 8
0.45± 0.00 −0.01 17
0.45± 0.01 −0.01 20

Table I.3: Root mean squared error is in pixels and the standard deviation is
computed over the ten runs of the perturbation importance. For a specific row
the values for “Latent Index” were perturbed. Note that indexing starts at zero
and we only count the 26 latent dimensions that actually carried information
among the 70 latent dimensions the VAE had.

Feature Importance Results I-8

I.2.2 Electrodes

RMSE ± std Diff. to Baseline Electrode Index
0.46± 0.00 0.00 baseline
0.51± 0.01 0.05 126
0.50± 0.01 0.04 125
0.48± 0.00 0.03 20
0.48± 0.00 0.02 0
0.48± 0.01 0.02 13
0.48± 0.01 0.02 24
0.48± 0.00 0.02 7
0.47± 0.00 0.02 31
0.47± 0.01 0.01 127
0.47± 0.01 0.01 124
0.47± 0.00 0.01 120
0.47± 0.00 0.01 16
0.47± 0.01 0.01 118
0.47± 0.00 0.01 8
0.47± 0.00 0.01 89
0.47± 0.00 0.01 17
0.47± 0.00 0.01 35
0.47± 0.00 0.01 67
0.47± 0.00 0.01 12
0.47± 0.01 0.01 42
0.46± 0.01 0.01 21
0.46± 0.00 0.01 26
0.46± 0.00 0.01 1
0.46± 0.00 0.01 119
0.46± 0.00 0.01 40
0.46± 0.00 0.01 39
0.46± 0.00 0.01 9
0.46± 0.01 0.01 14
0.46± 0.00 0.01 2
0.46± 0.00 0.01 60
0.46± 0.00 0.01 55
0.46± 0.01 0.01 48
0.46± 0.00 0.01 57
0.46± 0.00 0.01 37
0.46± 0.00 0.01 11
0.46± 0.00 0.00 113
0.46± 0.00 0.00 61
0.46± 0.00 0.00 108
0.46± 0.00 0.00 47

Feature Importance Results I-9

0.46± 0.00 0.00 66
0.46± 0.00 0.00 22
0.46± 0.01 0.00 43
0.46± 0.00 0.00 6
0.46± 0.00 0.00 102
0.46± 0.00 0.00 101
0.46± 0.00 0.00 112
0.46± 0.00 0.00 32
0.46± 0.01 0.00 15
0.46± 0.00 0.00 98
0.46± 0.00 0.00 100
0.46± 0.00 0.00 73
0.46± 0.01 0.00 62
0.46± 0.00 0.00 38
0.46± 0.00 0.00 92
0.46± 0.00 0.00 79
0.46± 0.00 0.00 85
0.46± 0.00 0.00 25
0.46± 0.00 0.00 56
0.46± 0.00 0.00 93
0.46± 0.00 0.00 33
0.46± 0.00 0.00 83
0.46± 0.00 0.00 105
0.46± 0.00 0.00 121
0.46± 0.00 0.00 116
0.46± 0.00 0.00 4
0.46± 0.00 0.00 46
0.46± 0.00 0.00 122
0.46± 0.00 0.00 49
0.46± 0.00 0.00 81
0.46± 0.00 0.00 5
0.46± 0.00 0.00 51
0.46± 0.00 0.00 99
0.46± 0.00 0.00 68
0.46± 0.00 0.00 91
0.46± 0.00 0.00 10
0.46± 0.00 0.00 70
0.46± 0.00 0.00 34
0.46± 0.00 0.00 63
0.46± 0.00 0.00 117
0.46± 0.00 0.00 82
0.46± 0.00 0.00 19
0.46± 0.00 0.00 94
0.46± 0.00 0.00 107

Feature Importance Results I-10

0.46± 0.00 0.00 128
0.46± 0.00 −0.00 78
0.46± 0.00 −0.00 114
0.46± 0.00 −0.00 74
0.46± 0.00 −0.00 111
0.46± 0.00 −0.00 65
0.46± 0.00 −0.00 44
0.46± 0.00 −0.00 18
0.46± 0.00 −0.00 87
0.46± 0.00 −0.00 96
0.46± 0.00 −0.00 115
0.46± 0.00 −0.00 54
0.46± 0.00 −0.00 104
0.46± 0.00 −0.00 3
0.46± 0.00 −0.00 110
0.46± 0.00 −0.00 72
0.46± 0.00 −0.00 123
0.46± 0.00 −0.00 45
0.46± 0.00 −0.00 103
0.46± 0.00 −0.00 90
0.46± 0.00 −0.00 29
0.46± 0.00 −0.00 36
0.46± 0.00 −0.00 58
0.46± 0.00 −0.00 106
0.46± 0.00 −0.00 95
0.46± 0.00 −0.00 86
0.46± 0.00 −0.00 28
0.46± 0.00 −0.00 23
0.46± 0.00 −0.00 50
0.46± 0.00 −0.00 71
0.46± 0.00 −0.00 84
0.46± 0.00 −0.00 109
0.46± 0.00 −0.00 52
0.46± 0.00 −0.00 64
0.45± 0.00 −0.00 77
0.45± 0.01 −0.00 97
0.45± 0.00 −0.00 69
0.45± 0.00 −0.00 41
0.45± 0.00 −0.00 88
0.45± 0.00 −0.00 80
0.45± 0.00 −0.00 75
0.45± 0.00 −0.00 76
0.45± 0.00 −0.00 59
0.45± 0.00 −0.01 53

Feature Importance Results I-11

0.45± 0.00 −0.01 27
0.45± 0.00 −0.01 30

Table I.4: Root mean squared error is in pixels and the standard deviation is
computed over the ten runs of the perturbation importance. For a specific row
the values for “Electrode Index” were perturbed. Note that indexing starts at
zero.

Feature Importance Results I-12

I.3 Annealed β-TCVAE

I.3.1 Time Domain

MSE ± std Diff. to Baseline Latent Index
0.25± 0.00 0.00 baseline
0.29± 0.00 0.03 5
0.26± 0.00 0.01 20
0.26± 0.00 0.01 21
0.26± 0.00 0.01 7
0.26± 0.00 0.00 13
0.26± 0.00 0.00 6
0.26± 0.00 0.00 12
0.26± 0.00 0.00 25
0.26± 0.00 0.00 3
0.25± 0.00 0.00 24
0.25± 0.00 0.00 15
0.25± 0.00 0.00 8
0.25± 0.00 0.00 9
0.25± 0.00 0.00 4
0.25± 0.00 0.00 22
0.25± 0.00 0.00 0
0.25± 0.00 0.00 11
0.25± 0.00 0.00 1
0.25± 0.00 0.00 16
0.25± 0.00 0.00 2
0.25± 0.00 0.00 17
0.25± 0.00 0.00 18
0.25± 0.00 0.00 19
0.25± 0.00 0.00 23
0.25± 0.00 0.00 10
0.25± 0.00 0.00 14

Table I.5: Mean squared error was computed between preprocessed signals and
the reconstructions from the VAE. For a specific row the values for “Latent Index”
were perturbed. Note that indexing starts at zero and we only count the 26 latent
dimensions that actually carried information among the 70 latent dimensions the
VAE had.

Feature Importance Results I-13

I.3.2 Frequency Domain

MSE ± std Diff. to Baseline Latent Index
1.09± 0.00 0.00 baseline
8.95± 0.00 7.86 5
5.18± 0.00 4.09 7
3.52± 0.00 2.43 20
3.51± 0.00 2.41 21
2.07± 0.00 0.97 13
1.92± 0.00 0.82 6
1.48± 0.00 0.38 12
1.39± 0.00 0.30 25
1.33± 0.00 0.23 3
1.29± 0.00 0.20 24
1.26± 0.00 0.16 15
1.24± 0.00 0.15 8
1.23± 0.00 0.14 9
1.23± 0.00 0.14 4
1.22± 0.00 0.13 22
1.22± 0.00 0.13 0
1.22± 0.00 0.13 11
1.22± 0.00 0.13 1
1.22± 0.00 0.13 16
1.22± 0.00 0.12 2
1.22± 0.00 0.12 17
1.21± 0.00 0.11 18
1.20± 0.00 0.11 19
1.20± 0.00 0.11 23
1.20± 0.00 0.11 10
1.20± 0.00 0.11 14

Table I.6: Mean squared error was computed between preprocessed signals and
the reconstructions from the VAE, both were in frequency domain and put in split
representation. For a specific row the values for “Latent Index” were perturbed.
Note that indexing starts at zero and we only count the 26 latent dimensions
that actually carried information among the 70 latent dimensions the VAE had.

I.4 Rank Differences

For the upcoming results we considered the perturbation importance results from
Subsection I.1.1, Subsection I.2.1, and Subsection I.3.2. We compared the two
results from the tasks each to the result from the annealed β-TCVAE.

Feature Importance Results I-14

I.4.1 Amplitude Task

Latent Index Rank VAE Rank Amplitude Rank Diff.
10 25 8 17
23 24 14 10
4 14 7 7
11 17 12 5
14 26 22 4
13 5 2 3
16 19 16 3
25 8 6 2
9 13 11 2
2 20 18 2
0 16 15 1
5 1 1 0
20 3 3 0
21 4 4 0
19 23 24 -1
12 7 9 -2
17 21 23 -2
7 2 5 -3
1 18 21 -3
18 22 25 -3
6 6 10 -4
3 9 13 -4
24 10 17 -7
15 11 19 -8
8 12 20 -8
22 15 26 -11

Table I.7: The differences in rank between the results for the latent dimensions
permutation importance experiment for the Amplitude task and the Annealed
β-TCVAE. The table is sorted by the rank difference. A high value means the
latent is (relatively) more important according to the perturbation experiment
done for the Amplitude task than for the Annealed VAE, et vice versa.

Feature Importance Results I-15

I.4.2 Angle Task

Latent Index Rank VAE Rank Angle Rank Diff.
2 20 5 15
18 22 12 10
1 18 9 9
10 25 18 7
14 26 19 7
4 14 8 6
25 8 3 5
15 11 7 4
22 15 11 4
23 24 20 4
13 5 2 3
0 16 13 3
6 6 4 2
16 19 17 2
19 23 21 2
12 7 6 1
5 1 1 0
9 13 14 -1
17 21 25 -4
3 9 15 -6
11 17 23 -6
7 2 10 -8
21 4 16 -12
24 10 22 -12
8 12 24 -12
20 3 26 -23

Table I.8: The differences in rank between the results for the latent dimensions
permutation importance experiment for the Angle task and the Annealed β-
TCVAE. The table is sorted by the rank difference. A high value means the
latent is (relatively) more important according to the perturbation experiment
done for the Angle task than for the Annealed VAE, et vice versa.

Appendix J

Feature Statistics

Each subsection of this chapter corresponds to one experiment from the Sections
6.1 and 6.2. Check the section and subsection titles to see which table and figure
belongs to which experiment. The tables all have the same setup: the left column
shows the highest five means of all split frequencies (i.e. the individual features
that were fed into the VAE) above the three dots and then the lowest five after
the three dots. The right column is the same but for the standard deviation.
The numbers before the colon denote the index of the feature. Meaning that
the values with indices from 0 to 250 were derived from the real parts of the
frequency components for frequencies 0 to 250 Hz and the indices from 251 to
501 from their respective imaginary parts. The values after the colon are the
means or standard deviations of said feature.

J.1 Sanity Checks

J.1.1 Standardize per Electrode in Time Domain

mean std
252: 19.03371 0: 344.93307

1: 5.63791 252: 195.65072
8: 3.7012 1: 62.59731

260: 3.36475 254: 57.50859
258: 3.25281 2: 43.166

... ...
261: -2.47707 498: 0.06582
259: -3.05653 499: 0.04297
7: -3.30788 500: 0.03482
5: -3.9845 501: 0.0
2: -5.89568 251: 0.0

Table J.1: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

J-1

Feature Statistics J-2

Figure J.1: Sorted means and standard deviations of the split frequencies.

J.1.2 Normalize per Electrode in Time Domain

mean std
0: 240.26649 0: 71.87544
252: 2.50149 252: 34.62553
1: 0.92663 1: 10.69696
8: 0.5486 254: 10.19734

260: 0.51118 2: 7.39952
... ...

261: -0.40866 498: 0.01088
259: -0.45606 499: 0.00725
7: -0.51297 500: 0.00587
5: -0.60545 501: 0.0
2: -0.82523 251: 0.0

Table J.2: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.2: Sorted means and standard deviations of the split frequencies.

Feature Statistics J-3

J.1.3 Standardize per Electrode in Frequency Domain

mean std
252: 0.93598 0: 17.84963
1: 0.27493 252: 10.38945
8: 0.17789 1: 3.30257

260: 0.16128 254: 3.04335
258: 0.15523 2: 2.28409

... ...
16: -0.12459 499: 0.01667
259: -0.15164 501: 0.01635
7: -0.16546 251: 0.01635
5: -0.1984 500: 0.01633
2: -0.29206 497: 0.01599

Table J.3: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.3: Sorted means and standard deviations of the split frequencies.

Feature Statistics J-4

J.1.4 Normalize per Electrode in Frequency Domain

mean std
252: 0.51918 0: 0.31641
1: 0.50921 252: 0.24089
0: 0.50883 254: 0.15272
8: 0.50802 1: 0.15254

260: 0.50776 253: 0.14641
... ...

261: 0.50358 291: 0.14126
259: 0.50331 41: 0.14124
7: 0.50302 280: 0.14122
5: 0.50253 7: 0.14099
2: 0.50127 18: 0.14098

Table J.4: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.4: Sorted means and standard deviations of the split frequencies.

J.1.5 Standardize per Split Frequency in Frequency Domain

Having a table and plots here would be silly since the whole point of the prepro-
cessing is to set the split frequencies’ means to zero and standard deviations to
one.

Feature Statistics J-5

J.1.6 Normalize per Split Frequency in Frequency Domain

mean std
15: 0.80219 19: 0.15922
292: 0.73465 39: 0.15382
294: 0.72492 51: 0.15061
53: 0.70765 30: 0.15021
433: 0.70744 341: 0.14926

... ...
24: 0.27849 437: 0.06634
82: 0.25319 483: 0.06631
52: 0.22888 0: 0.06476

501: 0.0 501: 0.0
251: 0.0 251: 0.0

Table J.5: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.5: Sorted means and standard deviations of the split frequencies.

Feature Statistics J-6

J.1.7 Standardize per Electrode in Frequency Domain (with Log-
arithm)

mean std
0: 2.56436 500: 0.95373
1: 2.39493 499: 0.93617
3: 1.92652 497: 0.9353
2: 1.89029 498: 0.92435
4: 1.76381 496: 0.91735

... ...
295: -0.92468 96: 0.25242
314: -0.92871 16: 0.24825
329: -0.94092 73: 0.24766
297: -0.94484 67: 0.24553
263: -0.97532 123: 0.24486

Table J.6: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.6: Sorted means and standard deviations of the split frequencies.

Feature Statistics J-7

J.2 Full Dataset - Raw

J.2.1 Standardize per Electrode in Time Domain

mean std
252: 0.00577 0: 499.99457
253: 0.00255 252: 1.08218
254: 0.00188 1: 0.66405
255: 0.00146 253: 0.54654
256: 0.00113 254: 0.3559

... ...
27: -4e-05 498: 0.0002
9: -4e-05 499: 0.00018
24: -5e-05 500: 0.00018
50: -6e-05 501: 0.0
6: -7e-05 251: 0.0

Table J.7: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.7: Sorted means and standard deviations of the split frequencies.

Feature Statistics J-8

J.2.2 Normalize per Electrode in Time Dimension

mean std
0: 266.64764 0: 119.34609
252: 0.00089 252: 0.15946
253: 0.00037 1: 0.09671
254: 0.0003 253: 0.08094
255: 0.00021 254: 0.05503

... ...
13: -1e-05 498: 3e-05
21: -1e-05 500: 3e-05
1: -1e-05 499: 3e-05
6: -2e-05 501: 0.0
50: -2e-05 251: 0.0

Table J.8: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.8: Sorted means and standard deviations of the split frequencies.

Feature Statistics J-9

J.2.3 Standardize per Electrode in Frequency Domain

mean std
0: 2.92194 0: 22.20834

252: -0.00564 252: 0.04827
253: -0.00575 1: 0.03454
254: -0.00577 253: 0.03054
255: -0.00578 254: 0.02556

... ...
17: -0.00584 331: 0.02145
21: -0.00584 329: 0.02145
27: -0.00584 316: 0.02145
50: -0.00584 310: 0.02145
6: -0.00584 312: 0.02145

Table J.9: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.9: Sorted means and standard deviations of the split frequencies.

Feature Statistics J-10

J.2.4 Normalize per Electrode in Frequency Domain

mean std
0: 0.53592 0: 0.23644

252: 0.50915 1: 0.23234
253: 0.50914 6: 0.23234
254: 0.50914 50: 0.23234
255: 0.50914 9: 0.23234

... ...
13: 0.50914 256: 0.23234
21: 0.50914 255: 0.23234
1: 0.50914 254: 0.23234
6: 0.50914 253: 0.23234
50: 0.50914 252: 0.23234

Table J.10: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.10: Sorted means and standard deviations of the split frequencies.

J.2.5 Standardize per Split Frequency in Frequency Domain

Having a table and plots here would be silly since the whole point of the prepro-
cessing is to set the split frequencies’ means to zero and standard deviations to
one.

Feature Statistics J-11

J.2.6 Normalize per Split Frequency in Frequency Domain

mean std
9: 0.76098 0: 0.03582
36: 0.74935 401: 0.00765
33: 0.72436 50: 0.00753
66: 0.68407 301: 0.00717
39: 0.67309 150: 0.00582

... ...
51: 0.23667 9: 0.00036
21: 0.21351 18: 0.00036
0: 0.01259 6: 0.00033
501: 0.0 501: 0.0
251: 0.0 251: 0.0

Table J.11: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.11: Sorted means and standard deviations of the split frequencies.

Feature Statistics J-12

J.2.7 Normalize (-0.5 to 0.5) per Signal in Time Domain

mean std
252: 1.86118 252: 38.88895
0: 1.29288 0: 31.35796

253: 1.03197 50: 23.9414
255: 0.68354 301: 23.93475
254: 0.45213 253: 16.95273

... ...
9: -0.0936 498: 0.01799
3: -0.14883 499: 0.01402
7: -0.21361 500: 0.01194
5: -0.26417 501: 0.0
2: -0.26796 251: 0.0

Table J.12: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.12: Sorted means and standard deviations of the split frequencies.

Feature Statistics J-13

J.3 Full Dataset - Minimally Preprocessed

J.3.1 Standardize per Electrode in Frequency Domain

mean std
0: 0.039 0: 17.93165

260: 0.0063 1: 6.5147
255: 0.00426 252: 6.15574
1: 0.00404 253: 5.54902

266: 0.00368 254: 3.90495
... ...

257: -0.00546 499: 0.00545
261: -0.00608 498: 0.00507
7: -0.00747 500: 0.00501

253: -0.01052 501: 0.00164
254: -0.01735 251: 0.00164

Table J.13: Top 5 and Bottom 5 mean and standard deviation values of the split
frequencies.

Figure J.13: Sorted means and standard deviations of the split frequencies.

J.3.2 Standardize per Split Frequency in Frequency Domain

Having a table and plots here would be silly since the whole point of the prepro-
cessing is to set the split frequencies’ means to zero and standard deviations to
one.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation and Goal

	2 Background
	2.1 Independent Component Analysis (ICA)
	2.2 Variational Autoencoders
	2.2.1 Basics
	2.2.2 Variants

	2.3 Fourier Transform
	2.4 Skip Connections
	2.5 Permutation Feature Importance

	3 Terminology
	4 Dataset and Preprocessing
	4.1 The EEGEyeNet Dataset
	4.1.1 Data Acquisition
	4.1.2 Minimal Preprocessing
	4.1.3 Cutting the Data
	4.1.4 Tasks in EEGEyeNet
	4.1.5 Maximal Preprocessing

	4.2 Machine Learning Preprocessing Schemes
	4.2.1 Preprocessing Schemes
	4.2.2 Advantages and Disadvantages of Common Preprocessing Schemes

	5 Methods and Modeling
	5.1 Discovered Potential
	5.1.1 Variational Autoencoders
	5.1.2 VAEs Show Potential

	5.2 Preparing the Data for the VAEs
	5.2.1 The Giant Span
	5.2.2 High Frequencies
	5.2.3 Line Noise
	5.2.4 Line Noise and Normalization

	5.3 Training the VAE
	5.3.1 Signal vs Sample
	5.3.2 The Full Pipeline
	5.3.3 Standard Deviations of the Frequencies

	5.4 Uncovered Latent Representation
	5.4.1 Learnt Latent Representation
	5.4.2 Information Content

	6 Experiments
	6.1 Sanity Checks
	6.2 Full Dataset
	6.3 Feature Statistics
	6.4 Downstream Tasks
	6.5 Perturbation Importance
	6.6 Angle and Amplitude from Line Noise

	7 Results
	7.1 Sanity Checks
	7.2 Full Dataset
	7.3 Feature Statistics
	7.4 Downstream Tasks
	7.5 Perturbation Importance
	7.6 Angle and Amplitude from Line Noise

	8 Conclusion
	Bibliography
	A Latent Dataset
	B Splitting the Data for the Downstream Tasks
	C Permuting Electrodes or Latent Dimensions in Latent Datasets
	D Visualisations of Latent Dimensions
	E Root Mean Squared Error Versions
	F Plots Sanity Check Reconstructions
	F.1 Standardize per Electrode in Time Domain
	F.2 Normalize per Electrode in Time Domain
	F.3 Standardize per Electrode in Frequency Domain
	F.4 Normalize per Electrode in Frequency Domain
	F.5 Standardize per Split Frequency in Frequency Domain
	F.6 Normalize per Split Frequency in Frequency Domain
	F.7 Standardize per Electrode in Frequency Domain (with Logarithm)

	G Full Dataset Reconstructions
	G.1 TCVAE with = 400
	G.2 TCVAE with = 800
	G.3 Annealed -TCVAE

	H Full Dataset Correlation Matrices
	H.1 TCVAE with = 400
	H.2 TCVAE with = 800
	H.3 Annealed -TCVAE

	I Feature Importance Results
	I.1 Amplitude Task
	I.1.1 Latent Dimensions
	I.1.2 Electrodes

	I.2 Angle Task
	I.2.1 Latent Dimensions
	I.2.2 Electrodes

	I.3 Annealed -TCVAE
	I.3.1 Time Domain
	I.3.2 Frequency Domain

	I.4 Rank Differences
	I.4.1 Amplitude Task
	I.4.2 Angle Task

	J Feature Statistics
	J.1 Sanity Checks
	J.1.1 Standardize per Electrode in Time Domain
	J.1.2 Normalize per Electrode in Time Domain
	J.1.3 Standardize per Electrode in Frequency Domain
	J.1.4 Normalize per Electrode in Frequency Domain
	J.1.5 Standardize per Split Frequency in Frequency Domain
	J.1.6 Normalize per Split Frequency in Frequency Domain
	J.1.7 Standardize per Electrode in Frequency Domain (with Logarithm)

	J.2 Full Dataset - Raw
	J.2.1 Standardize per Electrode in Time Domain
	J.2.2 Normalize per Electrode in Time Dimension
	J.2.3 Standardize per Electrode in Frequency Domain
	J.2.4 Normalize per Electrode in Frequency Domain
	J.2.5 Standardize per Split Frequency in Frequency Domain
	J.2.6 Normalize per Split Frequency in Frequency Domain
	J.2.7 Normalize (-0.5 to 0.5) per Signal in Time Domain

	J.3 Full Dataset - Minimally Preprocessed
	J.3.1 Standardize per Electrode in Frequency Domain
	J.3.2 Standardize per Split Frequency in Frequency Domain

